WorldWideScience

Sample records for cell wall mutants

  1. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  2. Classification and identification of arabidopsis cell wall mutants using fourier transfrom infrared (FT-IR) microspectroscopy

    OpenAIRE

    Mouille, Grégory; Lecomte, Mannaïg; Pagant, Sylvère; Höfte, Hermanus

    2003-01-01

    We have developed a novel procedure for the rapid classification and identification of Arabidopsis mutants with altered cell wall architecture based on Fourier-Transform infrared (FT-IR) micro-spectroscopy. FT-IR transmission spectra were sampled from native 4 day-old dark-grown hypocotyls of 46 mutants and wild type treated with various drugs. The Mahalanobis distance between mutants, calculated from the spectral information after compression with the Discriminant Variables Selection procedu...

  3. [Composition of cell walls of 2 mutant strains of Streptomyces chrysomallus].

    Science.gov (United States)

    Zaretskaia, M Sh; Nefelova, M V; Baratova, L A; Polin, A N

    1984-12-01

    The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.

  4. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  5. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  6. Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis.

    OpenAIRE

    Cheung, H. Y.; Freese, E

    1985-01-01

    A lyt-15 mutant reported to be unable to turn over the cell wall exhibited the same rate of wall turnover as the standard strain if the medium contained 0.2 M NaCl, which did not affect growth. Cell wall autolysis was also optimal at 0.2 M NaCl.

  7. Uniformity of Glycyl Bridge Lengths in the Mature Cell Walls of Fem Mutants of Methicillin-Resistant Staphylococcus aureus

    OpenAIRE

    Sharif, Shasad; Kim, Sung Joon; Labischinski, Harald; Chen, Jiawei; Schaefer, Jacob

    2013-01-01

    Peptidoglycan (PG) composition in intact cells of methicillin-resistant Staphylococcus aureus (MRSA) and its isogenic Fem mutants has been characterized by measuring the glycine content of PG bridge structures by solid-state nuclear magnetic resonance (NMR). The glycine content estimated from integrated intensities (rather than peak heights) in the cell walls of whole cells was increased by approximately 30% for the FemA mutant and was reduced by 25% for the FemB mutant relative to expected v...

  8. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  9. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  10. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants

    Directory of Open Access Journals (Sweden)

    Hiroshi eMaeda

    2014-02-01

    Full Text Available Tocopherols (vitamin E are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2 mutant of Arabidopsis thaliana is sensitive to low temperature (LT due to impaired transfer cell wall (TCW development and photoassimilate export, associated with massive callose deposition in transfer cells of the phloem. To further understand the role of tocopherols in LT induced TCW development we compared global transcript profiles of vte2 and wild type leaves during LT treatment. Tocopherol deficiency had no impact on global gene expression in permissive conditions, but affected expression of 77 genes after 48 hours of LT treatment. In vte2 relative to wild type, genes related with solute transport were repressed, while those involved in various pathogen responses and cell wall modifications, such as GLUCAN SYNTHASE LIKE genes (GSL4 and GSL11, were induced. However, introduction of gsl4 or gsl11 mutations into the vte2 background did not suppress callose deposition or the overall LT-induced phenotypes of vte2. Intriguingly, introduction of a mutation of GSL5, the major GSL responsible for pathogen-induced callose deposition, into vte2 substantially reduced vascular callose deposition at LT, but again had no effect on the photoassimilate export phenotype of LT-treated vte2. These results suggest that GSL5 plays a major role in TCW callose deposition in LT-treated vte2 but that this GSL5-dependent callose deposition is not the primary cause of the impaired photoassimilate export phenotype.

  11. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Melissa [ORNL; Venkataraman, Sankar [ORNL; Doktycz, Mitchel John [ORNL; Nataro, James P [University of Maryland; Sullivan, Claretta J [ORNL; Morrell-Falvey, Jennifer L [ORNL; Allison, David P [ORNL

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  12. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  13. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  14. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    Science.gov (United States)

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  15. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum

    Science.gov (United States)

    To evaluate the effects that genetic background has on two sorghum brown midrib (bmr) mutants, plant phenolics, lignin biosynthetic enzymes and stem anatomy were evaluated in wild-type (WT), bmr-6, bmr-12 and double-mutants (bmr-6 and bmr-12) in near isogenic , RTx430 and Wheatland backgrounds. The...

  16. Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa

    Institute of Scientific and Technical Information of China (English)

    Kerry H. Caffall; Sivakumar Pattathil; Sarah E. Phillips; Michael G. Hahn; Debra Mohnen

    2009-01-01

    Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1(GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution com-parable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as dem-onstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mu-tant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.

  17. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Fabio Carrilho Galvão

    Full Text Available The putative eukaryotic translation initiation factor 5A (eIF5A is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1 and deoxyhypusine hydroxylase (Lia1 catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1 and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of m

  18. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  19. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants.

    Directory of Open Access Journals (Sweden)

    Md Kausar Alam

    Full Text Available Deletion or repression of Aspergillus nidulans ugmA (AnugmA, involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63 was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.

  20. Global Proteomic Profiling of the Secretome of Candida albicans ecm33 Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion.

    Science.gov (United States)

    Gil-Bona, Ana; Monteoliva, Lucía; Gil, Concha

    2015-10-01

    Candida albicans secretes numerous proteins related to cell wall remodeling, adhesion, nutrient acquisition and host interactions. Also, extracellular vesicles containing cytoplasmic proteins are secreted into the medium. The C. albicans ecm33/ecm33 mutant (RML2U) presents an altered cell wall and is avirulent. The proteomic analysis of proteins secreted by RML2U cells identified a total of 170 proteins: 114 and 154 of which correspond to the vesicle-free secretome and extracellular vesicles, respectively. Notably, 98 proteins were common to both samples, and the groups most represented were metabolic and cell wall-related proteins. The results of this study showed that RML2U had an altered pattern of proteins secreted by the classical secretion pathway as well as the formation of extracellular vesicles, including their size, quantity, and protein composition. Specifically, the secretion of aspartic protease 2 (Sap2) was compromised but not its intracellular expression, with bovine serum albumin (BSA) degradation by RML2U being altered when BSA was used as the sole nitrogen source. Furthermore, as recent research links the expression of Sap2 to the TOR (Target Of Rapamycin) signaling pathway, the sensitivity of RML2U to rapamycin (the inhibitor of TOR kinase) was tested and found to be enhanced, connecting Ecm33 with this pathway.

  1. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant reveal that fiber cell wall development is associated with sensitivity to stress.

    Science.gov (United States)

    Background: Cotton fiber maturity refers the degree of fiber cell wall development and is an important factor for determining commercial value of cotton. The molecular mechanism regulating the fiber cell wall development has not been well characterized. Microscopic image analysis of the cross-sect...

  2. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  3. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.

    Science.gov (United States)

    Käosaar, Sandra; Kahru, Anne; Mantecca, Paride; Kasemets, Kaja

    2016-09-01

    The widespread use of nanosilver in various antibacterial, antifungal, and antiviral products warrants the studies of the toxicity pathways of nanosilver-enabled materials toward microbes and viruses. We profiled the toxicity mechanisms of uncoated, casein-coated, and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) using Saccharomyces cerevisiae wild-type (wt) and its 9 single-gene deletion mutants defective in oxidative stress (OS) defense, cell wall/membrane integrity, and endocytosis. The 48-h growth inhibition assay in organic-rich growth medium and 24-h cell viability assay in deionized (DI) water were applied whereas AgNO3, H2O2, and SDS served as positive controls. Both coated AgNPs (primary size 8-12nm) were significantly more toxic than the uncoated (~85nm) AgNPs. All studied AgNPs were ~30 times more toxic if exposed to yeast cells in DI water than in the rich growth medium: the IC50 based on nominal concentration of AgNPs in the growth inhibition test ranged from 77 to 576mg Ag/L and in the cell viability test from 2.7 to 18.7mg Ag/L, respectively. Confocal microscopy showed that wt but not endocytosis mutant (end3Δ) internalized AgNPs. Comparison of toxicity patterns of wt and mutant strains defective in OS defense and membrane integrity revealed that the toxicity of the studied AgNPs to S. cerevisiae was not caused by the OS or cell wall/membrane permeabilization. PMID:27260961

  4. Glycosytransferases involved in arabinosylation of cell wall extensins

    DEFF Research Database (Denmark)

    Petersen, Bent L; Harholt, Jesper; Jørgensen, Bodil;

    2011-01-01

    Extensins are a group of ancient hydroxyproline rich cell wall glycoproteins that are found in some chlorophyte algae (such as Chlamydomonas), where they constitute the main wall building block, as well as in higher plant cell walls, where they constitute a relatively minor component of particular...... al (2007) Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra-1 and -2, which have a reduced content of arabinose in a polymer tightly associated with the cellulose residue. Plant Mol. Biol. 64:439-451 Gille et al (2009) Identification of plant cell wall mutants...... importance to wall assembly. The GlycosylTransferase family 77 (GT-family-77) rra1-2 (Egelund et al. 2007) and xeg113 (Gille et al. 2009) Arabidopsis, mutants have been suggested to be arabinosyltransferases involved in arabinosylation of extensins. We have now isolated extensins from these mutants and a new...

  5. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from......Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  6. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  7. Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier.

    Science.gov (United States)

    Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E

    2013-02-01

    Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.

  8. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  9. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    Science.gov (United States)

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.

  10. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    Science.gov (United States)

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis. PMID:27611066

  11. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    Science.gov (United States)

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  12. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  13. Cell wall proteomics of crops

    OpenAIRE

    Komatsu, Setsuko; Yanagawa, Yuki

    2013-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...

  14. Altered cell wall disassembly during ripening of Cnr tomato fruit : implications for cell wall adhesion and fruit softening

    NARCIS (Netherlands)

    Orfila, C.; Huisman, M.M.H.; Willats, W.G.T.; Alebeek, van G.J.W.M.; Schols, H.A.; Seymour, G.B.; Knox, J.P.

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic

  15. Immobilization of cells via activated cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Markt, M.; Kas, J.; Valentova, O.; Demnerova, K.; Vodrazka, Z.

    1986-10-01

    Cell walls of Saccharomyces cerevisiae and S. uvarum were activated by periodate oxidation of vicinal diol groups in cell wall polysaccharides. The aldehyde groups thus generated allow the yeast cells to be covalently bound to modified bead cellulose or macroporous glycidyl methacrylate supports, or to enzymes such as glucose oxidase and catalase. 6 references.

  16. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J.

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  17. Scattering properties of microalgae: the effect of cell size and cell wall

    Science.gov (United States)

    Svensen, Øyvind; Frette, Øyvind; Rune Erga, Svein

    2007-08-01

    The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

  18. Cell Wall Integrity Signaling in Saccharomyces cerevisiae

    OpenAIRE

    Levin, David E.

    2005-01-01

    The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...

  19. Back wall solar cell

    Science.gov (United States)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  20. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae.

    OpenAIRE

    López-Ribot, J L; Chaffin, W L

    1996-01-01

    Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicat...

  1. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  2. Accelerating forward genetics for cell wall deconstruction

    OpenAIRE

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduc...

  3. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  4. Unique aspects of the grass cell wall

    Science.gov (United States)

    Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...

  5. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  6. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  7. Alterations in auxin homeostasis suppress defects in cell wall function.

    Directory of Open Access Journals (Sweden)

    Blaire J Steinwand

    Full Text Available The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs, FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4. Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.

  8. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    Directory of Open Access Journals (Sweden)

    Yuzy Matsuo

    Full Text Available Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5. Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.

  9. Mutant p53 in cell adhesion and motility.

    Science.gov (United States)

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  10. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    OpenAIRE

    Vossen, J.H.; Müller, W. H.; Lipke, P N; Klis, F. M.

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structur...

  11. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    Science.gov (United States)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  12. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  13. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  14. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  15. Cell Wall Assembly in Saccharomyces cerevisiae

    OpenAIRE

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and it...

  16. How do plant cell walls extend?

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  17. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    . The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...

  18. The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall

    OpenAIRE

    Abhiram Maddi; Ci Fu; Free, Stephen J.

    2012-01-01

    The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall p...

  19. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  20. α-1,6-Mannosylation of N-Linked Oligosaccharide Present on Cell Wall Proteins Is Required for Their Incorporation into the Cell Wall in the Filamentous Fungus Neurospora crassa▿†

    OpenAIRE

    Maddi, Abhiram; Free, Stephen J.

    2010-01-01

    The enzyme α-1,6-mannosyltransferase (OCH-1) is required for the synthesis of galactomannans attached to the N-linked oligosaccharides of Neurospora crassa cell wall proteins. The Neurospora crassa och-1 mutant has a tight colonial phenotype and a defective cell wall. A carbohydrate analysis of the och-1 mutant cell wall revealed a 10-fold reduction in the levels of mannose and galactose and a total lack of 1,6-linked mannose residues. Analysis of the integral cell wall protein from wild-type...

  1. Cell wall composition of chlorococcal algae

    OpenAIRE

    Blumreisinger, Maria; Meindl, Doris; Loos, Eckhard

    1983-01-01

    The cell walls of representatives of the genera Chlorella, Monoraphidium, Ankistrodesmus and Scenedesmus contained 24–74% neutral sugars, 1–24% uronic acids, 2–16% protein and 0–15% glucosamine. Two types of cell walls could be discerned containing as main sugars either rhamnose and galactose or mannose and glucose with a lack of galactose.

  2. WallProtDB, a database resource for plant cell wall proteomics

    OpenAIRE

    San Clemente, Hélène; Jamet, Elisabeth

    2015-01-01

    Background During the last fifteen years, cell wall proteomics has become a major research field with the publication of more than 50 articles describing plant cell wall proteomes. The WallProtDB database has been designed as a tool to facilitate the inventory, the interpretation of cell wall proteomics data and the comparisons between cell wall proteomes. Results WallProtDB (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) presently contains 2170 proteins and ESTs identified experimentally i...

  3. Cell wall proteins: a new insight through proteomics

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translation...

  4. Induced mutants from dihaploid potatoes after pollen mother cell treatment.

    Science.gov (United States)

    Przewoźny, T; Schieder, O; Wenzel, G

    1980-05-01

    Microspore mother cells of dihaploid Solanum tuberosum plants were mutagenically treated during the stage of meiosis. Mutagenesis was performed either by irradiation with x- or γ-rays or by the application of nitrosomethylurethane or methylnitronitrosoguanidine. Then, by use of the anther culture technique, 913 functional plants and 442 untreated control plants were regenerated. From the exposed plants seven distinct mutants could be isolated, predominantly chlorophyll deficient lines, while from the controls no clear-cut mutants arose. One mutant turned out to be photomorphogenetic in addition to having a chlorophyll defect. In addition to the production of mutants the treatments significantly increased the frequency of multicellular structure formation from microspores.

  5. Accelerating forward genetics for cell wall deconstruction

    Directory of Open Access Journals (Sweden)

    Danielle eVidaurre

    2012-06-01

    Full Text Available One of the biggest challenges of cell wall biology is the elucidation of the genes involved the cell wall and their function due to the recalcitrance of the cell wall. Through traditional genetic approaches, many simple yet elegant screens have been able to identify components of the cell wall and their networks. Despite progress in the identification of several genes of the cell wall, there remain many unknown players whose function has yet to be determined. Exhausting the genetic toolbox by performing secondary screens on a genetically mutated background, chemical genetics using small molecules and improved cell wall imaging hold promise for new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in Arabidopsis and any model organism with a completed genome sequence. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology of Arabidopsis and other useful crops forward into the future.

  6. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  7. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    OpenAIRE

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell wa...

  8. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  9. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  10. REGULATION OF PLANT CELLS, CELL WALLS AND DEVELOPMENT BY MECHANICAL SIGNALS

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-08-22

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  11. Refractive index of plant cell walls

    Science.gov (United States)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  12. Homogenization of a viscoelastic model for plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2015-01-01

    The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin--Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding me...

  13. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    Science.gov (United States)

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production. PMID:18797865

  14. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  15. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  16. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Sørensen, Iben; Bernal Giraldo, Adriana Jimena;

    2007-01-01

    We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from...... analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant...

  17. Mutant alpha-synuclein and autophagy in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Kangyong Liu; Chunfeng Liu; Chuancheng Ren; Yaping Yang; Liwei Shen; Xuezhong Li; Fen Wang; Zhenghong Qin

    2011-01-01

    Several studies have demonstrated that overexpression of mutant α-synuclein in PC12 cells is related to occurrence of autophagy.The present study established mutant a-synuclein (A30P)-transfected PC12 cells and treated them with the autophagy inducer rapamycin and autophagy inhibitor wortmannin, respectively.Results demonstrated that mutant o-synuclein resulted in cell death via autophagy and involved α-synuclein accumulation, membrane lipid oxidation, and loss of plasma membrane integrity.Mutant α-synuclein (A30P) also mediated toxicity of1-methyl-4-phenylpyridinium ion.Moreover, rapamycin inhibited a-synuclein aggregation, while wortmannin promoted o-synuclein aggregation and cell death.To further determine the role of autophagy due to mutant a-synuclein, the present study measured expression of microtubule-associated protein light chain 3.Results revealed that wortmannin and 1-methyl-4-phenylpyridinium ion inhibited expression of microtubule-associated protein light chain 3,while rapamycin promoted its expression.These findings suggested that abnormal aggregation of a-synuclein induced autophagic programmed cell death in PC12 cells.

  18. Modes of deformation of walled cells.

    Science.gov (United States)

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  19. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  20. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  1. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  2. Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Magdalena Delcado-Cerezo; Paul Schulze-Lefert; Shauna Somerville; José Manuel Estevez; Staffan Persson; Antonio Molina; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Pawel Bednarek

    2012-01-01

    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi.The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens.Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2).Accordingly,we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina.To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance,we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P cucumerina.This analysis,together with metabolomic studies,demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi,such as the salicylic acid,jasmonic acid,ethylene,abscisic acid,and tryptophan-derived metabolites signaling,as these pathways were not impaired in agb1 and agg1 agg2 mutants.Notably,many mis-regulated genes in agb1 plants were related with cell wall functions,which was also the case in agg1 agg2 mutant.Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants,and that mutant walls had similar FTIR spectratypes,which differed from that of wild-type plants.The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

  3. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  4. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  5. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  6. Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Berry

    2016-03-01

    Full Text Available In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalacturonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogeneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  7. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  8. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  9. Microanalysis of Plant Cell Wall Polysaccharides

    NARCIS (Netherlands)

    Obel, N.; Erben, V.; Schwarz, T.; Kühnel, S.; Fodor, A.; Pauly, M.

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the s

  10. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    which apoptosis can be studied using the novel, temperature sensitive mutant, cdc77. The cdc77 cells are defective in a G1 process, and die show the characteristc signs of apoptosis: condensation of the chromatin, degradation of the inner nuclear membrane, dilation of the space between the nuclear...... membranes, condensation of the cytoplasm and degradation of DNA to 50kb fragmensts. It should be noted that in yeast, in contrast to higher eukaryotes, the nuclear membrane remain intact and the chromosomes remain uncondensed and invisible during mitosis. The cdc77 mutant exhibit a defect in initiation of...

  11. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  12. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    Science.gov (United States)

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.

  13. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  14. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  15. Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination.

    Science.gov (United States)

    Sechet, Julien; Frey, Anne; Effroy-Cuzzi, Delphine; Berger, Adeline; Perreau, François; Cueff, Gwendal; Charif, Delphine; Rajjou, Loïc; Mouille, Grégory; North, Helen M; Marion-Poll, Annie

    2016-03-01

    Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification. PMID:26826221

  16. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    OpenAIRE

    Amako, K; Umeda, A.; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that ...

  17. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis.

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T

    2016-03-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3(je5) mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  18. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Dai

    Full Text Available KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.

  19. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  20. Asc1 supports cell-wall integrity near bud sites by a Pkc1 independent mechanism.

    Directory of Open Access Journals (Sweden)

    Daniel Melamed

    Full Text Available BACKGROUND: The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially discovered as a receptor for activated protein C kinase (PKC that functions to maintain the active conformation of PKC and to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling pathway has never been reported. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we found that asc1-deletion mutant (asc1Delta presents some of the hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment. Microscopic analysis of asc1Delta cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions, and the dynamic of cells' survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic sensitivities of a double-knock out mutant (asc1Delta/pkc1Delta to cell-wall stress conditions, and high basal level of PKC signaling in asc1Delta. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall stress conditions. CONCLUSIONS/SIGNIFICANCE: Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts remotely from Pkc1p, to regulate the integrity of the cell-wall. We speculate that its role is exerted through translation regulation of bud-site related mRNAs during cells' growth.

