WorldWideScience

Sample records for cell wall polymer

  1. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension.

    Science.gov (United States)

    McQueen-Mason, S; Cosgrove, D J

    1994-07-01

    Plant cell enlargement is controlled by the ability of the constraining cell wall to expand. This ability has been postulated to be under the control of polysaccharide hydrolases or transferases that weaken or rearrange the loadbearing polymeric networks in the wall. We recently identified a family of wall proteins, called expansins, that catalyze the extension of isolated plant cell walls. Here we report that these proteins mechanically weaken pure cellulose paper in extension assays and stress relaxation assays, without detectable cellulase activity (exo- or endo- type). Because paper derives its mechanical strength from hydrogen bonding between cellulose microfibrils, we conclude that expansins can disrupt hydrogen bonding between cellulose fibers. This conclusion is further supported by experiments in which expansin-mediated wall extension (i) was increased by 2 M urea (which should weaken hydrogen bonding between wall polymers) and (ii) was decreased by replacement of water with deuterated water, which has a stronger hydrogen bond. The temperature sensitivity of expansin-mediated wall extension suggests that units of 3 or 4 hydrogen bonds are broken by the action of expansins. In the growing cell wall, expansin action is likely to catalyze slippage between cellulose microfibrils and the polysaccharide matrix, and thereby catalyze wall stress relaxation, followed by wall surface expansion and plant cell enlargement. PMID:11607483

  2. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  3. Single Wall Carbon Nanotube-polymer Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  4. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation.

    Science.gov (United States)

    Moore, John P; Nguema-Ona, Eric E; Vicré-Gibouin, Mäite; Sørensen, Iben; Willats, William G T; Driouich, Azeddine; Farrant, Jill M

    2013-03-01

    A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants. PMID:23117392

  5. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation

    DEFF Research Database (Denmark)

    Moore, John P.; Nguema-Ona, Eric E.; Vicré-Gibouin, Mäite;

    2013-01-01

    A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the...... resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy...... and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the...

  6. Dissipative Particle Dynamics Simulation of Polymer- and Cell-Wall Depletion in Micro-Channels

    Science.gov (United States)

    Fedosov, Dmitry A.; Caswell, Bruce; Em Karniadakis, George

    2008-07-01

    A rising interest in physics of biological systems stimulates a great number of experiments and numerical simulations involving a variety of biological entities. These include bio-polymers and bio-molecules, real organism vesicles and capsules, artificial vesicles used in drug delivery and cells. Macromolecules, vesicles and cells are subject to wall depletion layers observed near solid-fluid interfaces. In the case of red blood cells depletion is often called the cell-free layer and is observed near blood vessel walls. We employ Dissipative Particle Dynamics (DPD) to model depletion layers in biological systems. In case of bio-polymers the simulated depletion layers compare well with the asymptotic lattice theory solution of depletion near a repulsive wall. Vesicles and cells are modeled as coarse-grained cell membranes described by in-plane viscoelastic energy, bending energy, area and volume constraints. We investigate cell-wall depletion for cells having vesicle-like shape and red blood cells, and we correlate our results with membrane coarse-graining and with material properties such as membrane stretching and bending stiffness.

  7. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Sørensen, Iben; Bernal Giraldo, Adriana Jimena;

    2007-01-01

    We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from...... analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant...

  8. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  9. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  10. Polymer photovoltaic cell embedded with p-type single walled carbon nanotubes fabricated by spray process

    Science.gov (United States)

    Kim, Dal-Ho; Park, Jea-Gun

    2012-08-01

    In the current study, we fabricated polymer (poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric-acid methyl-ester (PCBM) blend) photovoltaic (PV) cells embedded with p-type single walled carbon nanotubes (SWCNTs) with tangled hair morphology. The power conversion efficiency (PCE) rapidly increased with SWCNT concentration of up to 6.83% coverage, and then decreased and saturated with increasing SWCNT concentration; i.e., the PCE peaks at 5.379%. This tendency is mainly associated with hole transport efficiency toward the transparent electrode (indium-tin-oxide (ITO)) via SWCNTs, directly determining the series resistance and shunt resistance of the polymer PV cells embedded with SWCNTs: the PV cell is increasing shunt resistance and decreasing series resistance.

  11. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.

    Science.gov (United States)

    Basanta, María F; de Escalada Plá, Marina F; Stortz, Carlos A; Rojas, Ana M

    2013-01-30

    The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. PMID:23218373

  12. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  13. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  14. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity reducing process

    DEFF Research Database (Denmark)

    Yuhong, Huang; Willats, William George Tycho; Lange, Lene;

    2015-01-01

    Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes (PCWDEs) have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...... the viscosity reducing process are poorly characterized. Comprehensive microarray polymer profiling (CoMPP), which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta) and Canna edulis Ker....... The obvious viscosity reduction of the sweet potato and the cassava was attributed to the degradation of homogalacturonan and the released 1,4-β-D-galactan and 1,5-α-L-arabinan....

  15. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process.

    Science.gov (United States)

    Huang, Yuhong; Willats, William G; Lange, Lene; Jin, Yanling; Fang, Yang; Salmeán, Armando A; Pedersen, Henriette L; Busk, Peter Kamp; Zhao, Hai

    2016-03-01

    Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction of the sweet potato and the cassava was attributed to the degradation of homogalacturonan and the released 1,4-β-d-galactan and 1,5-α-l-arabinan. PMID:25757626

  16. Cell wall metabolism in ripening fruit. IX. Synthesis of pectic and hemicellulosic cell wall polymers in the outer pericarp of mature green tomatoes (cv XMT-22)

    International Nuclear Information System (INIS)

    Discs of outer pericarp were excised from mature green tomato (Lycopersicon esculentum Mill.) fruit and kept in sterile tissue culture plates for 4 d, including 2 d of incubation with D-[U-13C]glucose. Cell walls were prepared and the water-soluble, pectic, and hemicellulosic polymers were extracted. Cell wall synthetic capacity was determined by gas chromatography-mass spectrometry analysis of incorporation of the heavy isotope label. The 'outer' 2-mm pericarp region, which included the cuticle, had a lower cell wall synthetic capacity than the 'inner' 2-mm region immediately below it (closer to the locules), based on the percentage of labeling of the neutral sugars. There were no significant differences in relative abundance of glycosidic linkages in the two tissue regions. Label was incorporated into neutral sugars and linkages typical for each polysaccharide class were identified in the cell wall preparations. Galacturonic acid and glucuronic acid were labeled to an extent similar to that of the neutral sugars in each tissue region

  17. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. PMID:21534969

  18. High-throughput microarray profiling of cell wall polymers during hydrothermal pre-treatment of wheat straw.

    Science.gov (United States)

    Alonso-Simón, Ana; Kristensen, Jan Bach; Obro, Jens; Felby, Claus; Willats, William G T; Jørgensen, Henning

    2010-02-15

    Lignocellulosic plant material is potentially a sustainable source of fermentable sugars for bioethanol production. However, a barrier to this is the high resistance or recalcitrance of plant cell walls to be hydrolyzed. Therefore, a detailed knowledge of the structural features of plant cell walls that contribute to recalcitrance is important for improving the efficiency of bioethanol production. In this work we have used a technique known as Comprehensive Microarray Polymer Profiling (CoMPP) to analyze wheat straw before and after being subjected to hydrothermal pre-treatments at four different temperatures. The CoMPP technique combines the specificity of monoclonal antibodies with the high-throughput capacity of microarrays. Changes in the relative abundance of cell wall polysaccharides could be tracked during processing, and a reduction in xylan, arabinoxylans, xyloglucan, and mixed-linked glucan epitopes was detected at the two highest temperatures of pre-treatment used. This work demonstrates the potential of CoMPP as a complementally technique to conventional methods for analyzing biomass composition. PMID:19777595

  19. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    Science.gov (United States)

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. PMID:23465912

  20. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    OpenAIRE

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell wa...

  1. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    Science.gov (United States)

    Bowman, Lisa; Millership, Charlotte; Dupont Søgaard, Mia; Kaever, Volkhard; Siljamäki, Pia; Savijoki, Kirsi; Varmanen, Pekka; Nyman, Tuula A.

    2016-01-01

    ABSTRACT Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. PMID:27507828

  2. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  3. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    Science.gov (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  4. Bio-based composites that mimic the plant cell wall

    OpenAIRE

    Li, Zhuo

    2009-01-01

    Nature creates high performance materials under modest conditions, i.e., neutral pH and ambient temperature and pressure. One of the most significant materials is the plant cell wall. The plant cell wall is a composite of oriented cellulose microfibrils reinforcing a lignin/hemicellulose matrix. In principle, the plant cell wall composite is designed much like a synthetic fiber-reinforced polymer composite. Unlike synthetic composites, the plant cell wall has an excellent combination of h...

  5. Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition

    International Nuclear Information System (INIS)

    To realize a high catalyst utilization, better fuel cell performance and durability as well as low production cost, an efficient design strategy of the catalyst layer that can improve both the oxygen accessibility and structure stability is highly required. Here, we describe the preparation of fuel cell electrocatalysts with an efficient fuel cell performance and better stability based on hybrids of multi-walled carbon nanotubes (MWNTs) and carbon black (CB) which were wrapped by a proton conducting polymer, poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole], before deposition of the platinum (Pt) metal catalyst. The catalyst mass activity after feeding only 10%-MWNTs to CB increased by 1.5 and 2 times than those of the MWNTs-based- and CB-based catalysts, respectively. The results also demonstrated that 90 wt% of the MWNTs in the catalyst layer allows it to be replaced by CB without any significant change in its durability and performance under 120 °C and non-humidified condition

  6. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  7. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  8. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    cannot really be synthesised or sequenced. The work described in this thesis is focused to a large extent on the development of a microarray-based high-throughput method for cell wall analysis known as Comprehensive microarray polymer profiling or CoMPP. The procedure uses highly specific molecular...... produced has provided new insight into cell wall evolution and biosynthesis and has contributed to the commercial development of cell wall materials. A major focus of the work has been the wide scale sampling of cell wall diversity across the plant kingdom, from unicellular algae to highly evolved......Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...

  9. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  10. Cell wall proteomics of crops

    OpenAIRE

    Komatsu, Setsuko; Yanagawa, Yuki

    2013-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...

  11. The Chlamydomonas cell wall: characterization of the wall framework

    OpenAIRE

    1985-01-01

    The cell wall of the biflagellate alga Chlamydomonas reinhardtii is a multilayered, extracellular matrix composed of carbohydrates and 20-25 polypeptides. To learn more about the forces responsible for the integrity of this cellulose-deficient cell wall, we have begun studies to identify and characterize the framework of the wall and to determine the effects of the cell wall-degrading enzyme, lysin, on framework structure and protein composition. In these studies we used walls released into t...

  12. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    OpenAIRE

    Domozych, David S

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies rais...

  13. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations. PMID:26309153

  14. The state of cell wall pectin monitored by wall associated kinases: A model

    OpenAIRE

    Kohorn, Bruce D

    2015-01-01

    The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stres...

  15. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  16. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  17. Assembly and enlargement of the primary cell wall in plants

    Science.gov (United States)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  18. Photophysics of polymer-wrapped single-walled carbon nanotubes

    NARCIS (Netherlands)

    Gao, J; Loi, M.A.

    2010-01-01

    Single-walled carbon nanotubes (SWNTs) are successfully dispersed in two conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) and poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEHPPV) solutions. Steady-state and time-resolved photoluminescence spectroscopy in the near-infrare

  19. Analyzing the complex machinery of cell wall biosynthesis

    OpenAIRE

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a highly interesting target of scientific research. In this thesis a protein-protein interaction strategy was used to gain insight in the cell wall biosynthesis of Arabidopsis thaliana and to identif...

  20. Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow

    OpenAIRE

    Zhao, R.; Marhefka, J.N.; Antaki, J.F.; Kameneva, M.V.

    2010-01-01

    The accumulation of platelets near the blood vessel wall or artificial surface is an important factor in the cascade of events responsible for coagulation and/or thrombosis. In small blood vessels and flow channels this phenomenon has been attributed to the blood phase separation that creates a red blood cell (RBC)-poor layer near the wall. We hypothesized that blood soluble drag-reducing polymers (DRP), which were previously shown to lessen the near-wall RBC depletion layer in small channels...

  1. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  2. DCB-adapted plant cells possess unique wall structure

    Energy Technology Data Exchange (ETDEWEB)

    Shedletzky, E.; Shmuel, M. (Hebrew Univ., Jerusalem (Israel)); Delmer, D. (Hebrew Univ., Jerusalem (Israel) Michigan State Univ., East Lansing (USA)); Lamport, D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) haven been adapted to growth on high concentrations of 2,6-dichloro-benzonitrile (DCB), an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of thee cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on DCB also differ from non-adapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonon and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-esters and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in thee unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.

  3. Cell Wall Integrity Signaling in Saccharomyces cerevisiae

    OpenAIRE

    Levin, David E.

    2005-01-01

    The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...

  4. Back wall solar cell

    Science.gov (United States)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  5. Photophysics of polymer-wrapped single-walled carbon nanotubes

    OpenAIRE

    Gao, J.; Loi, M.A.

    2010-01-01

    Single-walled carbon nanotubes (SWNTs) are successfully dispersed in two conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) and poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEHPPV) solutions. Steady-state and time-resolved photoluminescence spectroscopy in the near-infrared and visible spectral regions are used to study the interaction of the dispersed carbon nanotube and the wrapped polymer in the nano-hybrids. The SWNTs infrared emission is the signatures of the s...

  6. Cell Wall Growth and Modulation Dynamics in a Model Unicellular Green Alga—Penium margaritaceum: Live Cell Labeling with Monoclonal Antibodies

    OpenAIRE

    Domozych, David S; Hannah Brechka; Alicia Britton; Marc Toso

    2011-01-01

    Penium margaritaceum is a unicellular charophycean green alga that possesses cell wall polymers similar to those of land plants. Several wall macromolecules of this alga are recognized by monoclonal antibodies specific for wall polymer epitopes of land plants. Immunofluorescence protocols using these antibodies may be employed to label specific cell wall constituents of live cells. Fluorescent labeling persists for several days, and this attribute allows for tracing of wall epitopes in both l...

  7. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  8. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola;

    2011-01-01

    type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a...... method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes......Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is...

  9. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  10. Accelerating forward genetics for cell wall deconstruction

    OpenAIRE

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduc...

  11. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  12. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan;

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  13. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  14. Unique aspects of the grass cell wall

    Science.gov (United States)

    Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...

  15. Shape dynamics of growing cell walls

    OpenAIRE

    Banerjee, Shiladitya; Scherer, Norbert F.; Dinner, Aaron R.

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy...

  16. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  17. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  18. Cell microencapsulation with synthetic polymers.

    Science.gov (United States)

    Olabisi, Ronke M

    2015-02-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. PMID:24771675

  19. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  20. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  1. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    Science.gov (United States)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  2. Semiflexible Polymers in the Bulk and Confined by Planar Walls

    Directory of Open Access Journals (Sweden)

    Sergei A. Egorov

    2016-08-01

    Full Text Available Semiflexible polymers in solution under good solvent conditions can undergo an isotropic-nematic transition. This transition is reminiscent of the well-known entropically-driven transition of hard rods described by Onsager’s theory, but the flexibility of the macromolecules causes specific differences in behavior, such as anomalous long wavelength fluctuations in the ordered phase, which can be understood by the concept of the deflection length. A brief review of the recent progress in the understanding of these problems is given, summarizing results obtained by large-scale molecular dynamics simulations and density functional theory. These results include also the interaction of semiflexible polymers with hard walls and the wall-induced nematic order, which can give rise to capillary nematization in thin film geometry. Various earlier theoretical approaches to these problems are briefly mentioned, and an outlook on the status of experiments is given. It is argued that in many cases of interest, it is not possible to describe the scaled densities at the isotropic-nematic transition as functions of the ratio of the contour length and the persistence length alone, but the dependence on the ratio of chain diameter and persistence length also needs to be considered.

  3. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  4. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    DEFF Research Database (Denmark)

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile;

    2008-01-01

    BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally...... regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide...... hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and...

  5. Cell Wall Assembly in Saccharomyces cerevisiae

    OpenAIRE

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and it...

  6. How do plant cell walls extend?

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  7. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  8. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  9. Cell wall composition of chlorococcal algae

    OpenAIRE

    Blumreisinger, Maria; Meindl, Doris; Loos, Eckhard

    1983-01-01

    The cell walls of representatives of the genera Chlorella, Monoraphidium, Ankistrodesmus and Scenedesmus contained 24–74% neutral sugars, 1–24% uronic acids, 2–16% protein and 0–15% glucosamine. Two types of cell walls could be discerned containing as main sugars either rhamnose and galactose or mannose and glucose with a lack of galactose.

  10. WallProtDB, a database resource for plant cell wall proteomics

    OpenAIRE

    San Clemente, Hélène; Jamet, Elisabeth

    2015-01-01

    Background During the last fifteen years, cell wall proteomics has become a major research field with the publication of more than 50 articles describing plant cell wall proteomes. The WallProtDB database has been designed as a tool to facilitate the inventory, the interpretation of cell wall proteomics data and the comparisons between cell wall proteomes. Results WallProtDB (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) presently contains 2170 proteins and ESTs identified experimentally i...

  11. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan; Gang, Xiao; Gao, Ji-An; Bjerrum, Niels

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  12. Safranine fluorescent staining of wood cell walls.

    Science.gov (United States)

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy. PMID:18802812

  13. Tensile test of plant cell wall analogs thin films using image stereocorrelation

    OpenAIRE

    Assor, Carole; Sabatier, Laurent; Cathala, Bernard; Aguié Béghin, Véronique; Arnould, Olivier

    2013-01-01

    The plant cell wall can be the optimal scale of investigation for understanding the properties and the variability of vegetal organs structure. At the molecular scale, the wall constituents’ organisation might have a strong influence on theses properties. Primary cell walls are separated into monocotyledons (cereals) and dicotyledons (fleshy fruits) depending on the type of molecules involved (cellulose, hemicelluloses, pectin, etc.). These polymers structures and concentration within the cel...

  14. Cell wall proteins: a new insight through proteomics

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translation...

  15. Identification and characterization of genes involved in Arabidopsis thaliana cell wall acetylation

    OpenAIRE

    de Souza, Amancio Jose

    2014-01-01

    Most non-cellulosic plant cell wall polysaccharides including the hemicellulose xyloglucan and the pectic polysaccharides can be O-acetylated. This feature has direct significance in the use of these polymers in the food and biofuel industry. For example, increased pectin acetylation can reduce its gelling abilities and is hence detrimental in its application as a food thickener or emulsifier. In general, plant biomass with wall polymers with high acetate content can negatively influence biom...

