WorldWideScience

Sample records for cell type specific

  1. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  2. Type-specific cell line models for type-specific ovarian cancer research.

    Directory of Open Access Journals (Sweden)

    Michael S Anglesio

    Full Text Available BACKGROUND: OVARIAN CARCINOMAS CONSIST OF AT LEAST FIVE DISTINCT DISEASES: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. METHODS: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 "ovarian cancer" cell lines has been classified into histotypes using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. RESULTS: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. CONCLUSIONS: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histotype of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic "ovarian carcinoma" cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of

  3. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  4. Investigating Striatal Function through Cell-Type-Specific Manipulations

    OpenAIRE

    Kreitzer, Anatol C.; Berke, Joshua D.

    2011-01-01

    The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons has been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has be...

  5. Cell-type specific four-component hydrogel.

    Science.gov (United States)

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  6. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  7. Cell-Type Specific Four-Component Hydrogel

    OpenAIRE

    Timo Aberle; Katrin Franke; Elke Rist; Karin Benz; Burkhard Schlosshauer

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appr...

  8. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  9. Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization.

    Science.gov (United States)

    Sun, Dayan; Li, Bin; Qiu, Ruyi; Fang, Hezhi; Lyu, Jianxin

    2016-01-01

    Respiratory chain complexes are organized into large supercomplexes among which supercomplex In + IIIn + IVn is the only one that can directly transfer electrons from NADH to oxygen. Recently, it was reported that the formation of supercomplex In + IIIn + IVn in mice largely depends on their genetic background. However, in this study, we showed that the composition of supercomplex In + IIIn + IVn is well conserved in various mouse and human cell lines. Strikingly, we found that a minimal supercomplex In + IIIn, termed "lowest supercomplex" (LSC) in this study because of its migration at the lowest position close to complex V dimers in blue native polyacrylamide gel electrophoresis, was associated with complex IV to form a supercomplex In + IIIn + IVn in some, but not all of the human and mouse cells. In addition, we observed that the 3697G>A mutation in mitochondrial-encoded NADH dehydrogenase 1 (ND1) in one patient with Leigh's disease specifically affected the assembly of supercomplex In + IIIn + IVn containing LSC, leading to decreased cellular respiration and ATP generation. In conclusion, we showed the existence of LSC In + IIIn + IVn and impairment of this supercomplex causes disease. PMID:27338358

  10. The determination of mother cell-specific mating type of switching in yeast by a specific regulator of HO transcription

    OpenAIRE

    Nasmyth, Kim

    1987-01-01

    In haploid homothallic budding yeast, cell division gives rise to a mother cell which proceeds to switch its mating type and a daughter cell (the bud) which does not. Switching is initiated by a specific double strand cleavage of mating type DNA by an endonuclease encoded by the HO gene. Previous data suggest that the pattern of HO transcription is responsible for the mother cell specificity of switching. HO is transcribed transiently, at START, during the cell cycle of mother cells but not a...

  11. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri

    OpenAIRE

    Kianianmomeni, Arash

    2014-01-01

    Background The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. Results In response to different light qualities, distin...

  12. General approach for in vivo recovery of cell type-specific effector gene sets.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Davidson, Eric H

    2014-05-01

    Differentially expressed, cell type-specific effector gene sets hold the key to multiple important problems in biology, from theoretical aspects of developmental gene regulatory networks (GRNs) to various practical applications. Although individual cell types of interest have been recovered by various methods and analyzed, systematic recovery of multiple cell type-specific gene sets from whole developing organisms has remained problematic. Here we describe a general methodology using the sea urchin embryo, a material of choice because of the large-scale GRNs already solved for this model system. This method utilizes the regulatory states expressed by given cells of the embryo to define cell type and includes a fluorescence activated cell sorting (FACS) procedure that results in no perturbation of transcript representation. We have extensively validated the method by spatial and qualitative analyses of the transcriptome expressed in isolated embryonic skeletogenic cells and as a consequence, generated a prototypical cell type-specific transcriptome database.

  13. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  14. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    Directory of Open Access Journals (Sweden)

    Hallmann Armin

    2006-12-01

    Full Text Available Abstract Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes.

  15. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy;

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type...... II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells...

  16. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.

    Science.gov (United States)

    Greulich, C; Diendorf, J; Gessmann, J; Simon, T; Habijan, T; Eggeler, G; Schildhauer, T A; Epple, M; Köller, M

    2011-09-01

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.

  17. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    OpenAIRE

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinati...

  18. Induction of delayed-type hypersensitivity by the T cell line specific to bacterial peptidoglycans

    International Nuclear Information System (INIS)

    A T cell line specific for the chemically well-defined peptidoglycan of bacterial cell wall, disaccharide tetrapeptide, was established from Lewis rats immunized with the antigen covalently linked to the autologous rat serum albumin. The antigen specificity was examined with various analogues or derivatives of the peptidoglycan. The cell line was reactive to analogues with the COOH-terminal D-amino acid, but least reactive to those with L-amino acid as COOH terminus. Transferring of the T cell line into X-irradiated normal Lewis rats induced delayed-type hypersensitivity in an antigen specific manner

  19. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling.

    Directory of Open Access Journals (Sweden)

    Anke Müller

    Full Text Available The ability of the nervous system to undergo long-term plasticity is based on changes in cellular and synaptic proteomes. While many studies have explored dynamic alterations in neuronal proteomes during plasticity, there has been less attention paid to the astrocytic counterpart. Indeed, progress in identifying cell type-specific proteomes is limited owing to technical difficulties. Here, we present a cell type-specific metabolic tagging technique for a mammalian coculture model based on the bioorthogonal amino acid azidonorleucine and the mutated Mus musculus methionyl-tRNA synthetaseL274G enabling azidonorleucine introduction into de novo synthesized proteins. Azidonorleucine incorporation resulted in cell type-specific protein labeling and retained neuronal or astrocytic cell viability. Furthermore, we were able to label astrocytic de novo synthesized proteins and identified both Connexin-43 and 60S ribosomal protein L10a upregulated upon treatment with Brain-derived neurotrophic factor in astrocytes of a neuron-glia coculture. Taken together, we demonstrate the successful dissociation of astrocytic from neuronal proteomes by cell type-specific metabolic labeling offering new possibilities for the analyses of cell type-specific proteome dynamics.

  20. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  1. Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis.

    Science.gov (United States)

    Martí, María C; Stancombe, Matthew A; Webb, Alex A R

    2013-10-01

    Appropriate stimulus-response coupling requires that each signal induces a characteristic response, distinct from that induced by other signals, and that there is the potential for individual signals to initiate different downstream responses dependent on cell type. How such specificity is encoded in plant signaling is not known. One possibility is that information is encoded in signal transduction pathways to ensure stimulus- and cell type-specific responses. The calcium ion acts as a second messenger in response to mechanical stimulation, hydrogen peroxide, NaCl, and cold in plants and also in circadian timing. We use GAL4 transactivation of aequorin in enhancer trap lines of Arabidopsis (Arabidopsis thaliana) to test the hypothesis that stimulus- and cell-specific information can be encoded in the pattern of dynamic alterations in the concentration of intracellular free Ca(2+) ([Ca(2+)]i). We demonstrate that mechanically induced increases in [Ca(2+)]i are largely restricted to the epidermal pavement cells of leaves, that NaCl induces oscillatory [Ca(2+)]i signals in spongy mesophyll and vascular bundle cells, but not other cell types, and detect circadian rhythms of [Ca(2+)]i only in the spongy mesophyll. We demonstrate stimulus-specific [Ca(2+)]i dynamics in response to touch, cold, and hydrogen peroxide, which in the case of the latter two signals are common to all cell types tested. GAL4 transactivation of aequorin in specific leaf cell types has allowed us to bypass the technical limitations associated with fluorescent Ca(2+) reporter dyes in chlorophyll-containing tissues to identify the cell- and stimulus-specific complexity of [Ca(2+)]i dynamics in leaves of Arabidopsis and to determine from which tissues stress- and circadian-regulated [Ca(2+)]i signals arise.

  2. Direct conversion of C. elegans germ cells into specific neuron types

    OpenAIRE

    Tursun, Baris; Patel, Tulsi; Kratsios, Paschalis; Hobert, Oliver

    2010-01-01

    The ability of transcription factors to directly reprogram the identity of cell types is usually restricted and is defined by cellular context. We show here that through ectopic expression of single C. elegans transcription factors, the identity of mitotic germ cells can be directly converted into that of specific neuron types (glutamatergic, cholinergic or GABAergic). This reprogramming event requires the removal of the histone chaperone LIN-53/RbAp48, a component of several histone remodeli...

  3. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  4. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  5. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  6. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Science.gov (United States)

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  7. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  8. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  9. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser;

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume....... Combining results from these techniques allows determination of the cell-type-specific gene-expression patterns of many genes during spermatogenesis. Differential display was used to determine expression profiles with high sensitivity and independent of prior knowledge of the sequence, whereas DNA arrays...... quickly assess the expression profiles of all the genes. This identified three groups of gene-expression profiles. The major group corresponds to genes that are upregulated in spermatocytes during either the mid- or late- pachytene phase of spermatogenesis (stages VII-XI). This pachytene cluster...

  10. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    Science.gov (United States)

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  11. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Science.gov (United States)

    Merkle, Ruth; Steiert, Bernhard; Salopiata, Florian; Depner, Sofia; Raue, Andreas; Iwamoto, Nao; Schelker, Max; Hass, Helge; Wäsch, Marvin; Böhm, Martin E; Mücke, Oliver; Lipka, Daniel B; Plass, Christoph; Lehmann, Wolf D; Kreutz, Clemens; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2016-08-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  12. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Science.gov (United States)

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  13. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  14. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik;

    2009-01-01

    protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet......Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser...... microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining...

  15. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  16. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia.

    Science.gov (United States)

    Bae, Young-Kyung; Qin, Hongmin; Knobel, Karla M; Hu, Jinghua; Rosenbaum, Joel L; Barr, Maureen M

    2006-10-01

    Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions. PMID:16943275

  17. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  18. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  19. Specific inhibition of secreted NRG1 types I-II by heparin enhances Schwann Cell myelination.

    Science.gov (United States)

    Eshed-Eisenbach, Yael; Gordon, Aaron; Sukhanov, Natalya; Peles, Elior

    2016-07-01

    Primary cultures of mixed neuron and Schwann cells prepared from dorsal root ganglia (DRG) are extensively used as a model to study myelination. These dissociated DRG cultures have the particular advantage of bypassing the difficulty in purifying mouse Schwann cells, which is often required when using mutant mice. However, the drawback of this experimental system is that it yields low amounts of myelin. Here we report a simple and efficient method to enhance myelination in vitro. We show that the addition of heparin or low molecular weight heparin to mixed DRG cultures markedly increases Schwann cells myelination. The myelin promoting activity of heparin results from specific inhibition of the soluble immunoglobulin (Ig)-containing isoforms of neuregulin 1 (i.e., NRG1 types I and II) that negatively regulates myelination. Heparin supplement provides a robust and reproducible method to increase myelination in a simple and commonly used culture system. GLIA 2016;64:1227-1234. PMID:27143444

  20. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  1. Ligation-free ribosome profiling of cell type-specific translation in the brain.

    Science.gov (United States)

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome profiling to mouse brain tissue to identify new patterns of cell type-specific translation and test its ability to identify translational targets of mTOR signaling in the brain.

  2. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  3. Type I interferon suppresses virus-specific B cell responses by modulating CD8+ T cell differentiation

    Science.gov (United States)

    Moseman, E. Ashley; Wu, Tuoqi; de la Torre, Juan Carlos; Schwartzberg, Pamela L.; McGavern, Dorian B.

    2016-01-01

    Studies have established a role for T cells in resolving persistent viral infections, yet emerging evidence indicates that both T and B cells are required to control some viruses. During persistent infection, a marked lag or failure to generate neutralizing antibodies is commonly observed and likely contributes to an inability to control certain pathogens. Using lymphocytic choriomeningitis virus (LCMV) as a model, we have examined how a persistent viral infection can suppress neutralizing humoral immunity. By tracking the fate of virus-specific B cells in vivo, we report that LCMV-specific B cells were rapidly deleted within a few days of persistent infection, and this deletion was completely reversed by blockade of type I interferon (IFN-I) signaling. Early interference with IFN-I signaling promoted survival and differentiation of LCMV-specific B cells, which accelerated the generation of neutralizing antibodies. This marked improvement in antiviral humoral immunity did not rely on the cessation of IFN-I signaling in B cells but on alterations in the virus-specific CD8+ T cell response. Using two-photon microscopy and in vivo calcium imaging, we observed that cytotoxic T lymphocytes (CTLs) productively engaged and killed LCMV-specific B cells in a perforin-dependent manner within the first few days of infection. Blockade of IFN-I signaling protected LCMV-specific B cells by promoting CTL dysfunction. Therapeutic manipulation of this pathway may facilitate efforts to promote humoral immunity during persistent viral infection in humans. Our findings illustrate how events that occur early after infection can disturb the resultant adaptive response and contribute to viral persistence.

  4. Species- and cell type-specific interactions between CD47 and human SIRPalpha.

    Science.gov (United States)

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T; Discher, Dennis E

    2006-03-15

    CD47 on red blood cells (RBCs) reportedly signals "self" by binding SIRPalpha on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPalpha1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPalpha1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPalpha-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPalpha1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPalpha1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPalpha1 significantly. The results thus demonstrate that SIRPalpha-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity.

  5. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  6. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Science.gov (United States)

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. PMID:26624996

  7. Defining cell-type specificity at the transcriptional level in human disease

    OpenAIRE

    Ju, Wenjun; Greene, Casey S; Eichinger, Felix; Nair, Viji; Hodgin, Jeffrey B.; Bitzer, Markus; Lee, Young-Suk; Zhu, Qian; Kehata, Masami; Li, Min; Jiang, Song; Rastaldi, Maria Pia; Cohen, Clemens D; Troyanskaya, Olga G.; Kretzler, Matthias

    2013-01-01

    Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approa...

  8. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  9. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Science.gov (United States)

    Gusev, Alexander; Lee, S. Hong; Trynka, Gosia; Finucane, Hilary; Vilhjálmsson, Bjarni J.; Xu, Han; Zang, Chongzhi; Ripke, Stephan; Bulik-Sullivan, Brendan; Stahl, Eli; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T.R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Børglum, Anders D.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C.K.; Chen, Ronald Y.L.; Chen, Eric Y.H.; Cheng, Wei; Cheung, Eric F.C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodrguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; Grove, Jakob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lnnqvist, Jouko; Macek, Milan; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C.A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Sderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease. PMID:25439723

  10. Mosaic Analysis with Double Markers Reveals Cell-Type-Specific Paternal Growth Dominance

    Directory of Open Access Journals (Sweden)

    Simon Hippenmeyer

    2013-03-01

    Full Text Available Genomic imprinting leads to preferred expression of either the maternal or paternal alleles of a subset of genes. Imprinting is essential for mammalian development, and its deregulation causes many diseases. However, the functional relevance of imprinting at the cellular level is poorly understood for most imprinted genes. We used mosaic analysis with double markers (MADM in mice to create uniparental disomies (UPDs and to visualize imprinting effects with single-cell resolution. Although chromosome 12 UPD did not produce detectable phenotypes, chromosome 7 UPD caused highly significant paternal growth dominance in the liver and lung, but not in the brain or heart. A single gene on chromosome 7, encoding the secreted insulin-like growth factor 2 (IGF2, accounts for most of the paternal dominance effect. Mosaic analyses implied additional imprinted loci on chromosome 7 acting cell autonomously to transmit the IGF2 signal. Our study reveals chromosome- and cell-type specificity of genomic imprinting effects.

  11. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  12. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  13. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain.