  1. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. PMID:27269671

  2. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

  3. A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism.

    Science.gov (United States)

    Zeng, Fanyun; Gong, Xiaoyan; Hamid, Mahammad Imran; Fu, Yanping; Jiatao, Xie; Cheng, Jiasen; Li, Guoqing; Jiang, Daohong

    2012-05-01

    Coniothyrium minitans is an important biocontrol agent against Sclerotinia diseases. Previously, a conidiation-deficient mutant ZS-1T1000 was screened out from a T-DNA insertional library of C. minitans. CmBCK1, encoding MAP kinase kinase kinase and homologous to BCK1 of Saccharomyces cerevisiae, was disrupted by T-DNA insertion in this mutant. Targeted disruption of CmBCK1 led to the mutants undergoing autolysis and displaying hypersensitivity to the cell wall-degrading enzymes. The △CmBCK1 mutants lost the ability to produce pycnidia and conidia compared to the wild-type strain ZS-1. △CmBCK1 mutants could grow on the surface of sclerotia of Sclerotinia sclerotiorum but not form conidia, which resulted in much lower ability to reduce the viability of sclerotia of S. sclerotiorum. Furthermore, CmSlt2, a homolog of Slt2 encoding cell wall integrity-related MAP kinase and up-regulated by BCK1 in S. cerevisiae, was identified and targeted disrupted. The △CmSlt2 mutants had a similar phenotype to the △CmBCK1 mutants. The △CmSlt2 mutants also had autolytic aerial hyphae, hypersensitivity to cell wall-degrading enzymes, lack of conidiation and reduction of sclerotial mycoparasitism. Taken together, our results suggest that CmBCK1 and CmSlt2 are involved in conidiation and the hyperparasitic activities of C. minitans. PMID:22426009

  4. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  5. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...

  6. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  7. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei.

  8. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan.

    Science.gov (United States)

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-07-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

  9. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  10. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  11. Bio-based composites that mimic the plant cell wall

    OpenAIRE

    Li, Zhuo

    2009-01-01

    Nature creates high performance materials under modest conditions, i.e., neutral pH and ambient temperature and pressure. One of the most significant materials is the plant cell wall. The plant cell wall is a composite of oriented cellulose microfibrils reinforcing a lignin/hemicellulose matrix. In principle, the plant cell wall composite is designed much like a synthetic fiber-reinforced polymer composite. Unlike synthetic composites, the plant cell wall has an excellent combination of h...

  12. Ascertainment of the effect of differential growth rates of mutants on observed mutant frequencies in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    As it is not known to what extent differential growth rates of induced mutants lead to over- and under-representation of mutants in treated populations and thereby affect the determination of mutant frequencies, the mutation induction in X-irradiated L5178Y mouse lymphoma cells was determined via two methods. The first method involves the standard protocol which may suffer from the effect of differential growth rates, while the second method is based upon the fluctuation test in which the differential growth rates can be actually measured. It appeared that the standard protocol led to a mutant frequency that was similar to the mutant frequency determined in the fluctuation test. Therefore, the standard protocol appears to lead to only a minor under-estimation if any. Substantial heterogeneity in growth rates of induced mutants was observed, but the mutants with a selective advantage appear largely to compensate for the mutants that are lost because of selective disadvantage. It was calculated that the chance for isolating the same mutant twice from a treated population had been increased 2.2-fold because of the observed differential growth rates. (orig./AJ)

  13. Protein overexport in a Saccharomyces cerevisiae mutant is not due to facilitated release of cell-surface proteins.

    Science.gov (United States)

    Alexieva, K I; Venkov, P V

    2000-01-01

    Saccharomyces cerevisiae strain MW11 is a temperature-sensitive mutant which exports twenty times more proteins at 37 degrees C than parental or wild-type strains do. To understand the mechanism underlying the protein overexport in the mutant the possibility of an altered cell-wall structure leading to facilitated release of cell-surface proteins was studied. Data on calcofluor white and zymolyase sensitivities, resistance to killer 1 toxin and determination of exported acid phosphatase and invertase did not provide evidence for alterations in the cell-wall structure that could explain the protein overexport phenotype. The results were obtained in experiments when transcription of mutated gene was discontinued which permits the full expression of the protein overexport phenotype.

  14. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  15. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  16. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    OpenAIRE

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  17. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions

    OpenAIRE

    Daniela eBellincampi; Felice eCervone; Vincenzo eLionetti

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  18. Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Wenqi Yu

    Full Text Available A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX encoded red fluorescence (RF mCherry (mCh hybrids, namely mCh-cyto (no signal peptide and no sorting sequence, mCh-sec (with signal peptide, and mCh-cw (with signal peptide and cell wall sorting sequence. The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP can be distinguished: the +YSIRK motif SP(lip and the -YSIRK motif SP(sasF. mCh-hybrids supplied with the +YSIRK motif SP(lip were always expressed higher than those with -YSIRK motif SP(sasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1 and the other hand with -YSIRK motif (mCh-cw2. MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA, as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.

  19. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  20. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus [UC Berkeley; Hake, Sarah [USDA Albany

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  1. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of th

  2. Increased somatic cell mutant frequency in atomic bomb survivors

    International Nuclear Information System (INIS)

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10-6; range 0.8 - 14.4 x 10-6) was significantly higher than in controls (3.4 x 10-6; range 1.3 - 9.3 x 10-6), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  3. Identification of a Streptococcus salivarius Cell Wall Component Mediating Coaggregation with Veillonella alcalescens VI

    Science.gov (United States)

    Weerkamp, Anton H.; McBride, Barry C.

    1981-01-01

    Cell walls of Streptococcus salivarius HB aggregated Veillonella alcalescens V1, but cell walls of the mutant S. salivarius HB-V5 did not. We found no correlation between the presence of fimbriae on streptococcal walls and the ability to aggregate Veillonella strains. Treatment of the walls with lysozyme solubilized a fraction which possessed Veillonella-aggregating activity. Solubilized cell wall preparations of strain HB contained three major (glyco)proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and at least four antigens as determined by immunoelectrophoresis with antiserum prepared against strain HB walls. A specific antiserum, which was obtained by adsorption of anti-HB serum on strain HB-V5 cells, contained monospecific antibody that reacted with the solubilized strain HB wall preparation. Similar fractions prepared from strain HB-V5 cell walls did not possess aggregating activity and lacked one protein band (protein I) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and one antigen (antigen b) after immunoelectrophoresis. The same antigen was absent when lysozyme-solubilized wall preparations of strain HB were reacted with anti-HB-V5 serum. Crossed-immunoisoelectric focusing indicated that this specific (glyco)protein and this antigen were identical and had an isoelectric point of 4.60. Protein I and antigen b were specifically adsorbed when solubilized strain HB cell walls were incubated with V. alcalescens V1 but were not adsorbed by nonaggregating Veillonella parvula ATCC 10790 cells. Culture supernatants of strain HB contained V. alcalescens V1-aggregating activity. Antigen b was present in the culture supernatant, but was not found in cultures of strain HB-V5. A total of 18 S. salivarius isolates possessing the streptococcal group K antigen released aggregating activity and antigen b into the culture medium, but 11 strains which lacked the K-antigen did not. Images PMID:7251145

  4. Connexin mutant embryonic stem cells and human diseases

    Institute of Scientific and Technical Information of China (English)

    Kiyomasa; Nishii; Yosaburo; Shibata; Yasushi; Kobayashi

    2014-01-01

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin(Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells(ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  5. Binding of Single Walled Carbon Nanotube to WT and Mutant HIV-1 Proteases: Analysis of Flap Dynamics and Binding Mechanism

    OpenAIRE

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-01-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50VPR, V82APR and I84VPR) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-a...

  6. Cell wall integrity signaling and innate immunity in plants

    OpenAIRE

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  7. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia

    Directory of Open Access Journals (Sweden)

    Georgeault Sonia

    2009-08-01

    Full Text Available Abstract Background Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. Results We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2 showed point mutations (missense mutation, deletion or insertion in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost

  8. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  9. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from......In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  10. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  11. Selectively Structural Determination of Cellulose and Hemicellulose in Plant Cell Wall

    Science.gov (United States)

    Huang, Shih-Chun; Park, Yong; Cosgrove, Daniel; Maranas, Janna; Janna Maranas Team; Daniel Cosgrove Team

    2013-03-01

    Primary plant cell walls support the plant body, and regulate cell size, and plant growth. It contains several biopolymers that can be categorized into three groups: cellulose, hemicellulose and pectin. To determine the structure of plant cell wall, we use small angle neutron scattering in combination with selective deuteration and contrast matching method. We compare the structure between wild Arabidopsis thaliana and its xyloglucan-deficient mutant. Hemicellulose in both samples forms coil with similar radii of gyration, and weak scattering from the mutant suggests a limited amount of hemicellulose in the xyloglucan-deficient mutant. We observe good amount of hemicellulose coating on cellulose microfibrils only in wild Arabidopsis. The absence of coating in its xyloglucan-deficient mutation suggests the other polysaccharides do not have comparable interaction with cellulose. This highlights the importance of xyloglucan in plant cell wall. At larger scale, the average distance between cellulose fibril is found smaller than reported value, which directly reflects on their smaller matured plant size. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Center for LignoCellulose Structure and Formation

  12. Pectic substances from soybean cell walls distinguish themselves from other plant cell wall pectins

    NARCIS (Netherlands)

    Huisman, M.M.H.; Schols, H.A.; Voragen, A.G.J.

    2003-01-01

    The uncommon structural features of soybean cell wall pectic substances explain their resistance to degradation by enzymes generally used to degrade this kind of polymers, and indicates that a search for new enzymes is required to enable enzymatic modification of these polysaccharides

  13. Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Smith-Moritz Andreia M

    2011-08-01

    Full Text Available Abstract We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.

  14. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  15. Novel Antibacterial Targets and Compounds Revealed by a High-Throughput Cell Wall Reporter Assay

    OpenAIRE

    Nayar, Asha S.; Dougherty, Thomas J.; Ferguson, Keith E.; Granger, Brett A.; McWilliams, Lisa; Stacey, Clare; Leach, Lindsey J.; Narita, Shin-ichiro; Tokuda, Hajime; Miller, Alita A.; Brown, Dean G.; McLeod, Sarah M.

    2015-01-01

    A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. ...

  16. Modification of potato cell wall pectin by the introduction of rhamnogalacturonan lyase and β-galactosidase transgenes and their side effects

    NARCIS (Netherlands)

    Huang, Jie Hong; Kortstee, Anne; Dees, Dianka C.T.; Trindade, Luisa M.; Schols, Henk A.; Gruppen, Harry

    2016-01-01

    Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, β-Gal-14 hot buffer-soluble solids

  17. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  18. The cell wall-targeting antibiotic stimulon of Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Jacqueline Abranches

    Full Text Available Enterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW. With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E. faecalis OG1RF exposed to ampicillin, bacitracin, cephalotin or vancomycin was obtained via microarrays. Exposure to the β-lactams ampicillin and cephalotin resulted in the fewest transcriptional changes with 50 and 192 genes differentially expressed 60 min after treatment, respectively. On the other hand, treatment with bacitracin or vancomycin for 60 min affected the expression of, respectively, 377 and 297 genes. Despite the differences in the total number of genes affected, all antibiotics induced a very similar gene expression pattern with an overrepresentation of genes encoding hypothetical proteins, followed by genes encoding proteins associated with cell envelope metabolism as well as transport and binding proteins. In particular, all drug treatments, most notably bacitracin and vancomycin, resulted in an apparent metabolic downshift based on the repression of genes involved in translation, energy metabolism, transport and binding. Only 19 genes were up-regulated by all conditions at both the 30 and 60 min time points. Among those 19 genes, 4 genes encoding hypothetical proteins (EF0026, EF0797, EF1533 and EF3245 were inactivated and the respective mutant strains characterized in relation to antibiotic tolerance and virulence in the Galleria mellonella model. The phenotypes obtained for two of these mutants, ΔEF1533 and ΔEF3245, support further characterization of these genes as potential candidates for the development of novel preventive or therapeutic approaches.

  19. Characterisation of cell wall polysaccharides in bilberries and black currants

    OpenAIRE

    Hilz, H

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzymes most efficiently, the structure and composition of the cell walls had to be known. This thesis describes a detailed composition of the cell walls of bilberries and black currants. The obtained ...

  20. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Science.gov (United States)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  1. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    OpenAIRE

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also ...

  2. Cell wall degradation in the autolysis of filamentous fungi.

    Science.gov (United States)

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  3. Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Firtel, Max; Henderson, Grant; Sokolov, Igor

    2004-11-15

    The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large patches of the outer cell wall after appropriate chemical treatment, which typically leaves the bacteria alive. The surface exposed after this 'surgery' revealed {approx}26 nm thick twisted strands within the cell wall. The structure and location of the observed strands are consistent with the glycan backbone of peptidoglycan fibers that give strength to the cell wall. The structural organization of these fibers has not been observed previously.

  4. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A; Engle, Nancy L; Martin, Madhavi Z; Tschaplinski, Timothy J; Ding, Shi-You; Ragauskas, Arthur J; Dixon, Richard A

    2015-04-01

    Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  5. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  6. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  7. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen;

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 ...

  8. The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Elvira Román

    Full Text Available The cell wall integrity pathway (CWI plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the resultant mutants were characterised. We show here that Mkk2 mediates the phosphorylation of the Mkc1 MAPK in response to cell wall assembly interfering agents such as zymolyase or tunicamycin and also to oxidative stress. Remarkably, mkk2 and mkc1 mutants display related but distinguishable- cell wall associated phenotypes and differ in the pattern of MAPK phosphorylation under different stress conditions. mkk2 and mkc1 mutants display an altered expression of GSC1, CEK1 and CRH11 genes at different temperatures. Combined deletion of MKK2 with HST7 supports a cooperative role for the Cek1-mediated and CWI pathways in regulating cell wall architecture under vegetative growth. However, and in contrast to Mkc1, Mkk2 does not seem to play a role in the virulence of C. albicans in the mouse systemic model or the Galleria mellonella model of infection.

  9. Cellulose synthesis in two secondary cell wall processes in a single cell type

    OpenAIRE

    Mendu, Venugopal; Stork, Jozsef; Harris, Darby; DeBolt, Seth

    2011-01-01

    Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell's function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of...

  10. Thermal radiosensitization in radiation-sensitive mutant mouse leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshikazu (Hiroshima Univ. (Japan). School of Dentistry)

    1994-06-01

    This study investigated thermal, radiation, and combined thermal radiation sensitization of mouse leukemic cells, L5178Y, and radiation-sensitive mutant cells, LX830. Radiation sensitivity (D[sub 0]) values were 0.41 Gy for LX830 and 1.39 Gy for L5178Y, with the ratio of D[sub 0] values in LX830 to in L5178Y being 3.4. Thus, LX830 was more radiosensitive than L5178Y. LX830 showed no shouldered survival curves. Although sublethal damage (SLD) repair was seen to the almost same degree in both LX830 and L5178Y, potential lethal damage (PLD) repair was scarcely observed in LX830. Both cell lines were similar in thermal sensitivity (T[sub 0]). Eosine staining suggested that cell killing due to hyperthermia had occurred in the interphase in both LX830 and L5178Y. L5178Y showed thermal sensitivity low in the G1 phase and high in the S phase; on the contrary, LX830 showed it high in the G1 phase and low in the S phase. Thermal radiosensitization was similar in both cell lines, although there was a great difference in radiation sensitivity between the cell lines. The difference in radiation sensitivity (D[sub 0]) between L5178Y and LX830 became small when radiation was given at the time of the maximum thermal resistance. This seemed to contribute to a decrease in radiation sensitivity in LX830. It can be concluded that thermal radiosensitization depends on thermal sensitivity and that radiation sensitivity decreases in radiation-sensitive cells when exposed to irradiation at the time of thermal resistance. (N.K.).

  11. Measurement of streptococcal cell wall in tissues of rats resistant or susceptible to cell wall-induced chronic erosive arthritis.

    OpenAIRE

    Anderle, S K; Allen, J B; Wilder, R L; Eisenberg, R A; Cromartie, W J; Schwab, J. H.

    1985-01-01

    The quantity of streptococcal cell wall localized in the joints of rats of strains which are either susceptible (Sprague-Dawley, LEW/N, M520/N) or resistant (Buffalo, WKY/N, F344/N) to cell wall-induced chronic erosive arthritis was measured after intraperitoneal injection of group A streptococcal cell wall fragments. Susceptibility or resistance was not associated with a difference in the amount of cell wall localized in limbs or other tissues. It is concluded that although localization of c...

  12. Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells

    Science.gov (United States)

    Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish

    2014-01-01

    MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095

  13. Micropipette aspiration on the outer hair cell lateral wall.

    OpenAIRE

    Sit, P S; Spector, A A; Lue, A J; Popel, A S; Brownell, W.E.

    1997-01-01

    The mechanical properties of the lateral wall of the guinea pig cochlear outer hair cell were studied using the micropipette aspiration technique. A fire-polished micropipette with an inner diameter of approximately 4 microm was brought into contact with the lateral wall and negative pressure was applied. The resulting deformation of the lateral wall was recorded on videotape and subjected to morphometric analysis. The relation between the length of the aspirated portion of the cell and aspir...

  14. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  15. Structural properties of fibrillar proteins isolated from the cell surface and cytoplasm of Streptococcus salivarius (K+) cells and nonadhesive mutants.

    Science.gov (United States)

    Weerkamp, A H; van der Mei, H C; Liem, R S

    1986-01-01

    Most Streptococcus salivarius (K+) cells contain two protein antigens with different adhesive functions. The subcellular distribution and some structural properties of purified proteins were studied. Antigen B (AgB), a protein involved in interbacterial coaggregation with gram-negative bacteria, was present in the cell wall fraction only of the wild-type strain and was absent from the cells of a nonadhesive mutant. Antigen C (AgC), a glycoprotein involved in host-associated adhesive functions, was predominantly associated with the cell wall of the wild-type strain (AgCw), but accumulated in high amounts in the cytoplasmic fraction (AgCin) of mutants lacking the wall-associated form. AgB, AgCw, and AgCin had molecular weights of 380,000, 250,000 to 320,000, and 488,000, respectively, upon gel electrophoresis under nondenaturing conditions. In the presence of sodium dodecyl sulfate and beta-mercaptoethanol the molecular weights were only slightly lower, suggesting that the free, isolated molecules exist as monomers under native conditions. AgCin readily stained with periodate-Schiff reagent, indicating a significant content of carbohydrate, similar to AgCw. Circular dichroism spectra showed that about 45% of the amino acids of AgCw were involved in alpha-helical coiled structures. AgB had a significantly lower proportion of ordered coiled structure. Electron microscopic observations of low-angle-shadowed preparations of purified antigens showed that they were flexible, thin rods with thickened or globular ends. Measurements corrected for shadow thickness showed lengths of 184 nm (AgB), 112 nm (AgCin), and 87 nm (AgCw). Treatment of AgCw with protease destroyed the fibrillar core, but seemed not to affect the globular ends. Comparison of the results with the localization of the antigens in wild-type and specific mutant strains suggested that each antigen molecule may represent a single, characteristic surface fibril with a specific adhesive capacity. Images PMID

  16. Assembly and enlargement of the primary cell wall in plants

    Science.gov (United States)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  17. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  18. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  19. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  20. Selective Antitumor Activity of Ibrutinib in EGFR-Mutant Non–Small Cell Lung Cancer Cells

    OpenAIRE

    Gao, Wen; Wang, Michael; Wang, Li; Lu, Haibo; Wu, Shuhong; Dai, Bingbing; Ou, Zhishuo; Zhang, Liang; Heymach, John V.; Gold, Kathryn A.; Minna, John ,; Roth, Jack A.; Hofstetter, Wayne L.; Swisher, Stephen G.; Fang, Bingliang

    2014-01-01

    Ibrutinib, which irreversibly inhibits Bruton tyrosine kinase, was evaluated for antitumor activity in a panel of non–small cell lung cancer (NSCLC) cell lines and found to selectively inhibit growth of NSCLC cells carrying mutations in the epidermal growth factor receptor (EGFR) gene, including T790M mutant and erlotinib-resistant H1975 cells. Ibrutinib induced dose-dependent inhibition of phosphor-EGFR at both Y1068 and Y1173 sites, suggesting ibrutinib functions as an EGFR inhibitor. Survi...