  16. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  17. Refractive index of plant cell walls

    Science.gov (United States)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  18. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    Science.gov (United States)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the

  19. Polymer heterostructures with embedded carbon nanotubes for efficient photovoltaic cells

    International Nuclear Information System (INIS)

    Polymer photovoltaic cells (PVC) are intensely investigated because of their potential advantages over Si-based PVCs. Their present drawbacks are low conversion efficiency, limited exciton diffusion length, poor hole carriers transport and short lifetime. The highest conversion efficiency achieved so far in spin-coated polymer blends is close to 5%. Recently, efficiency growing has been demonstrated in multilayer architectures involving a donor/acceptor bulk heterojunction. Alternatively, a nanomaterial has been added to the polymer active layer to facilitate excitons dissociation and carriers transport through the polymer matrix. In this work we investigate both these approaches, first embedding single wall Carbon Nanotubes (SWCNT) in the polymeric matrix to improve the electrical transport and second studying the optical absorption of different polymer thin films to optimize the spectral response of the donor/acceptor heterojunction.

  20. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Baslak, Canan, E-mail: cananbaslak@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Demirel Kars, Meltem, E-mail: dmeltem@yahoo.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Sarayonu Vocational High School, Selcuk University, 42430 Konya (Turkey); Karaman, Mustafa; Kus, Mahmut [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42075 Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey)

    2015-04-15

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy.

  1. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    International Nuclear Information System (INIS)

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy

  2. Homogenization of a viscoelastic model for plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2015-01-01

    The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin--Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding me...

  3. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from the...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  4. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    the morphology of the active layer of the solar cells when produced with water based inks using R2R coating. Using a broad range of scattering and imaging techniques, cells coated with water based inks were investigated, and compared to their spin coated counterpart. Two challenges to be addressed were small...... as a function of polymer, type of ink, annealing etc. Ptychography is a new state of the art X-ray imaging technique based on coherent scattering. Together with Scanning X-ray Transmission Microscopy (STXM) it has been used in this study to inspect the morphology of the active layer taken from working solar...

  5. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  6. Polymer concrete cell applications in zinc electrowinning

    International Nuclear Information System (INIS)

    The use of polymer concrete cells in zinc electrowinning plants is discussed and the properties of these cells are described. These include, improved corrosion resistance, modularization, maintenance reduction and integrated designs and attachments for bus bars and walkways and for solution handling. Use of UNICELL polymer concrete cells in different cell houses is reviewed. (author)

  7. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  8. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    OpenAIRE

    Baris Yilmaz; Josiah Bjorgaard; Zhenghuan Lin; Muhammet E. Köse

    2015-01-01

    Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been fou...

  9. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  10. Abiotic and enzymatic degradation of wheat straw cell wall: a biochemical and ultrastructural investigation.

    Science.gov (United States)

    Lequart, C; Ruel, K; Lapierre, C; Pollet, B; Kurek, B

    2000-07-14

    The action of an abiotic lignin oxidant and a diffusible xylanase on wheat straw was studied and characterized at the levels of the molecular structures by chemical analysis and of the cell wall ultrastructure by transmission electron microscopy. While distinct chemical changes in the target polymers were observed when each system was used separately, a combination of the two types of catalysts did not significantly increase either lignin oxidation or hemicellulose hydrolysis. Microscopic observations however revealed that the supramolecular organization of the cell wall polymers was significantly altered. This suggests that the abiotic Mn-oxalate complex and the xylanase cooperate in modifying the cell wall architecture, without noticeably enhancing the degradation of the constitutive polymers. PMID:10949315

  11. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping.

    Science.gov (United States)

    Didenko, Vladimir V; Moore, Valerie C; Baskin, David S; Smalley, Richard E

    2005-08-01

    Manipulating optical properties of single-walled nanotubes (SWNTs) is necessary for the development of nanoscale optical devices and probes for biomedical research. In life sciences it will make possible the direct observation of SWNTs inside living cells using optical microscopes. In the nanotechnology field it will enable the development of nanosensors with fluorescent reporting. However, the direct fluorescent labeling of SWNTs is obstructed by their strong light quenching qualities. Besides, chemical functionalization of SWNTs needed for the covalent attachment of fluorescent dyes could change favorable properties of nanotubes. Here we report that optical properties of SWNTs can be manipulated without their covalent modification by wrapping them with fluorescently labeled polymer poly(vinylpyrrolidone) (PVP-1300). Fluorescent PVP-1300 forms a monomolecular approximately 2.5 nm thick layer coiling around individual SWNTs and nanotube bundles. PVP casing is fluorescent although it is only several nanometers thick. This makes individual SWNTs observable by a fluorescent microscope. The spare polymer strands left over after wrapping around the relatively shorter nanotubes form junctions between SWNTs tying them together into new configurations, primarily Y- and psi-type junctions. The ability to use a single fluorescent polymer strand to fasten nanotubes together can be useful in assembly of nanotube-made devices. In PVP-covered SWNTs multiple fluorophores are attached to each single nanotube making them unique composite fluorophores attractive as parts of biological fluorescent probes and in the development of the new materials in photonics and nanotechnology. PMID:16089489

  12. Visualization of Individual Single-Walled Carbon Nanotubes by Fluorescent Polymer Wrapping

    Science.gov (United States)

    Moore, Valerie C.; Baskin, David S.; Smalley, Richard E.

    2007-01-01

    Manipulating optical properties of single-walled nanotubes (SWNTs) is necessary for the development of nanoscale optical devices and probes for biomedical research. In life sciences it will make possible the direct observation of SWNTs inside living cells using optical microscopes. In the nanotechnology field it will enable the development of nanosensors with fluorescent reporting. However, the direct fluorescent labeling of SWNTs is obstructed by their strong light quenching qualities. Besides, chemical functionalization of SWNTs needed for the covalent attachment of fluorescent dyes could change favorable properties of nanotubes. Here we report that optical properties of SWNTs can be manipulated without their covalent modification by wrapping them with fluorescently labeled polymer poly(vinylpyrrolidone) (PVP-1300). Fluorescent PVP-1300 forms a monomolecular ~2.5 nm thick layer coiling around individual SWNTs and nanotube bundles. PVP casing is fluorescent although it is only several nanometers thick. This makes individual SWNTs observable by a fluorescent microscope. The spare polymer strands left over after wrapping around the relatively shorter nanotubes form junctions between SWNTs tying them together into new configurations, primarily Y- and Ψ-type junctions. The ability to use a single fluorescent polymer strand to fasten nanotubes together can be useful in assembly of nanotube-made devices. In PVP-covered SWNTs multiple fluorophores are attached to each single nanotube making them unique composite fluorophores attractive as parts of biological fluorescent probes and in the development of the new materials in photonics and nanotechnology. PMID:16089489

  13. COALESCENCE INDUCED GRADIENT MORPHOLOGY NEAR A WALL IN PHASE SEPARATED POLYMER BLENDS DURING QUIESCENT ANNEALING

    Institute of Scientific and Technical Information of China (English)

    Wei Yu; Chi-xing Zhou; De-lu Zhao

    2002-01-01

    A fast coalescence mechanism is proposed to account for the wall effect on the formation of gradient morphologyin phase separated polymer blends during quiescent annealing. The existence of solid wall with high polarity is believed tochange the potential field around the dispersed particles near the wall. This additional potential interaction between the solidwall and the dispersed particles causes faster coalescence of the dispersed particles near the wall than in the bulk. Thegradient phase morphology thus formed can be predicted by combining the wall-particle interaction and the touch-coalescence mechanism. The effect of interfacial tension on the gradient morphology is also discussed.

  14. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. PMID:27269671

  15. Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase

    Science.gov (United States)

    Nucleotide-activated sugars are essential substrates for plant cell wall carbohydrate-polymer biosynthetic glycosyltransferase enzymes. The most prevalent sugars in grass cell walls include glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the uridine di...

  16. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  17. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz;

    2015-01-01

    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed an...

  18. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  19. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  20. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    Directory of Open Access Journals (Sweden)

    Cătălin Voiniciuc

    2015-02-01

    Full Text Available For more than a decade, the Arabidopsis seed coat epidermis (SCE has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.

  1. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  2. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  3. The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls.

    OpenAIRE

    Urrutia Mera, M; Kemper, M; Doyle, R.; Beveridge, T. J.

    1992-01-01

    Bacillus subtilis 168 is a gram-positive bacterium whose cell wall contains the highly electronegative polymers peptidoglycan (chemotype A1 gamma) and glycerol-based teichoic acid to produce a surface with a net negative charge with high metal binding capacity. During metabolism, a membrane-induced proton motive force continuously pumps protons into the wall fabric. As a result, a competition between protons and metal ions for anionic wall sites occurs, and less metal is bound in living cells...

  4. Finite-size scaling functions for directed polymers confined between attracting walls

    Energy Technology Data Exchange (ETDEWEB)

    Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Rechnitzer, A [Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 (Canada)

    2008-01-25

    The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been recently calculated. The walks can be considered to model the polymer-induced steric stabilization and sensitized flocculation of colloidal dispersions. The large-width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: Can one interpolate between the single wall and two wall cases? In this paper, we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic {theta} functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.

  5. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    OpenAIRE

    Amako, K; Umeda, A.; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that ...

  6. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    Science.gov (United States)

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass. PMID:25922489

  7. Efficiency Improvement of Heterojunction Polymer Photovoltaic Cells through Controlling the Morphology of the Polymer Film

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Polymer photovoltaic cells, which provide clean and renewable energy sources, have gained more and more attention. Polymer photovoltaic cells have the advantage of low fabrication cost and high mechanical flexibility. Polymers can be processed through a solution process, so that a homogeneous polymer film could be readily prepared in a large area. Recently, the light-to-electricity conversion efficiency of the polymer photovoltaic cells was improved significantly[1-2]. Polymer donor and organi...

  8. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  9. Measuring in vitro extensibility of growing plant cell walls.

    Science.gov (United States)

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility. PMID:21222092

  10. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  11. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  12. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  13. Structure-property relationships in vegetable cell wall suspensions

    OpenAIRE

    Sankaran, Ashwin Karthik

    2015-01-01

    Plant cell wall suspensions are widely present in daily food, such as soups, dressings and sauces. Cell walls of edible plants are made up of an intricate biopolymer network of mainly cellulose microfibrils, pectins, and hemicelluloses. Foodsnbsp;as soups, ketchup, etc are made up of cell wall components. Modern processing methods alter the chemical and physical nature of the cell wall which in turn affect the properties of the end product. There is a need in the industry to build a fundament...

  14. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  15. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  16. High performance polymer tandem solar cell

    Science.gov (United States)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  17. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  18. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  19. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    OpenAIRE

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  20. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions

    OpenAIRE

    Daniela eBellincampi; Felice eCervone; Vincenzo eLionetti

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  1. Tuning the physical parameters towards optimal polymer-wrapped single-walled carbon nanotubes dispersions

    NARCIS (Netherlands)

    Gao, J.; Annema, R.; Loi, M. A.

    2012-01-01

    Solubilization of single-walled carbon nanotubes (SWNTs) has been essential for the understanding of their physical properties. Ultrasonication followed by centrifugation has been generally used for the preparation of SWNT dispersion in presence of different surfactants or conjugated polymers. Howev

  2. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  3. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Science.gov (United States)

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C.; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  4. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility.

    Science.gov (United States)

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  5. Biodegradable polymers: Wall slip, melt fracture, and processing aids

    Science.gov (United States)

    Othman, Norhayani; Noroozi, Nazbanoo; Jazrawi, Bashar; Mehrkhodavandi, Parisa; Schafer, Laurel; Hatzikiriakos, Savvas George

    2015-04-01

    The wall slip and melt fracture behaviour of several commercial polylactides (PLAs) and poly(ɛ-caprolactone), (PCLs) have been investigated. PLAs with molecular weights greater than a certain value were found to slip, with the slip velocity to increase with decrease of molecular weight consistent with wall slip data reported in the literature for other systems. The onset of melt fracture for the high molecular weight PLAs was found to occur at about 0.2 to 0.3 MPa, depending on the geometrical characteristics of the dies and independent of temperature. Similarly, sharkskin and gross melt fracture was observed for the case of PCLs depending on the molecular characteristics of the resins and the geometrical details of the capillary dies. It was also found that the addition of a small amount of PCL (typically 0.5 wt.%) into the PLA and vice versa is effective in eliminating and delaying the onset of melt fracture to higher shear rates in the capillary extrusion of PLA and PCL respectively. This is due to significant interfacial slip that occurs in the presence of PCL or PLA as well as to the immiscibility of the PLA/PCL blend system at all compositions.

  6. High performance polymer tandem solar cell

    OpenAIRE

    Wilson Jose da Silva; Fabio Kurt Schneider; Abd. Rashid bin Mohd Yusoff; Jin Jang

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is genera...

  7. Glycosytransferases involved in arabinosylation of cell wall extensins

    DEFF Research Database (Denmark)

    Petersen, Bent L; Harholt, Jesper; Jørgensen, Bodil;

    2011-01-01

    Extensins are a group of ancient hydroxyproline rich cell wall glycoproteins that are found in some chlorophyte algae (such as Chlamydomonas), where they constitute the main wall building block, as well as in higher plant cell walls, where they constitute a relatively minor component of particular...

  8. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  9. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-01-01

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism. PMID:27136526

  10. Electrospun Polymer-Fiber Solar Cell

    Directory of Open Access Journals (Sweden)

    Shinobu Nagata

    2013-01-01

    Full Text Available A novel electrospun polymer-fiber solar cell was synthesized by electrospinning a 1 : 2.5 weight% ratio mixture of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and [6,6]-phenyl C61 butyric acid methyl ester (PCBM resulting in bulk heterojunctions. Electrospinning is introduced as a technique that may increase polymer solar cell efficiency, and a list of advantages of the technique applied to solar cells is discussed. The device achieved a power conversion efficiency of %. The absorption and photoluminescence of MEH-PPV nanofibers are compared to thin films of the same material. Electrospun nanofibers are discussed as a favorable structure for application in polymer solar cells.

  11. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  12. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    Background: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering...... plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  13. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  14. Cell wall integrity signaling and innate immunity in plants

    OpenAIRE

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  15. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  16. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  17. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  18. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.

    Science.gov (United States)

    Rezvantalab, Hossein; Zhu, Guorui; Larson, Ronald G

    2016-07-21

    We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing

  19. Turnover of galactans and other cell wall polysaccharides during development of flax plants

    International Nuclear Information System (INIS)

    We investigated the synthesis and turnover of cell wall polysaccharides of the flax (Linum usitatissimum L.) plant during development of the phloem fibers. One-month-old flax plants were exposed to a 40-min pulse with 14CO2 followed by 8-h, 24-h, and 1-month periods of chase with ambient CO2, and radioactivity in cell wall sugars was determined in various plant parts. The relative radioactivity of glucose in noncellulosic polysaccharides was the highest compared with all other cell wall sugars immediately after the pulse and decreased substantially during the subsequent chase. The relative radioactivities of the other cell wall sugars changed with differing rates, indicating turnover of specific polysaccharides. Notably, after 1 month of chase there was a marked decrease in the proportional mass and total radioactivity in cell wall galactose, indicating a long-term turnover of the galactans enriched in the fiber-containing tissues. The ratio of radiolabeled xylose to arabinose also increased during the chase, indicating a turnover of arabinose-containing polymers and interconversion to xylose. The pattern of label redistribution differed between organs, indicating that the cell wall turnover processes are tissue- and cell-specific

  20. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  1. Polymers in cell encapsulation from an enveloped cell perspective.

    Science.gov (United States)

    de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M

    2014-04-01

    In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal

  2. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  3. Characterisation of cell wall polysaccharides in bilberries and black currants

    OpenAIRE

    Hilz, H

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzymes most efficiently, the structure and composition of the cell walls had to be known. This thesis describes a detailed composition of the cell walls of bilberries and black currants. The obtained ...

  4. Composition of lignin in outer cell-wall layers

    OpenAIRE

    Christiernin, Maria

    2006-01-01

    The composition of lignin in the outer cell-wall layers of spruce and poplar has been studied and the data obtained have been compared with those of the mature reference wood in which the secondary cell wall predominates. Materials with exclusively or predominantly outer cell-wall layers were examined. Accurate data relating to the lignin monomer composition and the number of β-O-4´ bonds were obtained from pure middle lamella/primary cell wall lignin. Firstly, a 10 000 year old white spruce ...

  5. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  6. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    OpenAIRE

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also ...

  7. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications...

  8. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single...

  9. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes : The Power of Polymer Wrapping

    NARCIS (Netherlands)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    2014-01-01

    CONSPECTUS: The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as we

  10. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  11. Ionizing radiation damage in Micrococcus radiodurans cell wall: release of polysaccharide

    International Nuclear Information System (INIS)

    Sublethal 60Co γ-irradiation of the bacterium Micrococcus radiodurans in aqueous suspension results in a loss of up to 6 percent of its cellular dry weight and 30 percent of its wet weight. In the process some specific cell wall polysaccharides, including a polymer of glucose and N-acylated glucosamine, are released into the surrounding medium. These polysaccharides appear to originate from a hydrophobic site in the middle, lipid-rich, cell wall layer. The damage to this layer which results in the release of these and other polymers may be due to a disruption of this hydrophobic site. The polysaccharide containing glucose and N-acylated glucosamine exists as a high molecular weight polymer in unirradiated cells, but irradiation causes some degradation prior to release. In a free state this polysaccharide is considerably less sensitive to radiolytic degradation than in a bound state. Free radicals generated from surrounding water by ionizing radiation initiate the release, hydroxyl radicals being the most important species. Oxygen protects the cell wall against loss of the polysaccharides, apparently by a mechanism which does not depend on the ability of O2 to scavenge hydrogen atoms and aqueous electrons

  12. In Plan Shear Retrofit of Masonry Walls with Fibre Reinforced Polymer Composites Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Tamás Nagy-György

    2006-01-01

    Full Text Available The paper presents the results from tests on clay brick masonry walls strengthened using fiber reinforced polymer (FRP composites. Five 1.50x1.50 m wall specimens have been subjected to pure in plan shear loads up to failure and then retrofitted on one side, with different types, percentages and lay-ups of the fiber sheets. Based on the experi¬mental results, it was proven the effectiveness of using externally bonded composites for retrofitting brick masonry walls, with less disruption during strengthening, and in this way with reduced costs compared with other conventional repairing and strengthening tech¬niques. Performances of the different strengthening configurations were compared in terms of ultimate load, strain in composite and failure mechanism.

  13. Cellulose synthesis in two secondary cell wall processes in a single cell type

    OpenAIRE

    Mendu, Venugopal; Stork, Jozsef; Harris, Darby; DeBolt, Seth

    2011-01-01

    Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell's function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of...

  14. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites

    OpenAIRE

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-01-01

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV–vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by...

  15. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    Science.gov (United States)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  16. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters.

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  17. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  18. Measurement of streptococcal cell wall in tissues of rats resistant or susceptible to cell wall-induced chronic erosive arthritis.

    OpenAIRE

    Anderle, S K; Allen, J B; Wilder, R L; Eisenberg, R A; Cromartie, W J; Schwab, J. H.

    1985-01-01

    The quantity of streptococcal cell wall localized in the joints of rats of strains which are either susceptible (Sprague-Dawley, LEW/N, M520/N) or resistant (Buffalo, WKY/N, F344/N) to cell wall-induced chronic erosive arthritis was measured after intraperitoneal injection of group A streptococcal cell wall fragments. Susceptibility or resistance was not associated with a difference in the amount of cell wall localized in limbs or other tissues. It is concluded that although localization of c...