    Science.gov (United States)

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  14. DETECTION OF E6, E7 AND CELL-TYPE SPECIFIC ENHANCER OF HUMAN PAPILLOMAVIRUS TYPE 16 IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; CHU Yong-lie; JIA Xiao-li; ZHANG Shu-qun; LIU Wen-kang

    2008-01-01

    Objective To detect HPV16 E6, E7 genes and cell-type specific enhancer (CTSE) of long control region (LCR) in breast carcinoma (BC).Methods HPV16 E6,E7 genes and CTSE were detected in 40 BCs and 20 normal breast tissue (NBT) using polymerase chain reaction (PCR).Results The positive rates of HPV16 E6, E7genes and CTSE were 60% (24/40),55% (22/40) and 67.5%(27/40)respectively in BCs, whereas only 5% (1/20), 5%(1/20) and 15% (3/20) in NBTs (P<0.05). There exited significant correlation between E6 gene and CTSE in BCs (P<0.05), as well as E7 gene and CTSE. The infection of HPV16 E6, E7 and CTSE had no statistic relationship with pathological features.Conclusion There were HPV16 E6, E7 genes and CTSE together in BCs and CTSE may play an important role in pathogenesis of BC.

  15. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  16. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    Science.gov (United States)

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  17. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  18. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  19. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    OpenAIRE

    Si Brask Sonne; Dalgaard, Marlene D; John Erik Nielsen; Hoei-Hansen, Christina E.; Ewa Rajpert-De Meyts; Lise Mette Gjerdrum; Henrik Leffers

    2009-01-01

    Udgivelsesdato: May 2009 Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining...

  20. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    OpenAIRE

    Tang, Jonathan C. Y.; Rudolph, Stephanie; Dhande, Onkar S.; Abraira, Victoria E.; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R.; Drokhlyansky, Eugene; Huberman, Andrew D.; Regehr, Wade G.; Cepko, Constance L.

    2015-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation...

  1. Specific residues of the GDP/GTP exchange factor Bud5p are involved in establishment of the cell type-specific budding pattern in yeast.

    Science.gov (United States)

    Kang, Pil Jung; Lee, Bongyong; Park, Hay-Oak

    2004-07-01

    Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues. PMID:15136576

  2. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Nguyen, Amanda Q; Dela Cruz, Julie A D; Sun, Yanjun; Holmes, Todd C; Xu, Xiangmin

    2016-08-15

    The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc. PMID:26718312

  3. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  4. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects

    Directory of Open Access Journals (Sweden)

    Ho Jennifer

    2012-07-01

    Full Text Available Abstract Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.

  5. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin

    OpenAIRE

    Attari, Fatemeh; Zahmatkesh, Maryam; Aligholi, Hadi; Mehr, Shahram Ejtemaei; Sharifzadeh, Mohammad; Gorji, Ali; Mokhtari, Tahmineh; Khaksarian, Mojtaba; Hassanzadeh, Gholamreza

    2015-01-01

    Background The beneficial effects of curcumin which includes its antioxidant, anti-inflammatory and cancer chemo-preventive properties have been identified. Little information is available regarding the optimal dose and treatment periods of curcumin on the proliferation rate of different sources of stem cells. Methods In this study, the effect of various concentrations of curcumin on the survival and proliferation of two types of outstanding stem cells which includes bone marrow stem cells (B...

  6. Effect of Diffusion on the Autoradiographic Measurement of Macromolecular Synthesis in Specific Cell Types In Vitro

    International Nuclear Information System (INIS)

    Organ slices cultured in vitro lack a capillary circulation. Cells within the slice are supplied with nutrients and oxygen by diffusion from the culture medium into the slice. The rate of synthesis of macromolecules, e.g. ribonucleic acid, deoxyribonucleic acid, protein or mucopolysaccharide can be determined in these circumstances by adding labelled precursors to the culture medium. Comparisons of the rate of synthesis between different types of cell within a single organ slice or between different slices can be quantitated by autoradiography and grain counting only if the concentration of labelled precursor in tissue water is uniform throughout all the slices. To achieve this aim the precursor should rapidly saturate the tissue water at the beginning of the incubation period, and subsequently diffusion into the slice should keep pace with consumption of the precursor by the cells. Experimental methods to measure the relevant parameters of any organ slice and precursor combination will be described. These parameters are the diffusion coefficient of the precursor in the organ slice, the rate of consumption of the precursor by each cell type, and the frequency and distribution of tissue within the slice. The relation between precursor concentration and position within the slice can be calculated under differing culture conditions, using the appropriate mathematical model. It is then possible to choose those conditions which give a uniform concentration of precursor throughout the organ slice. The methods are illustrated by consideration of ribonucleic acid synthesis from 3H-uridine in full thickness slices of human skin, an organ which contains several tissues including epidermis, hair follicle, eccrine sweat gland and sebaceous gland. (author)

  7. Comparison of the pathogen species-specific immune response in udder derived cell types and their models.

    Science.gov (United States)

    Günther, Juliane; Koy, Mirja; Berthold, Anne; Schuberth, Hans-Joachim; Seyfert, Hans-Martin

    2016-01-01

    The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram-negative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram-positive pathogens, such as Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune competent cells residing in the udder governs the pathogen species-specific physiology of mastitis and which established cell lines might provide suitable models. We therefore profiled the pathogen species-specific immune response of different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), mammary derived fibroblasts (pbMFC), and bovine monocyte-derived macrophages (boMdM) were challenged with heat-killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the response of established models for MEC (bovine MAC-T) and macrophages (murine RAW 264.7). Only E. coli provoked a full scale immune reaction in pbMEC, fibroblasts and MAC-T cells, as indicated by induced cytokine and chemokine expression and NF-κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens accompanied by strong activation of NF-κB factors. Hence, the established cell models MAC-T and RAW 264.7 properly reflected key aspects of the pathogen species-specific immune response of the respective parental cell type. Our data imply that the pathogen species-specific physiology of mastitis likely relates to the respective response of MEC rather to that of professional immune cells. PMID:26830914

  8. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  9. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  10. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells.

    Directory of Open Access Journals (Sweden)

    Jaclyn C Scott

    Full Text Available The exogenous RNA interference (RNAi pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (siRNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2 cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.

  11. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  12. Regulation of delayed-type hypersensitivity: VI. Antigen-specific suppressor T cells and suppressor factor for delayed-type hypersensitivity to histocompatibility antigens

    International Nuclear Information System (INIS)

    Mice develop highly significant levels of delayed-type hypersensitivity (DTH) to major and minor histocompatibility antigens when injected s.c. with lymphoid cells from X-irradiated allogeneic donors. However, when mice are inoculated i.v. with a high dose of X-irradiated allogeneic lymphoid cells, they not only fail to develop DTH to the allogeneic cells, but their ability to respond to an immunogenic challenge of the alloantigens is also significantly depressed. This suppression is adoptively transferable by antigen-specific suppressor T cells and not by immune serum. Cell surface phenotypic analysis shows that the primary suppressor cells for alloantigens are Thy-1+, Lyt-1+2-, and Ia-, whereas the secondary suppressor cells appearing after boosting injection are Thy-+, Lyt-1+2+, and Ia-. These suppressor T (Ts) cells localize in the lymphoid organs shortly after their induction and are largely absent from the spleen or lymph node 1 month later.However, ''suppressor memory'' can be recalled by an immunogenic dose of alloantigens which would normally induce DTH effector cells rather than suppressor cells in naive mice. When the suppressor cells were cultured in vitro for 48 hr, the supernatant contained suppressive activity. It appears likely that the manifestation of the suppressor cells is via soluble, antigen-specific suppressor factor(s), the production of which is dependent on viable T cells

  13. Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2015-01-01

    Full Text Available Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1 receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.

  14. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts.

    Science.gov (United States)

    Plank, Terra-Dawn M; Whitehurst, James T; Kieft, Jeffrey S

    2013-07-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES' function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES' activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3' nucleotides added by alternative splicing. PMID:23661682

  15. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    Science.gov (United States)

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  16. Differential activation of proliferation and cytotoxicity in human T-cell lymphotropic virus type I Tax-specific CD8 T cells by an altered peptide ligand.

    OpenAIRE

    Höllsberg, P; Weber, W E; Dangond, F; Batra, V; Sette, A.; Hafler, D A

    1995-01-01

    Human T-cell leukemia virus type I (HTLV-I) gives rise to a neurologic disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the pathogenesis of the disease is unknown, the presence of a remarkably high frequency of Tax-specific, cytotoxic CD8 T cells may suggest a role of these cells in the development of HAM/TSP. Antigen-mediated signaling in a CD8 T-cell clone specific for the Tax(11-19) peptide of HTLV-I was studied using analog peptides substitute...

  17. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  18. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Science.gov (United States)

    Scharinger, Anja; Eckrich, Stephanie; Vandael, David H.; Schönig, Kai; Koschak, Alexandra; Hecker, Dietmar; Kaur, Gurjot; Lee, Amy; Sah, Anupam; Bartsch, Dusan; Benedetti, Bruno; Lieb, Andreas; Schick, Bernhard; Singewald, Nicolas; Sinnegger-Brauns, Martina J.; Carbone, Emilio; Engel, Jutta; Striessnig, Jörg

    2015-01-01

    Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability. PMID:26379493

  19. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  20. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids.

    Science.gov (United States)

    Kuda, Ondrej; Rombaldova, Martina; Janovska, Petra; Flachs, Pavel; Kopecky, Jan

    2016-01-15

    Mutual interactions between adipocytes and immune cells in white adipose tissue (WAT) are involved in modulation of lipid metabolism in the tissue and also in response to omega-3 polyunsaturated fatty acids (PUFA), which counteract adverse effects of obesity. This complex interplay depends in part on in situ formed anti- as well as pro-inflammatory lipid mediators, but cell types engaged in the synthesis of the specific mediators need to be better characterized. We used tissue fractionation and metabolipidomic analysis to identify cells producing lipid mediators in epididymal WAT of mice fed for 5 weeks obesogenic high-fat diet (lipid content 35% wt/wt), which was supplemented or not by omega-3 PUFA (4.3 mg eicosapentaenoic acid and 14.7 mg docosahexaenoic acid per g of diet). Our results demonstrate selective increase in levels of anti-inflammatory lipid mediators in WAT in response to omega-3, reflecting either their association with adipocytes (endocannabinoid-related N-docosahexaenoylethanolamine) or with stromal vascular cells (pro-resolving lipid mediator protectin D1). In parallel, tissue levels of obesity-associated pro-inflammatory endocannabinoids were suppressed. Moreover, we show that adipose tissue macrophages (ATMs), which could be isolated using magnetic force from the stromal vascular fraction, are not the major producers of protectin D1 and that omega-3 PUFA lowered lipid load in ATMs while promoting their less-inflammatory phenotype. Taken together, these results further document specific roles of various cell types in WAT in control of WAT inflammation and metabolism and they suggest that also other cells but ATMs are engaged in production of pro-resolving lipid mediators in response to omega-3 PUFA.

  1. Dose-dependent and cell type-specific cell death and proliferation following in vitro exposure to radial extracorporeal shock waves.

    Science.gov (United States)

    Hochstrasser, Tanja; Frank, Hans-Georg; Schmitz, Christoph

    2016-01-01

    Radial extracorporeal shock wave (rESW) therapy is widely used in musculoskeletal disorders and wound repair. However, the mechanisms of action are still largely unknown. The current study compared the effects of rESWs on two cell types. Human fetal foreskin fibroblasts (HFFF2) and human placental choriocarcinoma cell line JEG-3 were exposed to 0, 100, 200, 500 or 5000 rESWs generated with a Swiss DolorClast device (2.5 bar, 1 Hz). FACS analysis immediately after rESW exposure showed that initially, rESWs rather induced mechanical cell destruction than regulated or programmed cell death. Cell damage was nearly negated by reducing cavitation. Furthermore, cell viability decreased progressively with higher numbers of rESWs. Exposure to rESWs had no impact on growth potential of JEG-3 cells, but dose-dependently increased growth potential of HFFF2 cells. Cultivation of cells that were initially exposed to sham-rESWs in conditioned media increased the growth potential of HFFF2 cells, nevertheless, an even stronger effect was achieved by direct exposure to rESWs. Additionally, cell cycle distribution analysis demonstrated a shift in proportion from G0/G1 to G2/M phase in HFFF2 cells, but not in JEG-3 cells. These data demonstrate that rESWs leads to initial and subsequent dose-dependent and cell type-specific effects in vitro. PMID:27477873

  2. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  3. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  4. MOBE-ChIP: a large-scale chromatin immunoprecipitation assay for cell type-specific studies.

    Science.gov (United States)

    Lau, On Sun; Bergmann, Dominique C

    2015-10-01

    Cell type-specific transcriptional regulators play critical roles in the generation and maintenance of multicellularity. As they are often expressed at low levels, in vivo DNA-binding studies of these regulators by standard chromatin immunoprecipitation (ChIP) assays are technically challenging. We describe here an optimized ChIP protocol termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which enhances the sensitivity of ChIP assays for detecting cell type-specific signals. The protocol, which is based on the disproportional increase of target signals over background at higher scales, uses substantially greater volume of starting materials than conventional ChIPs to achieve high signal enrichment. This technique can capture weak binding events that are ambiguous in standard ChIP assays, and is useful both in gene-specific and whole-genome analysis. This protocol has been optimized for Arabidopsis, but should be applicable to other model systems with minor modifications. The full procedure can be completed within 3 days.

  5. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Science.gov (United States)

    Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M

    2015-06-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  6. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).

    Science.gov (United States)

    Campbell, Arezoo; Daher, Nancy; Solaimani, Parrisa; Mendoza, Kriscelle; Sioutas, Constantinos

    2014-10-01

    Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

  7. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    Science.gov (United States)

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  8. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  9. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    Science.gov (United States)

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system. PMID:26905635

  10. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Nuttall, Robert K; Edwards, Dylan R;

    2004-01-01

    Metalloproteinases (MPs) include matrix metalloproteinases (MMPs) and metalloproteinase-disintegrins (ADAMs). Their physiological inhibitors are tissue inhibitor of metalloproteinases (TIMPs). MPs are thought to be mediators of cellular infiltration in the pathogenesis of multiple sclerosis and its...... animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant...

  11. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  12. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the development of miRNA therapies in treating ovarian cancer. Keywords: microRNA, ovarian cancer, Taxol resistance, Kaplan–Meier survival analysis

  13. A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis

    Science.gov (United States)

    2013-01-01

    Background About 80% of today’s land plants are able to establish an arbuscular mycorrhizal (AM) symbiosis with Glomeromycota fungi to improve their access to nutrients and water in the soil. On the molecular level, the development of AM symbioses is only partly understood, due to the asynchronous development of the microsymbionts in the host roots. Although many genes specifically activated during fungal colonization have been identified, genome-wide information on the exact place and time point of their activation remains limited. Results In this study, we relied on a combination of laser-microdissection and the use of Medicago GeneChips to perform a genome-wide analysis of transcription patterns in defined cell-types of Medicago truncatula roots mycorrhized with Glomus intraradices. To cover major stages of AM development, we harvested cells at 5-6 and at 21 days post inoculation (dpi). Early developmental stages of the AM symbiosis were analysed by monitoring gene expression in appressorial and non-appressorial areas from roots harbouring infection units at 5-6 dpi. Here, the use of laser-microdissection for the first time enabled the targeted harvest of those sites, where fungal hyphae first penetrate the root. Circumventing contamination with developing arbuscules, we were able to specifically detect gene expression related to early infection events. To cover the late stages of AM formation, we studied arbusculated cells, cortical cells colonized by intraradical hyphae, and epidermal cells from mature mycorrhizal roots at 21 dpi. Taken together, the cell-specific expression patterns of 18014 genes were revealed, including 1392 genes whose transcription was influenced by mycorrhizal colonization at different stages, namely the pre-contact phase, the infection of roots via fungal appressoria, the subsequent colonization of the cortex by fungal hyphae, and finally the formation of arbuscules. Our cellular expression patterns identified distinct groups of AM

  14. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia.