  1. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho;

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... found in the solubility and composition of the pectic polysaccharides extracted from the CWM at both stages of development. In comparison with the wild type, the ripening-associated solubilisation of homogalacturonan-rich pectic polysaccharides was reduced in Cnr. The proportion of carbohydrate...

  2. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  3. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  4. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  5. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  6. On-off switches for secondary cell wall biosynthesis.

    Science.gov (United States)

    Wang, Huan-Zhong; Dixon, Richard A

    2012-03-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production. PMID:22138968

  7. Allele specific gain-of-function activity of p53 mutants in lung cancer cells

    OpenAIRE

    Vaughan, Catherine A.; Frum, Rebecca; Pearsall, Isabella; Singh, Shilpa; Windle, Brad; Yeudall, Andrew; Deb, Swati P.; Deb, Sumitra

    2012-01-01

    p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with “gain of function” (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437 carrying endogenous mutants p53–P278S and –R267P, both sh...

  8. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    Science.gov (United States)

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  9. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction

    Science.gov (United States)

    Pérez-García, Luis A.; Csonka, Katalin; Flores-Carreón, Arturo; Estrada-Mata, Eine; Mellado-Mojica, Erika; Németh, Tibor; López-Ramírez, Luz A.; Toth, Renata; López, Mercedes G.; Vizler, Csaba; Marton, Annamaria; Tóth, Adél; Nosanchuk, Joshua D.; Gácser, Attila; Mora-Montes, Héctor M.

    2016-01-01

    Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans. PMID:27014229

  10. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  11. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Science.gov (United States)

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  12. 2009 Plant Cell Walls Gordon Research Conference-August 2-7,2009

    Energy Technology Data Exchange (ETDEWEB)

    Debra Mohnen

    2009-08-07

    Plant cell walls are a complex cellular compartment essential for plant growth, development and response to biotic and abiotic stress and a major biological resource for meeting our future bioenergy and natural product needs. The goal of the 2009 Plant Cell Walls Gordon Research Conference is to summarize and critically evaluate the current level of understanding of the structure, synthesis and function of the whole plant extracellular matrix, including the polysaccharides, proteins, lignin and waxes that comprise the wall, and the enzymes and regulatory proteins that drive wall synthesis and modification. Innovative techniques to study how both primary and secondary wall polymers are formed and modified throughout plant growth will be emphasized, including rapid advances taking place in the use of anti-wall antibodies and carbohydrate binding proteins, comparative and evolutionary wall genomics, and the use of mutants and natural variants to understand and identify wall structure-function relationships. Discussions of essential research advances needed to push the field forward toward a systems biology approach will be highlighted. The meeting will include a commemorative lecture in honor of the career and accomplishments of the late Emeritus Professor Bruce A. Stone, a pioneer in wall research who contributed over 40 years of outstanding studies on plant cell wall structure, function, synthesis and remodeling including emphasis on plant cell wall beta-glucans and arabinogalactans. The dwindling supply of fossil fuels will not suffice to meet our future energy and industrial product needs. Plant biomass is the renewable resource that will fill a large part of the void left by vanishing fossil fuels. It is therefore critical that basic research scientists interact closely with industrial researchers to critically evaluate the current state of knowledge regarding how plant biomass, which is largely plant cell walls, is synthesized and utilized by the plant. A final

  13. Agronomic traits and RAPD analysis of two mutants derived from rice somatic cell culturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic variation, including agronomic trait variation, often occurs in somatic cell culturing. In this study, we compared the main agronomic traits of two rice mutants, M3 and M14, which were derived from Shenxiangjing 5 somatic cell culturing. Significant differences were found between the two mutants and the wild rice Shenxiangjing 5 (Table 1). Results were as follows:

  14. TAE226, a Bis-Anilino Pyrimidine Compound, Inhibits the EGFR-Mutant Kinase Including T790M Mutant to Show Anti-Tumor Effect on EGFR-Mutant Non-Small Cell Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hiroki Otani

    Full Text Available TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK and insulin-like growth factor-I receptor (IGF-IR. In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC, especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750 mutant, and the reduced affinity of ATP to the L858R (or delE746_A750 mutant resulted in good responsiveness of the L858R (or delE746_A750 mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.

  15. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis.

    Science.gov (United States)

    Park, Joohae; Hulsman, Mark; Arentshorst, Mark; Breeman, Matthijs; Alazi, Ebru; Lagendijk, Ellen L; Rocha, Marina C; Malavazi, Iran; Nitsche, Benjamin M; van den Hondel, Cees A M J J; Meyer, Vera; Ram, Arthur F J

    2016-09-01

    The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis. PMID:27264789

  16. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

    Science.gov (United States)

    De Souza, Amanda P; Alvim Kamei, Claire L; Torres, Andres F; Pattathil, Sivakumar; Hahn, Michael G; Trindade, Luisa M; Buckeridge, Marcos S

    2015-07-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  17. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  18. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola;

    2011-01-01

    type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes......Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated...

  19. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  20. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  1. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    Science.gov (United States)

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  2. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    Science.gov (United States)

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  3. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  4. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest...... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...... in horsetails (Equisetales order) was therefore significant and has prompted a re-evaluation of some of the current views on cell wall evolution and structural diversity. Addendum to: Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, Willats WGT. Mixed-linkage (1¿3),(1¿4)-ß...

  5. Ibrutinib selectively and irreversibly targets EGFR (L858R, Del19) mutant but is moderately resistant to EGFR (T790M) mutant NSCLC Cells

    OpenAIRE

    Wu, Hong; Wang, Aoli; Zhang, Wei; Wang, Beilei; Chen, Cheng; Wang, Wenchao; Hu, Chen; Ye, Zi; Zhao, Zheng; Wang, Li; Li, Xixiang; Yu, Kailin; Liu, Juan; Wu, Jiaxin; Yan, Xiao-E

    2015-01-01

    Through comprehensive comparison study, we found that ibrutinib, a clinically approved covalent BTK kinase inhibitor, was highly active against EGFR (L858R, del19) mutant driven NSCLC cells, but moderately active to the T790M ‘gatekeeper’ mutant cells and not active to wild-type EGFR NSCLC cells. Ibrutinib strongly affected EGFR mediated signaling pathways and induced apoptosis and cell cycle arrest (G0/G1) in mutant EGFR but not wt EGFR cells. However, ibrutinib only slowed down tumor progre...

  6. Substitution of L-fucose by L-galactose in cell walls of arabidopsis mur1

    Energy Technology Data Exchange (ETDEWEB)

    Zablackis, E.; York, W.S.; Pauly, M. [Univ. of Georgia, Athens (United States)

    1996-06-21

    An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1 plants challenged the hypothesis that fucose is a required component of biologically active oligosaccharides derived from cell wall xyloglucan. However, the replacement of L-fucose (that is, 6-deoxyl-L-galactose) by L-galactose does not detectably alter the biological activity of the oligosaccharides derived from xyloglucan. Thus, essential structural and conformational features of xyloglucan and xyloglucan-derived oligosaccharides are retained when L-galactose replaces L-fucose. 29 refs., 2 figs., 2 tabs.

  7. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.;

    2006-01-01

    and fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...... in habituated cells also diminished with the increasing number of subcultures. Habituated cells also liberated less extensin into the medium. In habituated cells, a decrease in the cell wall arabinogalactan protein (AGP) labelling was observed both in cell walls and in the culture medium. The increase...... in the number of subcultures in 0.3 µM dichlobenil was accompanied by an increment in some pectic epitopes (JIM5 and LM5) and a decrease in other pectic and in protein epitopes (JIM7, PAM1, LM6, LM2 and MAC207), indicating a re-structuring of cell walls throughout the habituation procedure. Dehabituated cells...

  8. Large-scale co-expression approach to dissect secondary cell wall formation across plant species

    Directory of Open Access Journals (Sweden)

    Colin eRuprecht

    2011-07-01

    Full Text Available Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAs in Arabidopsis, barley, rice, poplar, soybean, Medicago and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis (PCA and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.

  9. Analyzing the complex machinery of cell wall biosynthesis

    OpenAIRE

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a highly interesting target of scientific research. In this thesis a protein-protein interaction strategy was used to gain insight in the cell wall biosynthesis of Arabidopsis thaliana and to identif...

  10. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  11. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    Directory of Open Access Journals (Sweden)

    Sho W Suzuki

    Full Text Available Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA. We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  12. Interspecific complementation between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation

    International Nuclear Information System (INIS)

    Interspecific and intraspecific hybrids were formed between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation and their radiosensitivities were examined. Chinese hamster cell mutants irs1, irs2 and irs3 and mouse mammary carcinoma cell mutants SX9 and SX10 have been found to belong to five different complementation groups. A radiosensitive mouse lymphoma cell line L5178Y-S has been demonstrated to be different from the X-ray sensitive mouse cell mutants M10 and LX830, both of which are derived from L5178Y cells, in their complementation groups. L5178Y-S is also distinct from SX9 and SX10. (author)

  13. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    OpenAIRE

    Qiuqiang Gao; Liang-Chun Liou; Qun Ren; Xiaoming Bao; Zhaojie Zhang

    2015-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 c...

  14. Involvement of a cell wall receptor in the mode of action of an anti-Candida toxin of Pichia anomala.

    OpenAIRE

    Sawant, A D; Ahearn, D G

    1990-01-01

    Hanes-Woolf, Dixon, and Hill plots of growth rates of Candida albicans RC1 grown in various concentrations of glucose and a Pichia anomala WC65 toxin suggested the presence of toxin-binding sites. Indirect immunofluorescence microscopy with antitoxin antibodies demonstrated binding of the toxin to the cell wall. Resistance to the toxin of a mutant Saccharomyces cerevisiae deficient in cell wall beta-1-6-D-glucan suggests that the glucan either served as the receptor or influenced the number o...

  15. Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus.

    Science.gov (United States)

    Liu, Xiao-Hong; Ning, Guo-Ao; Huang, Lu-Yao; Zhao, Ya-Hui; Dong, Bo; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-01-01

    Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley. PMID:27502542

  16. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    Science.gov (United States)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  17. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  18. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  19. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance

    OpenAIRE

    Couto Isabel; Ramos Jorge; Rodrigues Liliana; Amaral Leonard; Viveiros Miguel

    2011-01-01

    Abstract Background Active efflux systems and reduced cell-wall permeability are considered to be the main causes of mycobacterial intrinsic resistance to many antimicrobials. In this study, we have compared the Mycobacterium smegmatis wild-type strain mc2155 with knockout mutants for porins MspA (the main porin of M. smegmatis) and MspC, the efflux pump LfrA (the main efflux pump system of M. smegmatis) and its repressor LfrR for their ability to transport ethidium bromide (EtBr) on a real-t...

  20. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    OpenAIRE

    Mistou, Michel-Yves; Sutcliffe, Iain; van Sorge, Nina

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall te...

  1. A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli.

    Science.gov (United States)

    Olrichs, Nick K; Aarsman, Mirjam E G; Verheul, Jolanda; Arnusch, Christopher J; Martin, Nathaniel I; Hervé, Mireille; Vollmer, Waldemar; de Kruijff, Ben; Breukink, Eefjan; den Blaauwen, Tanneke

    2011-05-01

    Peptidoglycan synthesis and turnover in relation to cell growth and division has been studied by using a new labeling method. This method involves the incorporation of fluorescently labeled peptidoglycan precursors into the cell wall by means of the cell-wall recycling pathway. We show that Escherichia coli is able to import exogenous added murein tripeptide labeled with N-7-nitro-2,1,3-benzoxadiazol-4-yl (AeK-NBD) into the cytoplasm where it enters the peptidoglycan biosynthesis route, resulting in fluorescent labels specifically located in the cell wall. When wild-type cells were grown in the presence of the fluorescent peptide, peptidoglycan was uniformly labeled in cells undergoing elongation. Cells in the process of division displayed a lack of labeled peptidoglycan at mid-cell. Analysis of labeling patterns in cell division mutants showed that the occurrence of unlabeled peptidoglycan is dependent on the presence of FtsZ, but independent of FtsQ and FtsI. Accumulation of fluorescence at the division sites of a triple amidase mutant (ΔamiABC) revealed that AeK-NBD is incorporated into septal peptidoglycan. AmiC was shown to be involved in the rapid removal of labeled peptidoglycan side chains at division sites in wild-type cells. Because septal localization of AmiC is dependent on FtsQ and FtsI, this points to the presence of another peptidoglycan hydrolase activity directly dependent on FtsZ. PMID:21472954

  2. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  3. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  4. Determining the polysaccharide composition of plant cell walls.

    Science.gov (United States)

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis. PMID:22864200

  5. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  6. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    Science.gov (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  7. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  8. Mutant p53 and mTOR/PKM2 regulation in cancer cells.

    Science.gov (United States)

    Dando, Ilaria; Cordani, Marco; Donadelli, Massimo

    2016-09-01

    Mutations of TP53 gene are the most common feature in aggressive malignant cells. In addition to the loss of the tumor suppressive role of wild-type p53, hotspot mutant p53 isoforms display oncogenic proprieties notoriously referred as gain of functions (GOFs) which result in chemoresistance to therapies, genomic instability, aberrant deregulation of cell cycle progression, invasiveness and enhanced metastatic potential, and finally, in patient poor survival rate. The identification of novel functional oncogenic pathways regulated by mutant p53 represent and intriguing topic for emerging therapies against a broad spectrum of cancer types bearing mutant TP53 gene. Mammalian target of rapamycin (mTOR), as well as pyruvate kinase isoform M2 (PKM2) are master regulators of cancer growth, metabolism, and cell proliferation. Herein, we report that GOF mutant R175H and R273H p53 proteins trigger PKM2 phosphorylation on Tyr 105 through the involvement of mTOR signaling. Our data, together with the newly discovered connection between mutant p53 and mTOR stimulation, raise important implications for the potential therapeutic use of synthetic drugs inhibiting mTOR/PKM2 axis in cancer cells bearing mutant TP53 gene. We further hypothesize that mTOR/PKM2 pathway stimulation serves to sustain the oncogenic activity of mutant p53 through both the enhancement of chemoresistance and of aerobic glycolysis of cancer cells. © 2016 IUBMB Life, 68(9):722-726, 2016.

  9. Mutant p53 and mTOR/PKM2 regulation in cancer cells.

    Science.gov (United States)

    Dando, Ilaria; Cordani, Marco; Donadelli, Massimo

    2016-09-01

    Mutations of TP53 gene are the most common feature in aggressive malignant cells. In addition to the loss of the tumor suppressive role of wild-type p53, hotspot mutant p53 isoforms display oncogenic proprieties notoriously referred as gain of functions (GOFs) which result in chemoresistance to therapies, genomic instability, aberrant deregulation of cell cycle progression, invasiveness and enhanced metastatic potential, and finally, in patient poor survival rate. The identification of novel functional oncogenic pathways regulated by mutant p53 represent and intriguing topic for emerging therapies against a broad spectrum of cancer types bearing mutant TP53 gene. Mammalian target of rapamycin (mTOR), as well as pyruvate kinase isoform M2 (PKM2) are master regulators of cancer growth, metabolism, and cell proliferation. Herein, we report that GOF mutant R175H and R273H p53 proteins trigger PKM2 phosphorylation on Tyr 105 through the involvement of mTOR signaling. Our data, together with the newly discovered connection between mutant p53 and mTOR stimulation, raise important implications for the potential therapeutic use of synthetic drugs inhibiting mTOR/PKM2 axis in cancer cells bearing mutant TP53 gene. We further hypothesize that mTOR/PKM2 pathway stimulation serves to sustain the oncogenic activity of mutant p53 through both the enhancement of chemoresistance and of aerobic glycolysis of cancer cells. © 2016 IUBMB Life, 68(9):722-726, 2016. PMID:27385486

  10. GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

    Science.gov (United States)

    Jiang, Hechun; Ouyang, Haomiao; Zhou, Hui; Jin, Cheng

    2008-09-01

    GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Afsrb1, which is a homologue of yeast SRB1/PSA1/VIG9, was identified in the Aspergillus fumigatus genome. The Afsrb1 gene was expressed in Escherichia coli, and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Afsrb1 promoter with an inducible Aspergillus nidulans alcA promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P(alcA)-Afsrb1, and was lethal to strain YJ-gmpp. Repression of Afsrb1 expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Afsrb1 gene is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

  11. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Wang, Sheng-Bing; Hu, Qiang; Sommerfeld, Milton; Chen, Feng

    2004-03-01

    The green microalga Haematococcus pluvialis can synthesize and accumulate large amounts of the ketocarotenoid astaxanthin, and undergo profound changes in cell wall composition and architecture during the cell cycle and in response to environmental stresses. In this study, cell wall proteins (CWPs) of H. pluvialis were systematically analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) coupled with peptide mass fingerprinting (PMF) and sequence-database analysis. In total, 163 protein bands were analyzed, which resulted in positive identification of 81 protein orthologues. The highly complex and dynamic composition of CWPs is manifested by the fact that the majority of identified CWPs are differentially expressed at specific stages of the cell cycle along with a number of common wall-associated 'housekeeping' proteins. The detection of cellulose synthase orthologue in the vegetative cells suggested that the biosynthesis of cellulose occurred during primary wall formation, in contrast to earlier observations that cellulose was exclusively present in the secondary wall of the organism. A transient accumulation of a putative cytokinin oxidase at the early stage of encystment pointed to a possible role in cytokinin degradation while facilitating secondary wall formation and/or assisting in cell expansion. This work represents the first attempt to use a proteomic approach to investigate CWPs of microalgae. The reference protein map constructed and the specific protein markers obtained from this study provide a framework for future characterization of the expression and physiological functions of the proteins involved in the biogenesis and modifications in the cell wall of Haematococcus and related organisms. PMID:14997492

  12. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  13. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.

    Science.gov (United States)

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-09-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50V(PR), V82A(PR) and I84V(PR)) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3-5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620

  14. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    Science.gov (United States)

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA. PMID:22898792

  15. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    Science.gov (United States)

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  16. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  17. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  18. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...

  19. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  20. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  1. Reducing the Level of Undecaprenyl Pyrophosphate Synthase Has Complex Effects on Susceptibility to Cell Wall Antibiotics.

    Science.gov (United States)

    Lee, Yong Heon; Helmann, John D

    2013-06-24

    Undecaprenyl pyrophosphate synthase (UppS) catalyzes the formation of the C55 lipid carrier (UPP) that is essential for bacterial peptidoglycan biosynthesis. Here we selected a vancomycin (VAN)-resistant derivative of Bacillus subtilis W168 which contains a single-point mutation in the ribosome-binding site (RBS) of the uppS gene designated uppS1. Genetic reconstruction experiments demonstrate that the uppS1 allele is sufficient to confer low-level VAN resistance and causes reduced UppS translation. The decreased level of UppS renders B. subtilis slightly more susceptible to many late-acting cell wall antibiotics including β-lactams, but significantly more resistant to fosfomycin and D-cycloserine, antibiotics that interfere with the very early steps of cell wall synthesis. We further show that the uppS1 allele leads to slightly elevated expression of the σ(M) regulon, possibly helping to compensate for the stress caused by a decrease in UPP levels. Notably, the uppS1 mutation increases resistance to VAN, fosfomycin, and D-cycloserine in wild-type cells, but this effect is greatly reduced or eliminated in a sigM mutant background. Our findings suggest that, although UppS is an attractive antibacterial target, incomplete inhibition of UppS function may lead to increased resistance to some cell wall-active antibiotics. PMID:23796923

  2. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, W.M.; Bartnicki-Garcia, S. (eds.)

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  3. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells.

    Science.gov (United States)

    Bauer, W D; Talmadge, K W; Keegstra, K; Albersheim, P

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed "amyloid" xyloglucans.Xyloglucan-or fragments of xyloglucan-and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall.The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of beta-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues.

  4. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  5. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan

    OpenAIRE

    Muchová, Katarína; Wilkinson, Anthony J.; Barák, Imrich

    2011-01-01

    The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consist...