  19. Cell Walls and the Developmental Anatomy of the Brachypodium distachyon Stem Internode

    OpenAIRE

    Matos, Dominick A.; Whitney, Ian P.; Harrington, Michael J; Hazen, Samuel P

    2013-01-01

    While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological ...

  20. Micropipette aspiration on the outer hair cell lateral wall.

    OpenAIRE

    Sit, P S; Spector, A A; Lue, A J; Popel, A S; Brownell, W.E.

    1997-01-01

    The mechanical properties of the lateral wall of the guinea pig cochlear outer hair cell were studied using the micropipette aspiration technique. A fire-polished micropipette with an inner diameter of approximately 4 microm was brought into contact with the lateral wall and negative pressure was applied. The resulting deformation of the lateral wall was recorded on videotape and subjected to morphometric analysis. The relation between the length of the aspirated portion of the cell and aspir...

  1. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis

    OpenAIRE

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T.; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S.; Wightman, Raymond; Meyerowitz, Elliot M.

    2016-01-01

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We f...

  2. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  3. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  4. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  5. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  6. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  7. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  8. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  9. Solid polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    The report summarizes the state of art of systems for energy production in electrical vehicles, looking into the general characteristics of electrodes and membranes. The water and thermal balance of the cell in relation to operative conditions, the pressure and temperature influence on the performance are examined. Special emphasis is given to the electrode characteristics-fabrication techniques and assembly of membrane electrodes. The problems related to the oxygen reduction kinetics at the cathode are examined, in relation to the fabrication techniques and to operative conditions of the cells. Finally, the possible alternative catalyzers for anode and cathode are reviewed

  10. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  11. The exact solution of a three-dimensional lattice polymer confined in a slab with sticky walls

    Energy Technology Data Exchange (ETDEWEB)

    Brak, R; Iliev, G K; Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic 3010 (Australia); Whittington, S G [Department of Chemistry, University of Toronto, Toronto M5S 3H6 (Canada)

    2010-04-02

    We present the exact solution of a three-dimensional lattice model of a polymer confined between two sticky walls, that is within a slab. We demonstrate that the model behaves in a similar way to its two-dimensional analogues and agrees with Monte Carlo evidence based upon simulations of self-avoiding walks in slabs. The model on which we focus is a variant of the partially directed walk model on the cubic lattice. We consider both the phase diagram of relatively long polymers in a macroscopic slab and the effective force of the polymer on the walls of the slab.

  12. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  13. Pectin, a versatile polysaccharide present in plant cell walls

    OpenAIRE

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also play an important role in the defence mechanisms against plant pathogens and wounding. As constituents of plant cell walls and due to their anionic nature, pectic polysaccharides are considered to be ...

  14. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In vitro Lignification and Cell Wall Studies with Rosmarinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuki, Tobimatsu; Sasikumar, Elumalai; Grabber, John H.; Davidson, Christy L.; Xuejun, Pan; John, Ralph

    2012-04-01

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability and promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.

  15. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  16. Glucuronoarabinoxylan structure in the walls of Aechmea leaf chlorenchyma cells is related to wall strength.

    Science.gov (United States)

    Ceusters, Johan; Londers, Elsje; Brijs, Kristof; Delcour, Jan A; De Proft, Maurice P

    2008-09-01

    In CAM-plants rising levels of malic acid in the early morning cause elevated turgor pressures in leaf chlorenchyma cells. Under specific conditions this process is lethal for sensitive plants resulting in chlorenchyma cell burst while other species can cope with these high pressures and do not show cell burst under comparable conditions. The non-cellulosic polysaccharide composition of chlorenchyma cell walls was investigated and compared in three cultivars of Aechmea with high sensitivity for chlorenchyma cell burst and three cultivars with low sensitivity. Chlorenchyma layers were cut from the leaf and the non-cellulosic carbohydrate fraction of the cell wall fraction was analyzed by gas-liquid chromatography. Glucuronoarabinoxylans (GAXs) were the major non-cellulosic polysaccharides in Aechmea. The fine structure of these GAXs was strongly related to chlorenchyma wall strength. Chlorenchyma cell walls from cultivars with low sensitivity to cell burst were characterized by an A/X ratio of ca. 0.13 while those from cultivars with high sensitivity showed an A/X ratio of ca. 0.23. Xylose chains from cultivars with high cell burst sensitivity were ca. 40% more substituted with arabinose compared to cultivars with low sensitivity for cell burst. The results indicate a relationship in vivo between glucuronoarabinoxylan fine structure and chlorenchyma cell wall strength in Aechmea. The evidence obtained supports the hypothesis that GAXs with low degrees of substitution cross-link cellulose microfibrils, while GAXs with high degrees of substitution do not. A lower degree of arabinose substitution on the xylose backbone implies stronger cell walls and the possibility of withstanding higher internal turgor pressures without cell bursting. PMID:18632122

  17. Temporal sequence of cell wall disassembly events in developing fruits. 2. Analysis of blueberry (Vaccinium species).

    Science.gov (United States)

    Vicente, Ariel R; Ortugno, Claudia; Rosli, Hernan; Powell, Ann L T; Greve, L Carl; Labavitch, John M

    2007-05-16

    Softening and pathogen susceptibility are the major factors limiting the marketing of blueberries as fresh fruits, and these traits are associated with fruit cell wall structure. However, few studies that characterize wall modifications occurring during development and ripening have been reported for this fruit. In this study the ripening-associated modifications of blueberry fruit cell walls (composition, pectin and hemicellulose solubilization, and depolymerization) at five stages of ripeness have been analyzed. Xylose was found to be the most abundant noncellulosic neutral sugar associated with fruit walls, and the observed high Xyl/Glc ratio suggested that xylans, which are usually a minor hemicellulosic fruit wall component, are abundant in blueberry. The pectic matrix showed increased solubilization at early and intermediate stages of ripening, but no changes were detected in late ripening. Furthermore, little reduction in pectin polymer size occurred during blueberry ripening. In contrast, hemicellulose levels decreased as ripening progressed, and a clear depolymerization of these components was observed. A model for cell wall degradation in this fruit is discussed. PMID:17428068

  18. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001; FINAL

    International Nuclear Information System (INIS)

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis

  19. Polymer solar cells with plasmonic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Tran, Vinh Son; Halašová, Klára; Pfleger, Jiří

    Dresden: Leibniz-Institut für Polymerforschung Dresden e. V, 2012. s. 42. [IPF Colloquium Functional Polymers and Composites for Applications in Organic Electronics and Sensorics /10./. 07.11.2012-08.11.2012, Dresden] R&D Projects: GA TA ČR TE01020022 EU Projects: European Commission(XE) 290490 - ECNP-GROWTH Institutional support: RVO:61389013 Keywords : solar cell * plasmonics Subject RIV: CG - Electrochemistry

  20. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jilili, Jiwuer

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  1. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain

    Science.gov (United States)

    Frogley, M. D.; Zhao, Q.; Wagner, H. D.

    2002-03-01

    The D* Raman band of single-wall carbon nanotubes aligned by shear flow in a polymer matrix has been measured as a function of tensile strain. The Raman intensity varies with the optical polarization direction, an effect which is used here to assess the degree of tube alignment. The strain dependence of the Raman shift depends strongly on the nanotube orientation and the polarization direction. We show that, using polarized light, unoriented nanotubes can be used as strain sensors so that no tube alignment is necessary and the strain can be measured in all directions in a single sample.

  2. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network

    Energy Technology Data Exchange (ETDEWEB)

    Shedletzky, E.; Shmuel, M. (Hebrew Univ., Jerusalem (Israel)); Delmer, D.P. (Hebrew Univ., Jerusalem (Israel) Michigan State Univ., East Lansing, MI (USA)); Lamport, D.T.A. (Michigan State Univ., East Lansing, MI (USA))

    1990-11-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) have been adapted to growth on high concentrations of 2,6-dichlorobenzonitrile, an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of these cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on 2,6-dichlorobenzonitrile also differ from nonadapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonan and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-ester and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in these unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.

  3. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

    Science.gov (United States)

    De Souza, Amanda P; Alvim Kamei, Claire L; Torres, Andres F; Pattathil, Sivakumar; Hahn, Michael G; Trindade, Luisa M; Buckeridge, Marcos S

    2015-07-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  4. Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

    OpenAIRE

    Boudreau, Marc A.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the re...

  5. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    Science.gov (United States)

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

  6. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    Science.gov (United States)

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  7. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  8. Electrical characterization of polymer solar cells

    Science.gov (United States)

    Green, Christopher; Cohick, Zane; Tzolov, Marian

    2013-03-01

    Polymer solar cell devices were fabricated using a mixture of the polymer PCPDTBT, PCBM, and 1,8-diiodooctane. The films were spin coated on ITO patterned substrates and covered with a hole injection layer. The film drying was performed at varied annealing temperatures and times. These devices were characterized utilizing current-voltage characteristics and the fill factor was determined. Devices were tested under dark and bright conditions using a xenon lamp. The current-voltage characteristics were modeled with an equivalent circuit yielding values for the shunt and series resistances. The variations in performance due to the changes in annealing temperatures and drying times were studied. Impedance spectroscopy was used to determine the dielectric constant of the active film.

  9. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis.

    Science.gov (United States)

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S; Wightman, Raymond; Meyerowitz, Elliot M

    2016-06-01

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways. PMID:27212401

  10. 2009 Plant Cell Walls Gordon Research Conference-August 2-7,2009

    Energy Technology Data Exchange (ETDEWEB)

    Debra Mohnen

    2009-08-07

    Plant cell walls are a complex cellular compartment essential for plant growth, development and response to biotic and abiotic stress and a major biological resource for meeting our future bioenergy and natural product needs. The goal of the 2009 Plant Cell Walls Gordon Research Conference is to summarize and critically evaluate the current level of understanding of the structure, synthesis and function of the whole plant extracellular matrix, including the polysaccharides, proteins, lignin and waxes that comprise the wall, and the enzymes and regulatory proteins that drive wall synthesis and modification. Innovative techniques to study how both primary and secondary wall polymers are formed and modified throughout plant growth will be emphasized, including rapid advances taking place in the use of anti-wall antibodies and carbohydrate binding proteins, comparative and evolutionary wall genomics, and the use of mutants and natural variants to understand and identify wall structure-function relationships. Discussions of essential research advances needed to push the field forward toward a systems biology approach will be highlighted. The meeting will include a commemorative lecture in honor of the career and accomplishments of the late Emeritus Professor Bruce A. Stone, a pioneer in wall research who contributed over 40 years of outstanding studies on plant cell wall structure, function, synthesis and remodeling including emphasis on plant cell wall beta-glucans and arabinogalactans. The dwindling supply of fossil fuels will not suffice to meet our future energy and industrial product needs. Plant biomass is the renewable resource that will fill a large part of the void left by vanishing fossil fuels. It is therefore critical that basic research scientists interact closely with industrial researchers to critically evaluate the current state of knowledge regarding how plant biomass, which is largely plant cell walls, is synthesized and utilized by the plant. A final

  11. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  12. Semi-transparent polymer solar cells

    Science.gov (United States)

    Romero-Gómez, Pablo; Pastorelli, Francesco; Mantilla-Pérez, Paola; Mariano, Marina; Martínez-Otero, Alberto; Elias, Xavier; Betancur, Rafael; Martorell, Jordi

    2015-01-01

    Over the last three decades, progress in the organic photovoltaic field has resulted in some device features which make organic cells applicable in electricity generation configurations where the standard silicon-based technology is not suitable, for instance, when a semi-transparent photovoltaic panel is needed. When the thin film solar cell performance is evaluated in terms of the device's visible transparency and power conversion efficiency, organic solar cells offer the most promising solution. During the last three years, research in the field has consolidated several approaches for the fabrication of high performance semi-transparent organic solar cells. We have grouped these approaches under three categories: devices where the absorber layer includes near-infrared absorption polymers, devices incorporating one-dimensional photonic crystals, and devices with a metal cavity light trapping configuration. We herein review these approaches.

  13. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  14. Concentration effects on turbulence in dilute polymer solutions far from walls

    Science.gov (United States)

    de Chaumont Quitry, Alexandre; Ouellette, Nicholas T.

    2016-06-01

    We report measurements of the modification of turbulence far from any walls by small concentrations of long-chain polymers. We consider a range of statistical properties of the flow, including Eulerian and Lagrangian velocity structure functions, Eulerian acceleration correlation functions, and the relative dispersion of particle pairs. In all cases, we find that the polymer concentration has a strong effect on the extent to which the statistical properties are changed compared to their values in pure water. These effects can be captured by the recently proposed energy flux-balance model (when suitably extended into the time domain for Lagrangian statistics). However, unlike previous measurements, which found that the concentration effect could be completely scaled out, we consistently find that our data collapse onto two different master curves, one for small concentration and one for larger concentration. We suggest that the difference between the two may be related to the onset of interactions among polymer chains, which is likely to be more easily observed at the small Weissenberg numbers we consider here.

  15. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  16. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to...

  17. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  18. Transformation of Abdominal Wall Endometriosis to Clear Cell Carcinoma

    OpenAIRE

    Maria Paula Ruiz; Darryl Lewis Wallace; Matthew Thomas Connell

    2015-01-01

    Clear cell carcinoma is the least common of the malignant transformations reported in nonpelvic sites of endometriosis. Two cases with clear cell carcinoma transformation arising from endometriosis in abdominal wall scars are presented. These patients underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy, pelvic washings, and abdominal wall lesion resection. The first case had initial treatment with chemotherapy, while chemotherapy and radiation therapy were given for th...

  19. Biosynthetic origin of mycobacterial cell wall arabinosyl residues.

    OpenAIRE

    Scherman, M.; Weston, A; Duncan, K; Whittington, A; Upton, R; Deng, L.; Comber, R; Friedrich, J D; McNeil, M

    1995-01-01

    Designing new drugs that inhibit the biosynthesis of the D-arabinan moiety of the mycobacterial cell wall arabinogalactan is one important basic approach for treatment of mycobacterial diseases. However, the biosynthetic origin of the D-arabinosyl monosaccharide residues themselves is not known. To obtain information on this issue, mycobacteria growing in culture were fed glucose labeled with 14C or 3H in specific positions. The resulting radiolabeled cell walls were isolated and hydrolyzed, ...

  20. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications...... chemical degradation mechanisms are currently scarce. An overview of known degradation mechanisms will be presented and discussed in relation to state-of-the-art methodologies to study failure mechanisms with focus on chemical degradation....

  1. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  2. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  3. Thiophene in Conducting Polymers: Synthesis of Poly(thiophene)s and Other Conjugated Polymers Containing Thiophenes, for Application in Polymer Solar Cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Carlé, Jon Eggert; Bundgaard, Eva

    2015-01-01

    Conducting polymers based on thiophene are described. The polymers include poly(thiophene) with and without side-chains and other conjugated polymers in general, based on thiophene. The synthesis and characteristics of the polymers are described along with the application of these as light......-absorbing materials in polymer solar cells....

  4. Flexible, highly efficient all-polymer solar cells

    Science.gov (United States)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-10-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  5. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    OpenAIRE

    Mistou, Michel-Yves; Sutcliffe, Iain; van Sorge, Nina

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall te...

  6. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls

    Science.gov (United States)

    Cosgrove, D. J.

    1989-01-01

    Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such "creep" is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20 degrees and 30 degrees C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.

  7. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  8. Size reduction of 3D-polymer-coated single-walled carbon nanotubes by ultracentrifugation

    Science.gov (United States)

    Tsutsumi, Yusuke; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-01

    We describe a novel single-walled carbon nanotube (SWNT) cutting method without introducing any structural defects on the tubes; namely, the finding that simple ultracentrifugation at 600 000g for the SWNTs coated with a cross-linked polymer formed by poly(N-isopropylacrylamide) (PNIPAM) or the polyethylene glycol-carrying PNIPAM copolymer provides shortened (structure and optical properties, such as characteristic absorption and photoluminescence in the near-IR region of the SWNTs, were almost unchanged even after the cutting. The obtained shortened SWNTs were individually solubilized in water and buffer solution due to the remaining cross-linked polymer structures on the SWNTs. The present method is very simple (only ultracentrifugation) and the yield is very high, which are the advantages in the preparation of many shortened isolated SWNTs with specific properties and functions that are applicable in many fields including bioapplications in vivo, such as imaging, NIR-hyperthermic treatment, photodynamic therapy, etc.We describe a novel single-walled carbon nanotube (SWNT) cutting method without introducing any structural defects on the tubes; namely, the finding that simple ultracentrifugation at 600 000g for the SWNTs coated with a cross-linked polymer formed by poly(N-isopropylacrylamide) (PNIPAM) or the polyethylene glycol-carrying PNIPAM copolymer provides shortened (structure and optical properties, such as characteristic absorption and photoluminescence in the near-IR region of the SWNTs, were almost unchanged even after the cutting. The obtained shortened SWNTs were individually solubilized in water and buffer solution due to the remaining cross-linked polymer structures on the SWNTs. The present method is very simple (only ultracentrifugation) and the yield is very high, which are the advantages in the preparation of many shortened isolated SWNTs with specific properties and functions that are applicable in many fields including bioapplications in vivo

  9. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  10. A derivative of Lactococcus lactis strain H61 with less interleukin-12 induction has a different cell wall.

    Science.gov (United States)

    Kimoto-Nira, H; Suzuki, C; Aoki, R; Kobayashi, M; Mizumachi, K

    2012-06-01

    Lactococcus lactis H61 can increase the cellular immune responses of aged (14-mo-old) senescence-accelerated mice. The aim of this study was to investigate the factors contributing to IL-12 induction by strain H61 by analyzing strains derived from it. Strain H61 derivative no. 13 was obtained by growing the parent strain at 37°C. This derivative induced significantly lower production of IL-12 from J774.1 macrophage cells than did the parent strain H61. The 2 strains differed in the resistance of their whole cells or cell walls to lysozyme, a cell wall-degrading enzyme. Sodium hydroxide treatment to de-O-acetylate muramic acid in the cell walls of the 2 strains reduced the lysozyme resistance, compared with untreated cell walls: at 3h after adding lysozyme, the lysozyme resistance of untreated and NaOH treated cell wall from strain H61 was 55.4% and 11.7%, respectively. The values of untreated and NaOH-treated cell walls from strain no.13 were 73.7 and 42.8%, respectively. The reduction was higher in strain H61, indicating that the cell walls of strain H61 were highly O-acetylated. Trichloroacetic acid treatment to remove wall-associated polymers such as teichoic acids made the lysozyme resistance of the cell walls of both strains similar. The sugar content of cell walls prepared from strain H61 was significantly higher than that of strain no. 13 cell wall. A derivative with less activity for inducing IL-12 by macrophage cells had less O-acetylation and had lower sugar content in the cell wall than did strain H61. Modifying the cell wall of strain H61 may be a useful way to regulate its ability to induce IL-12. Strain H61 has been used as a starter bacterium in the dairy industry. This study could lead to enhancing the value of dairy products made by strain H61 by characterizing the key factor(s) responsible for its stimulation of immunity. PMID:22612923

  11. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  12. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  13. Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films

    Science.gov (United States)

    Kazaoui, S.; Minami, N.; Nalini, B.; Kim, Y.; Hara, K.