    Science.gov (United States)

    Liu, Bo; Lee, Jee-Boong; Chen, Chun-Yu; Hershey, Gurjit K Khurana; Wang, Yui-Hsi

    2015-04-15

    Type-2 innate lymphoid cells (ILC2s) and the acquired CD4(+) Th2 and Th17 cells contribute to the pathogenesis of experimental asthma; however, their roles in Ag-driven exacerbation of chronic murine allergic airway diseases remain elusive. In this study, we report that repeated intranasal rechallenges with only OVA Ag were sufficient to trigger airway hyperresponsiveness, prominent eosinophilic inflammation, and significantly increased serum OVA-specific IgG1 and IgE in rested mice that previously developed murine allergic airway diseases. The recall response to repeated OVA inoculation preferentially triggered a further increase of lung OVA-specific CD4(+) Th2 cells, whereas CD4(+) Th17 and ILC2 cell numbers remained constant. Furthermore, the acquired CD4(+) Th17 cells in Stat6(-/-)/IL-17-GFP mice, or innate ILC2s in CD4(+) T cell-ablated mice, failed to mount an allergic recall response to OVA Ag. After repeated OVA rechallenge or CD4(+) T cell ablation, the increase or loss of CD4(+) Th2 cells resulted in an enhanced or reduced IL-13 production by lung ILC2s in response to IL-25 and IL-33 stimulation, respectively. In return, ILC2s enhanced Ag-mediated proliferation of cocultured CD4(+) Th2 cells and their cytokine production, and promoted eosinophilic airway inflammation and goblet cell hyperplasia driven by adoptively transferred Ag-specific CD4(+) Th2 cells. Thus, these results suggest that an allergic recall response to recurring Ag exposures preferentially triggers an increase of Ag-specific CD4(+) Th2 cells, which facilitates the collaborative interactions between acquired CD4(+) Th2 cells and innate ILC2s to drive the exacerbation of a murine allergic airway diseases with an eosinophilic phenotype. PMID:25780046

  15. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior.

    Science.gov (United States)

    Sippy, Tanya; Lapray, Damien; Crochet, Sylvain; Petersen, Carl C H

    2015-10-21

    Goal-directed sensorimotor transformation drives important aspects of mammalian behavior. The striatum is thought to play a key role in reward-based learning and action selection, receiving glutamatergic sensorimotor signals and dopaminergic reward signals. Here, we obtain whole-cell membrane potential recordings from the dorsolateral striatum of mice trained to lick a reward spout after a whisker deflection. Striatal projection neurons showed strong task-related modulation, with more depolarization and action potential firing on hit trials compared to misses. Direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, exhibited a prominent early sensory response. Optogenetic stimulation of direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, readily substituted for whisker stimulation evoking a licking response. Our data are consistent with direct pathway striatonigral neurons contributing a "go" signal for goal-directed sensorimotor transformation leading to action initiation. VIDEO ABSTRACT.

  16. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  17. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Brandstätter, Olga; Schanz, Oliver; Vorac, Julia; König, Jessica; Mori, Tetsushi; Maruyama, Toru; Korkowski, Markus; Haarmann-Stemmann, Thomas; von Smolinski, Dorthe; Schultze, Joachim L; Abel, Josef; Esser, Charlotte; Takeyama, Haruko; Weighardt, Heike; Förster, Irmgard

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli. PMID:27184933

  18. Cell-specific precursor processing

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bundgaard, Jens R

    2010-01-01

    The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene...... varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in...... different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The...

  19. Pancreatic duodenal homeobox 1 protein is a novel beta-cell-specific autoantigen for type I diabetes.

    Science.gov (United States)

    Li, Shi-Wu; Koya, Vijay; Li, Yi; Donelan, William; Lin, Peng; Reeves, Westley H; Yang, Li-Jun

    2010-01-01

    Pancreatic duodenal homeobox 1 (Pdx1) protein is a key transcription factor involved in the regulation of insulin gene expression that is expressed at high levels in the beta-cells of the pancreatic islets. We asked whether Pdx1 is a target of anti-islet autoimmunity in type I diabetes (T1D). Pdx1 autoantibodies (PAAs) were detected in non-obese diabetic (NOD) mice using ELISA, western blotting, and radioimmunoprecipitation of [(35)S]-labeled insulinoma cell line-derived Pdx1 protein. PAAs were detected as early as at 5 weeks of age, and generally peaked before the onset of clinically overt diabetes in diabetes-prone female NOD mice. Levels declined substantially after the onset of diabetes. PAAs were not detected in the sera of NOD-scid, C57BL/6, or BALB/c mice. The titers of PAAs in NOD mouse sera were as high as 1/93 750 by ELISA. The fine specificity of PAAs was determined by western blotting using a series of truncated recombinant Pdx1 proteins. The immunodominant epitopes were located to the C-terminus of the Pdx1 (p200-283) in NOD mice. PAAs also were detected in sera from human T1D patients, but the major epitopes were localized to amino acids 159-200 as well as the same region (p200-283) recognized by PAAs from NOD mice. Using [(3)H]thymidine incorporation, the p83 fragment of Pdx1 specifically stimulated proliferation of splenic T cells from recent-onset diabetic NOD mice. The presence of PAAs in prediabetic NOD mice and human T1D patients, and Pdx1-specific T-cell proliferation in NOD mice provide a strong rationale for further investigation of the pathogenic role of immune responses against Pdx1 in T1D.

  20. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles

    Science.gov (United States)

    Press, Adrian T.; Traeger, Anja; Pietsch, Christian; Mosig, Alexander; Wagner, Michael; Clemens, Mark G.; Jbeily, Nayla; Koch, Nicole; Gottschaldt, Michael; Bézière, Nicolas; Ermolayev, Volodymyr; Ntziachristos, Vasilis; Popp, Jürgen; Kessels, Michael M.; Qualmann, Britta; Schubert, Ulrich S.; Bauer, Michael

    2014-12-01

    Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes.

  1. [Epstein-Barr virus-specific immunity in asymptomatic carriers of human T-cell leukemia virus type 1].

    Science.gov (United States)

    Kwon, K W

    1995-03-01

    Adult T-cell leukemia (ATL) patients are immunosuppressed as evidenced by anergy to recall antigens and the occurrence of opportunistic infections. The immunosuppression appears to be a critical factor or a predictive sign for the development of ATL in carriers of human T-cell leukemia virus type 1 (HTLV-1). This study was aimed at assessing the immune status of asymptomatic HTLV-1 carriers with the immunity specific to Epstein-Barr virus (EBV), a ubiquitous human herpesvirus with oncogenic potential. Forty-three asymptomatic HTLV-I carriers were examined for their EBV serology and EBV-specific cytotoxic T-cell (EBV-CTL) activity, in comparison with 10 HTLV-I-non-infected normal controls. Both carriers and controls were all positive for EBV capsid antigen (VCA) IgG. Significantly elevated titer of VCAIgG and lower titer of EBV-determined nuclear antigen (EBNA) antibodies were observed in asymptomatic HTLV-I carriers, suggesting reactivation of EBV. Among the HTLV-I carriers, 9 (20.9%) had reduced activity of EBV-CTL as revealed by lower incidence of regression of in vitro EBV-induced B-cell transformation. Accordingly, asymptomatic HTLV-I carriers were divided into three groups: the carriers with reduced EBV-specific cellular immunity (group I), the carriers showing normal cellular immunity but aberrant EBV-specific antibody titers (group II), and the carriers with normal EBV-specific cellular immunity and serology (group III). Higher positive rate of anti-HTLV-I Tax antibody was found in the former two groups (44.4% and 56.5%, respectively) compared with group III (18.2%). An immunosuppressive agent, 4-deoxyphorbol ester induced a remarkable decrease of EBV-CTL activity in the carriers of group II and III at the concentration that affected none of the normal controls. These findings indicate that asymptomatic HTLV-I carriers suffer stepwise impairment of EBV-specific immunities, which may be caused by HTLV-I infection.

  2. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes.

    Science.gov (United States)

    Lin, Yi; Sun, Zhongjie

    2015-04-01

    Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuated the development of diabetes in db/db mice. β-Cell-specific expression of Klotho decreased hyperglycemia and enhanced glucose tolerance. The beneficial effects of Klotho were associated with significant improvements in T2DM-induced decreases in number of β-cells, insulin storage levels in pancreatic islets, and glucose-stimulated insulin secretion from pancreatic islets, which led to increased blood insulin levels in diabetic mice. In addition, β-cell-specific expression of Klotho decreased intracellular superoxide levels, oxidative damage, apoptosis, and DNAJC3 (a marker for endoplasmic reticulum stress) in pancreatic islets. Furthermore, β-cell-specific expression of Klotho increased expression levels of Pdx-1 (insulin transcription factor), PCNA (a marker of cell proliferation), and LC3 (a marker of autophagy) in pancreatic islets in db/db mice. These results reveal that β-cell-specific expression of Klotho improves β-cell function and attenuates the development of T2DM. Therefore, in vivo expression of Klotho may offer a novel strategy for protecting β-cells in T2DM. PMID:25377875

  3. Identifying type 1 diabetes candidate genes by DNA microarray analysis of islet-specific CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Gregory J. Berry

    2015-09-01

    Full Text Available Type 1 diabetes (T1D is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4+ T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO repository from the National Center for Biotechnology Information (accession number GSE64674.

  4. Antigen-specific regulatory T cells and low dose of IL-2 in treatment of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Minh N. Pham

    2016-01-01

    Full Text Available Regulatory T cells (Tregs play an important role in preventing effector T-cell (Teff targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D. Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach. Low-dose IL-2 (LD IL-2 can provide immuno-regulation with few side effects by preferentially acting on Tregs to drive tolerance. The concept of LD IL-2 as a therapeutic approach is supported by data in mouse models where autoimmunity is cured and further strengthened by success in human clinical studies in Hepatitis C Virus (HCV induced vasculitis, chronic graft vs host disease (GVHD and Alopecia areata (AA. Treatment will require identification of a safe therapeutic window, which is a difficult task given that patients are reported to have deficient or defective IL-2 production or signalling and have experienced mild activation of NK cells and eosinophils with LD IL-2 therapy. In T1D, a LD IL-2 clinical trial concluded that Tregs can be safely expanded in humans; however, the study was not designed to address efficacy. Antigen-specific therapies have also aimed at regulation of the autoimmune response, but have been filled with disappointment despite an extensive list of diverse islet antigens tested in humans. This approach could be enhanced through the addition of LD IL-2 to the antigenic treatment regimen to improve the frequency and function of antigen-specific Tregs, without global immunosuppression. Here we will discuss the use of LD IL-2 and islet antigen to enhance antigen-specific Tregs in T1D and focus on what is known about their immunological impact, their safety and potential efficacy, and need for better methods to identify therapeutic effectiveness.

  5. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Kyoung-In Cho

    2013-06-01

    Full Text Available Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2, a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+ -apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct

  6. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d. PMID:27490632

  7. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: An ecological study

    Directory of Open Access Journals (Sweden)

    Tseng Ching-Yu

    2012-01-01

    Full Text Available Abstract Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter 10] and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specificity. Methods We conducted an ecological study and calculated annual average concentration of 6 air pollutants (SO2, CO, NO2, NO, O3, and PM10 using data from Taiwan Environmental Protection Administration air quality monitoring stations. The Poisson regression models were used to evaluate the association between SO2 and age-standardized incidence rate of female lung cancer by two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]. In order to understand whether there is a dose-response relationship between SO2 and two major pathological types, we analyzed 4 levels of exposure based on quartiles of concentration of SO2. Results The Poisson regression results showed that with the first quartile of SO2 concentration as the baseline, the relative risks for AC/SCC type cancer among females were 1.20 (95% confidence interval [CI], 1.04-1.37/1.39 (95% CI, 0.96-2.01 for the second, 1.22 (95% CI, 1.04-1.43/1.58 (95% CI, 1.06-2.37 for the third, and 1.27 (95% CI, 1.06-1.52/1.80 (95% CI, 1.15-2.84 for the fourth quartile of SO2 concentration. The tests for trend were statistically significant for both AC and SCC at P = 0.0272 and 0.0145, respectively. Conclusion The current study suggests that SO2 exposure as an air pollutant may increase female lung cancer incidence and the associations with female lung cancer is much stronger for SCC than for AC. The findings of this study warrant further investigation on the role of SO2 in the etiology of SCC.

  8. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.

    Science.gov (United States)

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-04-01

    The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 types of identified DH neurons using whole-cell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDA receptor antagonist, AP5, or an intracellular Ca chelator, BAPTA. Both the pattern and magnitude of intracellular Ca after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type-specific synaptic plasticity in the spinal DH. PMID:25785524

  9. ZnT8-Specific CD4+ T cells display distinct cytokine expression profiles between type 1 diabetes patients and healthy adults.

    Directory of Open Access Journals (Sweden)

    Daisuke Chujo

    Full Text Available Determination of antigen-specific T cell repertoires in human blood has been a challenge. Here, we show a novel integrated approach that permits determination of multiple parameters of antigen-specific T cell repertoires. The approach consists of two assays: the Direct assay and the Cytokine-driven assay. Briefly, human PBMCs are first stimulated with overlapping peptides encoding a given antigen for 48 hours to measure cytokine secretion (Direct assay. Peptide-reactive T cells are further expanded by IL-2 for 5 days; and after overnight starvation, expanded cells are stimulated with the same peptides from the initial culture to analyze cytokine secretion (Cytokine-driven assay. We first applied this integrated approach to determine the type of islet-antigen-specific T cells in healthy adults. Out of ten donors, the Direct assay identified GAD65-specific CD4(+ T cells in three adults and zinc transporter 8 (ZnT8-specific CD4(+ T cells in five adults. The intracytoplasmic cytokine staining assay showed that these islet-antigen-specific CD4(+ T cells belonged to the CD45RO(+ memory compartment. The Cytokine-driven assay further revealed that islet-antigen-specific CD4(+ T cells in healthy adults were capable of secreting various types of cytokines including type 1 and type 2 cytokines as well as IL-10. We next applied our integrated assay to determine whether the type of ZnT8-specific CD4(+ T cells is different between Type 1 diabetes patients and age/gender/HLA-matched healthy adults. We found that ZnT8-specific CD4(+ T cells were skewed towards Th1 cells in T1D patients, while Th2 and IL-10-producing cells were prevalent in healthy adults. In conclusion, the Direct assay and the Cytokine-driven assay complement each other, and the combination of the two assays provides information of antigen-specific T cell repertoires on the breadth, type, and avidity. This strategy is applicable to determine the differences in the quality of antigen-specific T

  10. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Lojk J

    2015-02-01

    Full Text Available Jasna Lojk,1 Vladimir B Bregar,1 Maruša Rajh,1 Katarina Miš,2 Mateja Erdani Kreft,3 Sergej Pirkmajer,2 Peter Veranič,3 Mojca Pavlin1 1Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, 2Institute of Pathophysiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia Abstract: Magnetic nanoparticles (NPs are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA in three cell types: Chinese Hamster Ovary (CHO, mouse melanoma (B16 cell line, and primary human myoblasts (MYO. We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better

  11. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  12. [Specific types of bladder cancer].

    Science.gov (United States)

    Bertz, S; Hartmann, A; Knüchel-Clarke, R; Gaisa, N T

    2016-02-01

    Bladder cancer shows rare variants and special subtypes with diverse prognostic importance and therefore may necessitate different therapeutic approaches. For pathologists it is important to histologically diagnose and specify such variants. Nested variants of urothelial carcinoma with inconspicuous, well-formed tumor cell nests present with an aggressive course. The plasmacytoid variant, which morphologically resembles plasma cells is associated with a shorter survival time and a high frequency of peritoneal metastasis. Micropapillary urothelial carcinoma with small papillary tumor cell islands within artificial tissue retraction spaces and frequent lymphovascular invasion also has a poor prognosis. Other important rare differential variants listed in the World Health Organization (WHO) classification are microcystic, lymphoepithelioma-like, sarcomatoid, giant cell and undifferentiated urothelial carcinomas. Additionally, there are three special types of bladder cancer: squamous cell carcinoma, adenocarcinoma and small cell neuroendocrine carcinoma of the bladder. These tumors are characterized by pure squamous cell or glandular differentiation and are sometimes less responsive to adjuvant (chemo)therapy. Small cell carcinoma of the bladder mimics the neuroendocrine features of its pulmonary counterpart, shows an aggressive course but is sensitive to (neo-)adjuvant chemotherapy. The morphology and histology of the most important variants and special types are discussed in this review. PMID:26782034

  13. First Evidence for the Disease-Stage, Cell-Type, and Virus Specificity of microRNAs during Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Lauren Fowler

    2016-05-01

    Full Text Available The potential involvement of host microRNAs (miRNAs in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+ individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART, therapy-naïve long-term non-progressors (LTNP, and HIV-negative (HIV– healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV− samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV– controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs.