  6. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  7. Whirler Mutant Hair Cells Have Less Severe Pathology than Shaker 2 or Double Mutants

    OpenAIRE

    Mustapha, Mirna; Lisa A. Beyer; Izumikawa, Masahiko; Swiderski, Donald L.; Dolan, David F.; Raphael, Yehoash; Camper, Sally A.

    2007-01-01

    MYOSIN XV is a motor protein that interacts with the PDZ domain-containing protein WHIRLIN and transports WHIRLIN to the tips of the stereocilia. Shaker 2 (sh2) mice have a mutation in the motor domain of MYOSIN XV and exhibit congenital deafness and circling behavior, probably because of abnormally short stereocilia. Whirler (wi) mice have a similar phenotype caused by a deletion in the third PDZ domain of WHIRLIN. We compared the morphology of Whrnwi/wi and Myo15sh2/sh2 sensory hair cells a...

  8. Synthesis and Application of Plant Cell Wall Oligogalactans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch

    The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research. Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate...... chemical building blocks for industrial processes. To achieve a sustainable development it is necessary to optimize plant production and utilization. This will require a better understanding of the cell wall structure and function at the molecular level. The cell wall is composed by an intricate network...... of the arabinogalactans series. The fragments were applied in the characterization of a glycosyl transferase, a hydrolase and to study the important cancer biomarker galectin-3. The work done during an external stay at University of Oxford is also presented. This concerns isolation and modification...

  9. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  10. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  11. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  12. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined...... by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  13. Histochemical effects of γ radiation on soft fruit cell walls

    International Nuclear Information System (INIS)

    Irradiation effects in peaches, tomatoes, cherries and grapes on the composition of cell wall polysaccharides were investigated by histochemical techniques. Cell wall polysaccharides, separated by a modified Jensen's method were pectins, hemicellulose, non-cellulosic polysaccharides and cellulose. The extinction values of Periodic Acid Schiff stained tissues was measured by microscopical photometry. Irradiation induced highly significant changes in polysaccharide composition of mesocarp cell walls; these changes were found to be a function of time of irradiation after harvest and of the species tested. A general influence on polysaccharide molecules was not found. Variations produced by irradiation are postulated to be an interference with a regulatory system rather than a breakdown of a functional molecule (metabolic enzyme or polysaccharide. (author)

  14. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  15. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  16. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  17. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  18. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie

    2006-01-01

    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  19. The Fusarium oxysporum cell wall proteome under adhesion-inducing conditions.

    Science.gov (United States)

    Prados-Rosales, Rafael; Luque-Garcia, Jose L; Martínez-López, Raquel; Gil, Concha; Di Pietro, Antonio

    2009-10-01

    Fusarium oxysporum is a soilborne fungus that causes vascular wilt disease on a wide range of crops. During initial stages of infection, fungal hyphae attach firmly to roots, penetrate the cortex and colonize xylem vessels. The mechanisms underlying root attachment are poorly understood, although it was previously shown that this process depends on Fmk1, a mitogen-activated protein kinase orthologous to the mating/filamentation mitogen-activated protein kinases Fus3/Kss1 in yeast. We investigated the hypothesis that root adhesion is mediated by fungal cell wall proteins (CWPs). To characterize the cell wall subproteome of F. oxysporum, we performed LC-MS/MS analysis of tryptic digests of purified cell walls obtained from adhesion-inducing conditions, identifying a total of 174 proteins, 19 of which contain a predicted signal peptide and 10 of which have a predicted glycosylphosphatidyl-inositol motif. 2-D DIGE was used to compare four different fractions of CWPs extracted from hyphae of the wild-type strain and the Deltafmk1 mutant. We detected 18 proteins differing significantly in abundance between the two strains. Differential expression of five of these proteins was confirmed by RT-PCR analysis. A significant fraction of the subproteome lacked functional information, highlighting the limitations in the current understanding of CWPs in F. oxysporum. PMID:19688728

  20. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  1. Cell Wall Polysaccharides of Candida albicans Induce Mast Cell Degranulation in the Gut

    OpenAIRE

    Sakurai, Atsuko; Yamaguchi, Natsu; Sonoyama, Kei

    2012-01-01

    We investigated Candida albicans-induced mast cell degranulation in vitro and in vivo. Cell wall fraction but not culture supernatant and cell membrane fraction prepared from hyphally grown C. albicans induced β-hexosaminidase release in RBL-2H3 cells. Cell wall mannan and soluble β-glucan fractions also induced β-hexosaminidase release. Histological examination of mouse forestomach showed that C. albicans gut colonization induces mast cell degranulation. However, intragastric administration ...

  2. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

    Science.gov (United States)

    Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385

  3. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    Science.gov (United States)

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  4. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

  5. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  6. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  7. The Cellulose System in the Cell Wall of Micrasterias

    Science.gov (United States)

    Kim; Herth; Vuong; Chanzy

    1996-11-01

    The cellulose system of the cell wall of Micrasterias denticulata and Micrasterias rotata was analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose of Micrasterias is very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having a d-spacing of 0.60 nm [(11;0) in the Ibeta cellulose unit cell defined by Sugiyama et al., 1991, Macromolecules 24, 4168-4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only in Spirogyra, another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose of Micrasterias may be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes. PMID:8986649

  8. Mitochondrial mutant cells are hypersensitive to ionizing radiation, phleomycin and mitomycin C

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Rohan; Reither, Adrian; Thomas, Robert A. [Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Suite 1370, Detroit, MI 48202 (United States); Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Suite 1370, Detroit, MI 48202 (United States)

    2009-04-26

    Mitochondrial DNA (mtDNA) is an important contributor to the ATP-generating oxidative phosphorylation complex. Single nucleotide mutations in mitochondrial genes involved in ATP synthesis result in a broad range of diseases. Leber optic atrophy and Leigh's syndrome are two such diseases arising from point mutations in the mitochondrial genome. Here, ionizing radiation, phleomycin and mitomycin C (MMC) were used to induce structural chromosomal aberrations in Leber's and Leigh's cells to investigate how these mitochondrial mutations affect the cell's DNA repair processes. Because of the energy deprivation that results from mitochondrial mutations, we hypothesized that these mutant cells would demonstrate hypersensitivity when exposed to oxidative and genotoxic stress and we also expected that these cells would not be able to repair nuclear DNA damage as efficiently as normal cells. As a consequence, these mutant cells are expected to show increased levels of DNA damage, longer cell cycle delays and increased levels of cell death. Following acute radiation exposure these mutant cells showed an increase in the number of chromosomal aberrations and decreased mitotic indices when compared with normal human lymphoblastoid cells with wild-type mtDNA. When exposed to phleomycin or MMC, the mitochondrial mutant cells again showed hypersensitivity and decreased mitotic indices compared to normal cells. These results suggest that Leber's and Leigh's cells have an impaired ability to cope with oxidative and genotoxic stress. These observations may help explain the role of ATP generation in understanding the enhanced sensitivity of mitochondrial mutant cells to cancer therapeutic agents and to adverse environmental exposure, suggesting that individuals with mtDNA mutations may be at a greater risk for cancer and other diseases that result from an accumulation of nuclear DNA damage.

  9. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology.

    OpenAIRE

    Maya Elbaz; Sigal Ben-Yehuda

    2010-01-01

    Author Summary The bacterial cell is resistant to extremes of osmotic pressure and protected against mechanical damages by the existence of a rigid outer shell defined as the cell wall. The strength of the cell wall is achieved by the presence of long glycan strands cross-linked by peptide side bridges. The cell wall is a dynamic structure continuously being synthesized and modified to allow for cell growth and division. Damaging the cell wall leads to abnormal cellular morphologies and cell ...

  10. Studies on Aspergillus oryzae Mutants for the Production of Single Cell Proteins from Deoiled Rice Bran

    OpenAIRE

    Ravinder, Rudravaram; Venkateshwar Rao, Linga; Ravindra, Pogaku

    2003-01-01

    Ethyl methyl sulphonate was used to induce point mutation in Aspergillus oryzae (MTCC 1846). Incubation with ethyl methyl sulphonate for 1 h resulted in 98 % killing of spores. By screening the survived colonies three hypermorphs were found (Shan1, Shan2 and Shan3). These three mutants along with the A. oryzae (MTCC 1846) were used for the production of single cell proteins. They grew profusely on deoiled rice bran and produced higher percentage of protein. Among the three mutants Shan2 ha...

  11. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  12. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    Science.gov (United States)

    Bowman, Lisa; Millership, Charlotte; Dupont Søgaard, Mia; Kaever, Volkhard; Siljamäki, Pia; Savijoki, Kirsi; Varmanen, Pekka; Nyman, Tuula A.

    2016-01-01

    ABSTRACT Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. PMID:27507828

  13. Sensory mother cell division is specifically affected in a Cyclin-A mutant of Drosophila melanogaster.

    OpenAIRE

    Ueda, R; Togashi, S; Takahisa, M; Tsurumura, S; Mikuni, M; Kondo, K.(Yamagata University, Yamagata, 992-8510, Japan); Miyake, T

    1992-01-01

    Cyclin proteins are one of the important components of the mechanism regulating mitosis in eukaryotic cells. We isolated a Drosophila Cyclin-A mutant in which the progenitor cells of the peripheral nervous system (the sensory mother cells) do not divide properly, causing the loss and other abnormalities of mechanosensory organs in the adult fly. Sequence analysis of the mutant genome reveals that a P element is inserted into the first intron of the Cyclin-A gene. A 13 kb wild-type genomic DNA...

  14. Environmental stability of stem cell wall traits in alfalfa

    Science.gov (United States)

    The concentration of stem cell wall constituents in alfalfa, Medicago sativa L., herbage can affect dry matter intake and energy availability in dairy and beef production systems and impact energy conversion efficiency when alfalfa is used to produce biofuels. Stem Klason lignin, glucose, xylose, an...

  15. Evidence for a Melanin Cell Wall Component in Pneumocystis carinii

    OpenAIRE

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H.

    2003-01-01

    Fluorescein isothiocyanate-labeled monoclonal antibodies specific for fungal melanin were used in this study to visualize melanin-like components of the Pneumocystis carinii cell wall. A colorimetric enzyme assay confirmed these findings. This is the first report of melanin-like pigments in Pneumocystis.

  16. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  17. The identification of cell wall degrading enzymes in Globodera rostochiensis

    NARCIS (Netherlands)

    Popeijus, H.E.

    2002-01-01

    This thesis describes the identification of cell wall degrading enzymes of the potato cyst nematode Globodera rostochiensis . A robust method using expressed sequence tags (ESTs) was applied to identify new parasitism related enzymes. One of the ESTs revealed the first pectate lyase from a metazoan

  18. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  19. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  20. Microstructural study of carbonized wood after cell wall sectioning

    NARCIS (Netherlands)

    Ishimaru, Kengo; Hata, Toshimitsu; Bronsveld, Paul; Imamura, Yuji

    2007-01-01

    Wooden blocks of Japanese cedar (Cryptomeria japonica) were carbonized at 700 and 1,800 degrees C. The microstructure was analyzed by transmission electron microscopy (TEM) and mu-Raman spectroscopy of the inner planes of wood cell walls. The predominant structure was of a turbostratic nature and no

  1. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    Science.gov (United States)

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  2. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  3. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute (all-milk-prote

  4. AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement.

    Science.gov (United States)

    Park, Jiyoung; Cui, Yong; Kang, Byung-Ho

    2015-01-01

    The BURP domain is a plant-specific domain that has been identified in secretory proteins, and some of these are involved in cell wall modification. The tomato polygalacturonase I complex involved in pectin degradation in ripening fruits has a non-catalytic subunit that has a BURP domain. This protein is called polygalacturonase 1 beta (PG1β) and the Arabidopsis genome encodes three proteins that exhibit strong amino acid similarities with PG1β? We generated Arabidopsis lines in which expression levels of AtPGLs are altered in order to investigate the biological roles of the Arabidopsis PG1β-like proteins (AtPGLs). Among the three AtPGLs (AtPGL1-3), AtPGL3 exhibited the highest transcriptional activity throughout all developmental stages. AtPGL triple mutant plants have smaller rosette leaves than those of wild type plants because the leaf cells are smaller in the mutant plants. Interestingly, when we overexpressed AtPGL3 using a 35S promoter, leaf cells in transgenic plants grew larger than those of the wild type. A C-terminal GFP fusion protein of AtPGL3 complemented phenotypes of the triple mutant plants and it localized to the cell wall. A truncated AtPGL3-GFP fusion protein lacking the BURP domain failed to rescue the mutant phenotypes even though the GFP protein was targeted to the cell wall, indicating that the BURP domain is required for the protein's effect on cell expansion. Quantitative RT-PCR and immunoblot analyses indicated that the α-expansin 6 gene is up-regulated in the overexpressor plants. Taken together, these results indicate that AtPGL3 is an apoplastic BURP domain protein playing a role in cell expansion. PMID:26106400

  5. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  6. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide.

    OpenAIRE

    Hirschberg, C B; Baker, R.M.; Perez, M.; Spencer, L A; Watson, D

    1981-01-01

    Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells ...

  7. Structure of Plant Cell Walls: XI. GLUCURONOARABINOXYLAN, A SECOND HEMICELLULOSE IN THE PRIMARY CELL WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS.

    Science.gov (United States)

    Darvill, J E; McNeil, M; Darvill, A G; Albersheim, P

    1980-12-01

    The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.

  8. New fava bean guard cell signaling mutant impaired in ABA-induced stomatal closure.

    Science.gov (United States)

    Iwai, Sumio; Shimomura, Naoki; Nakashima, Atsushi; Etoh, Takeomi

    2003-09-01

    We isolated a mutant from Vicia faba L. cv. House Ryousai. It wilts easily under strong light and high temperature conditions, suggesting that its stomatal movement may be disturbed. We determined responses of mutant guard cells to some environmental stimuli. Mutant guard cells demonstrated an impaired ability to respond to ABA in 0.1 mM CaCl(2) and stomata did not close in the presence of up to 1 mM ABA, whereas wild-type stomata closed when exposed to 10 micro M ABA. Elevating external Ca(2+) caused a similar degree of stomatal closure in the wild type and the mutant. A high concentration of CO(2) (700 micro l liter(-1)) induced stomatal closure in the wild type, but not in the mutant. On the basis of these results, we propose the working hypothesis that the mutation occurs in the region downstream of CO(2) and ABA sensing and in the region upstream of Ca(2+) elevation. The mutant is named fia (fava bean impaired in ABA-induced stomatal closure). PMID:14519772

  9. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    Science.gov (United States)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  10. Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.

    Science.gov (United States)

    Yakhnina, Anastasiya A; Gitai, Zemer

    2013-10-01

    The essential process of peptidoglycan synthesis requires two enzymatic activities, transpeptidation and transglycosylation. While the PBP2 and PBP3 transpeptidases perform highly specialized functions that are widely conserved, the specific roles of different glycosyltransferases are poorly understood. For example, Caulobacter crescentus encodes six glycosyltransferase paralogs of largely unknown function. Using genetic analyses, we found that Caulobacter glycosyltransferases are primarily redundant but that PbpX is responsible for most of the essential glycosyltransferase activity. Cells containing PbpX as their sole glycosyltransferase are viable, and the loss of pbpX leads to a general defect in the integrity of the cell wall structure even in the presence of the other five glycosyltransferases. However, neither PbpX nor any of its paralogs is required for the specific processes of cell elongation or division, while the cell wall synthesis required for stalk biogenesis is only partially disrupted in several of the glycosyltransferase mutants. Despite their genetic redundancy, Caulobacter glycosyltransferases exhibit different subcellular localizations. We suggest that these enzymes have specialized roles and normally function in distinct subcomplexes but retain the ability to substitute for one another so as to ensure the robustness of the peptidoglycan synthesis process.

  11. A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation

    OpenAIRE

    Kim, Moses M.; Rivera, Melissa A.; Botchkina, Inna L.; Shalaby, Refaat; Thor, Ann D; Elizabeth H. Blackburn

    2001-01-01

    The ribonucleoprotein telomerase synthesizes telomeric DNA by copying an intrinsic RNA template. In most cancer cells, telomerase is highly activated. Here we report a telomerase-based antitumor strategy: expression of mutant-template telomerase RNAs in human cancer cells. We expressed mutant-template human telomerase RNAs in prostate (LNCaP) and breast (MCF-7) cancer cell lines. Even a low threshold level of expression of telomerase RNA gene constructs containing various mutant templates, bu...

  12. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  13. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  14. Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells

    OpenAIRE

    Liu, Yong-Yu; Patwardhan, Gauri A.; Bhinge, Kaustubh; Gupta, Vineet; Gu, Xin; Jazwinski, S. Michal

    2011-01-01

    Tumor suppressor p53 plays an essential role in protecting cells from malignant transformation by inducing cell cycle arrest and apoptosis. Mutant p53 that is detected in over 50% cases of cancers not only loses its role in suppressing of tumor but also gains oncogenic function. Strategies to convert mutant p53 into wild-type of p53 have been suggested for cancer prevention and treatment, but they face a variety of challenges. Here we report an alternate approach that involves suppression of ...

  15. Induction and selection of mutants from in vitro cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author).

  16. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    OpenAIRE

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  17. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    NARCIS (Netherlands)

    Cankar, K.; Kortstee, A.J.; Toonen, M.A.J.; Wolters-Arts, M.; Houbein, R.; Mariani, C.; Ulvskov, P.; Jorgensen, B.; Schols, H.A.; Visser, R.G.F.; Trindade, L.M.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pec

  18. Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers

    NARCIS (Netherlands)

    Huang, J.H.

    2016-01-01

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants. Ho

  19. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  20. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  1. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    Energy Technology Data Exchange (ETDEWEB)

    de O Buanafina, Marcia Maria

    2013-10-16

    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  2. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  3. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  4. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bierbaum Gabriele

    2007-09-01

    Full Text Available Abstract Background Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility in methicillin-resistant S. aureus (MRSA. Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. Results In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. Conclusion Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.

  5. Isolation of hypoxanthine phosphoribosyltransferase-defective mutants in Chinese hamster V79 cells by tritium suicide

    International Nuclear Information System (INIS)

    Tritium suicide was shown to be a highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of (3H) hypoxanthine for 5 or 10 min, followed by storage of 3H-labelled cells at -700C for 4-10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of (3H)hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent Ksub(m) for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine. (orig.)

  6. Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.A. [UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Venkataraman, S. [Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-0840 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 (United States); Doktycz, M.J. [UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 (United States); Nataro, J.P. [Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Sullivan, C.J. [UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Morrell-Falvey, J.L. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 (United States); Allison, D.P. [UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 (United States) and Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States) and Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 (United States) and Molecular Imaging Inc. Tempe, AZ 85282 (United States)]. E-mail: allisond@utk.edu

    2006-06-15

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  7. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  8. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    characterized the primary cell walls of a mutant (cob-6 and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls.

  9. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  10. Cytoplasmic streaming in plant cells: the role of wall slip.

    Science.gov (United States)

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  11. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present...... and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate...

  12. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  13. Life behind cell walls: paradigm lost, paradigm regained.

    Science.gov (United States)

    Lamport, D T

    2001-09-01

    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  14. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  15. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    OpenAIRE

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thaddée Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on thei...

  16. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  17. Cell-wall hemicelluloses as mobile carbon stores in plants

    OpenAIRE

    Schädel, Christina

    2009-01-01

    Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compounds. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprisin...

  18. Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice.

    Science.gov (United States)

    Wang, Lijun; Pytel, Peter; Feltri, M Laura; Wrabetz, Lawrence; Roos, Raymond P

    2012-10-01

    Mutants of superoxide dismutase type 1 (mtSOD1) that have full dismutase activity (e.g., G37R) as well as none (e.g., G85R) cause familial amyotrophic lateral sclerosis (FALS), indicating that mtSOD1-induced FALS results from a toxicity rather than loss in SOD1 enzymatic activity. Still, it has remained unclear whether mtSOD1 dismutase activity can influence disease. A previous study demonstrated that Cre-mediated knockdown of G37R expression in Schwann cells (SCs) of G37R transgenic mice shortened the late phase of disease and survival. These results suggested that the neuroprotective effect of G37R expressed in SCs was greater than its toxicity, presumably because its dismutase activity counteracted reactive oxygen species (ROS). In order to further investigate this, we knocked down G85R in SCs by crossing G85R(flox) mice with myelin-protein-zero (P(0)):Cre mice, which express Cre recombinase in SCs. Knockdown of G85R in SCs of G85R mice delayed disease onset and extended survival indicating that G85R expression in SCs is neurotoxic. These results demonstrate differences in the effect on disease of dismutase active vs. inactive mtSOD1 suggesting that both a loss as well as gain in function of mtSOD1 influence FALS pathogenesis. The results suggest that mtSOD1-induced FALS treatment may have to be adjusted depending on the cell type targeted and particular mtSOD1 involved.