    2005-10-01

    We have fabricated prototypical Al/single-wall carbon nanotube (SWNT)-polymer/indium tin oxide thin-film devices that exhibit promising photoconductive and photovoltaic responses in a broad spectral range, typically from 300 to 1600 nm. This achievement was made possible by finely dispersed SWNT powders in polymer matrices such as poly-phenylene-vinylene and poly-thiophene. These devices utilize (i) the intrinsic near-infrared light harvesting properties of semiconducting SWNTs, (ii) the electronic transport properties of both semiconducting and metallic SWNTs in combination with those of the polymer matrices, and (iii) probably charge/energy transfer processes between SWNTs and the polymers. By selecting different sources of SWNTs and polymers, we have shown that the optoelectronic properties of these devices are potentially tunable. To support our investigation, several techniques including spectrally resolved photoconductivity, optical absorption, and photoluminescence spectroscopy were utilized.

  14. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Wang, Sheng-Bing; Hu, Qiang; Sommerfeld, Milton; Chen, Feng

    2004-03-01

    The green microalga Haematococcus pluvialis can synthesize and accumulate large amounts of the ketocarotenoid astaxanthin, and undergo profound changes in cell wall composition and architecture during the cell cycle and in response to environmental stresses. In this study, cell wall proteins (CWPs) of H. pluvialis were systematically analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) coupled with peptide mass fingerprinting (PMF) and sequence-database analysis. In total, 163 protein bands were analyzed, which resulted in positive identification of 81 protein orthologues. The highly complex and dynamic composition of CWPs is manifested by the fact that the majority of identified CWPs are differentially expressed at specific stages of the cell cycle along with a number of common wall-associated 'housekeeping' proteins. The detection of cellulose synthase orthologue in the vegetative cells suggested that the biosynthesis of cellulose occurred during primary wall formation, in contrast to earlier observations that cellulose was exclusively present in the secondary wall of the organism. A transient accumulation of a putative cytokinin oxidase at the early stage of encystment pointed to a possible role in cytokinin degradation while facilitating secondary wall formation and/or assisting in cell expansion. This work represents the first attempt to use a proteomic approach to investigate CWPs of microalgae. The reference protein map constructed and the specific protein markers obtained from this study provide a framework for future characterization of the expression and physiological functions of the proteins involved in the biogenesis and modifications in the cell wall of Haematococcus and related organisms. PMID:14997492

  15. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin Chunhong

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  16. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    The field of polymer solar cells has undergone an extensive development in recent years after the invention of semiconducting polymers in 1991. Efficiencies have gradually increased to above 10 %, and high throughput processing methods such as roll-to-roll coating allow for production of thousands...... of solar cells with low embedded time, material, and energy consumption as compared to silicon solar cells. Consequently, different demonstration products of small mobile gadgets based on polymer solar cells have been produced, which are fully competitive with conventional energy technologies......, illustrating the maturity of the technology. However, a limiting factor in terms of full commercialization is the stability of polymer solar cells. While is has been estimated that 10 years lifetime is needed, existing technologies only provide stabilities up to 1 year. Degradation of polymer solar cell is a...

  17. Surface modification of multi-wall carbon nanotube with ultraviolet-curable hyperbranched polymer

    International Nuclear Information System (INIS)

    Surface modification is a general and efficient approach to improve the compatibility of carbon nanotube (CNT) with various matrixes. Here we report the modification of multi-wall carbon nanotube (MWCNT) with hyperbranched polymer which contains UV reactive functional groups. The modification promotes the incorporation of CNT into UV-curable resin, and when cured under UV irradiation to form a homogeneous film, the CNT will be chemically bonded with the matrix by crosslinking photopolymerization. For the unique mechanical properties of CNT, the mechanical properties of the cured MWCNT/UV-curable resin film were greatly improved compared with pure resin film as indicated by the increasing of Young's modulus, tensile strength, and toughness

  18. Surface modification of multi-wall carbon nanotube with ultraviolet-curable hyperbranched polymer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Wei; Xu Jianwen [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi Wenfang [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)], E-mail: wfshi@ustc.edu

    2008-04-30

    Surface modification is a general and efficient approach to improve the compatibility of carbon nanotube (CNT) with various matrixes. Here we report the modification of multi-wall carbon nanotube (MWCNT) with hyperbranched polymer which contains UV reactive functional groups. The modification promotes the incorporation of CNT into UV-curable resin, and when cured under UV irradiation to form a homogeneous film, the CNT will be chemically bonded with the matrix by crosslinking photopolymerization. For the unique mechanical properties of CNT, the mechanical properties of the cured MWCNT/UV-curable resin film were greatly improved compared with pure resin film as indicated by the increasing of Young's modulus, tensile strength, and toughness.

  19. Implication of multi-walled carbon nanotubes on polymer/graphene composites

    International Nuclear Information System (INIS)

    Highlights: • Influence of adding carbon nanotubes (CNTs) into elastomer/graphene composites. • Multi-walled CNTs work supplementally to GnPs by forming conductive networks. • The findings illuminate marked synergistic effect between MWCNTs and graphene sheets. - Abstract: Graphene sheets stack in polymer matrices while multi-walled carbon nanotubes (MWCNTs) entangle themselves, forming two daunting challenges in the design and fabrication of polymer composites. Both challenges have been simultaneously addressed in this study by hybridizing the two nanomaterials through melt compounding to develop elastomer/graphene platelet/MWCNT (3-phase) composites, where MWCNTs were fixed at 2.8 vol% (5 wt%) for all fractions. We investigated the composites’ structure and properties, and compared the 3-phase composites with elastomer/graphene platelet (2-phase) composites. MWCNTs may bridge graphene platelets (GnPs) and promote their dispersion in the matrix, which would provide more interface area between the matrix and the fillers. MWCNTs worked supplementally to GnPs by forming conductive networks, where MWCNTs acted as long nanocables to transport electrons and stress while GnPs served as interconnection sites between the tubes forming local conductive paths. This produced a percolation threshold of electrical conductivity at 2.3 vol% for 3-phase composites, 88% lower than that of 2-phase composites. At 26.7 vol% of total filler content (MWCNTs + GnPs), tensile strength, Young’s modulus and tear strength showed respectively 303%, 115%, 155% further improvements over those of 2-phase composites. These improvements are originated from the synergistic effect between GnPs and MWCNTs. The conducting elastomeric composites developed would potentially open the door for applications in automotive and aerospace industries

  20. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    Science.gov (United States)

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA. PMID:22898792

  1. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    OpenAIRE

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast...

  2. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    Science.gov (United States)

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  3. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  4. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  5. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel; Marcus, Susan E.; Haeger, Ash;

    2007-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...... investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in...... plant materials....

  6. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    Science.gov (United States)

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-01

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale. PMID:27404764

  7. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    Science.gov (United States)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  8. Z-scan measurements of single walled carbon nanotube doped acetylenedicarboxylic acid polymer under CW laser

    Science.gov (United States)

    Zidan, M. D.; Allaf, A. W.; Allahham, A.; AL-Zier, A.

    2016-06-01

    Z-scan measurements of single walled carbon nanotube (SWCNT) doped with acetylenedicarboxylic acid (ADC) polymer are performed using a CW diode laser at 635 nm wavelength with 17 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the real and imaginary parts of the third-order nonlinear optical susceptibility (Re χ3), (Im χ3) of the investigated samples are calculated. It was found that the β values decrease with increase in on-axis input intensity I0. Also, these values are found to be proportional with sample concentrations. The excited-state absorption cross sections were calculated to be at σex=5.08×10-14 cm2 for the (SWCNT) and at 15.1×10-14 cm2 for the ADC polymer. It was found that the σex is larger than ground-state absorption cross sections, indicating that the reverse saturable absorption mechanism (RSA) is the dominating mechanism for the observed absorption nonlinearities.

  9. Inkjet printing of multi-walled carbon nanotube/polymer composite thin film for interconnection.

    Science.gov (United States)

    Lok, Boon Keng; Ng, You Min; Liang, Yen Nan; Hu, Xiao

    2010-07-01

    In this paper, multi-walled carbon nanotube (MWCNT) ink was selectively patterned by inkjet printing on substrates to form conductive traces and electrodes for interconnection application. MWCNT was firstly functionalized using concentrated acid and dispersed in deionized water to form a colloidal solution. Various concentrations of MWCNT were formulated to test the stability of the solution. The printability of the MWCNT ink was examined against printing temperature, ink concentration and ink droplet pitch. Rheological properties of the ink were determined by rheometer and sessile drop method. The electrical conductivity of the MWCNT pattern was measured against multiple printing of MWCNT on the same pattern (up to 10 layers). While single layer printing pattern exhibited highest resistance, the CNT entangled together and formed a random network with more printed layers has higher conductivity. The electrical properties of the printed film was compared to a composite ink of CNT and conducting polymer (CNT ink was mixed with conductive polymer solution, Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT:PSS)). Scanning electron microscopy (SEM) was used to observe the surface structure and atomic force microscopy (AFM) was used to study the morphology of the printed film under different conditions. PMID:21128484

  10. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  11. Alterations in auxin homeostasis suppress defects in cell wall function.

    Directory of Open Access Journals (Sweden)

    Blaire J Steinwand

    Full Text Available The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs, FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4. Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.

  12. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    OpenAIRE

    Søndergaard, Roar; Krebs, Frederik C.

    2012-01-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, seve...

  13. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan

    OpenAIRE

    Muchová, Katarína; Wilkinson, Anthony J.; Barák, Imrich

    2011-01-01

    The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consist...

  14. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  15. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, W.M.; Bartnicki-Garcia, S. (eds.)

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  16. Visualization of Individual Single-Walled Carbon Nanotubes by Fluorescent Polymer Wrapping

    OpenAIRE

    Didenko, Vladimir V.; Moore, Valerie C.; Baskin, David S.; Smalley, Richard E.

    2005-01-01

    Manipulating optical properties of single-walled nanotubes (SWNTs) is necessary for the development of nanoscale optical devices and probes for biomedical research. In life sciences it will make possible the direct observation of SWNTs inside living cells using optical microscopes. In the nanotechnology field it will enable the development of nanosensors with fluorescent reporting. However, the direct fluorescent labeling of SWNTs is obstructed by their strong light quenching qualities. Besid...

  17. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  18. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli.

    OpenAIRE

    Templin, M F; Ursinus, A; Höltje, J V

    1999-01-01

    The first gene of a family of prokaryotic proteases with a specificity for L,D-configured peptide bonds has been identified in Escherichia coli. The gene named ldcA encodes a cytoplasmic L, D-carboxypeptidase, which releases the terminal D-alanine from L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine containing turnover products of the cell wall polymer murein. This reaction turned out to be essential for survival, since disruption of the gene results in bacteriolysis during the stationary g...

  19. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage.......Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  20. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.;

    2006-01-01

    analysed showed calcofluor-stained appositions. However, in habituated and dehabituated cells, appositions were not recognized by an anticallose antibody. This finding suggested the accumulation of an extracellular polysaccharide different to callose, probably a 1,4-ß-glucan in these cell lines......The effects of the cellulose inhibitor dichlobenil on the cell wall composition and structure during the habituation/dehabituation process of suspension-cultured bean cells were assessed. A range of techniques were used including cell wall fractionation, sugar analysis, immunofluorescence and...... fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...

  1. Ultrastructure of organic cell walls in Proterozoic microalgae

    Science.gov (United States)

    Moczydlowska-Vidal, M.

    2009-04-01

    The antiquity of life has been well appreciated since the discoveries of microfossils and confirmation of their authenticity, as well as the recognition of geochemical signs of biogenicity in the Archean successions. Resolving the biological affinities of early biota is essential for the unravelling the changes that led to modern biodiversity, but also for the detection of possible biogenic records outside of the terrestrial biosphere. Advanced techniques in microscopy, tomography and spectroscopy applied to examine individual microfossils at the highest attainable spatial resolution have provided unprecedented insights into micro- and nano-scale structure and composition of organic matter. Transmission and scanning electron microscopy studies of the wall ultrastructure of sphaeromorphic and ornamented acritarchs have revealed complex, single to multilayered walls, having a unique texture in sub-layers and an occasionally preserved trilaminar sheath structure (TLS) of the cell wall. A variety of optical characteristics, the electron density and texture of fabrics of discrete layers, and the properties of biopolymers may indicate the polyphyletic affiliations of such microfossils and/or the preservation of various stages (vegetative, resting) in their life cycle. I evaluate the morphological features of organic-walled unicellular microfossils in conjunction with their cell wall ultrastructure to infer their life cycle and to recognize various developmental stages represented among microfossils attributed to a single form-taxon. Several cases of fine wall ultrastructure in microfossils have been documented and have had a conclusive influence on understanding their affinities. Some Proterozoic and Cambrian leiosphaerids are of algal affinities. Certain specimens represent chlorophyceaens, having the multilayered composite wall with TLS structure known from vegetative and resting cells in modern genera of the Chlorococcales and Volvocales. The wall ultrastructure of

  2. Carbon Nanotube-Conducting Polymer Composites Based Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Prakash; R.Somani; M.Umeno

    2007-01-01

    1 Results Combination of carbon nanotubes (CN) with polymers is important for application towards value added composites,solar cells,fuel cells etc.Especially interesting is the combination of CN with π-conjugated polymers because of the potential interaction between the highly delocalized π-electrons of the CN and the π-electrons correlated with the lattice of polymer skeleton.Efficient exciton dissociation due to electron transfer from the photoexcited polymer to CN is of interest for photovoltaic app...

  3. Photochemical Stability of π-Conjugated Polymers for Polymer Solar Cells: a Rule of Thumb

    DEFF Research Database (Denmark)

    Manceau, Matthieu

    2010-01-01

    A comparative photochemical stability study of a wide range of π-conjugated polymers relevant to polymer solar cells is presented. More than 20 samples were selected to cover a broad variety of polymer types (purely donor, donor / acceptor, thermo-cleavable) and chemical structures. Many of the....... Polymer durability was shown to cover a very broad range of values, from very few hours (e.g. MEH-PPV) to several thousands of hours (e.g. some thermo-cleaved samples). As all the experiments were conducted under the same conditions, comparison of the collected data was possible and the influence of...

  4. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Bundgaard, Eva; Carlé, Jon Eggert; Hagemann, Ole; Helgesen, Martin; Søndergaard, Roar; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-01

    A comparative photochemical stability study of a wide range of π-conjugated polymers relevant to polymer solar cells is presented. The behavior of each material has been investigated under simulated sunlight (1 sun, 1000 W m−2, AM 1.5G) and ambient atmosphere. Degradation was monitored during...... ageing combining UV-visible and infrared spectroscopies. From the comparison of the collected data, the influence of the polymer chemical structure on its stability has been discussed. General rules relative to the polymer structure–stability relationship are proposed....

  5. Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall.

    Science.gov (United States)

    Agoda-Tandjawa, G; Durand, S; Gaillard, C; Garnier, C; Doublier, J L

    2012-10-01

    The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic

  6. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  7. Synthesis and Application of Plant Cell Wall Oligogalactans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch

    The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research. Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate...... chemical building blocks for industrial processes. To achieve a sustainable development it is necessary to optimize plant production and utilization. This will require a better understanding of the cell wall structure and function at the molecular level. The cell wall is composed by an intricate network of...... as part of the arabinogalactans series. The fragments were applied in the characterization of a glycosyl transferase, a hydrolase and to study the important cancer biomarker galectin-3. The work done during an external stay at University of Oxford is also presented. This concerns isolation and...

  8. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by...... numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  9. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  10. Histochemical effects of γ radiation on soft fruit cell walls

    International Nuclear Information System (INIS)

    Irradiation effects in peaches, tomatoes, cherries and grapes on the composition of cell wall polysaccharides were investigated by histochemical techniques. Cell wall polysaccharides, separated by a modified Jensen's method were pectins, hemicellulose, non-cellulosic polysaccharides and cellulose. The extinction values of Periodic Acid Schiff stained tissues was measured by microscopical photometry. Irradiation induced highly significant changes in polysaccharide composition of mesocarp cell walls; these changes were found to be a function of time of irradiation after harvest and of the species tested. A general influence on polysaccharide molecules was not found. Variations produced by irradiation are postulated to be an interference with a regulatory system rather than a breakdown of a functional molecule (metabolic enzyme or polysaccharide. (author)

  11. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  12. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  13. Evolution of the cell wall components during terrestrialization

    Directory of Open Access Journals (Sweden)

    Alicja Banasiak

    2014-12-01

    Full Text Available Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants. In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3,(1→4-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.

  14. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  15. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  16. Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).

    Science.gov (United States)

    Lee, Yeonkyeong; Derbyshire, Paul; Knox, J Paul; Hvoslef-Eide, Anne Kathrine

    2008-06-01

    Alterations in the detection of cell wall polysaccharides during an induced abscission event in the pedicel of Euphorbia pulcherrima (poinsettia) have been determined using monoclonal antibodies and Fourier transform infrared (FT-IR) microspectroscopy. Concurrent with the appearance of a morphologically distinct abscission zone (AZ) on day 5 after induction, a reduction in the detection of the LM5 (1-->4)-beta-D-galactan and LM6 (1-->5)-alpha-L-arabinan epitopes in AZ cell walls was observed. Prior to AZ activation, a loss of the (1-->4)-beta-D-galactan and (1-->5)-alpha-L-arabinan epitopes was detected in cell walls distal to the AZ, i.e. in the to-be-shed organ. The earliest detected change, on day 2 after induction, was a specific loss of the LM5 (1-->4)-beta-D-galactan epitope from epidermal cells distal to the region where the AZ would form. Such alteration in the cell walls was an early, pre-AZ activation event. An AZ-associated de-esterification of homogalacturonan (HG) was detected in the AZ and distal area on day 7 after induction. The FT-IR analysis indicated that lignin and xylan were abundant in the AZ and that lower levels of cellulose, arabinose and pectin were present. Xylan and xyloglucan epitopes were detected in the cell walls of both the AZ and also the primary cell walls of the distal region at a late stage of the abscission process, on day 7 after induction. These observations indicate that the induction of an abscission event results in a temporal sequence of cell wall modifications involving the spatially regulated loss, appearance and/or remodelling of distinct sets of cell wall polymers. PMID:18298669

  17. Cell Wall Polysaccharides of Candida albicans Induce Mast Cell Degranulation in the Gut

    OpenAIRE

    Sakurai, Atsuko; Yamaguchi, Natsu; Sonoyama, Kei

    2012-01-01

    We investigated Candida albicans-induced mast cell degranulation in vitro and in vivo. Cell wall fraction but not culture supernatant and cell membrane fraction prepared from hyphally grown C. albicans induced β-hexosaminidase release in RBL-2H3 cells. Cell wall mannan and soluble β-glucan fractions also induced β-hexosaminidase release. Histological examination of mouse forestomach showed that C. albicans gut colonization induces mast cell degranulation. However, intragastric administration ...