  14. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response

    Directory of Open Access Journals (Sweden)

    Stenman Göran

    2008-07-01

    Full Text Available Abstract Background FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. Results FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. Conclusion Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.

  15. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity.

    Directory of Open Access Journals (Sweden)

    Ozlem Sarikaya Bayram

    Full Text Available VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells, which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.

  16. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  17. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.

    Directory of Open Access Journals (Sweden)

    Christopher D Brown

    Full Text Available Genetic variants in cis-regulatory elements or trans-acting regulators frequently influence the quantity and spatiotemporal distribution of gene transcription. Recent interest in expression quantitative trait locus (eQTL mapping has paralleled the adoption of genome-wide association studies (GWAS for the analysis of complex traits and disease in humans. Under the hypothesis that many GWAS associations tag non-coding SNPs with small effects, and that these SNPs exert phenotypic control by modifying gene expression, it has become common to interpret GWAS associations using eQTL data. To fully exploit the mechanistic interpretability of eQTL-GWAS comparisons, an improved understanding of the genetic architecture and causal mechanisms of cell type specificity of eQTLs is required. We address this need by performing an eQTL analysis in three parts: first we identified eQTLs from eleven studies on seven cell types; then we integrated eQTL data with cis-regulatory element (CRE data from the ENCODE project; finally we built a set of classifiers to predict the cell type specificity of eQTLs. The cell type specificity of eQTLs is associated with eQTL SNP overlap with hundreds of cell type specific CRE classes, including enhancer, promoter, and repressive chromatin marks, regions of open chromatin, and many classes of DNA binding proteins. These associations provide insight into the molecular mechanisms generating the cell type specificity of eQTLs and the mode of regulation of corresponding eQTLs. Using a random forest classifier with cell specific CRE-SNP overlap as features, we demonstrate the feasibility of predicting the cell type specificity of eQTLs. We then demonstrate that CREs from a trait-associated cell type can be used to annotate GWAS associations in the absence of eQTL data for that cell type. We anticipate that such integrative, predictive modeling of cell specificity will improve our ability to understand the mechanistic basis of human

  18. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x.

    NARCIS (Netherlands)

    Die, van I.M.; Vliet, van SJ; Nyame, AK; Cummings, RD; Bank, CM; Appelmelk, B.J.; Geijtenbeek, T.B.H.; Kooijk, van Y.

    2003-01-01

    Schistosoma mansoni soluble egg antigens (SEAs) are crucially involved in modulating the host immune response to infection by S. mansoni. We report that human dendritic cells bind SEAs through the C-type lectin dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Monoclonal antibodies agai

  19. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann;

    2009-01-01

    relevant isoforms C24:1 and C24:0, major constituents of the myelin sheet of the nervous system, and C16:0, prominent in the pancreatic islet beta-cells. The most potent sulfatide isoform was lysosulfatide (lacking a fatty acid). Shortened fatty acid chain length (C24:1 versus C18:1), or saturation...... isoforms by a CD1d-restricted NKT-cell clone, and suggest that sulfatide, a major component of the myelin sheet and pancreatic beta-cells, is one of several natural ligands for type II CD1d-restricted NKT cells....

  20. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L;

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type...... and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  1. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Science.gov (United States)

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  2. p172: An alveolar type II and Clara cell specific protein with late developmental expression and upregulation by hyperoxic lung injury.

    Science.gov (United States)

    Girod, C E; Shin, D H; Hershenson, M B; Solway, J; Dahl, R; Miller, Y E

    1996-06-01

    The epithelium of the alveolus and distal airway meets unique requirements, functioning as a gas exchange membrane and barrier to alveolar flooding by vascular contents as well as to bloodstream contamination by airborne toxins and pathogens. Gene products specifically expressed by this epithelium, notably the surfactant apoproteins, have had important clinical application. No cell surface antigen specific for alveolar type II and Clara cells has been described. We report the biochemical characterization, tissue and developmental expression, and upregulation by injury of a 172 kD protein recognized by a monoclonal antibody, 3F9, synthesized in response to immunization with freshly isolated rat alveolar type II cells. p172 is expressed in a polarized fashion by the apical surface of rat alveolar type II and Clara cells. An immunohistochemical survey of various rat tissues and organs reveals lung specificity. p172 is first detectable in rare epithelial cells at 19 days of gestation, a time when the fully differentiated alveolar type II cell is identified by the first detection of lamellar bodies. There is a dramatic increase in p172 expression just prior to birth. Hyperoxic lung injury results in increased expression of p172. The upregulation of p172 by hyperoxia and its cell-specific expression suggests an important adaptive function.

  3. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    Science.gov (United States)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  4. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovial tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis

  5. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  6. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies

    Science.gov (United States)

    Honders, M. W.; Kremer, A. N.; van Kooten, C.; Out, C.; Hiemstra, P. S.; de Boer, H. C.; Jager, M. J.; Schmelzer, E.; Vries, R. G.; Al Hinai, A. S.; Kroes, W. G.; Monajemi, R.; Goeman, J. J.; Böhringer, S.; Marijt, W. A. F.; Falkenburg, J. H. F.; Griffioen, M.

    2016-01-01

    Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers. PMID:27171398

  7. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  8. Sensitive detection of human papillomavirus type 16 E7-specific T cells by ELISPOT after multiple in vitro stimulations of CD8+ T cells with peptide-pulsed autologous dendritic cells

    Directory of Open Access Journals (Sweden)

    Van Tendeloo Viggo FI

    2006-10-01

    Full Text Available Abstract Background Cervical cancer is the second most common gynecological cancer amongst women world-wide. Despite optimized protocols, standard treatments still face several disadvantages. Therefore, research aims at the development of immune-based strategies using tumor antigen-loaded dendritic cells for the induction of cellular anti-tumor immunity. Results In this study, we used dendritic cells loaded with the HLA-A2-restricted HPV type 16 E711–20 peptide in order to induce an in vitro CD8+ T cell response. For this purpose, peptide-pulsed dendritic cells were co-cultured with autologous CD8+ T cells. After 5 weekly stimulations with peptide-pulsed mature dendritic cells, cultured T cells were analyzed for antigen specificity by an IFN-γ ELISPOT assay. Using this ELISPOT assay, we were able to detect E7-specific IFN-γ-secreting CD8+ T cells in 5/5 healthy donors. Conclusion We show that peptide-pulsed mature dendritic cells are able to stimulate a HPV type 16 E7 peptide-specific immune response in vitro. These experiments describe an efficient culture protocol for antigen-specific T cells for use in pre-clinical vaccination research and confirm the need for sensitive T cell assays for detection of tumor-specific immune responses in vitro.

  9. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    Science.gov (United States)

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  10. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients

    DEFF Research Database (Denmark)

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly;

    2016-01-01

    = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen...... increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was......Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells-SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n...

  11. Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells

    OpenAIRE

    Roberts, Wendy K.; DeLuca, Ilana J.; Thomas, Ashby; Fak, John; Williams, Travis; Buckley, Noreen; Dousmanis, Athanasios G.; Posner, Jerome B.; Robert B Darnell

    2009-01-01

    Paraneoplastic neurologic disorders (PNDs) offer an uncommon opportunity to study human tumor immunity and autoimmunity. In small cell lung cancer (SCLC), expression of the HuD neuronal antigen is thought to lead to immune recognition, suppression of tumor growth, and, in a subset of patients, triggering of the Hu paraneoplastic neurologic syndrome. Antigen-specific CTLs believed to contribute to disease pathophysiology were described 10 years ago in paraneoplastic cerebellar degeneration. De...

  12. Complement gene variants in relation to autoantibodies to beta cell specific antigens and type 1 diabetes in the TEDDY Study.

    Science.gov (United States)

    Törn, Carina; Liu, Xiang; Hagopian, William; Lernmark, Åke; Simell, Olli; Rewers, Marian; Ziegler, Anette-G; Schatz, Desmond; Akolkar, Beena; Onengut-Gumuscu, Suna; Chen, Wei-Min; Toppari, Jorma; Mykkänen, Juha; Ilonen, Jorma; Rich, Stephen S; She, Jin-Xiong; Sharma, Ashok; Steck, Andrea; Krischer, Jeffrey

    2016-01-01

    A total of 15 SNPs within complement genes and present on the ImmunoChip were analyzed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. A total of 5474 subjects were followed from three months of age until islet autoimmunity (IA: n = 413) and the subsequent onset of type 1 diabetes (n = 115) for a median of 73 months (IQR 54-91). Three SNPs within ITGAM were nominally associated (p C3 was significantly associated [HR 3.20; 95% CI 1.75-5.85; p = 0.0002, uncorrected] a significance that withstood Bonferroni correction since it was less than 0.000833 (0.05/60) in the HLA-specific analyses. SNPs within the complement genes may contribute to IA, the first step to type 1 diabetes, with at least one SNP in C3 significantly associated with clinically diagnosed type 1 diabetes. PMID:27306948

  13. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  14. Mapping mammalian cell-type-specific transcriptional regulatory networks using KD-CAGE and ChIP-seq data in the TC-YIK cell line.

    Directory of Open Access Journals (Sweden)

    Marina eLizio

    2015-11-01

    Full Text Available Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5, we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD, we then used Cap Analysis of Gene Expression (CAGE to identify thousands of their targets genome-wide (KD-CAGE. The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN, and ISL1 and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6 and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 1kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e. TF-TF only, NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1 and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6 and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting

  15. Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method

    Directory of Open Access Journals (Sweden)

    Stephanie M.C. Smith

    2014-05-01

    Full Text Available Our understanding of how histone demethylation contributes to the regulation of basal gene expression in the brain is largely unknown in any injury model, and especially in the healthy adult brain. Although Jumonji genes are often regulated transcriptionally, cell-specific gene expression of Jumonji histone demethylases in the brain remains poorly understood. Thus, in the present study we profiled the mRNA levels of 26 Jumonji genes in microglia (CD11b+, neurons (NeuN+ and astrocytes (GFAP+ from the healthy adult rat brain. We optimized a method combining a mZBF (modified zinc-based fixative and FCM (flow cytometry to simultaneously sort cells from non-transgenic animals. We evaluated cell-surface, intracellular and nuclear proteins, including histones, as well as messenger- and micro-RNAs in different cell types simultaneously from a single-sorted sample. We found that 12 Jumonji genes were differentially expressed between adult microglia, neurons and astrocytes. While JMJD2D was neuron-restricted, PHF8 and JMJD1C were expressed in all three cell types although the expression was highest in neurons. JMJD3 and JMJD5 were expressed in all cell types, but were highly enriched in microglia; astrocytes had the lowest expression of UTX and JHDM1D. Levels of global H3K27 (H3 lysine 27 methylation varied among cell types and appeared to be lowest in microglia, indicating that differences in basal gene expression of specific Jumonji histone demethylases may contribute to cell-specific gene expression in the CNS (central nervous system. This multiparametric technique will be valuable for simultaneously assaying chromatin modifications and gene regulation in the adult CNS.

  16. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E;

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell...... lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3). Results: VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhibition was highly cell type-specific. Moreover, cell growth, motility and the degree of Erk1/2...... phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK...

  17. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton, Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and high (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

  18. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers

    Directory of Open Access Journals (Sweden)

    Takamori Ayako

    2011-12-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 causes adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23 and 100% of HAM/TSP patients (n = 18/18 tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL patients (n = 8/21, although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69 and degranulation (CD107a markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV pp65-specific CD8+ T-cells

  19. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    International Nuclear Information System (INIS)

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine

  20. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  1. Discordance between Frequency of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Gamma Interferon-Producing CD4+ T Cells and HIV-1-Specific Lymphoproliferation in HIV-1-Infected Subjects with Active Viral Replication

    OpenAIRE

    Palmer, B. E.; Boritz, E; Blyveis, N.; Wilson, C C

    2002-01-01

    One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4+ T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4+ Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infe...

  2. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2008-05-01

    Full Text Available Abstract Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63. Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50 but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.

  3. Tissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks.

    Science.gov (United States)

    Colecchia, Federico; Kottwitz, Denise; Wagner, Mandy; Pfenninger, Cosima V; Thiel, Gerald; Tamm, Ingo; Peterson, Carsten; Nuber, Ulrike A

    2009-06-01

    The prediction of transcription factor binding sites in genomic sequences is in principle very useful to identify upstream regulatory factors. However, when applying this concept to genomes of multicellular organisms such as mammals, one has to deal with a large number of false positive predictions since many transcription factor genes are only expressed in specific tissues or cell types. We developed TS-REX, a database/software system that supports the analysis of tissue and cell type-specific transcription factor-gene networks based on expressed sequence tag abundance of transcription factor-encoding genes in UniGene EST libraries. The use of expression levels of transcription factor-encoding genes according to hierarchical anatomical classifications covering different tissues and cell types makes it possible to filter out irrelevant binding site predictions and to identify candidates of potential functional importance for further experimental testing. TS-REX covers ESTs from H. sapiens and M. musculus, and allows the characterization of both presence and specificity of transcription factors in user-specified tissues or cell types. The software allows users to interactively visualize transcription factor-gene networks, as well as to export data for further processing. TS-REX was applied to predict regulators of Polycomb group genes in six human tumor tissues and in human embryonic stem cells. PMID:19443447

  4. Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon

    Science.gov (United States)

    Broos, Katrijn; Van der Jeught, Kevin; Puttemans, Janik; Goyvaerts, Cleo; Heirman, Carlo; Dewitte, Heleen; Verbeke, Rein; Lentacker, Ine; Thielemans, Kris; Breckpot, Karine

    2016-01-01

    Cancer vaccines based on mRNA are extensively studied. The fragile nature of mRNA has instigated research into carriers that can protect it from ribonucleases and as such enable its systemic use. However, carrier-mediated delivery of mRNA has been linked to production of type I interferon (IFN) that was reported to compromise the effectiveness of mRNA vaccines. In this study, we evaluated a cationic lipid for encapsulation of mRNA. The nanometer-sized, negatively charged lipid mRNA particles (LMPs) efficiently transfected dendritic cells and macrophages in vitro. Furthermore, i.v. delivery of LMPs resulted in rapid expression of the mRNA-encoded protein in spleen and liver, predominantly in CD11c+ cells and to a minor extent in CD11b+ cells. Intravenous immunization of mice with LMPs containing ovalbumin, human papilloma virus E7, and tyrosinase-related protein-2 mRNA, either combined or separately, elicited strong antigen-specific T-cell responses. We further showed the production of type I IFNs upon i.v. LMP delivery. Although this decreased the expression of the mRNA-encoded protein, it supported the induction of antigen-specific T-cell responses. These data question the current notion that type I IFNs hamper particle-mediated mRNA vaccines. PMID:27327138

  5. Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development.

    Science.gov (United States)

    Jackson, Daniel J; Meyer, Néva P; Seaver, Elaine; Pang, Kevin; McDougall, Carmel; Moy, Vanessa N; Gordon, Kacy; Degnan, Bernard M; Martindale, Mark Q; Burke, Robert D; Peterson, Kevin J

    2010-12-01

    The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix-loop-helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated.

  6. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction.