  19. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.

    Science.gov (United States)

    Meier, Elizabeth L; Razavi, Shiva; Inoue, Takanari; Goley, Erin D

    2016-07-01

    In most bacteria, the tubulin-like GTPase FtsZ forms an annulus at midcell (the Z-ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z-ring assembly and early FtsZ-directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C-terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane-anchored FtsZ in the regulation of cell wall hydrolysis.

  20. Progress Towards the Tomato Fruit Cell Wall Proteome

    Directory of Open Access Journals (Sweden)

    Eliel eRuiz May

    2013-05-01

    Full Text Available The plant cell wall (CW compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional ‘secretome’ screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion.

  1. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    Science.gov (United States)

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  2. Protein transport across the cell wall of monoderm Gram-positive bacteria

    OpenAIRE

    Forster, Brian M.; Marquis, Hélène

    2012-01-01

    In monoderm (single membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope either as membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for...

  3. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  4. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N;

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  5. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; Van der Mei, HC; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5 (A(+)B(-

  6. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  7. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus.

    Science.gov (United States)

    Li, Mengying; Liu, Xinyu; Liu, Zhixi; Sun, Yi; Liu, Muxing; Wang, Xiaoli; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-01-01

    N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs) are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth. PMID:27607237

  8. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus

    Science.gov (United States)

    Li, Mengying; Liu, Xinyu; Liu, Zhixi; Sun, Yi; Liu, Muxing; Wang, Xiaoli; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-01-01

    N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs) are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth. PMID:27607237

  9. Staphylococcus aureus Cell Wall Stress Stimulon Gene-lacZ Fusion Strains: Potential for Use in Screening for Cell Wall-Active Antimicrobials▿

    OpenAIRE

    Steidl, Rebecca; Pearson, Stacy; Stephenson, Robert E.; Ledala, Nagender; Sitthisak, Sutthirat; Wilkinson, Brian J; Jayaswal, Radheshyam K.

    2008-01-01

    lacZ fusion strains were constructed using the promoters of five cell wall stress stimulon genes: pbp2, tcaA, vraSR, sgtB, and lytR. All fusion strains were induced only in the presence of cell wall-active antibiotics, suggesting the potential of these strains for use in high-throughput screening for new cell wall-active agents.

  10. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; DiDone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  11. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  12. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  13. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available In polyglutamine (polyQ diseases including Huntington's disease (HD, mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.

  14. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    Science.gov (United States)

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  15. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  16. Modeling the fission yeast cell cycle: Quantized cycle times in wee1 cdc25 mutant cells

    Science.gov (United States)

    Sveiczer, Akos; Csikasz-Nagy, Attila; Gyorffy, Bela; Tyson, John J.; Novak, Bela

    2000-07-01

    A detailed mathematical model for the fission yeast mitotic cycle is developed based on positive and negative feedback loops by which Cdc13/Cdc2 kinase activates and inactivates itself. Positive feedbacks are created by Cdc13/Cdc2-dependent phosphorylation of specific substrates: inactivating its negative regulators (Rum1, Ste9 and Wee1/Mik1) and activating its positive regulator (Cdc25). A slow negative feedback loop is turned on during mitosis by activation of Slp1/anaphase-promoting complex (APC), which indirectly re-activates the negative regulators, leading to a drop in Cdc13/Cdc2 activity and exit from mitosis. The model explains how fission yeast cells can exit mitosis in the absence of Ste9 (Cdc13 degradation) and Rum1 (an inhibitor of Cdc13/Cdc2). We also show that, if the positive feedback loops accelerating the G2/M transition (through Wee1 and Cdc25) are weak, then cells can reset back to G2 from early stages of mitosis by premature activation of the negative feedback loop. This resetting can happen more than once, resulting in a quantized distribution of cycle times, as observed experimentally in wee1- cdc25 mutant cells. Our quantitative description of these quantized cycles demonstrates the utility of mathematical modeling, because these cycles cannot be understood by intuitive arguments alone.

  17. Isolation of anti-T cell receptor scFv mutants by yeast surface display.

    Science.gov (United States)

    Kieke, M C; Cho, B K; Boder, E T; Kranz, D M; Wittrup, K D

    1997-11-01

    Yeast surface display and sorting by flow cytometry have been used to isolate mutants of an scFv that is specific for the Vbeta8 region of the T cell receptor. Selection was based on equilibrium binding by two fluorescently labeled probes, a soluble Vbeta8 domain and an antibody to the c-myc epitope tag present at the carboxy-terminus of the scFv. The mutants that were selected in this screen included a scFv with threefold increased affinity for the Vbeta8 and scFv clones that were bound with reduced affinities by the anti-c-myc antibody. The latter finding indicates that the yeast display system may be used to map conformational epitopes, which cannot be revealed by standard peptide screens. Equilibrium antigen binding constants were estimated within the surface display format, allowing screening of isolated mutants without necessitating subcloning and soluble expression. Only a relatively small library of yeast cells (3 x 10[5]) displaying randomly mutagenized scFv was screened to identify these mutants, indicating that this system will provide a powerful tool for engineering the binding properties of eucaryotic secreted and cell surface proteins.

  18. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA.

    Science.gov (United States)

    Liu, Yuanyuan; You, Shijun; Taylor-Teeples, Mallorie; Li, Wenhua L; Schuetz, Mathias; Brady, Siobhan M; Douglas, Carl J

    2014-12-01

    The TALE homeodomain transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is part of a regulatory network governing the commitment to secondary cell wall biosynthesis of Arabidopsis thaliana, where it contributes to negative regulation of this process. Here, we report that BLH6, a BELL1-LIKE HOMEODOMAIN protein, specifically interacts with KNAT7, and this interaction influences secondary cell wall development. BLH6 is a transcriptional repressor, and BLH6-KNAT7 physical interaction enhances KNAT7 and BLH6 repression activities. The overlapping expression patterns of BLH6 and KNAT7 and phenotypes of blh6, knat7, and blh6 knat7 loss-of-function mutants are consistent with the existence of a BLH6-KNAT7 heterodimer that represses commitment to secondary cell wall biosynthesis in interfascicular fibers. BLH6 and KNAT7 overexpression results in thinner interfascicular fiber secondary cell walls, phenotypes that are dependent on the interacting partner. A major impact of the loss of BLH6 and KNAT7 function is enhanced expression of the homeodomain-leucine zipper transcription factor REVOLUTA/INTERFASCICULAR FIBERLESS1 (REV/IFL1). BLH6 and KNAT7 bind to the REV promoter and repress REV expression, while blh6 and knat7 interfascicular fiber secondary cell wall phenotypes are suppressed in blh6 rev and knat7 rev double mutants, suggesting that BLH6/KNAT7 signaling acts through REV as a direct target.

  19. Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia

    OpenAIRE

    Fudali, Sylwia; Sobczak, Miroslaw; Janakowski, Slawomir; Griesser, Michaela; Grundler, Florian MW; Golinowski, Wladyslaw

    2008-01-01

    Cyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place. Cell wall dissolution occurs during cell wall opening formation, cell walls expand during hypertrophy of syncytial elements and local cell wall synthesis leads to the thickening of syncytial cell wall and the formati...

  20. Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype

    Directory of Open Access Journals (Sweden)

    Dato Laura

    2010-01-01

    Full Text Available Abstract Background Zygosaccharomyces bailii is a diploid budding yeast still poorly characterized, but widely recognised as tolerant to several stresses, most of which related to industrial processes of production. Because of that, it would be very interesting to develop its ability as a cell factory. Gas1p is a β-1,3-glucanosyltransglycosylase which plays an important role in cell wall construction and in determining its permeability. Cell wall defective mutants of Saccharomyces cerevisiae and Pichia pastoris, deleted in the GAS1 gene, were reported as super-secretive. The aim of this study was the cloning and deletion of the GAS1 homologue of Z. bailii and the evaluation of its deletion on recombinant protein secretion. Results The GAS1 homologue of Z. bailii was cloned by PCR, and when expressed in a S. cerevisiae GAS1 null mutant was able to restore the parental phenotype. The respective Z. bailii Δgas1 deleted strain was obtained by targeted deletion of both alleles of the ZbGAS1 gene with deletion cassettes having flanking regions of ~400 bp. The morphological and physiological characterization of the Z. bailii null mutant resulted very similar to that of the corresponding S. cerevisiae mutant. As for S. cerevisiae, in the Z. bailii Δgas1 the total amount of protein released in the medium was significantly higher. Moreover, three different heterologous proteins were expressed and secreted in said mutant. The amount of enzymatic activity found in the medium was almost doubled in the case of the Candida rugosa lipase CRL1 and of the Yarrowia lipolytica protease XPR2, while for human IL-1β secretion disruption had no relevant effect. Conclusions The data presented confirm that the engineering of the cell wall is an effective way to improve protein secretion in yeast. They also confirmed that Z. bailii is an interesting candidate, despite the knowledge of its genome and the tools for its manipulation still need to be improved. However, as

  1. Pressure Dependent Wall Relaxation in Polarized $^3$He Gaseous Cells

    CERN Document Server

    Peng, C; Chu, P -H; Gao, H; Zhang, Y

    2013-01-01

    Pressure dependence of longitudinal relaxation time (T$_1$) due to the cell wall was observed previously at both room temperature and low temperature in valved Rb-coated refillable $^3$He gaseous cells in \\cite{Zheng2}. The diffusion of $^3$He from measurement cell through a capillary tube to the valve and the subsequent depolarization on the surface of the valve was proposed to possibly explain such a pressure dependence at room temperature \\cite{Saam}. In this paper, we investigate this diffusion effect through measurements of T$_1$ with newly designed Rb-coated Pyrex glass cells at 295 K as well as finite element analysis (FEA) studies. Both the experimental results and FEA studies show that the diffusion effect is insufficient to explain the observed linear pressure-dependent behavior of T$_1$.

  2. Effect of diglycine mutant FAT10 on the proliferation and apoptosis of cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Cui LI

    2015-01-01

    Full Text Available Objective To investigate the effects of FAT10ΔGG, a carboxyl-terminal diglycine deficient mutant, on the proliferation and apoptosis of cervical cancer cell line HeLa. Methods Specimens of cervical carcinoma in situ and normal cervix tissue, 5 each, were collected. The expressive levels of FAT10 protein in these specimens were detected by Western blotting. Sitedirected mutagenesis was applied to construct the mutant pcDNA3.0-flag-FAT10ΔGG plasmid. The HeLa cells were then transiently transfected with wild-type FAT10, FAT10ΔGG and empty vector (used as negative control, and the wild-type HeLa cells served as blank control. The transfection efficiency of FAT10 or FAT10ΔGG was detected by Western blotting, and cell proliferation was determined by CCK-8 assay. Cisplatin was used to induce cell apoptosis after cells were transfected for 24h, and the cell apoptotic rates of all groups were determined by flow cytometry. Results Western blotting showed a significantly increased expression of FAT10 protein in cervical carcinoma tissues compared with that in normal cervical tissue. Over-expression of wild FAT10 in HeLa cells obviously promoted cell proliferation, but this promotion was significantly inhibited in cells transfected with its diglycine mutant. Compared with blank control group (22.7%±4.2% and negative control group (24.1%±3.8%, the apoptotic rate was significantly reduced in wild FAT10 group (10.9%±2.0%, P0.05. Conclusion FAT10 can promote cell proliferation and inhibit cell apoptosis through its carboxyl-terminal diglycine motif, and it may play an essential role in carcinogenesis and development of cancer. DOI: 10.11855/j.issn.0577-7402.2014.12.01

  3. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    Science.gov (United States)

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. PMID:27095396

  4. Clear Cell Adenocarcinoma Arising from Abdominal Wall Endometriosis

    Directory of Open Access Journals (Sweden)

    Thouraya Achach

    2008-01-01

    Full Text Available Endometriosis is a frequent benign disorder. Malignancy arising in extraovarian endometriosis is a rare event. A 49-year-old woman is presented with a large painful abdominal wall mass. She underwent a myomectomy, 20 years before, for uterus leiomyoma. Computed tomography suggested that this was a desmoid tumor and she underwent surgery. Histological examination showed a clear cell adenocarcinoma associated with endometriosis foci. Pelvic ultrasound, computed tomography, and endometrial curettage did not show any malignancy or endometriosis in the uterus and ovaries. Adjuvant chemotherapy was recommended, but the patient was lost to follow up. Six months later, she returned with a recurrence of the abdominal wall mass. She was given chemotherapy and then she was reoperated.

  5. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  6. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    Science.gov (United States)

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  7. Functional analysis and drug response to zinc and D-penicillamine in stable ATP7B mutant hepatic cell lines

    Science.gov (United States)

    Chandhok, Gursimran; Horvath, Judit; Aggarwal, Annu; Bhatt, Mohit; Zibert, Andree; Schmidt, Hartmut HJ

    2016-01-01

    AIM: To study the effect of anti-copper treatment for survival of hepatic cells expressing different ATP7B mutations in cell culture. METHODS: The most common Wilson disease (WD) mutations p.H1069Q, p.R778L and p.C271*, found in the ATP7B gene encoding a liver copper transporter, were studied. The mutations represent major genotypes of the United States and Europe, China, and India, respectively. A human hepatoma cell line previously established to carry a knockout of ATP7B was used to stably express WD mutants. mRNA and protein expression of mutant ATP7B, survival of cells, apoptosis, and protein trafficking were determined. RESULTS: Low temperature increased ATP7B protein expression in several mutants. Intracellular ATP7B localization was significantly impaired in the mutants. Mutants were classified as high, moderate, and no survival based on their viability on exposure to toxic copper. Survival of mutant p.H1069Q and to a lesser extent p.C271* improved by D-penicillamine (DPA) treatment, while mutant p.R778L showed a pronounced response to zinc (Zn) treatment. Overall, DPA treatment resulted in higher cell survival as compared to Zn treatment; however, only combined Zn + DPA treatment fully restored cell viability. CONCLUSION: The data indicate that the basic impact of a genotype might be characterized by analysis of mutant hepatic cell lines. PMID:27122662

  8. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    OpenAIRE

    Domozych, David S

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies rais...

  9. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  10. Change in wall composition of transfer and aleurone cells during wheat grain development.

    Science.gov (United States)

    Robert, P; Jamme, F; Barron, C; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2011-02-01

    In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1-3)(1-4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1-3)(1-4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1-3)(1-4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.

  11. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  12. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Kablar, Boris

    2009-11-01

    Adaptor-related protein complex 3 delta 1 (Ap3d1) encodes the delta 1 subunit of an adaptor protein regulating intracellular vesicle-mediated transport, and the Ap3d-deletion mutant (Mocha) mouse undergoes rapid photoreceptor degeneration leading to blindness soon after birth. Previous microarray analysis revealed Ap3d down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells as a result of the absence of skeletal musculature. To investigate the role of Ap3d in the determination of retinal cell fate, the present study examined retinal morphology in newborn Ap3d-/- mice. The Ap3d-/- retina showed a complete absence of cholinergic amacrine cells and a decrease in parvalbumin-expressing amacrine cells and syntaxin- and VC1.1-expressing amacrine precursor cells, but had a normal number of cell layers and number of cells in each layer with no detectable difference in cell proliferation or apoptosis. These findings indicate that, despite having no apparent effect on the basic spatial organization of the retina at this stage of development, Ap3d could be involved in the regulation of progenitor cell competence and the eventual ratio of resulting differentiated cells. Finding the mouse mutant which phenocopies the eye defect seen in fetuses with no striated muscle was accomplished by the Systematic Subtractive Microarray Analysis Approach (SSMAA), explained in the discussion section. PMID:19631730

  13. Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant huntingtin.

    Science.gov (United States)

    Naia, Luana; Ribeiro, Márcio; Rodrigues, Joana; Duarte, Ana I; Lopes, Carla; Rosenstock, Tatiana R; Hayden, Michael R; Rego, A Cristina

    2016-08-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to the expression of mutant huntingtin. Bioenergetic dysfunction has been described to contribute to HD pathogenesis. Thus, treatment paradigms aimed to ameliorate energy deficits appear to be suitable candidates in HD. In previous studies, we observed protective effects of insulin growth factor-1 (IGF-1) in YAC128 and R6/2 mice, two HD mouse models, whereas IGF-1 and/or insulin halted mitochondrial-driven oxidative stress in mutant striatal cells and mitochondrial dysfunction in HD human lymphoblasts. Here, we analyzed the effect of IGF-1 versus insulin on energy metabolic parameters using striatal cells derived from HD knock-in mice and primary cortical cultures from YAC128 mice. STHdh(Q111/Q111) cells exhibited decreased ATP/ADP ratio and increased phosphocreatine levels. Moreover, pyruvate levels were increased in mutant cells, most probably in consequence of a decrease in pyruvate dehydrogenase (PDH) protein expression and increased PDH phosphorylation, reflecting its inactivation. Insulin and IGF-1 treatment significantly decreased phosphocreatine levels, whereas IGF-1 only decreased pyruvate levels in mutant cells. In a different scenario, primary cortical cultures derived from YAC128 mice also displayed energetic abnormalities. We observed a decrease in both ATP/ADP and phosphocreatine levels, which were prevented following exposure to insulin or IGF-1. Furthermore, decreased lactate levels in YAC128 cultures occurred concomitantly with a decline in lactate dehydrogenase activity, which was ameliorated with both insulin and IGF-1. These data demonstrate differential HD-associated metabolic dysfunction in striatal cell lines and primary cortical cultures, both of which being alleviated by insulin and IGF-1. PMID:26876526

  14. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics

    Directory of Open Access Journals (Sweden)

    Berger-Bächi Brigitte

    2011-01-01

    Full Text Available Abstract Background Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. Results We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315, which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes

  15. Direct measurement of cell wall stress-stiffening and turgor pressure in live bacterial cells

    CERN Document Server

    Deng, Yi; Shaevitz, Joshua W

    2011-01-01

    The mechanical properties of gram-negative bacteria are governed by a rigid peptidoglycan (PG) cell wall and the turgor pressure generated by the large concentration of solutes in the cytoplasm. The elasticity of the PG has been measured in bulk and in isolated sacculi and shown to be compliant compared to the overall stiffness of the cell itself. However, the stiffness of the cell wall in live cells has not been measured. In particular, the effects that pressure-induced stress might have on the stiffness of the mesh-like PG network have not been addressed even though polymeric materials often exhibit large amounts of stress-stiffening. We study bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress-stiffening in the E. coli cell wall, with an exponent of $1.07 \\pm 0.25$, such that the wall is significantly stiffer in live cells ($E\\sim32\\pm10$ MPa) than in unpres...

  16. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  17. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  18. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  19. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence

    Science.gov (United States)

    Bertolo, Lisa; Monteiro, Mario A.; Agellon, Al; Viswanathan, V. K.; Vedantam, Gayatri

    2016-01-01

    Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence. PMID:27741317

  20. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  1. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  2. A radioimmunoassay for lignin in plant cell walls

    International Nuclear Information System (INIS)

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A β-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 ηg/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. 125I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO2 delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed

  3. Lignification in poplar tension wood lignified cell wall layers.

    Science.gov (United States)

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study. PMID:22933655

  4. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  5. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  6. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  7. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells.

    Science.gov (United States)

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-11-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25-3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death.

  8. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.

    Directory of Open Access Journals (Sweden)

    Michelle S F Tan

    Full Text Available Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD to bacterial cellulose (BC-based plant cell wall models [BC-Pectin (BCP, BC-Xyloglucan (BCX and BC-Pectin-Xyloglucan (BCPX] after growth at different temperatures (28°C and 37°C. We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2 although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

  9. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  10. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M.; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  11. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  12. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Science.gov (United States)

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  13. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  14. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    OpenAIRE

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells.Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53.Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radio...

  15. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants...... to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  16. Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes.

    Science.gov (United States)

    Burke, Thomas P; Loukitcheva, Anastasia; Zemansky, Jason; Wheeler, Richard; Boneca, Ivo G; Portnoy, Daniel A

    2014-11-01

    Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.