  18. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie

    2006-01-01

    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  19. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  20. Development of polymers for large scale roll-to-roll processing of polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert

    platform for polymer development. PSC devices based on PDTSTTz-4 and PCBM were produced using the laboratory roll coater and through optimerization of the processing parameters a PCE of 2.95 % at ambient condition. This efficiency is among the highest obtained on flexible ITO-free substrates using slot......Development of polymers for large scale roll-to-roll processing of polymer solar cells Conjugated polymers potential to both absorb light and transport current as well as the perspective of low cost and large scale production has made these kinds of material attractive in solar cell research. The...... and how this affects the PSC parameters are presented. It is generally found that it is possible to synthetically control the absorption spectrum of conjugated polymer systems. One way to alter the spectrum is by incorporating alternating donor-acceptor motifs, resulting in an additional optical...

  1. Impact of polymer matrix on the electromagnetic interference shielding performance for single-walled carbon nanotubes-based composites.

    Science.gov (United States)

    Liang, Jiajie; Huang, Yi; Li, Ning; Bai, Gang; Liu, Zunfeng; Du, Feng; Li, Feifei; Ma, Yanfeng; Chen, Yongsheng

    2013-02-01

    Composites of acrylonitrile butadiene styrene (ABS), epoxy and soluble cross-linked polyurethane (SCPU) with various loadings of single-walled carbon nanotubes (SWCNTs) were prepared. Their electromagnetic interference (EMI) shielding effectiveness (SE) in the frequency range of 8.2-12.4 GHz (X band) was studied. Well-dispersed SWCNT composites were created in these three representative polymer matrixes. The choice of polymer matrix greatly affects the conductivity, percolation threshold, and EMI shielding properties of the SWCNT/polymer composites. Enhanced EMI SE performances were observed for the composites with better dispersed SWCNTs. Moreover, the EMI SE performances strongly correlated with SWCNT loading in the polymer matrix. The best SWCNT dispersion was achieved in the epoxy matrix: 20-30 dB EMI SE was obtained with 15 wt% SWCNTs. PMID:23646584

  2. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress

  3. The Cellulose System in the Cell Wall of Micrasterias

    Science.gov (United States)

    Kim; Herth; Vuong; Chanzy

    1996-11-01

    The cellulose system of the cell wall of Micrasterias denticulata and Micrasterias rotata was analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose of Micrasterias is very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having a d-spacing of 0.60 nm [(11;0) in the Ibeta cellulose unit cell defined by Sugiyama et al., 1991, Macromolecules 24, 4168-4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only in Spirogyra, another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose of Micrasterias may be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes. PMID:8986649

  4. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology.

    OpenAIRE

    Maya Elbaz; Sigal Ben-Yehuda

    2010-01-01

    Author Summary The bacterial cell is resistant to extremes of osmotic pressure and protected against mechanical damages by the existence of a rigid outer shell defined as the cell wall. The strength of the cell wall is achieved by the presence of long glycan strands cross-linked by peptide side bridges. The cell wall is a dynamic structure continuously being synthesized and modified to allow for cell growth and division. Damaging the cell wall leads to abnormal cellular morphologies and cell ...

  5. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  6. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with...... Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...... Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals...

  7. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol-Formaldehyde in Wood Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, Joseph E.; Hunt, Chris G.; Yelle, Daniel J.; Lorenz, Linda; Hirth, Kolby; Gleber, Sophie-Charlotte; Vogt, Stefan; Grigsby, Warren; Frihart, Charles R.

    2015-04-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenolformaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.

  8. Advances in polymer concrete technology for cell house components

    International Nuclear Information System (INIS)

    The cell house environment is very challenging with regard to protection of the concrete structure and components against the corrosive effects of acid. Coating technology using Epoxy, Vinyl Ester and Polyurethane Polymers is available, to provide the necessary chemical and heat resistance. However, producing suitable POLYMER CONCRETE technology for pre-cast components, especially tanks and cells requires not only the correct POLYMER selection, but also significant know-how in mineral aggregate technology to achieve the desired performance properties. Furthermore, the POLYMER CONCRETE technology must enable the pre-caster to manufacture the components in a simple one-step procedure. This paper outlines the important aspects in formulating POLYMER CONCRETE, the performance properties that can be achieved and the practical issues relating to the cost effective pre-casting of tanks and cells in particular. (author)

  9. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  10. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  11. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer...

  12. New polymer electrolytes for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sundholm, F.; Elomaa, M.; Ennari, J.; Hietala, S.; Paronen, M. [Univ. of Helsinki (Finland). Lab. of Polymer Chemistry

    1998-12-31

    Proton conducting polymer membranes for demanding applications, such as low temperature fuel cells, have been synthesised and characterised. Pre-irradiation methods are used to introduce sulfonic acid groups, directly or using polystyrene grafting, in stable, preformed polymer films. The membranes produced in this work show promise for the development of cost-effective, highly conducting membranes. (orig.)

  13. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.; Espinosa Martinez, Nieves; Garcia-Valverde, R.; Krebs, Frederik C; Ossenbrink, H.; Jager-Waldau, A.; Helm, P.

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...

  14. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    2012-01-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are...

  15. The identification of cell wall degrading enzymes in Globodera rostochiensis

    NARCIS (Netherlands)

    Popeijus, H.E.

    2002-01-01

    This thesis describes the identification of cell wall degrading enzymes of the potato cyst nematode Globodera rostochiensis . A robust method using expressed sequence tags (ESTs) was applied to identify new parasitism related enzymes. One of the ESTs revealed the first pectate lyase from a metazoan

  16. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...

  17. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  18. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  19. Evidence for a Melanin Cell Wall Component in Pneumocystis carinii

    OpenAIRE

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H.

    2003-01-01

    Fluorescein isothiocyanate-labeled monoclonal antibodies specific for fungal melanin were used in this study to visualize melanin-like components of the Pneumocystis carinii cell wall. A colorimetric enzyme assay confirmed these findings. This is the first report of melanin-like pigments in Pneumocystis.

  20. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    Science.gov (United States)

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  1. Structure of cellulose microfibrils in primary cell walls from Collenchyma

    Czech Academy of Sciences Publication Activity Database

    Thomas, L. H.; Forsyth, V. T.; Šturcová, Adriana; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 465-476. ISSN 0032-0889 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : primary cell wall * cellulose microfibril structure * chain packing disorder Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.394, year: 2013

  2. Environmental stability of stem cell wall traits in alfalfa

    Science.gov (United States)

    The concentration of stem cell wall constituents in alfalfa, Medicago sativa L., herbage can affect dry matter intake and energy availability in dairy and beef production systems and impact energy conversion efficiency when alfalfa is used to produce biofuels. Stem Klason lignin, glucose, xylose, an...

  3. Plant Cell Wall Carbohydrates as Substrates for Azospirillum brasiliense†

    OpenAIRE

    Myers, Mary L.; Hubbell, David H.

    1987-01-01

    Carbohydrate components (simple sugars and polysaccharides) of cell walls of pearl millet (Pennisetum americanum L., cv. Gahi) were studied as potential substrates for the root-associated diazotroph Azospirillum brasiliense Sp. 7. Simple sugars were utilized, but no evidence was obtained to support the suggestion that the polysaccharide components tested might serve as substrates for growth following hydrolysis by the associated azospirilla.

  4. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

    OpenAIRE

    Scullin, Chessa; Cruz, Alejandro G; Chuang, Yi-De; Simmons, Blake A.; Loque, Dominique; Singh, Seema

    2015-01-01

    Background Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineere...

  5. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological approaches and Fourier transform infrared spectroscopy to the stem internode from three key developmental stages. While vascular bundle size and number did not change over time, the size of the interfascicular region increased dramatically, as did cell wall thickness. We also describe internal stem internode anatomy and demonstrate that lignin deposition continues after crystalline cellulose and xylan accumulation ceases. The vascular bundle anatomy of B. distachyon appears to be highly similar to domesticated grasses. While the arrangement of bundles within the stem is highly variable across grasses, B. distachyon appears to be a suitable model for the rind of large C4 grass crops. A better understanding of growth and various anatomical and cell wall features of B. distachyon will further our understanding of plant biomass accumulation processes.

  6. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.

    Directory of Open Access Journals (Sweden)

    Jyotsna L Pandey

    Full Text Available Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly.

  7. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.

    Science.gov (United States)

    Pandey, Jyotsna L; Wang, Bo; Diehl, Brett G; Richard, Tom L; Chen, Gong; Anderson, Charles T

    2015-01-01

    Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205

  8. Cell wall structure and function in lactic acid bacteria

    OpenAIRE

    Kulakauskas, Saulius

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionall...

  9. Ultrastructure and biochemistry of the cell wall of Methanococcus voltae.

    OpenAIRE

    Koval, S F; Jarrell, K F

    1987-01-01

    The ultrastructure and chemical composition of the cell wall of the marine archaebacterium Methanococcus voltae were studied by negative-staining and freeze-etch electron microscopy and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. M. voltae possesses a single regularly structured (RS) protein layer external to the plasma membrane. Freeze-etch preparations of cells indicated that the protein subunits are hexagonally arranged with a center-to-center spacing of approximately 10 ...

  10. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  11. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    OpenAIRE

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW bio...

  12. Wall-fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory.

    Science.gov (United States)

    Fortini, Andrea; Dijkstra, Marjolein; Schmidt, Matthias; Wessels, Paul P F

    2005-05-01

    We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter sigma(c) and nonadsorbing ideal polymer coils with diameter sigma(p) . For the mixture in contact with a planar hard wall, we obtain from simulations the wall-fluid interfacial free energy, gamma(wf) , for size ratios q =sigma(p)/sigma(c) =0.6 and 1, using thermodynamic integration, and study the (excess) adsorption of colloids, Gamma(c) , and of polymers, Gamma(p) , at the hard wall. The interfacial tension of the free liquid-gas interface, gamma(lg) , is obtained following three different routes in simulations: (i) from studying the system size dependence of the interfacial width according to the predictions of capillary wave theory, (ii) from the probability distribution of the colloid density at coexistence in the grand canonical ensemble, and (iii) for state points where the colloidal liquid wets the wall completely, from Young's equation relating gamma(lg) to the difference of wall-liquid and wall-gas interfacial tensions, gamma(wl)-gamma(wg) . In addition, we calculate gamma(wf) ,Gamma(c) , and Gamma(p) using density functional theory and a scaled particle theory based on free volume theory. Good agreement is found between the simulation results and those from density functional theory, while the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation results for gamma(lg) obtained from the three different routes are all in good agreement. Density functional theory predicts gamma(lg) with good accuracy for high polymer reservoir packing fractions, but yields deviations from the simulation results close to the critical point. PMID:16089531

  13. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    Science.gov (United States)

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. PMID:26991892

  14. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis

    Science.gov (United States)

    Studer, Patrick; Borisova, Marina; Schneider, Alexander; Ayala, Juan A.; Mayer, Christoph; Schuppler, Markus; Loessner, Martin J.

    2016-01-01

    L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan. PMID:27149671

  15. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens

    2011-12-01

    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  16. Decohesion Kinetics in Polymer Organic Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-12-10

    © 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  17. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    Science.gov (United States)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  18. Nucleated assembly of Chlamydomonas and Volvox cell walls.

    Science.gov (United States)

    Adair, W S; Steinmetz, S A; Mattson, D M; Goodenough, U W; Heuser, J E

    1987-11-01

    The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria. PMID:3680387

  19. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo...

  20. High efficiency all-polymer tandem solar cells.

    Science.gov (United States)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  1. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  2. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    OpenAIRE

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin ...

  3. Design of a galvanotaxic track for cells, using polymer electrodes.

    OpenAIRE

    Bengtsson, Katarina

    2011-01-01

    Galvanotaxis is the movement of cells in an applied electric field. The first steps to design a chip for observations of galvanotaxic behavior of cells were done in this work. The chip is a miniaturised system of previous larger galvanotaxis systems and uses materials which are thought to be biocompatible. The system was constructed on microscope slides with a channel in PDMS with adjacent polymer electrodes. The polymer electrodes were made from poly(3,4-ethylenedioxythiophene) poly(styrenes...

  4. Metal sulfide nanoparticle/polymer hybrid solar cells

    International Nuclear Information System (INIS)

    Full text: The decomposition of metal xanthates directly in a matrix of a conjugated polymer have been recently been introduced for copper indium sulphide polymer solar cells reaching efficiencies up to 3 %. Using this process the nanoparticles are naked without a ligand shell. In this contribution we show the versatility of this process to other metal sulphides-polymer systems. Aspects of materials synthesis and devices physics will be discussed. Different electrodes (Ag, Ag/Al, Al) have a strong influence on efficiency as well as devices stability. In addition, first results on tandem hybrid solar cells using the xanthate approach will be presented. (author)

  5. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  6. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    OpenAIRE

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  7. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  8. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  9. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  10. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  11. Polymer microarrays for cell based applications

    OpenAIRE

    Hansen, Anne Klara Brigitte

    2012-01-01

    The development and identification of new biomaterials that can replace specific tissues and organs is desirable. In the presented PhD thesis polymer microarrays were applied for the screening of polyacrylates and polyurethanes and evaluation for material discovery for applications in the life sciences. In the first part of the thesis, the largest polymer microarray ever made with more than 7000 features was fabricated and subsequently used for the screening of polyacrylates...

  12. Pyro-electrification of polymer membranes for cell patterning

    Science.gov (United States)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.

    2016-05-01

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it's possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  13. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  14. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    Science.gov (United States)

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production. PMID:18797865

  15. Nitrate sensing and cell wall modification in Staphylococci

    OpenAIRE

    Niemann, Volker

    2015-01-01

    This thesis highlights two topics concerning the regulation of energy metabolism and the cell wall biosynthesis in Staphylococci. Most members of this genus are facultative anaerobic microorganisms able to respire on nitrate as final electron acceptor. The completely apathogenic organism Staphylococcus carnosus is used as starter culture in food industry. Dissimilatory nitrate reduction causes desired effects during the ripening process of sausages. First, the nitrate concentra...

  16. Transcriptome analysis of secondary cell wall development in Medicago truncatula

    OpenAIRE

    Wang, Huanzhong; Yang, Jung Hyun; Chen, Fang; Torres-Jerez, Ivone; Tang, Yuhong; Wang, Mingyi; Du, Qian; Cheng, Xiaofei; Wen, Jiangqi; Dixon, Richard

    2016-01-01

    Background Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. Results A systematic microarray assay and high through-put real time PCR analys...

  17. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    OpenAIRE

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thaddée Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on thei...

  18. Cell-wall hemicelluloses as mobile carbon stores in plants

    OpenAIRE

    Schädel, Christina

    2009-01-01

    Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compounds. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprisin...

  19. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  20. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    ¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  1. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  2. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  3. Changes in alfalfa cell wall structure during vegetation

    Directory of Open Access Journals (Sweden)

    Božičković Aleksa Đ.

    2014-01-01

    Full Text Available The investigation was done on 141 samples of one alfalfa cultivar, collected from the same location during the first three growth cycles: spring growth, the first and the second regrowth. Within each growth cycle, sampling was done during the whole growing period, commencing when plant height was below 150 mm and continuing until plants were bearing ripe seeds. On all collected samples the following cell wall characteristics were determined: neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADL, neutral detergent insoluble crude protein (NDICP, acid detergent insoluble crude protein (ADICP. Cellulose and hemicellulose were detected on the base of the mentioned chemical parameters. Significantly lower (p<0.01 content of aNDF, ADF, ADL, ADICP and cellulose is found in the second regrowth, while there were no significant differences between the other two growth cycles. Except in NDICP and ADICP, the increase in all accompanying components of the cell wall was observed, and expressed in average daily changes. There was no consistent trend in NDICP and ADICP. During the spring growth from late bud to full-bloom stage the ’plateau’ was observed. The plateau was represented as almost constant content of aNDF, ADF, ADL and cellulose. The correlations between all components of the cell wall were shown. The equation aNDF = 36.713 + 1.181 × ADF is recommended for conversion of ADF into aNDF in alfalfa. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  4. Secondary cell wall polysaccharides in Bacillus anthracis and Bacillus cereus strains

    OpenAIRE

    Leoff, Christine

    2009-01-01

    This thesis presents a systematic comparison of cell wall carbohydrates, in particular the non classical secondary cell wall polysaccharides from closely related strains within the Bacillus cereus group. The results suggest that the cell wall glycosyl composition of the various Bacillus cereus group strains display differences that correlate with their phylogenetic relatedness. Comparative structural analysis of polysaccharide components that were released from the cell walls of the various s...

  5. Protein transport across the cell wall of monoderm Gram-positive bacteria

    OpenAIRE

    Forster, Brian M.; Marquis, Hélène

    2012-01-01

    In monoderm (single membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope either as membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for...

  6. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J.

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  7. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  8. Multiscale simulations in organic electronics: Applications to polymer wrapping of single-walled carbon nanotubes, bulk charge mobilities and organic-organic interfaces

    OpenAIRE

    Poschlad, Angela

    2014-01-01

    The thesis deals with the simulation of organic molecular systems on multi scales. It covers the development of a coarse-grained model for polymer wrapping of single-walled carbon nanotubes (SWCNTs) which provides good predictions of the polymer's selectivity towards different types of SWCNTs. Furthermore, the bulk charge mobility is analyzed for different amorphous and crystalline materials from first principle.

  9. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  10. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  11. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    , switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study......A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode...

  12. Staphylococcus aureus Cell Wall Stress Stimulon Gene-lacZ Fusion Strains: Potential for Use in Screening for Cell Wall-Active Antimicrobials▿

    OpenAIRE

    Steidl, Rebecca; Pearson, Stacy; Stephenson, Robert E.; Ledala, Nagender; Sitthisak, Sutthirat; Wilkinson, Brian J; Jayaswal, Radheshyam K.

    2008-01-01

    lacZ fusion strains were constructed using the promoters of five cell wall stress stimulon genes: pbp2, tcaA, vraSR, sgtB, and lytR. All fusion strains were induced only in the presence of cell wall-active antibiotics, suggesting the potential of these strains for use in high-throughput screening for new cell wall-active agents.

  13. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; DiDone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  14. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  15. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  16. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  17. Efficient polymer solar cells fabricated by simple brush painting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.S.; Na, S.I.; Jo, J.; Tae, G.; Kim, D.Y. [Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju (Korea)

    2007-12-17

    We demonstrate a brushing technique as a promising method for the mass production of efficient and flexible solar cells even on a non-flat surface such as roofing tiles. Higher device efficiency could be obtained compared to the spin-coated devices, resulting from the improved organization of polymer chains and domains induced by more effective application of shear stress to the polymer chains during the brushing process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers.

    OpenAIRE

    Goldberg, S; Doyle, R J; Rosenberg, M

    1990-01-01

    Polycationic polymers have been noted for their effects in promoting cell adhesion to various surfaces, but previous studies have failed to describe a mechanism dealing with this type of adhesion. In the present study, three polycationic polymers (chitosan, poly-L-lysine, and lysozyme) were tested for their effects on microbial hydrophobicity, as determined by adhesion to hydrocarbon and polystyrene. Test strains (Escherichia coli, Candida albicans, and a nonhydrophobic mutant, MR-481, derive...

  19. Polymers in cell encapsulation from an enveloped cell perspective

    NARCIS (Netherlands)

    de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M.