    Science.gov (United States)

    Haider, Neena B; Mollema, Nissa; Gaule, Meghan; Yuan, Yang; Sachs, Andrew J; Nystuen, Arne M; Naggert, Jürgen K; Nishina, Patsy M

    2009-09-01

    The retinal transcription factor Nr2e3 plays a key role in photoreceptor development and function. In this study we examine gene expression in the retina of Nr2e3(rd7/rd7) mutants with respect to wild-type control mice, to identify genes that are misregulated and hence potentially function in the Nr2e3 transcriptional network. Quantitative candidate gene real time PCR and subtractive hybridization approaches were used to identify transcripts that were misregulated in Nr2e3(rd7/rd7) mice. Chromatin immunoprecipitation assays were then used to determine which of the misregulated transcripts were direct targets of NR2E3. We identified 24 potential targets of NR2E3. In the developing retina, NR2E3 targets transcription factors such as Ror1, Rorg, and the nuclear hormone receptors Nr1d1 and Nr2c1. In the mature retina NR2E3 targets several genes including the rod specific gene Gnb1 and cone specific genes blue opsin, and two of the cone transducin subunits, Gnat2 and Gnb3. In addition, we identified 5 novel transcripts that are targeted by NR2E3. While mislocalization of proteins between rods and cones was not observed, we did observe diminished concentration of GNB1 protein in adult Nr2e3(rd7/rd7) retinas. These studies identified novel transcriptional pathways that are potentially targeted by Nr2e3 in the retina and specifically demonstrate a novel role for NR2E3 in regulating genes involved in phototransduction. PMID:19379737

  7. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    Science.gov (United States)

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  8. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin.

    Directory of Open Access Journals (Sweden)

    Erik Richter

    Full Text Available Responsiveness of cells to alpha-toxin (Hla from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.

  9. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line.

    Science.gov (United States)

    Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2009-08-01

    We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO production by CEL-I-treated RAW264.7 cells was observed rather than the inhibition. Bovine serum albumin (BSA) significantly inhibited the CEL-I-induced NO production as well as the binding of FITC-labelled CEL-I on RAW264.7 cells. Three MAP kinase inhibitors (specific to extra-cellular regulated kinase, c-jun NH(2)-terminal kinase and p38 MAP kinase) inhibited CEL-I-induced NO production with different extents. Heat-treatment of CEL-I resulted in a decreased activity of CEL-I depending on the temperature. These results suggest that CEL-I induces NO production in RAW264.7 cells through the protein-cell interaction rather than the binding to the specific carbohydrate chains on the cell surface. PMID:19351706

  10. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line.

    OpenAIRE

    Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; YAMAGUCHI, Kenichi; Oda, Tatsuya

    2009-01-01

    We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO production by CEL-I-treated RAW264.7 cells was observed rather than the inhibition. Bovine serum albu...

  11. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  12. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex

    Science.gov (United States)

    Pakan, Janelle MP; Lowe, Scott C; Dylda, Evelyn; Keemink, Sander W; Currie, Stephen P; Coutts, Christopher A; Rochefort, Nathalie L

    2016-01-01

    Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state. DOI: http://dx.doi.org/10.7554/eLife.14985.001 PMID:27552056

  13. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available Schistosomiasis (bilharzia is a tropical disease caused by trematode parasites (Schistosoma that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites.

  14. Fiber type specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper Løvind; Harrison, Adrian Paul;

    2015-01-01

    weekly. SC and myonuclear number were determined by immunohistochemistry of vastus lateralis muscle biopsy cross-sections. Knee extension torque was tested in a dynamometer. Results. During training SCs/type I fibers increased by 15%, whereas SCs/type II fibers remained unchanged. Myonuclear content...... of type II, but not type I, fibers increased with training. Before the control period, the SC content of type II fibers was lower than type I fibers, whereas contents were comparable when normalized to fiber area. Torque increased after training. Discussion. Increased myonuclear content of type II muscle...

  15. A mucin-like peptide from Fasciola hepatica induces parasite-specific Th1-type cell immunity.

    Science.gov (United States)

    Noya, Verónica; Brossard, Natalie; Berasaín, Patricia; Rodríguez, Ernesto; Chiale, Carolina; Mazal, Daniel; Carmona, Carlos; Freire, Teresa

    2016-03-01

    Fasciolosis, caused by the liver fluke Fasciola hepatica, is a major parasitic disease of livestock that causes significant economic losses worldwide. Although drugs are effective against liver flukes, they do not prevent reinfection, and continuous treatment is costly. Moreover, resistant fluke strains are emerging. In this context, vaccination is a good alternative since it provides a cost-effective long-term prevention strategy to control fasciolosis. In this paper, we evaluate the Fhmuc peptide as a potential vaccine against fasciolosis. This peptide derives from a mucin-like protein highly expressed in the infective stage of Fasciola hepatica. Mucin-like molecules expressed by parasites can contribute to several infection processes by protecting the parasite from host proteases and recognition by the immune system. We show that the Fhmuc peptide induces Th1-like immune responses specific for F. hepatica excretion-secretion products (FhESP) with a high production of IFNγ. We also investigated whether this peptide could protect animals from infection, and present preliminary data indicating that animals treated with Fhmuc exhibited reduced liver damage compared to non-immunised animals and that this protection was associated with a recruitment of B and T lymphocytes in the peritoneum, as well as eosinophils and mature dendritic cells. These results suggest that the mucin-like peptide Fhmuc could constitute a potential vaccine candidate against fasciolosis and pave the way towards the development of vaccines against parasites.

  16. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...

  17. Mind bomb-1 in dendritic cells is specifically required for Notch-mediated T helper type 2 differentiation.

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Jeong

    Full Text Available In dendritic cell (DC-CD4(+ T cell interaction, Notch signaling has been implicated in the CD4(+ T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1, a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+ T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+ T cells, suggesting that Notch activation in CD4(+ T cells is not required for these processes. Intriguingly, stimulation of CD4(+ T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+ T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+ T cells.

  18. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells

    Directory of Open Access Journals (Sweden)

    Kristin eSurmann

    2014-08-01

    Full Text Available Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549, and human embryonic kidney cells (HEK 293. Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen´s proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2x106 bacteria, roughly 1,450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreases in levels of ribosomal proteins and metabolic enzymes or increases in amounts of proteins involved in arginine and lysine biosynthesis, coding for terminal oxidases and stress responsive genes or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and

  19. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells

    Science.gov (United States)

    Surmann, Kristin; Michalik, Stephan; Hildebrandt, Petra; Gierok, Philipp; Depke, Maren; Brinkmann, Lars; Bernhardt, Jörg; Salazar, Manuela G.; Sun, Zhi; Shteynberg, David; Kusebauch, Ulrike; Moritz, Robert L.; Wollscheid, Bernd; Lalk, Michael; Völker, Uwe; Schmidt, Frank

    2014-01-01

    Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen's proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2 × 106 bacteria, roughly 1450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreased levels of ribosomal proteins and metabolic enzymes or increased amounts of proteins involved in arginine and lysine biosynthesis, enzymes coding for terminal oxidases and stress responsive proteins or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory

  20. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    OpenAIRE

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J A; Kilby, M. D.; Chan, S Y

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction...

  1. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies

    NARCIS (Netherlands)

    M.J. Pont (Margot); M.W. Honders; A.N. Kremer; C. van Kooten (Cees); C. Out; P.S. Hiemstra (Pieter); H.C. De Boer; M.J. Jager (Martine); E. Schmelzer; R.G.J. Vries (Robert); A.S. Al Hinai; W.G. Kroes (W.); R. Monajemi (Ramin); J.J. Goeman (Jelle); S. Böhringer (Stefan); W.A.F. Marijt; J.H.F. Falkenburg (Frederik); M. Griffioen

    2016-01-01

    textabstractCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, de

  2. RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals.

    Science.gov (United States)

    Bednarski, Jeffrey J; Pandey, Ruchi; Schulte, Emily; White, Lynn S; Chen, Bo-Ruei; Sandoval, Gabriel J; Kohyama, Masako; Haldar, Malay; Nickless, Andrew; Trott, Amanda; Cheng, Genhong; Murphy, Kenneth M; Bassing, Craig H; Payton, Jacqueline E; Sleckman, Barry P

    2016-02-01

    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre-B cell receptor (pre-BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre-BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre-B cells. Here, we show that RAG DSBs inhibit pre-BCR signals through the ATM- and NF-κB2-dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre-BCR signaling. This regulatory circuit prevents the pre-BCR from inducing additional Igl chain gene rearrangements and driving pre-B cells with RAG DSBs into cycle. We propose that pre-B cells toggle between pre-BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes. PMID:26834154

  3. BRAF mutation is associated with a specific cell-type with features suggestive of senescence in ovarian serous borderline (atypical proliferative) tumors

    Science.gov (United States)

    Zeppernick, Felix; Ardighieri, Laura; Hannibal, Charlotte G.; Vang, Russell; Junge, Jette; Kjaer, Susanne K.; Zhang, Rugang; Kurman, Robert J.; Shih, Ie-Ming

    2014-01-01

    Serous borderline tumor (SBT) also known as atypical proliferative serous tumor (APST) is the precursor of ovarian low-grade serous carcinoma (LGSC). In this study, we correlated the morphologic and immunohistochemical phenotypes of 71 APSTs and 18 LGSCs with the mutational status of KRAS and BRAF, the most common molecular genetic changes in these neoplasms. A subset of cells characterized by abundant eosinophilic cytoplasm (EC), discrete cell borders and bland nuclei was identified in all (100%) 25 BRAF mutated APSTs but in only 5 (10%) of 46 APSTs without BRAF mutations (p<0.0001). Among the 18 LGSCs, EC cells were found in only 2 and both contained BRAF mutations. The EC cells were present admixed with cuboidal and columnar cells lining the papillae and appeared to be budding from the surface, resulting in individual cells and clusters of detached cells “floating” above the papillae. Immunohistochemistry showed that the EC cells always expressed p16, a senescence-associated marker, and had a significantly lower Ki-67 labeling index than adjacent cuboidal and columnar cells (p=0.02). In vitro studies supported the interpretation that these cells were undergoing senescence as the same morphologic features could be reproduced in cultured epithelial cells by ectopic expression of BRAFV600E. Senescence was further established by markers such as SA-β-gal staining, expression of p16 and p21, and reduction in DNA synthesis. In conclusion, this study sheds light on the pathogenesis of this unique group of ovarian tumors by showing that BRAF mutation is associated with cellular senescence and the presence of a specific cell type characterized by abundant eosinophilic cytoplasm. This “oncogene-induced senescence” phenotype may represent a mechanism that prevents impedes progression of APSTs to LGSC. PMID:25188864

  4. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons

    Directory of Open Access Journals (Sweden)

    Christopher J Evans

    2012-03-01

    Full Text Available The striatum can be divided into the DLS (dorsolateral striatum and the VMS (ventromedial striatum, which includes NAcC (nucleus accumbens core and NAcS (nucleus accumbens shell. Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons based on their location, expression of DA (dopamine D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances compared with cells in the VMS. RMPs (resting membrane potentials were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials. Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.

  5. NY-ESO-1-specific circulating CD4+ T cells in ovarian cancer patients are prevalently T(H)1 type cells undetectable in the CD25+ FOXP3+ Treg compartment.

    Science.gov (United States)

    Redjimi, Nassima; Duperrier-Amouriaux, Karine; Raimbaud, Isabelle; Luescher, Immanuel; Dojcinovic, Danijel; Classe, Jean-Marc; Berton-Rigaud, Dominique; Frenel, Jean-Sébastien; Bourbouloux, Emmanuelle; Valmori, Danila; Ayyoub, Maha

    2011-01-01

    Spontaneous CD4(+) T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4(+) T cells in EOC patients with spontaneous immune responses to the antigen are prevalently T(H)1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer(+) cells ex vivo, at an average frequency of 1:25,000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer(+) cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25(+)FOXP3(+)Treg. Thus, spontaneous CD4(+) T-cell responses to ESO in cancer patients are prevalently of T(H)1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.

  6. Staphylococcus aureus alpha-toxin mediates general and cell type-specific changes in metabolite concentrations of immortalized human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    Full Text Available Staphylococcus aureus alpha-toxin (Hla is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o- under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml of recombinant Hla (rHla in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o- cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.

  7. Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types

    Directory of Open Access Journals (Sweden)

    Marc eDALOD

    2014-10-01

    Full Text Available Type I interferons (IFN-I were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote antiviral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic antiviral immunity. Second, IFN-I orchestrate innate and adaptive antiviral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1 infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including i the subtypes and dose of IFN-I produced, ii the cell types affected by IFN-I and iii the source and timing of IFN-I production. Finally we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.

  8. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis

    OpenAIRE

    Calvo, Dominica; Victor, Martin; Gay, Frédérique; Sui, Guangchao; Luke, Margaret Po-Shan; Dufourcq, Pascale; Wen, Gengyun; Maduro, Morris; Rothman, Joel; Shi, Yang

    2001-01-01

    In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appe...

  9. Wild-type and specific mutant androgen receptor mediates transcription via 17β-estradiol in sex hormone-sensitive cancer cells.

    Science.gov (United States)

    Susa, Takao; Ikaga, Reina; Kajitani, Takashi; Iizuka, Masayoshi; Okinaga, Hiroko; Tamamori-Adachi, Mimi; Okazaki, Tomoki

    2015-07-01

    We previously encountered regulatory processes wherein dihydrotestosterone (DHT) exerted its inhibitory effect on parathyroid hormone-related protein (PTHrP) gene repression through the estrogen receptor (ER)α, but not the androgen receptor (AR), in breast cancer MCF-7 cells. Here, we investigated whether such aberrant ligand-nuclear receptor (NR) interaction is present in prostate cancer LNCaP cells. First, we confirmed that LNCaP cells expressed large amounts of AR at negligible levels of ERα/β or progesterone receptor. Both suppression of PTHrP and activation of prostate-specific antigen genes were observed after independent administration of 17β-estradiol (E2), DHT, or R5020. Consistent with the notion that the LNCaP AR lost its ligand specificity due to a mutation (Thr-Ala877), experiments with siRNA targeting the respective NR revealed that the AR monopolized the role of the mediator of shared hormone-dependent regulation, which was invariably associated with nuclear translocation of this mutant AR. Microarray analysis of gene regulation by DHT, E2, or R5020 disclosed that more than half of the genes downstream of the AR (Thr-Ala877) overlapped in the LNCaP cells. Of particular interest, we realized that the AR (wild-type [wt]) and AR (Thr-Ala877) were equally responsible for the E2-AR interactions. Fluorescence microscopy experiments demonstrated that both EGFP-AR (wt) and EGFP-AR (Thr-Ala877) were exclusively localized within the nucleus after E2 or DHT treatment. Furthermore, reporter assays revealed that some other cancer cells exhibited aberrant E2-AR (wt) signaling similar to that in the LNCaP cells. We herein postulate the presence of entangled interactions between wt AR and E2 in certain hormone-sensitive cancer cells.

  10. Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription

    Science.gov (United States)

    Guthridge, Joel M.; Lu, Rufei; Sun, Harry; Sun, Celi; Wiley, Graham B.; Dominguez, Nicolas; Macwana, Susan R.; Lessard, Christopher J.; Kim-Howard, Xana; Cobb, Beth L.; Kaufman, Kenneth M.; Kelly, Jennifer A.; Langefeld, Carl D.; Adler, Adam J.; Harley, Isaac T.W.; Merrill, Joan T.; Gilkeson, Gary S.; Kamen, Diane L.; Niewold, Timothy B.; Brown, Elizabeth E.; Edberg, Jeffery C.; Petri, Michelle A.; Ramsey-Goldman, Rosalind; Reveille, John D.; Vilá, Luis M.; Kimberly, Robert P.; Freedman, Barry I.; Stevens, Anne M.; Boackle, Susan A.; Criswell, Lindsey A.; Vyse, Tim J.; Behrens, Timothy W.; Jacob, Chaim O.; Alarcón-Riquelme, Marta E.; Sivils, Kathy L.; Choi, Jiyoung; Joo, Young Bin; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol; Shen, Nan; Qian, Xiaoxia; Tsao, Betty P.; Scofield, R. Hal; Harley, John B.; Webb, Carol F.; Wakeland, Edward K.; James, Judith A.; Nath, Swapan K.; Graham, Robert R.; Gaffney, Patrick M.