  17. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Malcolm [Univ. of Georgia, Athens, GA (United States)

    2015-08-31

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae. This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.

  18. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis.

    Science.gov (United States)

    Mittal, Amandeep; Balasubramanian, Rajagopal; Cao, Jin; Singh, Prabhjeet; Subramanian, Senthil; Hicks, Glenn; Nothnagel, Eugene A; Abidi, Noureddine; Janda, Jaroslav; Galbraith, David W; Rock, Christopher D

    2014-08-01

    Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals. PMID:24821950

  19. Determination of the pore size of cell walls of living plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D.P.

    1979-09-14

    The limiting diameter of pores in the walls of living plant cells through which molecules can freely pass has been determined by a solute exclusion technique to be 35 to 38 angstroms for hair cells of Raphanus sativus roots and fibers of Gossypium hirsutum, 38 to 40 angstroms for cultured cells of Acer pseudoplatanus, and 45 to 52 angstroms for isolated palisade parenchyma cells of the leaves of Xanthium strumarium and Commelina communis. These results indicate that molecules with diameters larger than these pores would be restricted in their ability to penetrate such a cell wall, and that such a wall may represent a more significant barrier to cellular communication than has been previously assumed.

  20. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  1. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.; Bowman, Valorie D.; Anderson, Dwight L.; Rossmann, Michael G. (Purdue); (UMM)

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal end of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.

  2. Rhizobium sp. Degradation of Legume Root Hair Cell Wall at the Site of Infection Thread Origin

    OpenAIRE

    Ridge, Robert W.; Rolfe, Barry G.

    1985-01-01

    Using a new microinoculation technique, we demonstrated that penetration of Rhizobium sp. into the host root hair cell occurs at 20 to 22 h after inoculation. It did this by dissolving the cell wall maxtrix, leaving a layer of depolymerized wall microfibrils. Colony growth pressure “stretched” the weakened wall, forming a bulge into an interfacial zone between the wall and plasmalemma. At the same time vesicular bodies, similar to plasmalemmasomes, accumulated at the penetration site in a man...

  3. Low expression level of glnA1 accounts for absence of cell wall associated poly-l-glutamate/glutamine in Mycobacterium smegmatis.

    Science.gov (United States)

    Tripathi, Deeksha; Kant, Sashi; Garg, Rajni; Bhatnagar, Rakesh

    2015-03-01

    Cell wall associated poly-l-glutamine (PLG) layer synthesis is directly linked to glutamine synthetase (GS) encoded by glnA1 in tuberculosis causing mycobacteria. Avirulent Mycobacterium smegmatis (M. smegmatis) despite of having a glnA1 homolog lacks cell wall associated PLG layer. In the present study, we complemented a ΔglnA1 mutant of Mycobacterium bovis (lack PLG in cell wall) with M. smegmatis glnA1 cloned under M. bovis glnA1 promoter. PLG synthesis was restored in the cell wall of complemented strain. The complemented strain also showed increased resistance to physical stresses such as lysozyme, SDS and increased survival in THP-1 macrophages in comparison to the knockout. Further, in β-galactosidase reporter assay M. smegmatis glnA1 promoter showed ten times less activity as compared to M. bovis glnA1 promoter. GACT-8-11 → TGAC mutations in the M. smegmatis glnA1 promoter restored its activity by 60% as compared to the activity of glnA1 promoter of M. bovis. This mutation also showed increased GS expression and produced cell wall associated PLG in M. smegmatis. The results of this study demonstrate that glnA1 promoter of M. smegmatis accounts for low expression level of GS and apparently responsible for absence of cell wall associated PLG layer.

  4. Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.

    Science.gov (United States)

    Miller, Rowan E; Brough, Rachel; Bajrami, Ilirjana; Williamson, Chris T; McDade, Simon; Campbell, James; Kigozi, Asha; Rafiq, Rumana; Pemberton, Helen; Natrajan, Rachel; Joel, Josephine; Astley, Holly; Mahoney, Claire; Moore, Jonathan D; Torrance, Chris; Gordan, John D; Webber, James T; Levin, Rebecca S; Shokat, Kevan M; Bandyopadhyay, Sourav; Lord, Christopher J; Ashworth, Alan

    2016-07-01

    New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction. The sensitivity of ARID1A-deficient cells to dasatinib was associated with G1-S cell-cycle arrest and was dependent upon both p21 and Rb. Using focused siRNA screens and kinase profiling, we showed that ARID1A-mutant OCCC tumor cells are addicted to the dasatinib target YES1. This suggests that dasatinib merits investigation for the treatment of patients with ARID1A-mutant OCCC. Mol Cancer Ther; 15(7); 1472-84. ©2016 AACR.

  5. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  6. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus.

    Science.gov (United States)

    MacMillan, Colleen P; Mansfield, Shawn D; Stachurski, Zbigniew H; Evans, Rob; Southerton, Simon G

    2010-05-01

    The ancient cell adhesion fasciclin (FAS) domain is found in bacteria, fungi, algae, insects and animals, and occurs in a large family of fasciclin-like arabinogalactan proteins (FLAs) in higher plants. Functional roles for FAS-containing proteins have been determined for insects, algae and vertebrates; however, the biological functions of the various higher-plant FLAs are not clear. Expression of some FLAs has been correlated with the onset of secondary-wall cellulose synthesis in Arabidopsis stems, and also with wood formation in the stems and branches of trees, suggesting a biological role in plant stems. We examined whether FLAs contribute to plant stem biomechanics. Using phylogenetic, transcript abundance and promoter-GUS fusion analyses, we identified a conserved subset of single FAS domain FLAs (group A FLAs) in Eucalyptus and Arabidopsis that have specific and high transcript abundance in stems, particularly in stem cells undergoing secondary-wall deposition, and that the phylogenetic conservation appears to extend to other dicots and monocots. Gene-function analyses revealed that Arabidopsis T-DNA knockout double mutant stems had altered stem biomechanics with reduced tensile strength and a reduced tensile modulus of elasticity, as well as altered cell-wall architecture and composition, with increased cellulose microfibril angle and reduced arabinose, galactose and cellulose content. Using materials engineering concepts, we relate the effects of these FLAs on cell-wall composition with stem biomechanics. Our results suggest that a subset of single FAS domain FLAs contributes to plant stem strength by affecting cellulose deposition, and to the stem modulus of elasticity by affecting the integrity of the cell-wall matrix.

  7. Induced expression of nucleolin phosphorylation-deficient mutant confers dominant-negative effect on cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shu Xiao

    Full Text Available Nucleolin (NCL is a major nucleolar phosphoprotein that has pleiotropic effects on cell proliferation and is elevated in a variety of tumors. NCL is highly phosphorylated at the N-terminus by two major kinases: interphase casein kinase 2 (CK2 and mitotic cyclin-dependent kinase 1 (CDK1. Earlier we demonstrated that a NCL-mutant that is partly defective in undergoing phosphorylation by CK2 inhibits chromosomal replication through its interactions with Replication Protein A, mimicking the cellular response to DNA damage. We further delineated that the N-terminus of NCL associates with Hdm2, the most common E3 ubiquitin ligase of p53. We reported that NCL antagonizes Hdm2 to stabilize p53 and stimulates p53 transcriptional activity. Although NCL-phosphorylation by CK2 and ribosomal DNA transcription are closely coordinated during interphase, the role of NCL phosphorylation in regulating cell proliferation remains unexplored. We have therefore engineered unique human cells that specifically induce expression of NCL-wild type (WT or a phosphorylation-deficient NCL-mutant, 6/S*A where all the six CK2 consensus serine sites residing in the N-terminus NCL were mutated to alanine. Here we show that this NCL-mutant is defective in undergoing phosphorylation by CK2. We also demonstrate that NCL-phosphorylation by CK2 is required through the S-phase progression in cell cycle and hence proliferation. Induced expression of NCL with mutated CK2 phosphorylation sites stabilizes p53, results in higher expression of Bcl2 (B-cell lymphoma 2 homology 3 (BH3-only apoptotic markers and causes a dominant-negative effect on cell viability. Our unique cellular system thus provides the first evidential support to delineate phospho-specific functions of NCL on cell proliferation.

  8. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan

    2011-01-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and a

  9. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  10. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    Science.gov (United States)

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  11. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  12. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs.

    OpenAIRE

    Giovannoni, S J; Godchaux, W; Schabtach, E; Castenholz, R W

    1987-01-01

    Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10...

  13. Binding of paraquat to cell walls of paraquat resistant and susceptible biotypes of Hordeum glaucum

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, H.M.; Preston, C.; Powles, S.B. [University of Adeilaide, Glen Osmond, SA (Australia). CRC for Weed Management Systems and Department of Crop Protection

    1997-12-31

    Full text: Paraquat is a widely used, non-selective, light activated contact herbicide acting as a photosystem electron acceptor. Resistance to paraquat in weed species has occurred in Australia and world-wide following extensive use of this herbicide. The mechanism of resistance to paraquat in `Hordeum glaucum` is correlated with reduced herbicide translocation and may be due to sequestration of herbicide away from its site of action by either binding to cell walls or other means. We measured paraquat binding to a cell wall fraction in resistant and susceptible biotypes of H. glaucum to determine whether differences in binding of paraquat to cell walls could explain herbicide resistance. The cell wall fraction was isolated from leaves of resistant and susceptible biotypes and incubated with {sup 14}C-labelled paraquat. Of the total paraquat - absorbed by a cell wall preparation, about 80% remains strongly bind to the cell wall and doesn`t readily exchange with solution in the absence of divalent cations. Divalent cations (Ca{sup 2+},putrescine and paraquat) can competitively exchange for paraquat tightly bound to the cell wall. From kinetic experiments it seems that there are two types of binding sites in the cell wall with different affinities for paraquat. No significant differences between cell wall, characteristics of resistant and susceptible biotypes of H. glaucum have been found in any of our experiments. Therefore, increased binding of paraquat to the cell wall appears not to be a mechanism for exclusion of paraquat in resistant biotype

  14. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition.

    Science.gov (United States)

    Shi, Xiarong; Sousa, Leiliane P; Mandel-Bausch, Elizabeth M; Tome, Francisco; Reshetnyak, Andrey V; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-08-16

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  15. Soya beans and Maize : The effect of chemical and physical structure of cell wall polysaccharides on fermentation kinetics

    OpenAIRE

    Laar, van de, P.

    2000-01-01

    The analysis of the relationship between cell wall composition and fermentation of endosperm cell walls of soya beans and maize was approached from three different angles. Firstly, the fermentation (rate and extent of fermentation, the sugar degradation pattern, and volatile fatty acid production) of soya bean and maize cell walls was analysed, both in situ and in vitro. This analysis revealed that the physical structure of the cell wall (particle size and cell wall thickness) influences cell...

  16. Hematopoietic Stem Cells Expansion in Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Tian-Qing LIU; Xiu-Bo FAN; Dan GE; Zhan-Feng CUI; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction Clinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy.It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors.Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal several inherent limitations: ineffective mixing, lack of control options for dissolved oxygen and pH and difficulty in continuous feeding, which restricts the usefulness of static systems. Several advanced bioreactors have been used in the field of HSCs expansion. But hematopoietic cells are extremely sensitive to shear, so cells in bioreactors such as stirred and perfusion culture systems may suffer physical damage. This problem will be improved by applying the rotating wall vessel (RWV) bioreactor in clinic because of its low shear and unique structure. In this research, cord blood (CB) HSCs were expanded by means of a cell-dilution feeding protocol in RWV.

  17. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  18. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    Full Text Available Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs. A TALEN pair targeting the human CERT gene (alternative name COL4A3BP encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase, and B4GalT5 (encoding the major lactosylceramide synthase, and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.

  19. RNAi knockdown of PIK3CA preferentially inhibits invasion of mutant PIK3CA cells

    Institute of Scientific and Technical Information of China (English)

    Xin-Ke Zhou; Sheng-Song Tang; Gao Yi; Min Hou; Jin-Hui Chen; Bo Yang; Ji-Fang Liu; Zhi-Min He

    2011-01-01

    AIM: To explore the effects of siRNA silencing of PIK3CA on proliferation, migration and invasion of gastric cancer cells and to investigate the underlying mechanisms.METHODS: The mutation of PIK3CA in exons 9 and 20 of gastric cancer cell lines HGC-27, SGC-7901, BGC-823, MGC-803 and MKN-45 was screened by poly-merase chain reaction (PCR) followed by sequencing. BGC-823 cells harboring no mutations in either of the exons, and HGC-27 cells containing PIK3CA mutations were employed in the current study. siRNA targeting PIK3CA was chemically synthesized and was transfect-ed into these two cell lines in vitro. mRNA and protein expression of PIK3CA were detected by real-time PCR and Western blotting, respectively. We also measured phosphorylation of a serine/threonine protein kinase (Akt) using Western blotting. The proliferation, migra-tion and invasion of these cells were examined sepa-rately by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide (MTT), wound healing and Transwell chambers assay.RESULTS: The siRNA directed against PIK3CA effec-tively led to inhibition of both endogenous mRNA and protein expression of PIK3CA, and thus significantly down-regulated phosphorylation of Akt (P < 0.05). Furthermore, simultaneous silencing of PIK3CA result-ed in an obvious reduction in tumor cell proliferation activity, migration and invasion potential (P < 0.01). Intriguing, mutant HGC-27 cells exhibited stronger invasion ability than that shown by wild-type BGC-823 cells. Knockdown of PIK3CA in mutant HGC-27 cells contributed to a reduction in cell invasion to a greater extent than in non-mutant BGC-823 cells.CONCLUSION: siRNA mediated targeting of PIK3CA may specifically knockdown the expression of PIK3CA in gastric cancer cells, providing a potential implication for therapy of gastric cancer.

  20. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    2016-10-01

    Full Text Available Metronidazole (MNZ is an effective agent that has been employed to eradicate Helicobacter pylori (H. pylori. The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC, plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1-N-phenyl-naphthylamine (NPN and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori. Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori, and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  1. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Couto Isabel

    2011-02-01

    Full Text Available Abstract Background Active efflux systems and reduced cell-wall permeability are considered to be the main causes of mycobacterial intrinsic resistance to many antimicrobials. In this study, we have compared the Mycobacterium smegmatis wild-type strain mc2155 with knockout mutants for porins MspA (the main porin of M. smegmatis and MspC, the efflux pump LfrA (the main efflux pump system of M. smegmatis and its repressor LfrR for their ability to transport ethidium bromide (EtBr on a real-time basis. This information was then correlated with minimum inhibitory concentrations (MICs of several antibiotics in the presence or absence of the efflux inhibitors chlorpromazine, thioridazine and verapamil. Results In the absence of porins MspA and MspC, accumulation of ethidium bromide decreased and the cells became more resistant to several antibiotics, whereas the knockout mutant for the LfrA pump showed increased accumulation of EtBr and increased susceptibility to EtBr, rifampicin, ethambutol and ciprofloxacin. Moreover, the efflux inhibitors caused a reduction of the MICs of streptomycin, rifampicin, amikacin, ciprofloxacin, clarithromycin and erythromycin in most of the strains tested. Conclusions The methodology used in this study demonstrated that porin MspA plays an important role in the influx of quaternary ammonium compounds and antibiotics and that efflux via the LfrA pump is involved in low-level resistance to several antimicrobial drugs in M. smegmatis. The results obtained with this non-pathogenic mycobacterium will be used in future studies as a model for the evaluation of the activity of the same efflux inhibitors on the susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to isoniazid and rifampicin.

  2. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    Science.gov (United States)

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.

  3. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis.

    Science.gov (United States)

    Lao, Nga T; Long, Debbie; Kiang, Sophie; Coupland, George; Shoue, Douglas A; Carpita, Nicholas C; Kavanagh, Tony A

    2003-11-01

    The genome of Arabidopsis thaliana contains about 400 genes coding for glycosyltransferases, many of which are predicted to be involved in the synthesis and remodelling of cell wall components. We describe the isolation of a transposon-tagged mutant, parvus, which under low humidity conditions exhibits a severely dwarfed growth phenotype and failure of anther dehiscence resulting in semi-sterility. All aspects of the mutant phenotype were partially rescued by growth under high-humidity conditions, but not by the application of growth hormones or jasmonic acid. The mutation is caused by insertion of a maize Dissociation (Ds) element in a gene coding for a putative Golgi-localized glycosyltransferase belonging to family 8. Members of this family, originally identified on the basis of similarity to bacterial lipooligosaccharide glycosyltransferases, include enzymes known to be involved in the synthesis of bacterial and plant cell walls. Cell-wall carbohydrate analyses of the parvus mutant indicated reduced levels of rhamnogalacturonan I branching and alterations in the abundance of some xyloglucan linkages that may, however, be indirect consequences of the mutation. PMID:15010604

  4. PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration.

    Science.gov (United States)

    Morani, Federica; Phadngam, Suratchanee; Follo, Carlo; Titone, Rossella; Thongrakard, Visa; Galetto, Alessandra; Alabiso, Oscar; Isidoro, Ciro

    2014-07-01

    Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTEN, showed a higher rate of cell proliferation and were much less sensitive to glucose-depletion than FTC133 cells, which are PTEN null and express mutant p53. Glucose depletion slowed-down the autophagy flux in FTC133 cells, not in WRO cells. In a wound-healing assay, WRO cells were shown to migrate faster than FTC133 cells. Glucose depletion slowed down the cell migration rate, and these effects were more evident in FTC133 cells. Genetic silencing of either wild-type PTEN or p53 in WRO cells resulted in increased uptake of glucose, whereas the ectopic expression of PTEN in FTC133 cells resulted in diminished glucose uptake. In conclusion, compared to WRO, FTC133 cells were higher glucose up-taker and consumer. These data do not support the general contention that cancer cells lacking PTEN or expressing the mutant p53R273H are more aggressive and prone to better face glucose depletion. We propose that concurrent PTEN deficiency and mutant p53 leads to a glucose-addiction state that renders the cancer cell more sensitive to glucose restriction. The present observation substantiates the view that glucose-restriction may be an adjuvant strategy to combat these tumours. PMID:25221641

  5. GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis.

    Science.gov (United States)

    Mouyna, Isabelle; Aimanianda, Vishukumar; Hartl, Lukas; Prevost, Marie-Christine; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Legendre, Rachel; Coppee, Jean-Yves; Latgé, Jean-Paul

    2016-09-01

    The fungal cell wall is a rigid structure because of fibrillar and branched β-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on β-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-β-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo β-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation. PMID:27306610

  6. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  7. Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection

    Science.gov (United States)

    Witte, Chelsea E.; Whiteley, Aaron T.; Burke, Thomas P.; Sauer, John-Demian; Portnoy, Daniel A.; Woodward, Joshua J.

    2013-01-01

    ABSTRACT Listeria monocytogenes infection leads to robust induction of an innate immune signaling pathway referred to as the cytosolic surveillance pathway (CSP), characterized by expression of beta interferon (IFN-β) and coregulated genes. We previously identified the IFN-β stimulatory ligand as secreted cyclic di-AMP. Synthesis of c-di-AMP in L. monocytogenes is catalyzed by the diadenylate cyclase DacA, and multidrug resistance transporters are necessary for secretion. To identify additional bacterial factors involved in L. monocytogenes detection by the CSP, we performed a forward genetic screen for mutants that induced altered levels of IFN-β. One mutant that stimulated elevated levels of IFN-β harbored a transposon insertion in the gene lmo0052. Lmo0052, renamed here PdeA, has homology to a cyclic di-AMP phosphodiesterase, GdpP (formerly YybT), of Bacillus subtilis and is able to degrade c-di-AMP to the linear dinucleotide pApA. Reduction of c-di-AMP levels by conditional depletion of the di-adenylate cyclase DacA or overexpression of PdeA led to marked decreases in growth rates, both in vitro and in macrophages. Additionally, mutants with altered levels of c-di-AMP had different susceptibilities to peptidoglycan-targeting antibiotics, suggesting that the molecule may be involved in regulating cell wall homeostasis. During intracellular infection, increases in c-di-AMP production led to hyperactivation of the CSP. Conditional depletion of dacA also led to increased IFN-β expression and a concomitant increase in host cell pyroptosis, a result of increased bacteriolysis and subsequent bacterial DNA release. These data suggest that c-di-AMP coordinates bacterial growth, cell wall stability, and responses to stress and plays a crucial role in the establishment of bacterial infection. PMID:23716572

  8. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  9. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  10. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.