    2014-01-01

    In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), p

  20. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na+, N2+, O2+, Ar+ and Kr+ were implanted to the polymer surface with ion fluences between 1 x 1015 and 3 x 1017 ions/cm2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  1. Industrialization of Polymer Solar Cells – phase 1

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Bork, Jakob; Andersen, Rasmus B.;

    into more refined products. Such refined products might be self-powered electronic devices designed for easy integration in the customer’s production or solar-powered products for the end-user. A three-phased project with the objective to industrialize DTU’s basic polymer solar cell technology was started...... the electronic system comprising a polymer solar cell, a battery and the electronic function to be powered, are available on Faktor 3’s homepage, www.faktor-3.dk. Small LED torches have served as a case for gaining experiences with development and production of so-lar powered products. A range of conceptual......Polymer solar cells have unique features such as low weight, slim outline, robustness against breakage and excellent adaptability of size, shape and curvature to the actual application. These features open, not only for cost- and energy effective application of the cell, but also for aesthetic...

  2. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells:An example of metabolic plasticity

    Institute of Scientific and Technical Information of China (English)

    Mara de Castro; Janice G Miller; Jose Luis Acebes; Antonio Encina; Penelope Garca-Angulo; Stephen C Fry

    2015-01-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [3H]arabinose, and traced the distribution of 3H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [3H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [3H] xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of 3H-hemicelluloses ([3H]xylans and [3H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls’ cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells’ reduced capacity to integrate arabinox-ylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly.

  3. Experimental Cosserat elasticity in open-cell polymer foam

    Science.gov (United States)

    Rueger, Zach; Lakes, Roderic S.

    2016-01-01

    Reticulated open-cell polymer foams exhibit substantial size effects in torsion and bending: slender specimens are more rigid than anticipated via classical elasticity. Such size effects are predicted by Cosserat (micropolar) elasticity, which allows points to rotate as well as translate and incorporates distributed moments (couple stresses). The Cosserat characteristic length is larger than the cell size. The Cosserat coupling coefficient is larger than in dense closed-cell foams and approaches 1 for foam with 0.4 mm cells.

  4. Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia

    OpenAIRE

    Fudali, Sylwia; Sobczak, Miroslaw; Janakowski, Slawomir; Griesser, Michaela; Grundler, Florian MW; Golinowski, Wladyslaw

    2008-01-01

    Cyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place. Cell wall dissolution occurs during cell wall opening formation, cell walls expand during hypertrophy of syncytial elements and local cell wall synthesis leads to the thickening of syncytial cell wall and the formati...

  5. Sortase A substrate specificity in GBS pilus 2a cell wall anchoring.

    Directory of Open Access Journals (Sweden)

    Francesca Necchi

    Full Text Available Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS, is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally distinct types of pili have been discovered (pilus 1, 2a and 2b, whose structural subunits are assembled in high-molecular weight polymers by specific class C sortases. In addition, the highly conserved housekeeping sortase A (SrtA, whose main role is to link surface proteins to bacterial cell wall peptidoglycan by a transpeptidation reaction, is also involved in pili cell wall anchoring in many bacteria. Through in vivo mutagenesis, we demonstrate that the LPXTG sorting signal of the minor ancillary protein (AP2 is essential for pilus 2a anchoring. We successfully produced a highly purified recombinant SrtA (SrtA(ΔN40 able to specifically hydrolyze the sorting signal of pilus 2a minor ancillary protein (AP2-2a and catalyze in vitro the transpeptidation reaction between peptidoglycan analogues and the LPXTG motif, using both synthetic fluorescent peptides and recombinant proteins. By contrast, SrtA(ΔN40 does not catalyze the transpeptidation reaction with substrate-peptides mimicking sorting signals of the other pilus 2a subunits (the backbone protein and the major ancillary protein. Thus, our results add further insight into the proposed model of GBS pilus 2a assembly, in which SrtA is required for pili cell wall covalent attachment, acting exclusively on the minor accessory pilin, representing the terminal subunit located at the base of the pilus.

  6. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.

    Science.gov (United States)

    Le Bourvellec, Carine; Watrelot, Aude A; Ginies, Christian; Imberty, Anne; Renard, Catherine M G C

    2012-09-19

    Procyanidins can bind cell wall material in raw product, and it could be supposed that the same mechanism of retention of procyanidins by apple cell walls takes place in cooked products. To evaluate the influence of cell wall composition and disassembly during cooking on the cell walls' capacity to interact with procyanidins, four cell wall materials differing in their protein contents and physical characteristics were prepared: cell wall with proteins, cell wall devoid of protein, and two processed cell walls differing by their drying method. Protein contents varied from 23 to 99 mg/g and surface areas from 1.26 to 3.16 m(2)/g. Apple procyanidins with an average polymerization degree of 8.7 were used. The adsorption of apple procyanidins on solid cell wall material was quantified using the Langmuir isotherm formulation. The protein contents in cell wall material had no effect on procyanidin/cell wall interactions, whereas modification of the cell wall material by boiling, which reduces pectin content, and drying decreased the apparent affinity and increased the apparent saturation levels when constants were expressed relative to cell wall weight. However, boiling and drying increased apparent saturation levels and had no effect on apparent affinity when the same data were expressed per surface units. Isothermal titration calorimetry indicated strong affinity (K(a) = 1.4 × 10(4) M(-1)) between pectins solubilized by boiling and procyanidins. This study higllights the impact of highly methylated pectins and drying, that is, composition and structure of cell wall in the cell wall/procyanidin interactions. PMID:22861056

  7. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    Science.gov (United States)

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered. PMID:20505351

  8. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  9. Scattering properties of microalgae: the effect of cell size and cell wall

    Science.gov (United States)

    Svensen, Øyvind; Frette, Øyvind; Rune Erga, Svein

    2007-08-01

    The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

  10. Immunotherapy with BCG cell wall plus irradiated tumor cells

    International Nuclear Information System (INIS)

    Two different fibrosarcomas (MCB-I, MCB-II) were induced by methylcholcholanthrene in syngeneic Balb/C mice were used. The tumor cells irradiated with 5,000 to 30,000 rads did not growth in mice on 30 days after inoculation. The viable tumor cells were challenged intradermally to mice on 7 days after inoculation of the tumor cells irradiated with 5,000 to 30,000 rads. The challenged tumor cells were all rejected at 30 days after inoculation. Mice were challenged with 5 x 105 viable tumor cells on 7 days after inoculation of 103 to 108 irradiated tumor cells. Mice pretreated with 105 or 106 irradiated tumor cells rejected the tumor cells completely. The viable tumor cells were challenged to mice on 7 days after inoculation of BCG-CW emulsion plus 106 irradiated tumor cells. 0, 50, 100, 200, and 400 mu g of BCG-CW emulsion were mixed in 106 irradiated tumor cells. Optimal dosage of BCG-CW emulsion was 50 or 100 mu g. BCG-CW emulsion plus irradiated tumor cells were injected subcutaneously to the mice after tumor cells inoculation. Three injections of the vaccine significantly suppressed the tumor outgrowth, but not one or two injections in no-treated mice. However, in the mice pretreated with BCG-CW emulsion, the tumor growth was significantly suppressed by one or two injections of the vaccine. Especially, the three injections of the vaccine significantly suppressed the tumor growth and the 25% of the mice were completely cured. The effect of the vaccine was almost the same grade by contralateral or ipsilateral treatment. The irradiated MCB-II tumor cells plus BCG-CW emulsion were not effective to the MCB-1 tumor bearing mice, suggesting the anti-tumor effect of this vaccine was immunologically specific

  11. Immunotherapy with BCG cell wall plus irradiated tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizukuro, Tomoyuki (Kyoto Prefectural Univ. of Medicine (Japan))

    1983-04-01

    Two different fibrosarcomas (MCB-I, MCB-II) were induced by methylcholcholanthrene in syngeneic Balb/C mice were used. The tumor cells irradiated with 5,000 to 30,000 rads did not growth in mice on 30 days after inoculation. The viable tumor cells were challenged intradermally to mice on 7 days after inoculation of the tumor cells irradiated with 5,000 to 30,000 rads. The challenged tumor cells were all rejected at 30 days after inoculation. Mice were challenged with 5 x 10/sup 5/ viable tumor cells on 7 days after inoculation of 10/sup 3/ to 10/sup 8/ irradiated tumor cells. Mice pretreated with 10/sup 5/ or 10/sup 6/ irradiated tumor cells rejected the tumor cells completely. The viable tumor cells were challenged to mice on 7 days after inoculation of BCG-CW emulsion plus 10/sup 6/ irradiated tumor cells. 0, 50, 100, 200, and 400 mu g of BCG-CW emulsion were mixed in 10/sup 6/ irradiated tumor cells. Optimal dosage of BCG-CW emulsion was 50 or 100 mu g. BCG-CW emulsion plus irradiated tumor cells were injected subcutaneously to the mice after tumor cells inoculation. Three injections of the vaccine significantly suppressed the tumor outgrowth, but not one or two injections in no-treated mice. However, in the mice pretreated with BCG-CW emulsion, the tumor growth was significantly suppressed by one or two injections of the vaccine. Especially, the three injections of the vaccine significantly suppressed the tumor growth and the 25% of the mice were completely cured. The effect of the vaccine was almost the same grade by contralateral or ipsilateral treatment. The irradiated MCB-II tumor cells plus BCG-CW emulsion were not effective to the MCB-1 tumor bearing mice, suggesting the anti-tumor effect of this vaccine was immunologically specific.

  12. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  13. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R.

    2012-07-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (approx1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, several issues have to be approached. Among these are more environmentally friendly processing and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding to several GW{sub peek}, this is not a suitable approach from neither a production nor environmental point of view. As a consequence new materials, which can be processed from more environmentally friendly solvents (preferably water), need to be developed. In this thesis, the issue has been approached through synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are processed from aqueous or semi-aqueous solution. As previously mentioned many advantages can be achieved by use of thermocleavable materials. Unfortunately the cleavage temperatures are too

  14. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics

    Directory of Open Access Journals (Sweden)

    Berger-Bächi Brigitte

    2011-01-01

    Full Text Available Abstract Background Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. Results We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315, which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes

  15. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  16. Role of the Interfacial Interactions from an Adjacent Wall on Polymer Diffusion

    Science.gov (United States)

    Choi, Jihoon; Clarke, Nigel; Winey, Karen; Meth, Jeffrey; Composto, Russell

    2015-03-01

    The tracer diffusion of deuterated polystyrene (dPS; Mn = 23 - 1866 kg/mol) with a thickness (l) is measured diffusing away from hydroxyl-terminated, phenyl-terminate, and PS-grafted silicon substrates. For a hydroxyl-functionalized substrate, short polymer chains (Mn = 23 and 49 kg/mol; l >>Rg) exhibit a diffusion coefficient that is comparable to bulk PS, whereas long polymer chains (Mn = 532 and 1866 kg/mol; l polymer chains showed a moderate slowing down. These experiments demonstrate that the polymer diffusion of thin, confined films (~ Rg) away from the substrate is determined by the friction due to surface-monomer contacts, and is sensitive to the chemical state of the substrate, providing a new insight into a role of the interfacial interactions on polymer dynamics.

  17. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper;

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus...... map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...... material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial...

  18. Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.

    Science.gov (United States)

    Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana

    2016-01-13

    Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers. PMID:26627983

  19. Polymer light-emitting electrochemical cells with frozen junctions

    Science.gov (United States)

    Gao, Jun; Li, Yongfang; Yu, Gang; Heeger, Alan J.

    1999-10-01

    We report on polymer light-emitting electrochemical cells (LECs) with frozen p-i-n junctions. The dynamic p-i-n junction in polymer LECs is stabilized by lowering the temperature below the glass transition temperature of the ion-transport polymer. Detailed studies have shown that the frozen p-i-n junction in LECs based on the luminescent polymer poly[5-(2'ethylhexyloxy)-2-methoxy-1,4-phenylene vinylene] and polyethylene oxide containing lithium triflate (PEO:LiCF3SO3) is stable at temperatures up to 200 K. Frozen-junction LECs offer a number of advantages; they exhibit unipolar light emission, balanced injection, fast response, high brightness, low operating voltage, and insensitivity to electrode materials and film thickness.

  20. Thiophene And Anthracene Containing Polymers In Organic Solar Cells

    International Nuclear Information System (INIS)

    Organic solar cell research has attracted worldwide attention during the last two decades. Organic semiconductors are easily processable, light weight, easy to integrate in a wide variety of devices and have chemically tunable properties. These properties describe the advantages of organic plastic solar cells over that of conventional silicon solar cells. Conjugated polymers, also known as semiconducting polymers, are distinguished by alternating single and double bonds between carbon atoms on the polymer backbone. Among π-conjugated polymers, polythiophenes are promising candidates for organic solar cell research. At present, the commonly used polythiophene derivatives, as the electron donor in polymer solar cells, are mainly poly(3-hexylthiophene)s (P3HT). In this study, we investigated the effect of solvent, annealing on the performance and morphology of novel two thiophene-[P1 (MEH-PPE1-PThV2) and P2 (MEH-PThE1-PPV2)] as well as two anthracene- containing poly (phenylene-ethynylene) family of polymers [P3 (MEH-PPE1-PAnV2) and P4 (MEH-PAnE1-PPV2)] and (1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) based organic solar cells. The devices using the blends of P2 as donor and PCBM as acceptor (1:3 weight ratio) exhibited a short circuit current of JSC = 5.2 mA/cm2, an open circuit voltage of VOC 800 mV, fill factor FF = 0.4 and resulting power conversion efficiency ηAM1.5 = 1.8 %.

  1. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  2. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae.

    OpenAIRE

    López-Ribot, J L; Chaffin, W L

    1996-01-01

    Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicat...

  3. Preparation of novel curcumin-imprinted polymers based on magnetic multi-walled carbon nanotubes for the rapid extraction of curcumin from ginger powder and kiwi fruit root.

    Science.gov (United States)

    Zhang, Zhaohui; Chen, Xing; Rao, Wei; Long, Fang; Yan, Liang; Yin, Yuli

    2015-01-01

    A novel molecularly imprinted polymer based on magnetic phenyl-modified multi-walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high-performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl-modified multi-walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully. PMID:25358961

  4. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  5. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  6. A radioimmunoassay for lignin in plant cell walls

    International Nuclear Information System (INIS)

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A β-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 ηg/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. 125I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO2 delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed

  7. Lignification in poplar tension wood lignified cell wall layers.

    Science.gov (United States)

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study. PMID:22933655

  8. Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion

    Science.gov (United States)

    Horike, Shohei; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Saito, Takeshi; Ishida, Kenji

    2016-08-01

    The tuning of the Seebeck coefficient of a single-walled carbon nanotube (SWCNT) film was achieved by using the dipole field of a ferroelectric polymer. The Seebeck coefficient was positive under an up-poling dipole field, but negative under a down-poling dipole field, whereas the control remained positive. This tunable behavior can be explained by selective carrier injection and accumulation, which was confirmed by the temperature dependence of electrical conductivity. Connecting p- and n-type SWCNT films tuned by dipole fields to create a π module resulted in a significant improvement in output voltage owing to the temperature difference between the two.

  9. Cathode degradation of the polymer electrolyte membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Morphological changes occurring in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFC's) were monitored using scanning microscopy (SEM) during the course of 600 hours testing of hydrogen/air polymer electrolyte fuel cells (PEFCs). The microstructural study suggests a structural change caused by loss of the recast ionomer could result in deterioration of the integrity of the electrode, a drop in both ionic and electronic conductivities, loss of platinum particle clusters (for carbon support), and increased resistance within the interfacial zone of the membrane and catalyst layer.(author)

  10. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng;

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed and...... suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  11. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  12. Cell wall loosening proteins of the stigma exudate

    OpenAIRE

    Nieuwland, J.H.

    2004-01-01

    Outline of the thesis: The idea, formulated by Cosgrove, that cell wall loosening of the maternal tissue facilitates pollen tube growth is a central theme of this thesis. This idea was originally proposed for beta-expansins released by maize pollen. Since the pollen coat of dry stigma type plants, like maize, bears a functional similarity with the exudate of wet stigma type plants (e.g. tobacco and petunia), this research was started with the analysis of the putative function of the pistil-sp...

  13. Clinical analysis of lateral oropharyngeal-wall squamous cell carcinoma

    International Nuclear Information System (INIS)

    We retrospectively reviewed 98 cases of lateral-oropharyngeal wall squamous cell carcinoma seen from January 1999 to March 2011. The majority-75 cases-involeved advanced cancer. For these, we conducted concurrent chemoradiotherapy (CCRT) with cisplatin, docetaxel, and 5-FU from 2007. Five-year overall survival was 64.4%. In advanced cases, three-year overall survival was 77.8% in surgery, 71.2% in radiation therapy, and 84.6% in CCRT. While no statistically significant difference was seen, CCRT, appeared to provide more curative effectiveness. (author)

  14. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  15. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  16. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  17. Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species

    Institute of Scientific and Technical Information of China (English)

    Si-Ju Zhang; Xue-Qin Song; Bai-Sheng Yu; Bao-Cai Zhang; Chuan-Qing Sun; J. Paul Knox; Yi-Hua Zhou

    2012-01-01

    Cell wall hemicellulosic polysaccharides are structurally complex and diverse.Knowledge about the synthesisof cell wall hemicelluloses and their biological roles is limited.Quantitative trait loci (QTL) mapping is a helpful tool for the dissection of complex phenotypes for gene identification.In this study,we exploited the natural variation in cell wall monosaccharide levels between a common wild rice,Yuanj,and an elite indica cultivar,Teqing,and performed QTL mapping with their introgression lines (ILs).Chemical analyses conducted on the culms of Yuanj and Teqing showed that the major alterations are found in glucose and xylose levels,which are correlated with specific hemicellulosic polymers.Glycosidic linkage examination revealed that,in Yuanj,an increase in glucose content results from a higher level of mixed linkage β-glucan (MLG),whereas a reduction in xylose content reflects a low level of xylan backbone and a varied arabinoxylan (AX) structure.Seventeen QTLs for monosaccharides have been identified through composition analysis of the culm residues of 95 core ILs.Four major QTLs affecting xylose and glucose levels are responsible for 19 and 21% of the phenotypic variance,respectively.This study provides a unique resource for the genetic dissection of rice cell wall formation and remodeling in the vegetative organs.

  18. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Benziger, Jay; Chia, E.; Karnas, E.; Moxley, J.; Teuscher, C.; Kevrekidis, I. G.

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The S...

  19. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  20. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  1. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  2. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  3. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

    OpenAIRE

    van der Vaart, J. M.; te Biesebeke, R; Chapman, J.W.; Toschka, H Y; Klis, F M; Verrips, C. T.

    1997-01-01

    The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p...

  4. Determination of the pore size of cell walls of living plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D.P.

    1979-09-14

    The limiting diameter of pores in the walls of living plant cells through which molecules can freely pass has been determined by a solute exclusion technique to be 35 to 38 angstroms for hair cells of Raphanus sativus roots and fibers of Gossypium hirsutum, 38 to 40 angstroms for cultured cells of Acer pseudoplatanus, and 45 to 52 angstroms for isolated palisade parenchyma cells of the leaves of Xanthium strumarium and Commelina communis. These results indicate that molecules with diameters larger than these pores would be restricted in their ability to penetrate such a cell wall, and that such a wall may represent a more significant barrier to cellular communication than has been previously assumed.