    2014-01-01

    Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses. PMID:24702955

  11. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes.

    Science.gov (United States)

    Sugino, Ken; Hempel, Chris M; Okaty, Benjamin W; Arnson, Hannah A; Kato, Saori; Dani, Vardhan S; Nelson, Sacha B

    2014-09-17

    Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome. PMID:25232122

  12. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice.

    OpenAIRE

    Semenza, G L; Koury, S. T.; Nejfelt, M K; Gearhart, J D; Antonarakis, S E

    1991-01-01

    Synthesis of erythropoietin, the primary humoral regulator of erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5' to the gene direct expression to the kidney, whereas sequences within the immediate 3'-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. I...

  13. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model.

    Directory of Open Access Journals (Sweden)

    Monica A McArthur

    2015-05-01

    Full Text Available Salmonella Typhi (S. Typhi, the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD and those who were not (No TD. TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1. We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases.

  14. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  15. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor

    OpenAIRE

    Olga Brandstätter; Oliver Schanz; Julia Vorac; Jessica König; Tetsushi Mori; Toru Maruyama; Markus Korkowski; Thomas Haarmann-Stemmann; Dorthe von Smolinski; Schultze, Joachim L.; Josef Abel; Charlotte Esser; Haruko Takeyama; Heike Weighardt; Irmgard Förster

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the a...

  16. A 350 bp region of the proximal promoter of Rds drives cell-type specific gene expression

    OpenAIRE

    Cai, Xue; Conley, Shannon M.; Cheng, Tong; Al-Ubaidi, Muayyad R.; Naash, Muna I.

    2010-01-01

    RDS (retinal degeneration slow) is a photoreceptor-specific tetraspanin protein required for the biogenesis and maintenance of rod and cone outer segments. Mutations in the Rds gene are associated with multiple forms of rod- and cone-dominant retinal degeneration. To gain more insight into the mechanisms underlying the regulation of this gene the identification of regulatory sequences within the promoter of Rds was undertaken. A 3.5kb fragment of the 5′ flanking region of the mouse Rds gene w...

  17. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells.

    Science.gov (United States)

    Reid, P T; Marsden, M E; Cunningham, G A; Haslett, C; Sallenave, J M

    1999-08-20

    Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix. PMID:10486558

  18. Upregulation of cathepsin W-expressing T cells is specific for autoimmune atrophic gastritis compared to other types of chronic gastritis

    Institute of Scientific and Technical Information of China (English)

    Doerthe Kuester; Michael Vieth; Ulrich Peitz; Stefan Kahl; Manfred Stolte; Albert Roessner; Ekkehard Weber; Peter Malfertheiner; Thomas Wex

    2005-01-01

    AIM: To investigate a pathophysiological role of cathepsin W (CatW), a putative thiol-dependent cysteine protease,which is specifically expressed in cytotoxic lymphocytes,in different types of chronic inflammation of the gastric mucosa.METHODS: Gastric and duodenal biopsies of patients with Helicobacter pylori ( H pylori)-associated active gastritis ( Hp,n = 19), chemically induced reactive gastritis (CG, n = 17),autoimmune atrophic gastritis (AIG, n = 20), lymphocytic corpus gastritis (LG, n = 29), celiac disease (CD, n = 10),and corresponding controls (n = 24) were analyzed by immunohistochemistry for the expression of CatW and CD45. Furthermore, immunohistochemical double staining with anti-CD3 and anti-cathepsin was performed for the samples of AIG.RESULTS: Median values of CatW-expressing cells among CD45-positive immune cells were between 2% and 6% for normal gastric mucosa, CG, and LG, whereas the corresponding value was significantly increased for AIG (24.7%, P<0.001) and significantly decreased for HP (0.7%, P<0.05). Double staining with anti-CD3 and antiCatW antibodies revealed that >90% of CatW-expressing cells in gastric mucosa of AIG were T cells. Duodenal mucosa had significantly more CatW/CD45-positive cells than normal gastric mucosa (median: 17.8% vs 2%, P<0.01).The corresponding proportion of CatW/CD45-positive cells was decreased in CD compared to duodenal mucosa (median: 2.1% vs 17.8%, P<0.05).CONCLUSION: The opposite findings regarding the presence of CatW-positive cells in AIG (increase) and CD (decrease) reflects the different cellular composition of immune cells involved in the pathogenesis of these diseases.

  19. Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis.

    Science.gov (United States)

    Rubio-Peña, Karinna; Fontrodona, Laura; Aristizábal-Corrales, David; Torres, Silvia; Cornes, Eric; García-Rodríguez, Francisco J; Serrat, Xènia; González-Knowles, David; Foissac, Sylvain; Porta-De-La-Riva, Montserrat; Cerón, Julián

    2015-12-01

    Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.

  20. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  1. High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants

    Directory of Open Access Journals (Sweden)

    van der Winden Johannes

    2010-01-01

    Full Text Available Abstract Background Interphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells. Results We used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B. Conclusions The results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending

  2. Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion.

    Science.gov (United States)

    Kawakami, Yuko; Nishimoto, Hajime; Kitaura, Jiro; Maeda-Yamamoto, Mari; Kato, Roberta M; Littman, Dan R; Leitges, Michael; Rawlings, David J; Kawakami, Toshiaki

    2004-11-12

    Akt (= protein kinase B), a subfamily of the AGC serine/threonine kinases, plays critical roles in survival, proliferation, glucose metabolism, and other cellular functions. Akt activation requires the recruitment of the enzyme to the plasma membrane by interacting with membrane-bound lipid products of phosphatidylinositol 3-kinase. Membrane-bound Akt is then phosphorylated at two sites for its full activation; Thr-308 in the activation loop of the kinase domain is phosphorylated by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser-473 in the C-terminal hydrophobic motif by a putative kinase PDK2. The identity of PDK2 has been elusive. Here we present evidence that conventional isoforms of protein kinase C (PKC), particularly PKCbetaII, can regulate Akt activity by directly phosphorylating Ser-473 in vitro and in IgE/antigen-stimulated mast cells. By contrast, PKCbeta is not required for Ser-473 phosphorylation in mast cells stimulated with stem cell factor or interleukin-3, in serum-stimulated fibroblasts, or in antigen receptor-stimulated T or B lymphocytes. Therefore, PKCbetaII appears to work as a cell type- and stimulus-specific PDK2. PMID:15364915

  3. Cell Specific eQTL Analysis without Sorting Cells

    NARCIS (Netherlands)

    Westra, Harm-Jan; Arends, Danny; Esko, Tonu; Peters, Marjolein J.; Schurmann, Claudia; Schramm, Katharina; Kettunen, Johannes; Yaghootkar, Hanieh; Fairfax, Benjamin P.; Andiappan, Anand Kumar; Li, Yang; Fu, Jingyuan; Karjalainen, Juha; Platteel, Mathieu; Visschedijk, Marijn; Weersma, Rinse K.; Kasela, Silva; Milani, Lili; Tserel, Liina; Peterson, Part; Reinmaa, Eva; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Homuth, Georg; Petersmann, Astrid; Lorbeer, Roberto; Prokisch, Holger; Meitinger, Thomas; Herder, Christian; Roden, Michael; Grallert, Harald; Ripatti, Samuli; Perola, Markus; Wood, Andrew R.; Melzer, David; Ferrucci, Luigi; Singleton, Andrew B.; Hernandez, Dena G.; Knight, Julian C.; Melchiotti, Rossella; Lee, Bernett; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Wang, De Yun; van den Berg, Leonard H.; Veldink, Jan H.; Rotzschke, Olaf; Makino, Seiko; Salomaa, Veikko; Strauch, Konstantin; Voelker, Uwe; van Meurs, Joyce B. J.; Metspalu, Andres; Wijmenga, Cisca; Jansen, Ritsert C.; Franke, Lude

    2015-01-01

    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-envir

  4. Cell Specific eQTL Analysis without Sorting Cells

    NARCIS (Netherlands)

    H.J. Westra (Harm-Jan); D. Arends (Danny); T. Esko (Tõnu); M.J. Peters (Marjolein); C. Schurmann (Claudia); K. Schramm (Katharina); J. Kettunen (Johannes); H. Yaghootkar (Hanieh); B.P. Fairfax (Benjamin); A.K. Andiappan (Anand Kumar); Y. Li (Yang); J. Fu (Jingyuan); J. Karjalainen (Juha); I. Platteel (Inge); M. Visschedijk (Marijn); R.K. Weersma (Rinse K.); S. Kasela (Silva); L. Milani (Lili); L. Tserel (Liina); P. Peterson (Pärt); E. Reinmaa (Eva); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); G. Homuth (Georg); A. Petersmann (Astrid); R. Lorbeer (Roberto); H. Prokisch (Holger); T. Meitinger (Thomas); C. Herder (Christian); M. Roden (Michael); H. Grallert (Harald); S. Ripatti (Samuli); M. Perola (Markus); A.R. Wood (Andrew); D. Melzer (David); L. Ferrucci (Luigi); A. Singleton (Andrew); D.G. Hernandez (Dena); J.C. Knight (Julian); R. Melchiotti (Rossella); B. Lee (Bernett); M. Poidinger (Michael); F. Zolezzi (Francesca); A. Larbi (Anis); D.Y. Wang (De Yun); L.H. van den Berg (Leonard); J.H. Veldink (Jan); O. Rotzschke (Olaf); S. Makino (Seiko); V. Salomaa (Veikko); K. Strauch (Konstantin); U. Völker (Uwe); J.B.J. van Meurs (Joyce); A. Metspalu (Andres); C. Wijmenga (Cisca); R.C. Jansen (Ritsert); L. Franke (Lude)

    2015-01-01

    textabstractThe functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a

  5. A host-specific virulence protein of Erwinia herbicola pv. gypsophilae is translocated into human epithelial cells by the Type III secretion system of enteropathogenic Escherichia coli.

    Science.gov (United States)

    Valinsky, Lea; Nisan, Israel; Tu, Xuanlin; Nisan, Gal; Rosenshine, Ilan; Hanski, Emanuel; Barash, Isaac; Manulis, Shulamit

    2002-03-01

    summary HsvG is a virulence factor that determines the host specificity of Erwinia herbicola pathovars gypsophilae and betae on gypsophila. We used the calmodulin adenylate cyclase reporter (CyaA) to demonstrate that HsvG is secreted and translocated into HeLa cells by the type III secretion system (TTSS) of the enteropathogenic Escherichia coli (EPEC). A fusion of HsvG-CyaA containing 271 amino acids of the N-terminus of HsvG were introduced into a wild-type EPEC, espB mutant deficient in translocation and an escV mutant deficient in secretion. A significant secretion was detected in EPEC/HsvG-CyaA and its espB mutant, but not with the escV mutant. Translocation was only observed with the wild-type EPEC, and not with the other two mutants. To localize the secretion and translocation signals of HsvG, fusions containing 39, 11 and 3 amino acids of the N-terminus of HsvG were constructed and expressed in EPEC. A fusion containing the first 39 N-terminal amino acids of HsvG was secreted and translocated at significant level (31-35%) as compared to the original fusion. In contrast, fusions containing the 3 and 11 amino acids failed to be secreted and translocated. PMID:20569314

  6. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    Science.gov (United States)

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties.

  7. Cell Specific eQTL Analysis without Sorting Cells.

    Directory of Open Access Journals (Sweden)

    Harm-Jan Westra

    2015-05-01

    Full Text Available The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn's disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.

  8. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres

    Directory of Open Access Journals (Sweden)

    Aynun N. Begum

    2015-11-01

    Full Text Available Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM with 10% CO2, which doubled the expression of the NESTIN, PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore, an additional step (AdSTEP was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the “neurosphederm”. The large neural tube-type rosette (NTTR structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a shorter period than in traditional neurodifferentiation-protocols (42–60 days. With additional supplements and timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immunodeficiency (SCID mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation and high throughput screening assays.

  9. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    Science.gov (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-01

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player. PMID:27313212

  10. High Circulating Frequencies of Tumor Necrosis Factor Alpha- and Interleukin-2-Secreting Human T-Lymphotropic Virus Type 1 (HTLV-1)-Specific CD4+ T Cells in Patients with HTLV-1-Associated Neurological Disease

    OpenAIRE

    Goon, Peter K. C.; Igakura, Tadahiko; Hanon, Emmanuel; Angelina J Mosley; Asquith, Becca; Gould, Keith G.; Taylor, Graham P.; Weber, Jonathan N.; Bangham, Charles R M

    2003-01-01

    Significantly higher frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells were present in the peripheral blood mononuclear cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients than in those of asymptomatic carriers with similar provirus loads. The data suggest that HTLV-1-specific CD4+ T cells play a role in the pathogenesis of HAM/TSP.

  11. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation.

    Science.gov (United States)

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; Mesman, Annelies W; Geijtenbeek, Teunis B H

    2014-01-01

    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy. PMID:24867235

  12. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation.

    Science.gov (United States)

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; Mesman, Annelies W; Geijtenbeek, Teunis B H

    2014-05-28

    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.

  13. Genetic and Chemical Correction of Cholesterol Accumulation and Impaired Autophagy in Hepatic and Neural Cells Derived from Niemann-Pick Type C Patient-Specific iPS Cells

    OpenAIRE

    Dorothea Maetzel; Sovan Sarkar; Haoyi Wang; Lina Abi-Mosleh; Ping Xu; Albert W. Cheng; Qing Gao; Maisam Mitalipova; Rudolf Jaenisch

    2014-01-01

    Summary Niemann-Pick type C (NPC) disease is a fatal inherited lipid storage disorder causing severe neurodegeneration and liver dysfunction with only limited treatment options for patients. Loss of NPC1 function causes defects in cholesterol metabolism and has recently been implicated in deregulation of autophagy. Here, we report the generation of isogenic pairs of NPC patient-specific induced pluripotent stem cells (iPSCs) using transcription activator-like effector nucleases (TALENs). We o...

  14. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga volvox carteri and their potential role in cellular differentiation

    OpenAIRE

    Kianianmomeni, Arash

    2015-01-01

    The formation of multicellular organisms requires genetically predefined signaling pathways in various cell types. Besides differences in size, energy balance and life time, cell types should be enable to modulate appropriate developmental and adaptive responses in ever-changing surrounding environment. One of the most important environmental cues is light which regulates a variety of physiological and cellular processes. During evolution, diverse light-sensitive proteins, so-called photorece...

  15. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles

    OpenAIRE

    Kenesei, Kata; Murali, Kumarasamy; Czéh, Árpád; Piella, Jordi; Puntes, Victor; Madarász, Emília

    2016-01-01

    Background Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-...

  16. Adoptive transfer of suppression of arthritis in the mouse model of collagen-induced arthritis. Evidence for a type II collagen-specific suppressor T cell.

    OpenAIRE

    Kresina, T F; Moskowitz, R W

    1985-01-01

    This study details the suppressive mechanism involved in the antigen-specific suppression of collagen-induced arthritis. Intravenous injection of 500 micrograms of soluble native type II collagen 3 d before immunization with native type II collagen emulsified in complete Freund's adjuvant resulted in animals with decreased in vitro cellular and humoral immune response to native and denatured type II collagen compared with control groups. Control groups were composed of animals preinoculated w...

  17. Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Gallant Maureen E

    2010-05-01

    Full Text Available Abstract Background Effective highly active antiretroviral therapy (HAART reduces human immunodeficiency virus (HIV replication, restores CD4+ T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8+ T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8+ T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV. Methods Peripheral blood mononuclear cells (PBMC were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ or interleukin-2 (IL-2 were enumerated by ELISPOT and phenotyped by flow cytometry. Results and Conclusions The magnitude of the HIV-specific CD8+ T cell response ranged from +CD45RA- effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8+ T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8+ T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years.

  18. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  19. Coupling the GAL4 UAS system with alcR for versatile cell type-specific chemically inducible gene expression in Arabidopsis.