    Science.gov (United States)

    Román, E; Correia, I; Salazin, A; Fradin, C; Jouault, T; Poulain, D; Liu, F-T; Pla, J

    2016-07-01

    The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery. PMID:27191378

  11. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  12. Single Wall Carbon Nanotube-polymer Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  13. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    Science.gov (United States)

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  14. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  15. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Science.gov (United States)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  16. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  17. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  18. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    DEFF Research Database (Denmark)

    Perryman, L A; Blair, J M; Kingsley, E A;

    2006-01-01

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous "take rate" in NOD-SCID mice, and increased production of PSA. Tumors...... lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation....

  19. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  20. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  1. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines.

    Science.gov (United States)

    Izetti, Patricia; Hautefeuille, Agnes; Abujamra, Ana Lucia; de Farias, Caroline Brunetto; Giacomazzi, Juliana; Alemar, Bárbara; Lenz, Guido; Roesler, Rafael; Schwartsmann, Gilberto; Osvaldt, Alessandro Bersch; Hainaut, Pierre; Ashton-Prolla, Patricia

    2014-10-01

    TP53 mutation is a common event in many cancers, including pancreatic adenocarcinoma, where it occurs in 50-70 % of cases. In an effort to reactivate mutant p53 protein, several new drugs are being developed, including PRIMA-1 and PRIMA-1(Met)/APR-246 (p53 reactivation and induction of massive apoptosis). PRIMA-1 has been shown to induce apoptosis in tumor cells by reactivating p53 mutants, but its effect in pancreatic cancer remains unclear. Here we investigated the effects of PRIMA-1 on cell viability, cell cycle and expression of p53-regulated proteins in PANC-1 and BxPC-3 (mutant TP53), and CAPAN-2 (wild-type TP53) pancreatic cell lines. Treatment with PRIMA-1 selectively induced apoptosis and cell cycle arrest in p53 mutant cells compared to CAPAN-2 cells. The growth suppressive effect of PRIMA-1 was markedly reduced in p53 mutant cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1 induced cell death. Moreover, treatment with the thiol group donor N-acetylcysteine completely blocked PRIMA-1-induced apoptosis and reinforced the hypothesis that thiol modifications are important for PRIMA-1 biological activity. In combination treatments, PRIMA-1 enhanced the anti-tumor activity of several chemotherapic drugs against pancreatic cancer cells and also exhibited a pronounced synergistic effect in association with the Mdm2 inhibitor Nutlin-3. Taken together, our data indicate that PRIMA-1 induces apoptosis in p53 mutant pancreatic cancer cells by promoting the re-activation of p53 and inducing proapoptotic signaling pathways, providing in vitro evidence for a potential therapeutic approach in pancreatic cancer. PMID:24838627

  2. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    OpenAIRE

    Indrakumar Vetharaniam; Kelly, William J.; Graeme T. Attwood; Harris, Philip J.

    2014-01-01

    We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a ran...

  3. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  4. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    -glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS...... with a wide range of chemical bounds. At present the interest in plant cell wall is growing due to the possibility to convert ligno-cellulosic biomass (e.g. agricultural residues) into bioethanol but also for the benefits to human health of some cell wall constituents found in cereals, in particular beta...

  5. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  6. CELL-WALL GROWTH AND PROTEIN SECRETION IN FUNGI

    NARCIS (Netherlands)

    SIETSMA, JH; WOSTEN, HAB; WESSELS, JGH

    1995-01-01

    Secretion of proteins is a vital process in fungi. Because hyphal walls form a diffusion barrier for proteins, a mechanism different from diffusion probably exist to transport proteins across the wall. In Schizophyllum commune, evidence has been obtained for synthesis at the hyphal apex of wall comp

  7. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.

    Science.gov (United States)

    Covas, Gonçalo; Vaz, Filipa; Henriques, Gabriela; Pinho, Mariana G; Filipe, Sérgio R

    2016-01-01

    Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE). PMID:27311674

  8. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  9. Cell Wall-Associated Protein Antigens of Streptococcus salivarius: Purification, Properties, and Function in Adherence

    Science.gov (United States)

    Weerkamp, Anton H.; Jacobs, Ton

    1982-01-01

    Three cell wall-associated protein antigens (antigens b, c, and d) were isolated from mutanolysin-solubilized cell walls of Streptococcus salivarius HB and purified to apparent homogeneity by a combination of ion-exchange chromatography, gel filtration, and immunoadsorption chromatography. Antigens b and c were also isolated from culture supernatants. Antigen b consisted of more than 80% protein and had an apparent molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 320,000. Antigen c consisted of 57% protein, about 30% neutral sugar, and about 13% amino sugar, and its glycoprotein nature was confirmed by specific staining techniques. During sodium dodecyl sulfate-polyacrylamide gel electrophoresis antigen c resolved into two or more bands, depending on the source or the isolation procedure, in the molecular weight range from 220,000 to 280,000. Antigen d consisted of 95% protein and was observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as two bands with molecular weights of 129,000 and 121,000. Under nondenaturing conditions all three antigens had molecular weights in the range from 1 × 106 to 3 × 106 as determined by gel filtration. The amino acid compositions of antigens b, c, and d were characterized by low amounts of basic amino acids and relatively high levels of nonpolar amino acids. Among oral streptococcal species antigens b and c were virtually restricted to strains of S. salivarius and most often to serotype I strains. Antigen b was recognized as the factor that mediates coaggregation of S. salivarius with Veillonella strains. The purified protein retained its biological activity. Antigen c could be linked to functions relating to adhesion of the streptococci to host tissues on the basis of its absence in mutant strains and blocking by specific antisera. The purified molecule had no detectable biological activity. Antigen d could not be linked to an established adhesion function. Images

  10. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    Science.gov (United States)

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  11. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  12. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    Science.gov (United States)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  13. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  14. Induction of 8-azaguanine resistant mutants in human cultured cells exposed to 31 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrman Conti, A.M.; Francone, G.; Volonte, M.; Gallini, R.E.

    1988-03-01

    The authors report results on the induction of 8-azaguanine (8-AG)-resistant mutants in cultured human cells (EUE) exposed to 31 MeV protons. The spontaneous frequency of mutants was 5.6 +- 0.7 x 10/sup -6/ per viable cell. Gamma rays were taken as reference radiation. Expression times giving the highest frequency of mutants after 31 MeV protons and gamma irradiation were found to be about 10 days for both radiations. The dose-response relationship for mutant induction by protons, as determined at the optimal expression time, was compared to that obtained after gamma rays. The relative biological effectiveness (RBE) is 2.4 +- 0.5, this value being higher than the RBE value determined for cell survival.

  15. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer

    Science.gov (United States)

    Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A

    2013-01-01

    The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, -2, CDC2, -6) and DNA replication-related genes (MCM4, -5, -6, -7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (>4500%) of ALDHbright cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDHbright cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells

  16. Hypersensitivity to mutation and sister-chromatid-exchange induction in CHO cell mutants defective in incising DNA containing UV lesions

    International Nuclear Information System (INIS)

    Five UV-sensitive mutant strains of CHO cells representing different genetic complementation groups were analyzed for their ability to perform the incision step of nucleotide excision repair after UV exposure. The assay utilized inhibitors of DNA synthesis to accumulate the short-lived strand breaks resulting from repair incisions. After 6 J/m2, each of the mutants showed 2, the rate in AA8 was similar to that at 6 J/m2, but the rates in the mutants were significantly higher (approx. 20% of the rate of AA8). Thus by this incision assay the mutants were phenotypically indistinguishable. Each of the mutants were hypersensitive to mutation induction at both the hprt and aprt loci by a factor of 10, and in the one strain tested ouabain resistance was induced sevenfold more efficiently than in AA8 cells. Sister chromatid exchange was also induced with sevenfold increased efficiency in the two mutant strains examined. Thus, here CHO mutants resemble xeroderma pigmentosum cells in terms of their incision defects and their hypersensitivity to DNA damage by UV

  17. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  18. 5-Fluorouracil preferentially sensitizes mutant KRAS non-small cell lung carcinoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Wang, Haizhen; Yang, Tao; Wu, Xiangwei

    2015-11-01

    Mutations in the KRAS gene are very common in non-small cell lung cancer (NSCLC), but effective therapies targeting KRAS have yet to be developed. Interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of cell death, has increased following the observation that TRAIL can selectively kill a wide variety of human cancer cells without killing normal cells both in vitro and in xenograft models. However, results from clinical trials of TRAIL-based therapy are disappointingly modest at best and many have demonstrated a lack of therapeutic benefit. Current research has focused on selecting a subpopulation of cancer patients who may benefit from TRAIL-based therapy and identifying best drugs to work with TRAIL. In the current study, we found that NSCLC cells with a KRAS mutation were highly sensitive to treatment with TRAIL and 5-fluorouracil (5FU). Compared with other chemotherapeutic agents, 5FU displayed the highest synergy with TRAIL in inducing apoptosis in mutant KRAS NSCLC cells. We also found that, on a mechanistic level, 5FU preferentially repressed survivin expression and induced expression of TRAIL death receptor 5 to sensitize NSCLC cells to TRAIL. The combination of low-dose 5FU and TRAIL strongly inhibited xenograft tumor growth in mice. Our results suggest that the combination of TRAIL and 5FU may be beneficial for patients with mutant KRAS NSCLC.

  19. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  20. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

    OpenAIRE

    Nakano, Yoshimi; Yamaguchi, Masatoshi; Endo, Hitoshi; Rejab, Nur Ardiyana; Ohtani, Misato

    2015-01-01

    Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enz...

  1. FINITE ELEMENT ANALYSIS OF THE FATIGUE BEHAVIOR OF WOOD FIBER CELL WALLS

    Directory of Open Access Journals (Sweden)

    Phichit Somboon

    2008-11-01

    Full Text Available The fatigue behavior of the wood fiber cell wall under mechanical treatment in refining was simulated dynamically using a finite element method. The effect of the amplitude and frequency of impacts on the mechanical breakdown of the fiber wall structure was examined. The proposed model of the fiber cell wall was constructed from elementary microfibrils in various orientations embedded in isotropic lignin. The fatigue of the cell wall was simulated under normal refiner mechanical pulping conditions. A cyclic load was applied on the model fiber through a hemispherical grit proposed to be applied on the surface on refiner segments. Changes in the elastic modulus of the cell wall were analyzed to determine the potential for cell wall breakdown. An increase in the amplitude of applied forces and frequency of impacts was found to have a significant influence on the reduction of the elastic modulus of the wall structure. A high frequency of impacts increased the stiffness of the cell wall, but resulted in faster reduction of the elastic modulus. At a lower amplitude of impacts, efficient breakdown of the cell wall using grits was achieved with a high frequency of impacts or a high rotational speed of refiners.

  2. Primary abdominal wall clear cell carcinoma arising from incisional endometriosis

    Institute of Scientific and Technical Information of China (English)

    Burcu Gundogdu; Isin Ureyen; Gunsu Kimyon; Hakan Turan; Nurettin Boran; Gokhan Tulunay; Dilek Bulbul; Taner Turan; M Faruk Kose

    2013-01-01

    A 49 year-old patient with the complaint of a mass located in the caesarean scar was admitted. There was a fixed mass 30í30 mm in diameter with regular contour located at the right corner of the pfannenstiel incision. Computed tomography revealed a (40í50í50) mm solid mass lesion with margins that cannot be distinguished from the uterus, bladder and small intestines and a heterogeneous mass lesion (50í45í55) mm in diameter, located in the right side of the anterior abdominal wall. Cytoreductive surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed. Final pathology was clear cell carcinoma. Clear cell carcinoma arising from an extraovarian endometriotic focus was diagnosed and the patient received 6 cycles paclitaxel-carboplatin chemotherapy as adjuvant treatment. The patient who was lost to follow-up applied to our clinic 2 years after surgery with a recurrent mass in the left inguinal region. After 3 cycles of chemotherapy, the patient's tumoral mass in the left inguinal region was excised. The result of the pathology was carcinoma metastasis. It is decided that the following treatment of the patient should be palliative radiation therapy. The patient who underwent palliative radiation therapy died of disease after 4 months of the second operation.

  3. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief; I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of peptidoglycan

  4. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  5. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis.

    Directory of Open Access Journals (Sweden)

    Élise Caliot

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.

  6. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation.

    Science.gov (United States)

    Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice

    2015-12-01

    Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.

  7. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    Science.gov (United States)

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments. PMID:20532796

  8. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    Directory of Open Access Journals (Sweden)

    Pedersen Henriette L

    2008-05-01

    Full Text Available Abstract Background Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Results Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15 to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. Conclusion These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell

  9. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    OpenAIRE

    Malvar, Rosa A.; Rogelio Santiago; Jaime Barros-Rios

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among t...

  10. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    DEFF Research Database (Denmark)

    Marriott, Poppy E; Sibout, Richard; Lapierre, Catherine;

    2014-01-01

    Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce ...

  11. Brucella abortus Cyclic β-1,2-Glucan Mutants Have Reduced Virulence in Mice and Are Defective in Intracellular Replication in HeLa Cells

    OpenAIRE

    Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; VIGLIOCCO, ANA; Paulo, Patricia Silva; Ugalde, Rodolfo A.

    2001-01-01

    Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abort...

  12. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  13. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  14. An internal ribosome entry site (IRES mutant library for tuning expression level of multiple genes in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Esther Y C Koh

    Full Text Available A set of mutated Encephalomyocarditis virus (EMCV internal ribosome entry site (IRES elements with varying strengths is generated by mutating the translation initiation codons of 10(th, 11(th, and 12(th AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells.

  15. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  16. Growth inhibition of BEL-7404 human hepatoma cells by expression of mutant telomerase reverse transcriptase.

    Science.gov (United States)

    Zhang, Rugang; Wang, Xingwang; Guo, Lixia; Xie, Hong

    2002-01-10

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies in Asia and Africa. Human telomerase reverse transcriptase (hTERT) is expressed in HCC but absent in normal human liver cells, which is consistent with the expression pattern of telomerase. In the present study, expression of a dominant-negative form of hTERT (DN-hTERT) resulted in inhibition of telomerase activity and decreased mean telomeric length of BEL-7404 human hepatoma cells, whereas expression of wild-type hTERT (WT-hTERT) and control vector had no such effects. Cell growth was inhibited by this mutant (DN-hTERT), which was consistent with the changes in telomerase level. Flattened large cells were found in late generations with the DN-hTERT treatment. When mean telomeric length of DN-hTERT-transfected cells reached a critical length (about 1.7 kb), apoptosis was induced. Tumorigenicity of DN-hTERT-expressing cells was eliminated in vivo. These data indicated that hTERT was essential for the growth of hepatoma cells. hTERT can also be used as an important target for anti-HCC drug screening. PMID:11774261

  17. Cell wall growth during elongation and division : one ring to bind them?

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan

    2007-01-01

    The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. Elsewhere, compelling evidence is provided that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis

  18. Detection of 2 immunoreactive antigens in the cell wall of Sporothrix brasiliensis and Sporothrix globosa.

    Science.gov (United States)

    Ruiz-Baca, Estela; Hernández-Mendoza, Gustavo; Cuéllar-Cruz, Mayra; Toriello, Conchita; López-Romero, Everardo; Gutiérrez-Sánchez, Gerardo

    2014-07-01

    The cell wall of members of the Sporothrix schenckii complex contains highly antigenic molecules which are potentially useful for the diagnosis and treatment of sporotrichosis. In this study, 2 immunoreactive antigens of 60 (Gp60) and 70 kDa (Gp70) were detected in the cell wall of the yeast morphotypes of Sporothrix brasiliensis and Sporothrix globosa.

  19. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra;

    2016-01-01

    strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically...

  20. CONSTITUTIVE MELANIN IN THE CELL WALL OF THE ETIOLOGIC AGENT OF LOBO'S DISEASE

    Directory of Open Access Journals (Sweden)

    TABORDA Valeria B.A.

    1999-01-01

    Full Text Available Lobo's disease is a chronic granulomatous disease caused by the obligate pathogenic fungus, whose cell walls contain constitutive melanin. In contrast, melanin does not occur in the cell walls of Paracoccidioides brasiliensis when stained by the Fontana-Masson stain.

  1. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  2. Structure of Plant Cell Walls : XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides.

    Science.gov (United States)

    Ishii, T; Thomas, J; Darvill, A; Albersheim, P

    1989-02-01

    Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-alpha-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-alpha-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na(2)CO(3) at 1 and 22 degrees C. These previously uncharacterized polysaccharides accounted for approximately 4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO(3)-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na(2)CO(3) at 1 degrees C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.

  3. Adenomatous polyposis coli mutants dominantly activate Hsf1-dependent cell stress pathways through inhibition of microtubule dynamics

    OpenAIRE

    Davies, Alexander E.; Kortright, Kaitlyn; Kaplan, Kenneth B.

    2015-01-01

    Cancer cells up-regulate cell stress pathways, including the protein chaperone Hsp90. Increases in Hsp90 are believed “buffer” mutant protein activities necessary for cancer phenotypes. Activation of the cell stress pathway also alters the transcriptional landscape of cells in ways that are critical for cancer progression. However, it is unclear when and how the cell stress pathway is de-regulated during cancer progression. Here we report that mutations in adenomatous polyposis coli (APC) fou...

  4. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease.

    Directory of Open Access Journals (Sweden)

    Takeshi Satoh

    Full Text Available BACKGROUND: Langerhans cell histiocytosis (LCH features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or 'LCH cells'. Badalian-Very et al. recently reported the presence of a canonical (V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. METHODS AND RESULTS: Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using 'next generation' pyrosequencing. In 9 cases the mutation identified was (V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic (600DLATB-RAF insertion mimicked the structural and functional consequences of the (V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The (600DLATB-RAF and (V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%-2% relative mutation abundance. A novel germ line (T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, (T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. CONCLUSIONS: Our data confirmed presence of the (V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that (V600EB-RAF and (600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a(+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line (T599AB-RAF allele.

  5. Multiangle light scattering flow photometry of cultured human fibroblasts: comparison of normal cells with a mutant line containing cytoplasmic inclusions.

    Science.gov (United States)

    Schafer, I A; Jamieson, A M; Petrelli, M; Price, B J; Salzman, G C

    1979-01-01

    Multi-angle light scattering flow photometry was used to study the light scattering properties of normal cultured fibroblasts and a mutant fibroblast line containing cytoplasmic lysosomal inclusions. The effect of glutaraldehyde fixation on the light scattering properties of the cells was also examined and correlated with their ultrastructure. Normal fibroblasts showed uniform organelle distribution with few vacuoles or dense bodies in the cytoplasm while the mutant line showed abnormal cytoplasmic inclusions of varying morphology, density and lucency. As predicted by light scattering theory, the mutant cells containing the cytoplasmic inclusions scattered more light at large angles (greater than theta = 1.85 degrees) than did the normal cells. Glutaraldehyde fixation decreased light scattering at small angles (less than theta = 1.85 degrees), increased light scattering at larger angles (greater than theta = 1.85 degrees) in both normal and mutant cells and enhanced resolution of the light scattering signatures. The mutant line scattered 2-3 times more light at a wide angle (greater than theta = 12.74 degrees) than did the normal cells. These data suggest that abnormal lysosomal storage inclusion bodies in the cytoplasm of the cells can be detected by differential light scattering methods.

  6. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice

    OpenAIRE

    Yamanaka, Koji; Boillee, Severine; Roberts, Elizabeth A.; Garcia, Michael L.; McAlonis-Downes, Melissa; Mikse, Oliver R.; Cleveland, Don W.; Lawrence S B Goldstein

    2008-01-01

    Dominant mutations in ubiquitously expressed superoxide dismutase (SOD1) cause familial ALS by provoking premature death of adult motor neurons. To test whether mutant damage to cell types beyond motor neurons is required for the onset of motor neuron disease, we generated chimeric mice in which all motor neurons and oligodendrocytes expressed mutant SOD1 at a level sufficient to cause fatal, early-onset motor neuron disease when expressed ubiquitously, but did so in a cellular environment co...