  5. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  6. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  7. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  8. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  9. Rhizobium sp. Degradation of Legume Root Hair Cell Wall at the Site of Infection Thread Origin

    OpenAIRE

    Ridge, Robert W.; Rolfe, Barry G.

    1985-01-01

    Using a new microinoculation technique, we demonstrated that penetration of Rhizobium sp. into the host root hair cell occurs at 20 to 22 h after inoculation. It did this by dissolving the cell wall maxtrix, leaving a layer of depolymerized wall microfibrils. Colony growth pressure “stretched” the weakened wall, forming a bulge into an interfacial zone between the wall and plasmalemma. At the same time vesicular bodies, similar to plasmalemmasomes, accumulated at the penetration site in a man...

  10. Performance enhancement of polymer solar cells using copper oxide nanoparticles

    Science.gov (United States)

    Wanninayake, Aruna P.; Gunashekar, Subhashini; Li, Shengyi; Church, Benjamin C.; Abu-Zahra, Nidal

    2015-06-01

    Copper oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nanoparticles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA cm-2 and it seemed to increase to 6.484 mA cm-2 in cells containing 0.6 mg of CuO NPs; in addition, the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nanoparticles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nanoparticles.

  11. Performance enhancement of polymer solar cells using copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Copper oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nanoparticles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA cm−2 and it seemed to increase to 6.484 mA cm−2 in cells containing 0.6 mg of CuO NPs; in addition, the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nanoparticles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nanoparticles. (paper)

  12. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  13. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  14. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research

    OpenAIRE

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L.

    2010-01-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the s...

  15. Conducting polymer based materials for the fuel cell applications

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I. Yu.; Stejskal, Jaroslav; Kompan, M.

    Sankt Peterburg : Fiziko-techničeskij Institut im. A. F. Ioffe, 2005. s. 39. [Meždunarodnyj Seminar: Rossijskie technologii dlja industrii /9./. 30.5.2005-1.6.2005, Sankt Peterburg] Institutional research plan: CEZ:AV0Z40500505 Keywords : fuel cell * conducting polymers Subject RIV: CD - Macromolecular Chemistry

  16. Enhanced efficiency in double junction polymer: Fullerene solar cells

    NARCIS (Netherlands)

    Moet, D.J.D.; Bruyn, P. de; Kotlarski, J.D.; Blom, P.W.M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photoac

  17. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to determi

  18. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.;

    2010-01-01

    and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it...

  19. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.;

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  20. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  1. Soya beans and Maize : The effect of chemical and physical structure of cell wall polysaccharides on fermentation kinetics

    OpenAIRE

    Laar, van, J.A.

    2000-01-01

    The analysis of the relationship between cell wall composition and fermentation of endosperm cell walls of soya beans and maize was approached from three different angles. Firstly, the fermentation (rate and extent of fermentation, the sugar degradation pattern, and volatile fatty acid production) of soya bean and maize cell walls was analysed, both in situ and in vitro. This analysis revealed that the physical structure of the cell wall (particle size and cell wall thickness) influences cell...

  2. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  3. Fuzzy Control of Polymer Fuel Cell for Attract Maximum Power

    Directory of Open Access Journals (Sweden)

    Zahra Nejati

    2014-01-01

    Full Text Available Polymer fuel cell is one of the most attractive of fuel cell from point of the design and operation and also in comparison with other types of fuel cell, for a weight and size, polymer fuel cell produces more power. But however, one of the problems to use of this system is its low efficiency .To overcome the low efficiency of the fuel cell polymer in this paper is tried to used from maximum power point tracking. According to the characteristic of the flow –power the fuel cell, which is a non-linear curve and has a maximum point and use of the fuzzy controller and the proper selection of input and output membership functions trying to the System always works at maximum power. For this purpose, a chopper is used between the fuel cell and the load and to adjust the duty cycle of the applied signal to it is applied the fuzzy-TSK type controller that Its inputs are stream slope and slope changes. The results show that this controller has a good performance and that is faster compared with the perturbation and observation method.

  4. Teichoic, teichulosonic and teichuronic acids in the cell wall of Brevibacterium aurantiacum VKM Ac-2111(Т).

    Science.gov (United States)

    Shashkov, Alexander S; Potekhina, Natalia V; Senchenkova, Sofya N; Evtushenko, Lyudmila I

    2016-02-01

    Two different teichoic acids, along with a teichulosonic and a teichuronic acids, were identified in the cell wall of Brevibacterium aurantiacum VKM Ac-2111(Т). One teichoic acid is 1,3-poly(glycerol phosphate) with 2-acetamido-2-deoxy-α-D-galactopyranose and L-glutamic acid as non-stoichiometric substituents at O-2 of the glycerol residue. The second one is a poly(glycosylglycerol phosphate) with -4)-α-D-Galp-(1 → 2)-sn-Gro-(3-P- and/or -6)-α-D-Galp-(1 → 2)-sn-Gro-(3-P- units in the main chain. The structure of the first has not been reported so far, while the latter one is new for actinobacteria. The teichulosonic acid with α-3-deoxy-β-D-glycero-D-galacto-non-2-ulopyranosonic acid (Kdn) and β-D-glucopyranose residues in the backbone represents a novel polymer: → 8)-α-Kdn-(2 → 6)-β-D-Glcp-(1 →. The teichuronic acid has also hitherto unknown structure: → 3)-β-D-Galf(2OAc)0.3-(1 → 3)-β-D-GlcpА-(1 → and is found in members of the genus Brevibacterium for the first time. The polymer structures were elucidated using 1D- and 2D-NMR spectroscopy: (1)H,(1)H COSY, TOCSY, ROESY, (1)H,(13)C HSQC, HSQC-TOCSY, and (1)H,(13)C and (1)H,(31)P HMBC. PMID:26765252

  5. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...... understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing...

  6. Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells

    International Nuclear Information System (INIS)

    We examine the dark and the illuminated current-voltage (J-V) characteristics of poly(3-octylthiophene) (P3OT)/single-wall carbon nanotube (SWNT) composite photovoltaic cells as a function of SWNT concentration. Using an exponential band tail model, the influence of SWNT concentration on the J-V characteristics of the cells is analysed in terms of corresponding parameters such as effective hole mobility, short-circuit current, and open-circuit voltage. For the device with optimum 1% SWNT concentration, the increased photoresponse (∼500 times) as compared to the pristine P3OT cell can be attributed partly to the increase (∼50 times) in effective hole mobility, due to the reduction of localized states of the pristine P3OT matrix, and partly to the enhanced exciton extraction at the polymer/nanotube junctions

  7. Optimization and Characterization of Self-assembled Triblock Polymer Membranes with Chemically-Tunable Pore Walls for Nanofiltration Applications

    Science.gov (United States)

    Sargent, Jessica; Mulvenna, Ryan; Prato, Rafael; Weidman, Jacob; Phillip, William; Boudouris, Bryan

    2015-03-01

    The field of block polymer-based membranes for separation applications has grown considerably in the past several years. However, decreasing the domain sizes of these membranes to below 5 nm has proven to be a challenge in many instances. Here, we demonstrate that a triblock polymer, polyisoprene- b-polystyrene- b-poly(tert-butyl methacrylate) (PI-PS-PtBMA), can be utilized to form nanoporous membranes capable of high flux and high selectivity based on both size and chemical composition. By controlling the synthesis, solution self-assembly, and non-solvent induced phase separation of these polymers, a scalable fabrication process can produce thin-film membranes that feature monodisperse pores approaching 1 nm in diameter, tunable pore-wall chemistry, good mechanical stability, and chlorine degradation resistance. The PtBMA functionality can further be converted to a number of side chain functionalities through simple coupling chemistry to produce membranes with specific chemical and structural characteristics tailored to meet the needs of various applications. In particular, these membranes provide a promising, inexpensive platform for chlorine degradation and fouling-resistant membranes for water purification that can be produced on an industrial scale.

  8. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    International Nuclear Information System (INIS)

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 x 104 Ω/□ to 2.65 x 103 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  9. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan-Li; Tien, Hsi-Wen [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Ma, Chen-Chi M., E-mail: ccma@che.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Teng, Chih-Chun [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Yu, Yi-Hsiuan [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Tao Yuan 32546, Taiwan (China); Yang, Shin-Yi [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China); Wei, Ming-Hsiung [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Tao Yuan 32546, Taiwan (China); Wu, Sheng-Yen [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30043, Taiwan (China)

    2011-10-15

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO{sub 3}) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO{sub 3} solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 x 10{sup 4} {Omega}/{open_square} to 2.65 x 10{sup 3} {Omega}/{open_square} with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  10. Functional single-walled carbon nanotubes/chitosan conjugate for tumor cells targeting

    Science.gov (United States)

    Wu, Baoyan; Ou, Zhongmin; Xing, Da

    2009-08-01

    The application of single-walled carbon nanotubes (SWCNTs) in the field of biomedicine is becoming an exciting topic because of their flexible structure and propensity for chemical functionalization. In this assay, a novel noncovalently functional SWCNTs based on a natural biocompatible polymer chitosan has been developed for tumor cells targeting. First, SWCNTs were modified by chitosan (CHIT-SWCNT). Second, CHIT-SWCNT was coupled with fluorescein isothiocyanate (FITC), based on the reaction between the isothiocyanate group of FITC and the primary amino group of chitosan. Third, the FITC functionalized CHIT-SWCNT was conjugated with folic acid (FA) after activation with EDC/NHS, based on the reaction between the NHS group of FA and the primary free amino group of chitosan to construct the functional SWCNT/CHIT conjugate, CHIT-SWCNT-FA. The fluorescence CHIT-SWCNT-FA has been used to detect tumor cells with confocal microscopy imaging technology. Our experimental results indicate that the novel CHIT-SWCNT-FA is soluble and stable in PBS, and it can be readily transported inside tumor cells. Combining the intrinsic properties of carbon nanotubes and the versatility of chitosan, CHIT-SWCNT can be used as potential devices for targeted drug delivery and tumor cell sensing. The proposed assay could provide a feasible alternative to presently available functional SWCNTs in biological applications.

  11. Single Walled Carbon Nanohorns as Catalytic Counter Electrodes for Co(III)/(II) Electron Mediators in Dye Sensitized Cells.

    Science.gov (United States)

    Carli, Stefano; Casarin, Laura; Syrgiannis, Zois; Boaretto, Rita; Benazzi, Elisabetta; Caramori, Stefano; Prato, Maurizio; Bignozzi, Carlo Alberto

    2016-06-15

    The electrochemical properties of both pristine single walled carbon nanohorns (SWCNHS) and their chemically oxidized form (ox-SWCNHS) spray coated onto fluorine doped SnO2 (FTO) were investigated in the framework of the fabrication of cobalt based transparent dye sensitized solar cells (DSSCs). These new nanocarbon substrates, evaluated in conjunction with the Co(bpy)3(2+/3+) (bpy = 2,2'-bipyridine) redox mediator, are endowed with excellent electrocatalytic properties, ease of fabrication, and very promising stability and display a great potential for replacing the best noble metal and conductive polymer catalytic materials in the building of semitransparent counter electrodes in new generation photoelectrochemical devices. PMID:27227738

  12. Semi-transparent polymer solar cells

    OpenAIRE

    Romero-Gómez, Pablo; Pastorelli, Francesco; Mantilla-Pérez, Paola; Mariano, Marina; Martínez-Otero, Alberto; Elias, Xavier; Betancur, Rafael; Martorell Pena, Jordi

    2015-01-01

    Over the last three decades, progress in the organic photovoltaic field has resulted in some device features which make organic cells applicable in electricity generation configurations where the standard silicon-based technology is not suitable, for instance, when a semi-transparent photovoltaic panel is needed. When the thin film solar cell performance is evaluated in terms of the device’s visible transparency and power conversion efficiency, organic solar cells offer the most promising sol...

  13. Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites

    International Nuclear Information System (INIS)

    The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites

  14. Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Suhn, Jonghwan [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2014-01-15

    The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

  15. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...... covered by the HeLa cells used as model system. Design parameters relating to photonic crystal sensing of large objects are identified and discussed. The lasers are chemically modified to bind cells and molecules with flexible UV activated linker molecules....

  16. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  17. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  18. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  19. Infused polymers for cell sheet release

    Science.gov (United States)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  20. Elucidation of the chemical fine structure of polysaccharides from soybean and maize kernel cell walls

    OpenAIRE

    Huisman, M.M.H.

    2000-01-01

    The subject of this thesis was the elucidation of the chemical fine structure of polysaccharides from cell walls of soybean and maize kernel. The two species investigated represent different taxonomic groups, soybean belonging to the dicotyledonous and maize to the monocotyledonous plants. Besides representing the most important structures present in cell wall material, these raw materials are of great importance in food and feed industry.The characterisation of the soybean cell wall polysacc...

  1. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  2. Cell wall synthesis and initiation of deoxyribonucleic acid replication in Bacillus subtilis.

    OpenAIRE

    Sandler, N.; Keynan, A

    1981-01-01

    We have observed a connection between cell wall synthesis and the initiation of chromosome replication in Bacillus subtilis. Initiation of chromosome replication was prevented in synchronous cultures in the presence of the cell wall synthesis inhibitor vancomycin. When vancomycin was added to the cultures after initiation of chromosome replication, one round of replication was completed but no reinitiation occurred. Similar results were obtained when cell wall synthesis was inhibited by risto...

  3. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  4. Diversity of beetle genes encoding novel plant cell wall degrading enzymes

    OpenAIRE

    Pauchet, Y.; Wilkinson, P.; Chauhan, R.; Ffrench-Constant, R.

    2010-01-01

    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterost...

  5. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper

    OpenAIRE

    Gritsch, Cristina Sanchis; Murphy, Richard J.

    2005-01-01

    • Background and Aims The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development.

  6. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    Science.gov (United States)

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  7. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  8. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Science.gov (United States)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  9. Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Wenqi Yu

    Full Text Available A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX encoded red fluorescence (RF mCherry (mCh hybrids, namely mCh-cyto (no signal peptide and no sorting sequence, mCh-sec (with signal peptide, and mCh-cw (with signal peptide and cell wall sorting sequence. The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP can be distinguished: the +YSIRK motif SP(lip and the -YSIRK motif SP(sasF. mCh-hybrids supplied with the +YSIRK motif SP(lip were always expressed higher than those with -YSIRK motif SP(sasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1 and the other hand with -YSIRK motif (mCh-cw2. MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA, as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.

  10. A polymer scaffold for self-healing perovskite solar cells

    Science.gov (United States)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  11. A two-dimensional DNA lattice implanted polymer solar cell

    International Nuclear Information System (INIS)

    A double crossover tile based artificial two-dimensional (2D) DNA lattice was fabricated and the dry-wet method was introduced to recover an original DNA lattice structure in order to deposit DNA lattices safely on the organic layer without damaging the layer. The DNA lattice was then employed as an electron blocking layer in a polymer solar cell causing an increase of about 10% up to 160% in the power conversion efficiency. Consequently, the resulting solar cell which had an artificial 2D DNA blocking layer showed a significant enhancement in power conversion efficiency compared to conventional polymer solar cells. It should be clear that the artificial DNA nanostructure holds unique physical properties that are extremely attractive for various energy-related and photonic applications.

  12. Usage of polymer brushes as substrates of bone cells

    Institute of Scientific and Technical Information of China (English)

    Sabine A.LETSCHE; Annina M.STEINBACH; Manuela PLUNTKE; Othmar MARTI; Anita IGNATIUS; Dirk VOLKMER

    2009-01-01

    Implant methcal research and hssue eagmeer-ing both target the design of novel biomaterials for the improvement of human health and clinical applications. In order to develop improved surface coatings for hard tissue (bone)replacement materials and implant devices,we are developing micropartemed coatings consisting of polymer brushes. These are used as organic templates for the mineralization of calcium phosphate in oraer to improve adhesion of bone cells. First we give a shortaccount of the current state-of-the-art in this particular field of blomaterial development,while in the second part the preliminary results of cell culture experiments are presented,in which the biocompatibility of polymer brushes are tested on human mesenchvmal stem cells.

  13. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  14. STUDY OF SINGLE WALLED CARBON NANOTUBE REINFORCED POLYMER COMPOSITES BY HANSEN SOLUBILITY PARAMETERS

    DEFF Research Database (Denmark)

    Ma, Jing

    obvious reinforcement of the polymer by the addition of SWNTs. Existence of agglomerates, voids, and the lower glass transition temperature of epoxy resin, may give the negative effect on the mechanical properties of nanocomposite materials. In the design aspect of the composite material, HSP could help...

  15. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I2), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (Jsc, 10.75 mA cm−2) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm−2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  16. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  17. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  18. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    OpenAIRE

    Indrakumar Vetharaniam; Kelly, William J.; Graeme T. Attwood; Harris, Philip J.

    2014-01-01

    We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a ran...

  19. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  20. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  1. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Science.gov (United States)

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  2. CELL-WALL GROWTH AND PROTEIN SECRETION IN FUNGI

    NARCIS (Netherlands)

    SIETSMA, JH; WOSTEN, HAB; WESSELS, JGH

    1995-01-01

    Secretion of proteins is a vital process in fungi. Because hyphal walls form a diffusion barrier for proteins, a mechanism different from diffusion probably exist to transport proteins across the wall. In Schizophyllum commune, evidence has been obtained for synthesis at the hyphal apex of wall comp

  3. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  4. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  5. The Autohumidification Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J B; Tulyani, S; Turner, A; Bocarsly, A B; Kevrekidis, Yu G

    2003-01-01

    A PEM fuel cell was specially constructed to determine kinetics under conditions of well-defined gas phase composition and cell temperature. Steady state multiplicity was discovered in the autohumidification PEM fuel cell, resulting from a balance between water production and water removal. Ignition was observed in the PEM fuel cell for a critical water activity of about 0.1. Ignition is a consequence of the exponential increase of proton conductivity with water activity, which creates an autocatalytic feedback between the water production and the proton conduction. The steady state current in the ignited state decreases with increasing temperature between 50 to 105 deg C. At temperatures greater than 70 deg C five steady states were observed in the PEM fuel cell. The steady state performance has been followed with variable load resistance and hysteresis loops have been mapped. The dynamics of transitions between steady states are slow about 10^3 to 10^4 s. These slow dynamics are suggested to result from a c...

  6. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  7. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  8. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  10. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan

    2014-03-24

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants

    DEFF Research Database (Denmark)

    Sørensen, Iben; Rose, Jocelyn K.C.; Doyle, Jeff J.;

    2012-01-01

    of structural polymers (i. e., cell wall polysaccharides and associated molecules) that must have been in place for land colonization. However, it has been suggested that the success of the earliest land plants was partly based on the frequency of gene duplication, and possibly whole genome...... help reveal when and how the molecular pathways required for synthesis of key structural polymers in land plants arose. © 2012 Landes Bioscience.......The Charophycean green algae (CGA) occupy a key phylogenetic position as the evolutionary grade that includes the sister group of the land plants (embryophytes), and so provide potentially valuable experimental systems to study the development and evolution of traits that were necessary for...