    Science.gov (United States)

    Sakvarelidze, Lali; Tao, Zheng; Bush, Max; Roberts, Gethin R; Leader, David J; Doonan, John H; Rawsthorne, Stephen

    2007-07-01

    The Aspergillus alc regulon encodes a transcription factor, ALCR, which regulates transcription from cognate promoters such as alcA(p). In the presence of suitable chemical inducers, ALCR activates gene expression from alcA(p). The alc regulon can be transferred to other species and can be used to control the expression of reporter, metabolic and developmental genes in response to low-level ethanol exposure. In this paper, we describe a versatile system for targeting the alc regulon to specific cell types in Arabidopsis by driving ALCR expression from the GAL4 upstream activator sequence (UAS). Large numbers of Arabidopsis lines are available in which GAL4 is expressed in a variety of spatial patterns and, in turn, drives the expression of any gene cloned downstream of the UAS. We have used a previously characterized line that directs gene expression to the endosperm to demonstrate spatially restricted ethanol-inducible gene expression. We also show that the domain of inducible gene expression can easily be altered by crossing the UAS::ALCR cassette into different driver lines. We conclude that this gene switch can be used to drive gene expression in a highly responsive, but spatially restricted, manner.

  20. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  1. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  2. Posttranslational Modification of Collagen Type II : Effects on Antigen-Specific T-cell Tolerance and Autoreactivity in Collagen-Induced Arthritis

    OpenAIRE

    Merky, Patrick

    2011-01-01

    Rheumatoid arthritis (RA) is a common chronic inflammatory disease affecting peripheral joints in approximately 1% of the world population. Immunization of susceptible strains with CII, leads to development of collagen-induced arthritis (CIA), an animal model for RA. The aim of this thesis was to investigate mechanisms involved in regulation of immunological T-cell tolerance in CIA by studying availability of joint-specific CII for presentation to autoreactive T cell...

  3. High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Benjamin Dannenmann

    2015-05-01

    Full Text Available Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs, we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage.

  4. CEL-I, an invertebrate N-acetylgalactosamine-specific C-type lectin, induces TNF-alpha and G-CSF production by mouse macrophage cell line RAW264.7 cells.

    Science.gov (United States)

    Yamanishi, Tomohiro; Yamamoto, Yoshiko; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2007-11-01

    Our previous studies demonstrated that CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin purified from the marine invertebrate Cucumaria echinata (Holothuroidea) showed potent cytotoxicity to several cell lines such as HeLa, MDCK and XC cells. In this study, we found that CEL-I induced increased secretion of tumour necrosis factor-alpha (TNF-alpha) and granulocyte colony stimulation factor (G-CSF) by mouse macrophage cell line RAW264.7 cells in a dose-dependent manner, whereas this cell line was highly resistant to CEL-I cytotoxicity. The cytokine-inducing activity of CEL-I was stronger than that of phytohaemagglutinin (PHA-L). A binding study using FITC-labelled CEL-I (F-CEL-I) indicated that the amount of bound F-CEL-I on RAW264.7 cells was greater than that of F-PHA-L, suggesting that the greater activity of CEL-I to induce cytokine secretion by RAW264.7 cells is partly due to the higher binding ability. Since the cell binding and cytokine-inducing activity of CEL-I were partly but significantly inhibited by the specific sugar (GalNAc), it is considered that the binding of CEL-I to cell-surface-specific saccharide moieties, which may be recognized by CEL-I with higher affinity than GalNAc, is essential for the induction of cytokine secretion. The secretion of TNF-alpha and G-CSF from CEL-I-treated RAW264.7 cells were almost completely prevented by brefeldin A (BFA), whereas increase in mRNA levels of these cytokines were not affected by BFA. Bio-Plex beads assay suggested that temporal increase in phosphorylation of extracellular-regulated kinase (ERK), c-jun NH(2)-terminal kinase (JNK) and p38 MAP kinase occurred at relatively early time following CEL-I treatment. Furthermore, the secretion of TNF-alpha and G-CSF were inhibited by specific inhibitors for these MAP kinases. These results suggest that the intracellular signal transduction through the activation of MAP kinase system is involved in CEL-I-induced cytokine secretion. PMID:17846063

  5. Cell Type-Specific Delivery of RNAi by Ligand-Functionalized Curdlan Nanoparticles: Balancing the Receptor Mediation and the Charge Motivation.

    Science.gov (United States)

    Wu, Yinga; Cai, Jia; Han, Jingfen; Baigude, Huricha

    2015-09-30

    Tissue-specific delivery of therapeutic RNAi has great potential for clinical applications. Receptor-mediated endocytosis plays a crucial role in targeted delivery of biotherapeutics including short interfering RNA (siRNA). Previously we reported a novel Curdlan-based nanoparticle for intracellular delivery of siRNA. Here we designed a nanoparticle based on ligand-functionalized Curdlan. Disaccharides were site-specifically conjugated to 6-deoxy-6-amino Curdlan, and the cell line specificity, cellular uptake, cytotoxicity, and siRNA delivery efficiency of the corresponding disaccharide-modified 6-deoxy-6-amino-Curdlan were investigated. Observation by fluorescence microscopy as well as flow cytometry showed that galactose-containing Curdlan derivatives delivered fluorescently labeled short nucleic acid to HepG2 cells expressing ASGPR receptor but not in other cells lacking surface ASGPR protein. Moreover, highly galactose-substituted Curdlan derivatives delivered siRNA specifically to ASGPR-expressing cells and induced RNAi activities, silencing endogenous GAPDH gene expression. Our data demonstrated that galactose-functionalized 6-deoxy-6-amino-Curdlan is a promising carrier for short therapeutic nucleic acids for clinical applications.

  6. Further characterization of protective Trypanosoma cruzi-specific CD4+ T-cell clones: T helper type 1-like phenotype and reactivity with shed trypomastigote antigens.

    Science.gov (United States)

    Nickell, S P; Keane, M; So, M

    1993-01-01

    We previously reported the isolation from immune mice of a panel of murine clonal T-cell lines which specifically recognize antigens expressed by the trypomastigote stage of the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease. Our analysis indicated that distinct clones which recognize common as well as strain-specific antigenic determinants were represented. The immunoprotective potential of several of these T-cell clones was demonstrated by adoptive transfer of protection to naive syngeneic recipients. Here we report that these T-cell clones are all of the TH1 phenotype, as determined from their lymphokine secretion patterns. Significant levels of stimulatory activity for each clone were detected in trypomastigote supernatants, and the release of this activity was time and temperature dependent. Seven of 10 T-cell clones tested responded to nitrocellulose-immunoblotted trypomastigote proteins in the range of 90 to 47 kDa; no fewer than six distinct epitopes residing on at least five distinct polypeptide species were recognized by this panel of clones. Two clones (2G8 and 4B10) previously shown to protect in vivo responded to immunoblotted proteins in the range of 65 to 53 and 90 to 80 kD, respectively. Stimulatory activity for the latter clone was shown to be expressed on the surface of trypomastigotes and to bind specifically to wheat germ agglutinin, indicating that its target antigen is an 85-kDa trypomastigote surface glycoprotein. PMID:8335358

  7. Differences in the expressed HLA class I alleles effect the differential clustering of HIV type 1-specific T cell responses in infected Chinese and Caucasians

    Institute of Scientific and Technical Information of China (English)

    Yu,XG; Addo,MM; Perkins,BA; Wej,FL; Rathod,A; Geer,SC; Parta,M; Cohen,D; Stone,DR; Russell,CJ; Tanzi,G; Mei,S; Wureel,AG; Frahm,N; Lichterfeld,M; Heath,L; Mullins,JI; Marincola,F; Goulder,PJR; Brander,C; Allen,T; Cao,YZ; Walker,BD; Altfeld,M

    2005-01-01

    China is a region of the world with a rapidly spreading HIV-1 epidemic. Studies providing insights into HIV-1 pathogenesis in infected Chinese are urgently needed to support the design and testing of an effective HIV-1 vaccine for this population. HIV-1-specific T cell responses were characterized in 32 HIV-1-infected individuals of Chinese origin and compared to 34 infected caucasians using 410 overlapping peptides spanning the entire HIV-1 clade B consensus sequence in an IFN-gamma ELISpot assay. All HIV-1 proteins were targeted with similar frequency in both populations and all study subjects recognized at least one overlapping peptide. HIV-1-specific T cell responses clustered in seven different regions of the HIV-1 genome in the Chinese cohort and in nine different regions in the caucasian cohort. The dominant HLA class I alleles expressed in the two populations differed significantly, and differences in epitope clustering pattern were shown to be influenced by differences in class I alleles that restrict immunodominant epitopes. These studies demonstrate that the clustering of HIV-1-specific T cell responses is influenced by the genetic HLA class I background in the study populations. The design and testing of candidate vaccines to fight the rapidly growing HIV-1 epidemic must therefore take the HLA genetics of the population into account as specific regions of the virus can be expected to be differentially targeted in ethnically diverse populations.

  8. Two Golgi integral membrane proteins (GIMPS) exhibit region- and cell type-specific distribution in the epididymis of the adult rat.

    Science.gov (United States)

    Suarez-Quian, C A; Jelesoff, N

    1994-12-15

    The epididymis participates in the post-testicular maturation and storage of spermatozoa by secreting proteins into the tubule lumen in a region-specific fashion. The underlying molecular mechanisms leading to biogenesis of these region-specific differences, however, are not known, although components of the Golgi complex membrane container must undoubtedly be intimately involved. Two monoclonal antibodies raised against Golgi integral membrane proteins, recognizing either the cis (GIMPc) or trans Golgi (GIMPt) cisternae, were used as molecular probes of these regions to begin the characterization of the Golgi complex of in vivo and in vitro epididymal cells. Immunolocalization of GIMPs was performed on frozen sections and in cultured cells using biotin-streptavidin-peroxidase immunocytochemistry. In tissue sections, immunostaining of GIMPt was extremely robust in the supranuclear cytoplasm throughout the epididymis. In contrast, no GIMPc immunostaining was detected in the initial segment or in clear cells of the distal caput, corpus, and cauda. Immunodetection of GIMPc and GIMPt in epididymal cells in vitro revealed a reticular, perinuclear pattern, and NH4Cl treatment preferentially disrupted the GIMPt immunolocalization. These results characterizing the molecular components of the Golgi complex will form the basis of additional studies to gain further insight into mechanisms leading to generation of regional differences in epididymal function. PMID:7873795

  9. Islet-specific CTL cloned from a type 1 diabetes patient cause beta-cell destruction after engraftment into HLA-A2 transgenic NOD/scid/IL2RG null mice.

    Directory of Open Access Journals (Sweden)

    Wendy W J Unger

    Full Text Available Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP. HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP(265-273-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγ(null mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies.

  10. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo.

    Science.gov (United States)

    Wang, Yuhong; Rajala, Ammaji; Cao, Binrui; Ranjo-Bishop, Michelle; Agbaga, Martin-Paul; Mao, Chuanbin; Rajala, Raju V S

    2016-01-01

    Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.

  11. Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells.

    OpenAIRE

    Scamps, F.; Vassort, G

    1994-01-01

    1. The pharmacological profile of the ATP-induced increase in ICa amplitude and of ATP activation of a non-specific cationic current, IATP, was investigated in rat ventricular cells. 2. The EC50 values for ICa increase and IATP activation were 0.36 microM and 0.76 microM respectively. Suramin (10 microM) and cibacron blue (1 microM) competitively antagonized both effects of ATP. 3. The rank order of efficacy and potency of ATP analogues in increasing ICa amplitude was 2-methylthio-ATP approxi...

  12. A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile

    Science.gov (United States)

    Serrano, Mónica; Kint, Nicolas; Pereira, Fátima C.; Saujet, Laure; Boudry, Pierre; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2016-01-01

    The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development. PMID:27631621

  13. Turning One Cell Type into Another.

    Science.gov (United States)

    Slack, Jonathan M W

    2016-01-01

    The nature of cells in early embryos may be respecified simply by exposure to inducing factors. In later stage embryos, determined cell populations do not respond to inducing factors but may be respecified by other stimuli, especially the introduction of specific transcription factors. Fully differentiated cell types are hard to respecify by any method, but some degree of success can be achieved using selected combinations of transcription factors, and this may have clinical significance in the future. PMID:26969988

  14. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten;

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  15. Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership?

    DEFF Research Database (Denmark)

    Levin Andersen, Thomas; Boissy, Patrice; Sondergaard, T E;

    2007-01-01

    A major clinical manifestation of bone cancers is bone destruction. It is widely accepted that this destruction is not caused by the malignant cells themselves, but by osteoclasts, multinucleated cells of monocytic origin that are considered to be the only cells able to degrade bone. The present ...... participate directly. The possibility that malignant cells corrupt host cells by the transfer of malignant DNA may have been underestimated to date in cancer research....

  16. Cell-Type Specific Insertion of GluA2-Lacking AMPARs with Cocaine Exposure Leading to Sensitization, Cue-Induced Seeking, and Incubation of Craving.

    Science.gov (United States)

    Terrier, Jean; Lüscher, Christian; Pascoli, Vincent

    2016-06-01

    Addiction is a behavioral disease, of which core components can be modeled in rodents. Much evidence implicates drug-evoked synaptic plasticity in cocaine-evoked locomotor sensitization, cue-induced cocaine seeking, and incubation of cocaine craving. However, the type of plasticity evoked by different modalities of cocaine administration (eg contingent vs non-contingent) and its role in reshaping circuit function remains largely elusive. Here we exposed mice to various regimens of cocaine and recorded excitatory transmission onto identified medium-sized spiny neurons (MSN, expressing fluorescent proteins under the control of either D1R or D2R dopamine receptor promotor) in the nucleus accumbens at time points when behavioral adaptations are observed. In D1-MSN, we found the presence of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) after single or chronic non-contingent exposure to cocaine as well as after cocaine self-administration (SA). We also report an increase in the AMPA/NMDA ratio (A/N) in D1-MSN, which was observed only after repeated passive injections associated with locomotor sensitization as well as in a condition of SA leading to seeking behavior. Remarkably, insertion of GluA2-lacking AMPARs was also detected in D2-MSN after SA of a high dose of cocaine but not regular dose (1.5 vs 0.75 mg/kg), which was the only condition where incubation of cocaine craving was observed in this study. Moreover, synapses containing GluA2-lacking AMPARs belonged to amygdala inputs in D2-MSN and to medial prefrontal cortex inputs in D1-MSN. Taken together this study allows for a refinement of a circuit model of addiction based on specific synaptic changes induced by cocaine. PMID:26585289

  17. Distinguishing cell type using epigenotype

    Science.gov (United States)

    Wytock, Thomas; Motter, Adilson E.

    Recently, researchers have proposed that unique cell types are attractors of their epigenetic dynamics including gene expression and chromatin conformation patterns. Traditionally, cell types have been classified by their function, morphology, cytochemistry, and other macroscopically observable properties. Because these properties are the result of many proteins working together, it should be possible to predict cell types from gene expression or chromatin conformation profiles. In this talk, I present a maximum entropy approach to identify and distinguish cell type attractors on the basis of correlations within these profiles. I will demonstrate the flexibility of this method through its separate application to gene expression and chromatin conformation datasets. I show that our method out-performs other machine-learning techniques and uncorrelated benchmarks. We adapt our method to predict growth rate from gene expression in E. coli and S. cerevisiae and compare our predictions with those from metabolic models. In addition, our method identifies a nearly convex region of state-space associated with each cell type attractor basin. Estimates of the growth rate and attractor basin make it possible to rationally control gene regulatory networks independent of a model. This research was supported by NSF-GRFP, NSF-GK12, GAANN, and Northwestern's NIH-NIGMS Molecular Biophysics Training Grant.

  18. Antiproliferative effects of TRPV1 ligands on nonspecific and enteroantigen-specific T cells from wild-type and Trpv1 KO mice

    DEFF Research Database (Denmark)

    Belmaáti, Mohammed-Samir; Diemer, Sanne; Hvarness, Tine;

    2014-01-01

    BACKGROUND: Treatment with the TRPV1 agonist, capsaicin, was previously shown to protect against experimental colitis in the severe combined immunodeficiency (SCID) T-cell transfer model. Here, we investigate trpv1 gene expression in lymphoid organs and cells from SCID and BALB/c mice to identify...