  7. Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells

    OpenAIRE

    Wang, Fei; Liu, Jianfeng; Robbins, Delira; Morris, Kerri; Sit, Amos; Liu, Yong-Yu; Zhao, Yunfeng

    2011-01-01

    Increasing evidence has shown that a fraction of the wild-type (wt) form of the tumor suppressor p53, can translocate to mitochondria due to genotoxic stress. The mitochondrial targets of wt p53 have also been studied. However, whether mutant p53, which exists in 50% of human cancers, translocates to mitochondria and affects mitochondrial functions is unclear. In this study, we used doxorubicin, a chemotherapeutic drug, to treat five human lymphoma cell lines with wt, mutant or deficient in p...

  8. Trans-Golgi Network-An Intersection of Trafficking Cell Wall Components

    Institute of Scientific and Technical Information of China (English)

    Natasha Worden; Eunsook Park; Georgia Drakakaki

    2012-01-01

    The cell wall,a crucial cell compartment,is composed of a network of polysaccharides and proteins,providing structural support and protection from external stimuli.While the cell wall structure and biosynthesis have been extensively studied,very little is known about the transport of polysaccharides and other components into the developing cell wall.This review focuses on endomembrane trafficking pathways involved in cell wall deposition.Cellulose synthase complexes are assembled in the Golgi,and are transported in vesicles to the plasma membrane.Non-cellulosic polysaccharides are synthesized in the Golgi apparatus,whereas cellulose is produced by enzyme complexes at the plasma membrane.Polvsaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however,the precise mechanisms involved in selection,sorting and delivery remain to be identified.The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate.However,the nature of these vesicles,their membrane compositions,and the timing of their delivery are largely unknown.Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.

  9. Structure of the cell wall of mango after application of ionizing radiation

    International Nuclear Information System (INIS)

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane. - Highlights: ► Mesocarp cells were analyzed by Transmission Electron Microscope—TEM. ► No change in cell wall structure, middle lamella and plasma membrane was found in fruits immediately after irradiation. ► Changes in cell wall structure, middle lamella and plasma membrane happened after storage. ► Fruits subjected to 0.5 kGy showed smaller cell wall change.

  10. The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zakir Hossain

    Full Text Available The eukaryotic translation elongation factor eEF-1Bβ1 (EF1Bβ is a guanine nucleotide exchange factor that plays an important role in translation elongation. In this study, we show that the EF1Bβ protein is localized in the plasma membrane and cytoplasm, and that the transcripts should be expressed in most tissue types in seedlings. Sectioning of the inflorescence stem revealed that EF1Bβ predominantly localizes to the xylem vessels and in the interfascicular cambium. EF1Bβ gene silencing in efβ caused a dwarf phenotype with 38% and 20% reduction in total lignin and crystalline cellulose, respectively. This loss-of-function mutant also had a lower S/G lignin monomer ratio relative to wild type plants, but no changes were detected in a gain-of-function mutant transformed with the EF1Bβ gene. Histochemical analysis showed a reduced vascular apparatus, including smaller xylem vessels in the inflorescence stem of the loss-of-function mutant. Over-expression of EF1Bβ in an eli1 mutant background restored a WT phenotype and abolished ectopic lignin deposition as well as cell expansion defects in the mutant. Taken together, these data strongly suggest a role for EF1Bβ in plant development and cell wall formation in Arabidopsis.

  11. Clinostation influence on regeneration of cell wall in Solanum Tuberosum L. protoplasts

    Science.gov (United States)

    Nedukha, Elena M.; Sidorov, V. A.; Samoylov, V. M.

    1994-08-01

    Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in an regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.

  12. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    Science.gov (United States)

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions

  13. [Transfer of T-DNA from agrobacteria into plant cells through cell walls and membranes].

    Science.gov (United States)

    Chumakov, M I

    2001-01-01

    Discusses probable routes of agrobacterial penetration through the plant integumental tissues, cell wall, and plant cell plasmodesma. Analyzes the contribution of extracellular structures of agrobacteria in penetration through barriers of a plant cell, primary contact (adhesion), and during DNA transfer from bacterial (E. coli, A. tumefaciens) to recipient (bacterial or plant) cells. Discusses the relationship between donor cell adhesion to recipient cell surface and the infectious and conjugation processes. Considers the probable role of piles in conjugative transfer of agrobacterial DNA through membranes of donor and recipient (bacterial and plant) cells. Analyzes the contribution of the plant cell cytoskeleton to T-DNA transfer. Suggests a model of transport of T-DNA-VirD2 complex and VirE2 proteins through independent channels consisting of vir-coded proteins. PMID:11236737

  14. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Directory of Open Access Journals (Sweden)

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  15. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  16. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  17. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    OpenAIRE

    Jamet Elisabeth; Pont-Lezica Rafael; Borderies Gisèle; Canut Hervé; Irshad Muhammad

    2008-01-01

    Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after g...

  18. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    Science.gov (United States)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  19. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    Science.gov (United States)

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process.

  20. Isolation and partial characterisation of a mammalian cell mutant hypersensitive to topoisomerase II inhibitors and X-rays

    International Nuclear Information System (INIS)

    The authors have isolated, following one-step mutagenesis, a Chinese hamster ovary cell mutant hypersensitive to the intercalating agent, adriamycin. This agent exerts at least part of its cytotoxic action via inhibition of the nuclear enzyme, topoisomerase II. The mutant, designated ADR-3, showed hypersensitivity to all classes of topoisomerase II inhibitors, inlcuding actinomycin D, amsacrine (m-AMSA), etoposide (VP16) and mitoxantrone. ADR-3 cells also showed cross-sensitivity to ionizing radiation, but not no UV light. Topoisomerase II activity was elevated to a small but significant degree in ADR-3 cells, and this was reflected in a 1.5-fold higher level of topoisomerase II protein in ADR-3 than in CHO-K1 cells, as judged by Western blotting. ADR-3 cells were hypersensitive to cumene hydroperoxide but cross-resistant to hydrogen peroxide, suggesting possible abnormality in the detoxification of peroxides by glutathione peroxidase or catalase. Glutathione peroxidase activity against hydroperoxide was elevated to a small but significant extent in mutant cells. Catalase levels were not significantly different in ADR-3 and CHO-K1 cells. ADR-3 cells were recessive in hybrids with parental CHO-K1 cells with respect to sensitivity to topoisomerase II inhibitors and X-rays, and represent a different genetic complementation group from the previously reported adriamycin-sensitive mutant, ADR-1. (author). 34 refs.; 5 figs.; 3 tabs

  1. B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease

    Science.gov (United States)

    Lu, Hui-chun; Mian, Sophie; Trouillet, Celine; Mufti, Ghulam; Emile, Jean-Francois; Fraternali, Franca; Donadieu, Jean; Geissmann, Frederic

    2012-01-01

    Background Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or ‘LCH cells’. Badalian-Very et al. recently reported the presence of a canonical V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. Methods and Results Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using ‘next generation’ pyrosequencing. In 9 cases the mutation identified was V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic 600DLATB-RAF insertion mimicked the structural and functional consequences of the V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The 600DLATB-RAF and V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%–2% relative mutation abundance. A novel germ line T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. Conclusions Our data confirmed presence of the V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that V600EB-RAF and 600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line T599AB-RAF allele. PMID:22506009

  2. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI frequently occur together in tumor cells.

    Directory of Open Access Journals (Sweden)

    Junichi Soh

    Full Text Available BACKGROUND: Activating mutations in one allele of an oncogene (heterozygous mutations are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI has been observed in tumors and cell lines harboring mutations of oncogenes. METHODOLOGY/PRINCIPAL FINDINGS: We determined 1 mutational status, 2 copy number gains (CNGs and 3 relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20% in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1 MASI with CNG, either complete or partial; and 2 MASI without CNG (uniparental disomy; UPD, due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75% and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%, was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival. CONCLUSIONS: MASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.

  3. Identification of the cell wall receptor for Candida nodaensis Killer toxin

    OpenAIRE

    Silva, Sónia Carina; Aguiar, Cristina; Veríssimo, P.; Pires, E.; Lucas, Cândida

    2004-01-01

    Comunicação efectuada no XIV Congresso Nacional de Bioquímica em Vilamoura (Portugal), 2004. The biological action of the K toxins involves a first step in the killing process, which correspond to the adsorption the toxin to the cell wall of sensitive cells. Here we describe the work performed towards the identification of the cell wall receptor for the zymocin under this study. For this purpose, the main cell wall components of the sensitive yeast Pichia guilliermondii were extracted. Th...

  4. Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells.

    Science.gov (United States)

    Moore, P J; Darvill, A G; Albersheim, P; Staehelin, L A

    1986-11-01

    PLANT CELL WALLS SERVE SEVERAL FUNCTIONS: they impart rigidity to the plant, provide a physical and chemical barrier between the cell and its environment, and regulate the size and shape of each cell. Chemical studies have provided information on the biochemical composition of the plant cell walls as well as detailed knowledge of individual cell wall molecules. In contrast, very little is known about the distribution of specific cell wall components around individual cells and throughout tissues. To address this problem, we have produced polyclonal antibodies against two cell wall matrix components; rhamnogalacturonan I (RG-I), a pectic polysaccharide, and xyloglucan (XG), a hemicellulose. By using the antibiodies as specific markers we have been able to localize these polymers on thin sections of suspension-cultured sycamore cells (Acer pseudoplatanus). Our results reveal that each molecule has a unique distribution. XG is localized throughout the entire wall and middle lamella. RG-I is restricted to the middle lamella and is especially evident in the junctions between cells. These observations indicate that plant cell walls may have more distinct chemical (and functional?) domains than previously envisaged.

  5. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    Science.gov (United States)

    Santiago, Rogelio; Barros-Rios, Jaime; Malvar, Rosa A.

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases. PMID:23535334

  6. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    Science.gov (United States)

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  7. Developmental studies on an apparent cell-lethal mutant gene-ut-in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Humphrey, R R; Malacinski, G M; Chung, H M

    1978-04-01

    The discovery of a new mutant gene in stocks of the Mexican axolotl derived from breeding stock of the Hubrecht Laboratory, the Netherlands, is described. The gene appears to be a simple recessive and displays complete penetrance. ut/ut larvae develop normally through hatching, but begin to lag in growth and display characteristics defects in gill and limb formation shortly thereafter. The results of parabiosis of normal and mutant embryos, as well as embryological transplants of mutant limb and branchial rudiments, support the conclusion that the gene ut is expressed as an 'autonomous-cell lethal'. Despite gross morphological defects in ut/ut larvae, comparisons between normal and mutant animals of the protein spectra of various tissues and organs revealed no substantial differences. A subtle change in the metabolism of ut/ut larvae apparently, therefore, leads to developmental arrest.

  8. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    Directory of Open Access Journals (Sweden)

    Jamet Elisabeth

    2008-09-01

    Full Text Available Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins.

  9. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  10. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).

  11. Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation.

    Science.gov (United States)

    Ding, Huihuang H; Cui, Steve W; Goff, H Douglas; Chen, Jie; Guo, Qingbin; Wang, Qi

    2016-10-20

    The structure of ethanol precipitated fraction from 1M KOH extracted flaxseed kernel polysaccharides (KPI-EPF) was studied for better understanding the molecular structures of flaxseed kernel cell wall polysaccharides. Based on methylation/GC-MS, NMR spectroscopy, and MALDI-TOF-MS analysis, the dominate sugar residues of KPI-EPF fraction comprised of (1,4,6)-linked-β-d-glucopyranose (24.1mol%), terminal α-d-xylopyranose (16.2mol%), (1,2)-α-d-linked-xylopyranose (10.7mol%), (1,4)-β-d-linked-glucopyranose (10.7mol%), and terminal β-d-galactopyranose (8.5mol%). KPI-EPF was proposed as xyloglucans: The substitution rate of the backbone is 69.3%; R1 could be T-α-d-Xylp-(1→, or none; R2 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, or T-α-l-Araf-(1→2)-α-d-Xylp-(1→; R3 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, T-α-l-Fucp-(1→2)-β-d-Galp-(1→2)-α-d-Xylp-(1→, or none. The Mw of KPI-EPF was calculated to be 1506kDa by static light scattering (SLS). The structure-sensitive parameter (ρ) of KPI-EPF was calculated as 1.44, which confirmed the highly branched structure of extracted xyloglucans. This new findings on flaxseed kernel xyloglucans will be helpful for understanding its fermentation properties and potential applications. PMID:27474598

  12. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  13. Malignant transformation of ectopic pancreatic cells in the duodenal wall

    Institute of Scientific and Technical Information of China (English)

    Roberto; Bini; Paolo; Voghera; Alberto; Tapparo; Raffaele; Nunziata; Andrea; Demarchi; Matteo; Capocefalo; Renzo; Leli

    2010-01-01

    Ectopic pancreas (EP) is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. This condition is usually asymptomatic and rarely complicated by pancreatitis and malignant transformation. A few cases of neoplastic phenomena that developed from EP into the duodenal wall are described in the literature. Herein we report a case of gastric outlet obstruction due to adenocarcinoma arising from EP of the duodenal wall. The patient underwent a Whipple's procedure and had...

  14. Prevention of lysosomal storage diseases and derivation of mutant stem cell lines by preimplantation genetic diagnosis.

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  15. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Gheona Altarescu

    2012-01-01

    Full Text Available Preimplantation genetic diagnosis (PGD allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD: Tay-Sachs disease (TSD, Gaucher disease (GD, Fabry disease (FD, and Hunter syndrome (HS, and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14, and HS/oculocutaneus albinism. These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research.

  16. Selection of functional T cell receptor mutants from a yeast surface-display library.

    Science.gov (United States)

    Kieke, M C; Shusta, E V; Boder, E T; Teyton, L; Wittrup, K D; Kranz, D M

    1999-05-11

    The heterodimeric alphabeta T cell receptor (TCR) for antigen is the key determinant of T cell specificity. The structure of the TCR is very similar to that of antibodies, but the engineering of TCRs by directed evolution with combinatorial display libraries has not been accomplished to date. Here, we report that yeast surface display of a TCR was achieved only after the mutation of specific variable region residues. These residues are located in two regions of the TCR, at the interface of the alpha- and beta-chains and in the beta-chain framework region that is thought to be in proximity to the CD3 signal-transduction complex. The mutations are encoded naturally in many antibody variable regions, indicating specific functional differences that have not been appreciated between TCRs and antibodies. The identification of these residues provides an explanation for the inherent difficulties in the display of wild-type TCRs compared with antibodies. Yeast-displayed mutant TCRs bind specifically to the peptide/MHC antigen, enabling engineering of soluble T cell receptors as specific T cell antagonists. This strategy of random mutagenesis followed by selection for surface expression may be of general use in the directed evolution of other eukaryotic proteins that are refractory to display.

  17. Evaluation of Chlorella (Chlorophyta) as Source of Fermentable Sugars via Cell Wall Enzymatic Hydrolysis

    OpenAIRE

    Marcoaurélio Almenara Rodrigues; Elba Pinto da Silva Bon

    2011-01-01

    The cell wall of Chlorella is composed of up to 80% carbohydrates including cellulose. In this study, Chlorella homosphaera and Chlorella zofingiensis were evaluated as source of fermentable sugars via their cell wall enzymatic degradation. The algae were cultivated in inorganic medium, collected at the stationary growth phase and centrifuged. The cell pellet was suspended in citrate buffer, pH 4.8 and subjected to 24 hours hydrolysis at 50°C using a cellulases, xylanases, and amylases ble...

  18. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    Science.gov (United States)

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions. PMID:27442340

  19. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model

    OpenAIRE

    Degryse, Sandrine; de Bock, Charles E.; Cox, Luk; Demeyer, Sofie; Gielen, Olga; Mentens, Nicole; Jacobs, Kris; Geerdens, Ellen; Gianfelici, Valentina; Hulselmans, Gert; Fiers, Mark; Aerts, Stein; Meijerink, Jules P.; Tousseyn, Thomas; Cools, Jan

    2014-01-01

    JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transfo...

  20. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death.

    Science.gov (United States)

    Martín-Flores, Núria; Romaní-Aumedes, Joan; Rué, Laura; Canal, Mercè; Sanders, Phil; Straccia, Marco; Allen, Nicholas D; Alberch, Jordi; Canals, Josep M; Pérez-Navarro, Esther; Malagelada, Cristina

    2016-07-01

    RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease. PMID:25876513

  1. 'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

    Science.gov (United States)

    Arroyo, Javier; Farkaš, Vladimír; Sanz, Ana Belén; Cabib, Enrico

    2016-09-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors. PMID:27185288

  2. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  3. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  4. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    Science.gov (United States)

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  5. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    Science.gov (United States)

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies

  6. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    Science.gov (United States)

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  7. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  8. BdCESA7, BdCESA8, and BdPMT utility promoter constructs for targeted expression to secondary cell-wall-forming cells of grasses

    Directory of Open Access Journals (Sweden)

    Deborah ePetrik

    2016-02-01

    Full Text Available Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels in stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames (ORFs into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. The identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels

  9. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    Directory of Open Access Journals (Sweden)

    Carol M Rubin

    Full Text Available Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2 display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC axons to their dorsal lateral geniculate nuclei (dLGNs. Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4, during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1, a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1 and chemokine (C-C motif ligand 21 (Ccl21 mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  10. Mislocalization of prelamin A Tyr646Phe mutant to the nuclear pore complex in human embryonic kidney 293 cells

    International Nuclear Information System (INIS)

    Mature lamin A is formed after post-translational processing of prelamin A, which includes prenylation and carboxymethylation of cysteine 661 in the CaaX motif, followed by two proteolytic cleavages by zinc metalloprotease (ZMPSTE24). We expressed several prelamin A mutants, C661S (defective in prenylation), Y646F (designed to undergo prenylation but not second proteolytic cleavage), double mutant, Y646F/C661S and Y646X (mature lamin A), and the wild-type construct in human embryonic kidney (HEK-293) cells. Only the Y646F mutant co-localized with nuclear pore complex proteins, including Nup53 and Nup98, whereas the other mutants localized to the nuclear envelope rim. The cells expressing Y646F mutant also revealed abnormal nuclear morphology which was partially rescued with the farnesyl transferase inhibitors. These data suggest that the unprenylated prelamin A is not toxic to the cells. The toxicity of prenylated prelamin A may be due to its association and/or accumulation at the nuclear pore complex which could be partially reversed by farnesyl transferase inhibitors

  11. The role of the secondary cell walls in plant resistance to pathogens

    Directory of Open Access Journals (Sweden)

    Eva eMiedes

    2014-08-01

    Full Text Available Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defence mechanisms, and as a source of signalling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodelling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

  12. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies

    NARCIS (Netherlands)

    van Dam, V.; Olrichs, N.K.; Breukink, E.J.

    2009-01-01

    Wall chart: The predominant component of the bacterial cell wall, peptidoglycan, consists of long alternating stretches of aminosugar subunits interlinked in a large three-dimensional network and is formed from precursors through several cytosolic and membrane-bound steps. The high tolerance of the

  13. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen.

    Science.gov (United States)

    Zhang, Chengkang; Wang, Jianqiang; Tao, Hong; Dang, Xie; Wang, Yang; Chen, Miaoping; Zhai, Zhenzhen; Yu, Wenying; Xu, Liping; Shim, Won-Bo; Lu, Guodong; Wang, Zonghua

    2015-01-01

    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a possibly carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane. PMID:26500635

  14. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  15. Improved methods for binding acma-type protein anchor fusions yo cell-wall material of micro-organisms

    NARCIS (Netherlands)

    Leenhouts, Cornelis; Ramasamy, R.; Steen, Anton; Kok, Jan; Buist, Girbe; Kuipers, Oscar

    2002-01-01

    The invention provides a method for improving binding of a proteinaceous substance to cell-wall material of a Gram-positive bacterium, said substance comprising an AcmA cell wall binding domain or homolog or functional derivative thereof, said method comprising treating said cell-wall material with

  16. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility.

    Science.gov (United States)

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  17. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Aymerick Eudes

    2016-07-01

    Full Text Available Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet. In this study, we demonstrate in Arabidopsis stems that targeted expression of S-adenosylmethionine hydrolase (AdoMetase, E.C. 3.3.1.2 in secondary cell-wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H units and a reduction of dimethylated syringyl (S units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

  18. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Science.gov (United States)

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; Lao, Jeemeng; Wang, George; Yogiswara, Sasha; Lee, Taek Soon; Singh, Seema; Mortimer, Jenny C.; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2016-01-01

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock. PMID:27486577

  19. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  20. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.