  12. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.;

    2013-01-01

    evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  13. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    Science.gov (United States)

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  14. Functionalized Single Walled Carbon Nanotube/Polymer Nanocomposite Membranes for Gas Separation and Desalination

    OpenAIRE

    Surapathi, Anil Kumar

    2012-01-01

    Polymeric membranes for gas separation are limited in their performance by a trade-off between permeability and selectivity. New methods of design are necessary in making membranes, which can show both high permeability and selectivity. A mixed matrix membrane is one such particular design, which brings in the superior gas separation performance of inorganic membranes together with the easy processability and price of the polymers. In a mixed matrix membrane, the inorganic phase is dispersed ...

  15. Transmission Electron Microscopy of Single Wall Carbon Nanotube/Polymer Nanocomposites: A First-Principles Study

    Science.gov (United States)

    Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.

    2012-01-01

    The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.

  16. High Efficiency Nano Concrete with Polymer Fiber in Thin Wall Shell Structures

    OpenAIRE

    Lūsis, V; Krasņikovs, A

    2014-01-01

    High Performance Concrete (HPC) with nano-additives and polymer fibers is a modern composite material; its properties can be adjusted by changing mix design, mixing and/or curing technologies. By reducing the construction dead weight, fewer raw materials are consumed and slender and elegant constructions with lower embodied energy become possible. At present in the whole world there might already be about 300 thousand dome buildings.

  17. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    OpenAIRE

    Wagener, Jeanette; Weindl, Günther; de Groot, Piet W. J.; de Boer, Albert D.; Kaesler, Susanne; Thavaraj, Selvam; Bader, Oliver; Mailänder-Sanchez, Daniela; Borelli, Claudia; Weig, Michael; Biedermann, Tilo; Naglik, Julian R.; Korting, Hans Christian; Schaller, Martin

    2012-01-01

    C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the ...

  18. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    OpenAIRE

    Vossen, J.H.; Müller, W. H.; Lipke, P N; Klis, F. M.

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structur...

  19. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

    OpenAIRE

    Nakano, Yoshimi; Yamaguchi, Masatoshi; Endo, Hitoshi; Rejab, Nur Ardiyana; Ohtani, Misato

    2015-01-01

    Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enz...

  20. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    DEFF Research Database (Denmark)

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3...

  1. Inkjet Printing of Back Electrodes for Inverted Polymer Solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sweelssen, Jorgen; Andriessen, Ronn;

    2013-01-01

    otherwise fast roll-to-roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/ Ag is investigated. Furthermore, the limitation of screen printing, the commonly...... employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm−2 AM1.5. Each ambient processing technique is...... comparable to devices with evaporated back electrodes. We further confi rm that inkjet printing represent an effi cient alternative to screen printing....

  2. Primary abdominal wall clear cell carcinoma arising from incisional endometriosis

    Institute of Scientific and Technical Information of China (English)

    Burcu Gundogdu; Isin Ureyen; Gunsu Kimyon; Hakan Turan; Nurettin Boran; Gokhan Tulunay; Dilek Bulbul; Taner Turan; M Faruk Kose

    2013-01-01

    A 49 year-old patient with the complaint of a mass located in the caesarean scar was admitted. There was a fixed mass 30í30 mm in diameter with regular contour located at the right corner of the pfannenstiel incision. Computed tomography revealed a (40í50í50) mm solid mass lesion with margins that cannot be distinguished from the uterus, bladder and small intestines and a heterogeneous mass lesion (50í45í55) mm in diameter, located in the right side of the anterior abdominal wall. Cytoreductive surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed. Final pathology was clear cell carcinoma. Clear cell carcinoma arising from an extraovarian endometriotic focus was diagnosed and the patient received 6 cycles paclitaxel-carboplatin chemotherapy as adjuvant treatment. The patient who was lost to follow-up applied to our clinic 2 years after surgery with a recurrent mass in the left inguinal region. After 3 cycles of chemotherapy, the patient's tumoral mass in the left inguinal region was excised. The result of the pathology was carcinoma metastasis. It is decided that the following treatment of the patient should be palliative radiation therapy. The patient who underwent palliative radiation therapy died of disease after 4 months of the second operation.

  3. Germ tube-specific antigens of Candida albicans cell walls

    International Nuclear Information System (INIS)

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with 125I, or metabolically with [35S] methionine or [3H] mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen

  4. FINITE ELEMENT ANALYSIS OF THE FATIGUE BEHAVIOR OF WOOD FIBER CELL WALLS

    Directory of Open Access Journals (Sweden)

    Phichit Somboon

    2008-11-01

    Full Text Available The fatigue behavior of the wood fiber cell wall under mechanical treatment in refining was simulated dynamically using a finite element method. The effect of the amplitude and frequency of impacts on the mechanical breakdown of the fiber wall structure was examined. The proposed model of the fiber cell wall was constructed from elementary microfibrils in various orientations embedded in isotropic lignin. The fatigue of the cell wall was simulated under normal refiner mechanical pulping conditions. A cyclic load was applied on the model fiber through a hemispherical grit proposed to be applied on the surface on refiner segments. Changes in the elastic modulus of the cell wall were analyzed to determine the potential for cell wall breakdown. An increase in the amplitude of applied forces and frequency of impacts was found to have a significant influence on the reduction of the elastic modulus of the wall structure. A high frequency of impacts increased the stiffness of the cell wall, but resulted in faster reduction of the elastic modulus. At a lower amplitude of impacts, efficient breakdown of the cell wall using grits was achieved with a high frequency of impacts or a high rotational speed of refiners.

  5. Polymer-fullerene bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Organic solar cells have the potential to be low-cost and efficient solar energy converters, with a promising energy balance. They are made of carbon-based semiconductors, which exhibit favourable light absorption and charge generation properties, and can be manufactured by low temperature processes such as printing from solvent-based inks, which are compatible with flexible plastic substrates or even paper. In this review, we will present an overview of the physical function of organic solar cells, their state-of-the-art performance and limitations, as well as novel concepts to achieve a better material stability and higher power conversion efficiencies. We will also briefly review processing and cost in view of the market potential.

  6. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    Science.gov (United States)

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments. PMID:20532796

  7. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  8. Use of chemical fractionation and proton nuclear magnetic resonance to probe the physical structure of the primary plant cell wall

    International Nuclear Information System (INIS)

    Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure

  9. Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Hansen, Mads A.T.; Ahl, Louise I.; Pedersen, Henriette L.;

    2014-01-01

    Fuels and chemicals derived through biochemical conversion of agricultural by-products such as wheat straw (Triticum aestivum L.) is an area currently under intense research. In this study, separate leaves and stems were hydrothermally pretreated and enzymatically hydrolysed and analysed chemical...... solubilisation and digestion of the polysaccharides during pretreatment and hydrolysis correlate well with previous models of the polysaccharides' structural organisation in the cell wall. © 2014 Elsevier B.V....... and by comprehensive microarray polymer profiling (CoMPP). This way, the effects of each degradation step to the intermolecular organisation of specific polysaccharides in the cell walls were elucidated. After pretreatment, the degree of polymerisation (DP) of released xylo-oligosaccharides in both...... pretreatment however, regardless their extractability in water or only alkali. Based on the results, AX and MLG appear to be loosely bound in the cell wall matrix while the other polysaccharides are bound more tightly and shielded from enzymatic attack by AX and MLG until pretreatment. The gradual...

  10. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    OpenAIRE

    Malvar, Rosa A.; Rogelio Santiago; Jaime Barros-Rios

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among t...

  11. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  12. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  13. Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells.

    Science.gov (United States)

    Jin, Gan; Chen, Zhaolai; Dong, Chunwei; Cheng, Zhongkai; Du, Xiaohang; Zeng, Qingsen; Liu, Fangyuan; Sun, Haizhu; Zhang, Hao; Yang, Bai

    2016-03-23

    A novel kind of hybrid solar cell (HSC) was developed by introducing water-soluble insulating polymer poly(vinyl alcohol) (PVA) into nanocrystals (NCs), which revealed that the most frequently used conjugated polymer could be replaced by an insulating one. It was realized by strategically taking advantage of the characteristic of decomposition for the polymer at annealing temperature, and it was interesting to discover that partial decomposition of PVA left behind plenty of pits on the surfaces of CdTe NC films, enlarging surface contact area between CdTe NCs and subsequently evaporated MoO3. Moreover, the residual annealed PVA filled in the voids among spherical CdTe NCs, which led to the decrease of leakage current. An improved shunt resistance (increased by ∼80%) was achieved, indicating the charge-carrier recombination was effectively overcome. As a result, the new HSCs were endowed with increased Voc, fill factor, and power conversion efficiency compared with the pure NC device. This approach can be applied to other insulating polymers (e.g., PVP) with advantages in synthesis, type, economy, stability, and so on, providing a novel universal cost-effective way to achieve higher photovoltaic performance. PMID:26931540

  14. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    Science.gov (United States)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  15. Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Teruo Okano

    2012-08-01

    Full Text Available In the past two decades, as a novel approach for tissue engineering, cell sheet engineering has been proposed by our laboratory. Poly(N-isopropylacrylamide (PIPAAm, which is a well-known temperature-responsive polymer, has been grafted on tissue culture polystyrene (TCPS surfaces through an electron beam irradiated polymerization. At 37 °C, where the PIPAAm modified surface is hydrophobic, cells can adhere, spread on the surface and grow to confluence. By decreasing temperature to 20 °C, since the surface turns to hydrophilic, cells can detach themselves from the surface spontaneously and form an intact cell sheet with extracellular matrix. For obtaining a temperature-induced cell attachment and detachment, it is necessary to immobilize an ultra thin PIPAAm layer on the TCPS surfaces. This review focuses on the characteristics of PIAPAm modified surfaces exhibiting these intelligent properties. In addition, PIPAAm modified surfaces giving a rapid cell-sheet recovery has been further developed on the basis of the characteristic of the PIPAAm surface. The designs of temperature-responsive polymer layer have provided an enormous potential to fabricate clinically applicable regenerative medicine.

  16. DNB test results for R grid thimble cold wall cells

    International Nuclear Information System (INIS)

    Two sets of type ''R'' mixing vane grid DNB data from a 4 x 4 rod bundle, where one of the central rods is a simulated control rod thimble, are presented. The range of parameters for this thimble cold wall data is given. The results show that the W-3 correlation with cold wall factor and the Modified Spacer Factor is applicable to ''R'' grid thimble cold wall rod bundle data. (7 references) (auth)

  17. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    -glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS...

  18. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  19. CONSTITUTIVE MELANIN IN THE CELL WALL OF THE ETIOLOGIC AGENT OF LOBO'S DISEASE

    Directory of Open Access Journals (Sweden)

    TABORDA Valeria B.A.

    1999-01-01

    Full Text Available Lobo's disease is a chronic granulomatous disease caused by the obligate pathogenic fungus, whose cell walls contain constitutive melanin. In contrast, melanin does not occur in the cell walls of Paracoccidioides brasiliensis when stained by the Fontana-Masson stain.

  20. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  1. Trans-Golgi Network-An Intersection of Trafficking Cell Wall Components

    Institute of Scientific and Technical Information of China (English)

    Natasha Worden; Eunsook Park; Georgia Drakakaki

    2012-01-01

    The cell wall,a crucial cell compartment,is composed of a network of polysaccharides and proteins,providing structural support and protection from external stimuli.While the cell wall structure and biosynthesis have been extensively studied,very little is known about the transport of polysaccharides and other components into the developing cell wall.This review focuses on endomembrane trafficking pathways involved in cell wall deposition.Cellulose synthase complexes are assembled in the Golgi,and are transported in vesicles to the plasma membrane.Non-cellulosic polysaccharides are synthesized in the Golgi apparatus,whereas cellulose is produced by enzyme complexes at the plasma membrane.Polvsaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however,the precise mechanisms involved in selection,sorting and delivery remain to be identified.The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate.However,the nature of these vesicles,their membrane compositions,and the timing of their delivery are largely unknown.Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.

  2. Structure of the cell wall of mango after application of ionizing radiation

    International Nuclear Information System (INIS)

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane. - Highlights: ► Mesocarp cells were analyzed by Transmission Electron Microscope—TEM. ► No change in cell wall structure, middle lamella and plasma membrane was found in fruits immediately after irradiation. ► Changes in cell wall structure, middle lamella and plasma membrane happened after storage. ► Fruits subjected to 0.5 kGy showed smaller cell wall change.

  3. Cold-start characteristics of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mishler, Jeff [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Wang, Yun [UNIV. CAL. RIVERSIDE; Mishler, Jeff [UNIV. CAL. RIVERSIDE; Mukherjee, Partha P [ORNL

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  4. Clinostation influence on regeneration of cell wall in Solanum Tuberosum L. protoplasts

    Science.gov (United States)

    Nedukha, Elena M.; Sidorov, V. A.; Samoylov, V. M.

    1994-08-01

    Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in an regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.

  5. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    Science.gov (United States)

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. PMID:26137889

  6. The three-dimensional structure of the cell wall glycoprotein of Chlorogonium elongatum.

    Science.gov (United States)

    Shaw, P J; Hills, G J

    1984-06-01

    The green alga Chlorogonium elongatum, a member of the Volvocales, possesses a crystalline cell wall composed of hydroxyproline-rich glycoprotein similar to the primary cell wall glycoproteins of higher plants. Electron microscopy and computer image processing have been used to determine the crystal structure of the Chlorogonium cell wall in three dimensions to a resolution of 2.0 nm. The structure is composed of heterologous dimers. Each subunit of the dimer comprises a long, thin spacer domain and a large globular domain, which is the site of the intra- and inter-dimer interactions. There are also sites of intersubunit interactions at the opposite ends of the rod domains. We suggest that the rods are composed predominantly of glycosylated polyproline helix, as has been suggested for higher plant cell wall glycoproteins and has been shown for the cell wall glycoprotein of Chlamydomonas reinhardtii, which is closely related to Chlorogonium. PMID:6490737

  7. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides

    DEFF Research Database (Denmark)

    Rajasundaram, Dhivyaa; Runavot, Jean-Luc; Guo, Xiaoyuan;

    2014-01-01

    A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like...... different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength...... probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further...

  8. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    OpenAIRE

    Jamet Elisabeth; Pont-Lezica Rafael; Borderies Gisèle; Canut Hervé; Irshad Muhammad

    2008-01-01

    Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after g...

  9. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  10. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    Science.gov (United States)

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  11. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria

    OpenAIRE

    Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J.

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During...

  12. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  13. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    Science.gov (United States)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  14. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  15. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes

    Science.gov (United States)

    Bhattacharyya, Sanjib; Salvetat, Jean-Paul; Saboungi, Marie-Louise

    2006-06-01

    We report on the enhancement of the mechanical properties of single wall carbon nanotube (SWNT)-polyvinyl alcohol (PVA) composites through functionalization of SWNTs with denatured collagen. In addition to improving compatibility with the matrix, the denatured collagen layer was found to increase the PVA matrix crystallinity, which results in a dramatic enhancement of the Young's modulus (260%), tensile strength (300%), and toughness (700%) well above what can be expected with the classical rule of mixture. A supramolecular organization at the interface is associated with an increase of PVA crystallinity as shown by the x-ray diffraction and differential scanning calorimetry.

  16. Industrialisation of polymer solar cells. Phase 2: Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Gevorgyan, S.; Frausig, J.; Andersen, Rasmus B.; Krebs, F.C.

    2013-03-15

    The key results from the project are: a firmly anchoring of DTU's basic polymer solar cell technology, ProcessOne, at Mekoprint, improved documented operational lifetime for polymer solar modules, and optimized processing of such modules. Mekoprint has worked determinedly to stabilize their production of ProcessOne devices, to prepare for full scale production and to build a marked for polymer solar cells. Work has been invested in improvement of process tolerances, documentation of the production process, training of process operators and roll-to-roll characterization of the produced solar cells. The planned and conducted actions have been summed up in a SIPOC diagram. Mekoprint's communication with potential customers reveals that lowering the cost, increasing the efficiency and operational life time is important for reaching the commercial market. Activities aimed at penetrating the market for lighting products in 3{sup rd} world countries are intensified. A new solar cell laser pointer is developed and a series of 2000 has been produced for the purpose of creating a commercial focus on polymer solar cells. DTU has established a characterization laboratory for organic photovoltaics (CLOP). The laboratory allows for real-time - and accelerated lifetime testing of solar cells both indoor and outdoor, and thus for the development of reliable methods for predicting life-time from accelerated testing. An operational lifetime of 2 years has, by means of the method, been documented for polymer solar modules encapsulated in a food-packaging barrier. Preliminary accelerated measurements on an equivalent device encapsulated in the same barrier, but in two layers, show a five times improvement of the solar cell stability. On basis of this it is considered that five years operational lifetime is within reach. DTU has improved of their OPV production technology by replacing the purchased vacuum-processed indium-tin-oxide (ITO) electrode by a roll-to-roll processed

  17. Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells

    International Nuclear Information System (INIS)

    In polymer solar cells based on the blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester, the hole collecting layer has to be endowed with its ionization potential close to or greater than that of P3HT (∼5 eV). Conductive polymer blends such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and metal oxides such as vanadium pentoxide (V2O5) and molybdenum trioxide (MoO3) satisfy this requirement and have been the most common materials used so far in bulk heterojunction structures. We report here cobalt sulfide (CoS) to be a promising hole collecting material deposited by convenient and room temperature electrodeposition. By simply tuning the CoS electrodeposition parameters, power conversion efficiencies similar (within 15%) to a reference structure with PEDOT:PSS were obtained

  18. Identification of the cell wall receptor for Candida nodaensis Killer toxin

    OpenAIRE

    Silva, Sónia Carina; Aguiar, Cristina; Veríssimo, P.; Pires, E.; Lucas, Cândida

    2004-01-01

    Comunicação efectuada no XIV Congresso Nacional de Bioquímica em Vilamoura (Portugal), 2004. The biological action of the K toxins involves a first step in the killing process, which correspond to the adsorption the toxin to the cell wall of sensitive cells. Here we describe the work performed towards the identification of the cell wall receptor for the zymocin under this study. For this purpose, the main cell wall components of the sensitive yeast Pichia guilliermondii were extracted. Th...

  19. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    Science.gov (United States)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  20. Effects of nanostructure geometry on polymer chain alignment and device performance in nanoimprinted polymer solar cell

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2013-03-01

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. This article demonstrates our recent studies on the nanostructure geometry effects on the nanoimprint induced poly(3 hexylthiophene-2,5-diyl) (P3HT) chain alignment and photovoltaic performance. Out-of-plane and in-plane grazing incident X-ray diffractions are employed to characterize the chain orientations in P3HT nanogratings with different widths and heights. It is found that nanoimprint procedure changes the initial edge-on alignment in non-imprinted P3HT thin film to a vertical orientation which favors the hole transport, with an organization height H≥ 170 nm and width in the range of 60 nmcells show an increase in power conversion efficiency (PCE) with the decrease of nanostructure width, and with the increase of height and junction area. Devices with the highest PCE are made by the fully aligned and highest P3HT nanostructures (width w= 60 nm, height h= 170 nm), allowing for the most efficient charge separation, transport and light absorption. We believe this work will contribute to the optimal geometry design of nanoimprinted polymer solar cells.