  19. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain

    International Nuclear Information System (INIS)

    Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR) regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP) was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma. The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB) isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions. GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003), which differentiated into patrolling macrophages in tumoral (P = 0.001) and peritumoral areas (P = 0.04), rather than into dendritic cells, as in control animals. Treatment with GCLRP did not result in a significant change in survival of mice bearing a tumor. In vitro and in vivo activation of monocytes was achieved by administration of GCLR to mice. GCLRP-activated blood monocytes were recruited to the brain and exhibited specific phenotypes corresponding with tumor region (glioma, peritumoral zone, and contralateral glioma-free hemisphere). GCLRP treatment alone was associated with increased glioma mass as the result of the infiltration of phagocytic cells. Regional specificity for MDCB may have

  20. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe;

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  1. Prevalence of type-specific HPV infection in Uruguay.

    Science.gov (United States)

    Berois, Nora; Heard, Isabelle; Fort, Zoraida; Alonso, Rafael; Sica, Adela; Moerzinger, Patricia; Rodriguez, Guillermo; Sancho-Garnier, Hélène; Osinaga, Eduardo; Favre, Michel

    2014-04-01

    The aim of this work was to describe the prevalence of type-specific Human papillomavirus (HPV) infection in women attending organized cervical cancer screening program in Uruguay. Nine hundred sixty-five liquid cervical cell samples obtained after collection of cervical smears for cytology were assessed for HPV DNA using the Papillocheck system (Greiner BioOne). The overall prevalence of High-Risk (HR) HPV infections was 20.8% and increased from 16.5% in women with normal cytology to 93.3% in HSIL. Prevalence of HPV 16 and/or 18 was 6.3% and HPV 16 was the most prevalent genotype in normal cytology (3.6%). The five most prevalent genotypes were HPV 16, 31, 51, 56, and 39. The overall prevalence peaked below age 30. This study provides essential baseline information at national level on type-specific HPV prevalence in Uruguay before the introduction of HPV vaccination. It documents the current prevalence of each of the oncogenic genotypes in a population attending cervical cancer screening program, suggesting that at least 64.7% of high risk lesions are potentially preventable by available HPV vaccines, and possibly augmentable if cross-protection against non-vaccine HPV types 31, 33, and 45 is confirmed.

  2. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Directory of Open Access Journals (Sweden)

    Sheng Hu

    Full Text Available DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  3. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  4. Cytokine production by endothelial cells infected with human T cell lymphotropic virus type I.

    OpenAIRE

    H. Takashima; Eguchi, K.; Kawakami, A; Kawabe, Y; Migita, K; Sakai, M; Origuchi, T; Nagataki, S.

    1996-01-01

    OBJECTIVE: To investigate the ability of human T cell lymphotropic virus type I (HTLV-I) to infect endothelial cells and induce cytokine production by these cells. METHODS: Human umbilical vein endothelial cells (HUVEC) were cocultured with HTLV-I infected T cell line (MT-2 cells) or uninfected T cell line (CEM cells). RESULTS: Following coculture with MT-2 cells, endothelial cells expressed HTLV-I specific core antigens. Endothelial cells cocultured with MT-2 cells produced significant amoun...

  5. Cell-type specific recognition of human Metapneumoviruses by RIG-I and TLR7 and viral interference of RIG-I ligand recognition by HMPVB1 Phosphoprotein

    OpenAIRE

    Goutagny, Nadege; Jiang, Zhaozhao; Tian, Jane; Parroche, Peggy; Schlicki, Jeanne; Monks, Brian G; Ulbrandt, Nancy; Ji, Hong; Kiener, Peter; Coyle, Anthony J.; Fitzgerald, Katherine A.

    2009-01-01

    Human Metapneumoviruses (HMPV) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germline encoded pattern recognition receptors and activation of cytokine and type I interferon genes. Recently, the RNA helicase Retinoic acid inducible gene (RIG-I) has been shown to sense HMPV. In this study, we investigated the ability of...

  6. ß-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Börjesson, A; Rønn, S G; Karlsen, A E;

    2011-01-01

    effects of STZ. Exposure of wt islets to IL-1ß or IL-1ß+IFN-¿ seemed to lead to a failing IL-1Ra response from SOCS-3 transgenic islets. It could be that an increased expression of a possible protective molecule against ß-cell destruction may lead to a dampered response of another putative protective...... molecule. This may have counteracted a protective effect against MLDSTZ in SOCS-3 transgenic mice....

  7. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.

    Science.gov (United States)

    Weber, H; Borisjuk, L; Heim, U; Buchner, P; Wobus, U

    1995-11-01

    We have studied the molecular physiology of photosynthate unloading and partitioning during seed development of fava bean (Vicia faba). During the prestorage phase, high levels of hexoses in the cotyledons and the apoplastic endospermal space are correlated with activity of cell wall-bound invertase in the seed coat. Three cDNAs were cloned. Sequence comparison revealed genes putatively encoding one soluble and two cell wall-bound isoforms of invertase. Expression was studied in different organs and tissues of developing seeds by RNA gel analysis, in situ hybridization, enzyme assay, and enzyme activity staining. One extracellular invertase gene is expressed during the prestorage phase in the thin-walled parenchyma of the seed coat, a region known to be the site of photoassimilate unloading. We propose a model for an invertase-mediated unloading process during early seed development and the regulation of cotyledonary sucrose metabolism. After unloading from the seed coat, sucrose is hydrolyzed by cell wall-bound invertases. Thus, invertase contributes to establish sink strength in young seeds. The resultant hexoses are loaded into the cotyledons and control carbohydrate partitioning via an influence on the sucrose synthase/sucrose-phosphate synthase pathway. The developmentally regulated degradation of the thin-walled parenchyma expressing the invertase apparently initiates the storage phase. This is characterized by a switch to a low sucrose/hexoses ratio. Feeding hexoses to storage-phase cotyledons in vitro increases the sucrose-phosphate synthase/sucrose synthase ratio and changes carbohydrate partitioning in favor of sucrose. Concomitantly, the transcript level of the major storage product legumin B is downregulated. PMID:8535137

  8. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. PMID:26874250

  9. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I;

    2009-01-01

    information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2...... revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between......- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling...

  10. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape

    DEFF Research Database (Denmark)

    Arendrup, M; Sönnerborg, A; Svennerholm, B;

    1993-01-01

    The paradox that group-specific neutralizing antibodies (NA) exist in the majority of human immunodeficiency virus type 1 (HIV-1)-infected patients, whereas the NA response against autologous HIV-1 virus isolates is highly type-specific, motivated us to study the type- and group-specific NA...... of recombinant soluble gp120IIIB to cell-associated CD4, but group-specific virus neutralization required binding of NA to HIV-1 prior to viral attachment to target cells. Consecutive escape virus isolates were tested for sensitivity to neutralization by heterologous sera. Only minor differences were...... demonstrated, suggesting that the majority of the change in neutralization sensitivity is driven by the selective pressure of type-specific NA. Furthermore, no differences were observed in sensitivity to neutralization by anti-carbohydrate neutralizing monoclonal antibodies or the lectin concanavalin A...

  11. Germ cell specification and regeneration in planarians.

    Science.gov (United States)

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  12. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    Directory of Open Access Journals (Sweden)

    Madlen eNietzsche

    2014-02-01

    Full Text Available In plants, SNF1-related kinase (SnRK1 responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic alpha subunit associates with a regulatory beta subunit and an activating gamma subunit. Several different metabolites as well as the hormone abscisic acid (ABA have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF 581 could interact with both isoforms of the SnRK1 alpha subunit (AKIN10/11 of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins can share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  13. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19).

    Science.gov (United States)

    Digilio, Laura; Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  14. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup;

    2014-01-01

    The Ly-6 superfamily of proteins, which affects diverse processes in the immune system, has attracted renewed attention due to the ability of some Ly-6 proteins to bind to and modulate the function of neuronal nicotinic acetylcholine receptors (nAChRs). However, there is a scarcity of knowledge...... regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  15. Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans infection.

    Science.gov (United States)

    Garro, Ana P; Chiapello, Laura S; Baronetti, Jose L; Masih, Diana T

    2011-10-01

    Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, because as in healthy humans, rats can effectively contain cryptococcal infection. Moreover, it has been shown that eosinophils are components of the immune response to C. neoformans infections. In a previous in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, thereby triggering their activation, as indicated by the up-regulation of MHC and co-stimulatory molecules and the increase in interleukin-12, tumour necrosis factor-α and interferon-γ production. Furthermore, this work demonstrated that C. neoformans-specific CD4(+) and CD8(+) T lymphocytes cultured with these activated C. neoformans-pulsed eosinophils proliferated, and produced important amounts of T helper type 1 (Th1) cytokines in the absence of Th2 cytokine synthesis. In the present in vivo study, we have shown that C. neoformans-pulsed eosinophils are also able to migrate into lymphoid organs to present C. neoformans antigens, thereby priming naive and re-stimulating infected rats to induce T-cell and B-cell responses against infection with the fungus. Furthermore, the antigen-specific immune response induced by C. neoformans-pulsed eosinophils, which is characterized by the development of a Th1 microenvironment with increased levels of NO synthesis and C. neoformans-specific immunoglobulin production, was demonstrated to be able to protect rats against subsequent infection with fungus. In summary, the present work demonstrates that eosinophils act as antigen-presenting cells for the fungal antigen, hence initiating and modulating a C. neoformans-specific immune response. Finally, we suggest that C. neoformans-loaded eosinophils might participate in the protective immune response against these fungi.

  16. Cell culture models using rat primary alveolar type I cells.

    Science.gov (United States)

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  17. Time- and cell-type specific changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    Science.gov (United States)

    Yoo, Dae Young; Yoo, Ki-Yeon; Park, Joon Ha; Kwon, Hyun Jung; Jung, Hyo Young; Kim, Jong Whi; Choi, Goang-Min; Moon, Seung Myung; Kim, Dae Won; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2016-01-01

    In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

  18. Apoptin: specific killer of tumor cells?

    Science.gov (United States)

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  19. Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner.

    Science.gov (United States)

    Ginn, Samantha L; Fleming, Jane; Rowe, Peter B; Alexander, Ian E

    2003-08-10

    In a previous study using an early-generation VSV-G-pseudotyped lentivirus vector encoding enhanced green fluorescent protein (EGFP) under the transcriptional control of a human cytomegalovirus (CMV) immediate-early promoter, we examined transduction efficiency in dissociated dorsal root ganglia (DRG) cultures. In cultures of murine origin, transgene expression was observed solely in the sensory neurons with the stromal cell population failing to show evidence of transduction. In contrast, efficient and sustained transduction of both sensory neurons and the stromal cell population was observed in cultures of human origin. Given the widespread use of murine models in preclinical gene therapy studies, in the current study we investigated the basis of this apparent neuron specificity of lentivirus-mediated transduction in murine DRG cultures. The interspecies differences persisted at high multiplicities of infection, and irrespective of whether lentiviral vector stocks were packaged in the presence or absence of human immunodeficiency virus type 1 (HIV-1) accessory proteins. Cell-type specificity of CMV promoter expression, tropism of the VSV-G envelope, and blocks to molecular transduction were also precluded as possible mechanisms, thereby implicating transcriptional repression of the internal heterologous promoter. This promoter interference effect was found to be mediated by cis-acting sequences upstream of the core promoter elements located in the U3 region of the proviral long terminal repeats (LTRs). Deletion of this region, as in late-generation self-inactivating (SIN) lentivirus vectors, relieves this effect. This provides a basis for reevaluating data produced using early-generation U3-bearing lentivirus vectors and for reconciling these with results obtained using more contemporary SIN lentivirus vectors carrying a U3 deletion.

  20. Generation of patient-specific pluripotent stem cells and directed differentiation of embryonic stem cells for regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Minyue Ma; Jiahao Sha; Zuomin Zhou; Qi Zhou; Qingzhang Li

    2008-01-01

    Embryonic stem(ES) cells are pluripotent cells that can give rise to derivatives of all three embryonic germ layers. Due to its characteristics, the patient-specific ES cells are of great potential for transplantation therapies. Several strategies can reprogramme somatic cells back to pluripotent stem cells: nuclear transfer, fusion with ES cells, treatment with cell extract and induction by specific factors. Considering the future clinical use, the differentiation from ES to neurons, cardiomyocytes and many other types of cell scurrently provide basic cognition and experience to regenerative medicine. This article will review two courses, the reprogramming of differentiated cells and the differentiation of ES cells to specific cell types.

  1. Apoptin: Specific killer of tumor cells?

    OpenAIRE

    Tavassoli, M; Guelen, L.; Luxon, B. A.; Gäken, J

    2005-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apo...

  2. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  3. Cell-Specific Aptamers as Emerging Therapeutics

    OpenAIRE

    Cindy Meyer; Ulrich Hahn; Andrea Rentmeister

    2011-01-01

    Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment). Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have...

  4. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.

  5. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.

  6. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Petersen, T R; Kirkin, A F;

    2000-01-01

    recognizing p53 derived wild type (self) peptides. Furthermore, the capacity of R9V specific T cell clones to exert HLA restricted cytotoxicity, argues that the R9V peptide is naturally presented on certain cancer cells. This supports the view that p53 derived wild type peptides might serve as candidate......Mutations in the tumour suppressor gene p53 are among the most frequent genetic alterations in human malignancies, often associated with an accumulation of the p53 protein in the cytoplasm. We have generated a number of cytotoxic T lymphocyte (CTL) clones that specifically recognize the HLA-A*0201...... p53 wild type peptide RMPEAAPPV [65-73], designated R9V, by the in vitro stimulation of CD8 enriched peripheral blood lymphocytes from a healthy HLA-A*0201 donor using peptide loaded autologous dendritic cells. A total of 22 CTL clones were generated from the same bulk culture and demonstrated to...

  7. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell.

    Directory of Open Access Journals (Sweden)

    Ryan Chong

    Full Text Available Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin

  8. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21 and Nsg-2 (P19.

    Directory of Open Access Journals (Sweden)

    Laura Digilio

    Full Text Available The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65 were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21 and Nsg-2 (P19 are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  9. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  10. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  11. Conformation-specific antibodies targeting the trimer-of-hairpins motif of the human T-cell leukemia virus type 1 transmembrane glycoprotein recognize the viral envelope but fail to neutralize viral entry.

    Science.gov (United States)

    Mirsaliotis, Antonis; Nurkiyanova, Kulpash; Lamb, Daniel; Woof, Jenny M; Brighty, David W

    2007-06-01

    Human T-cell leukemia virus type 1 (HTLV-1) entry into cells is dependent upon the viral envelope glycoprotein-catalyzed fusion of the viral and cellular membranes. Following receptor activation of the envelope, the transmembrane glycoprotein (TM) is thought to undergo a series of fusogenic conformational transitions through a rod-like prehairpin intermediate to a compact trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that TM is a valid target for antiviral therapy. To assess the utility of TM as a vaccine target and to explore further the function of TM in HTLV-1 pathogenesis, we have begun to examine the immunological properties of TM. Here we demonstrate that a recombinant trimer-of-hairpins form of the TM ectodomain is strongly immunogenic. Monoclonal antibodies raised against the TM immunogen specifically bind to trimeric forms of TM, including structures thought to be important for membrane fusion. Importantly, these antibodies recognize the envelope on virally infected cells but, surprisingly, fail to neutralize envelope-mediated membrane fusion or infection by pseudotyped viral particles. Our data imply that, even in the absence of overt membrane fusion, there are multiple forms of TM on virally infected cells and that some of these display fusion-associated structures. Finally, we demonstrate that many of the antibodies possess the ability to recruit complement to TM, suggesting that envelope-derived immunogens capable of eliciting a combination of neutralizing and complement-fixing antibodies would be of value as subunit vaccines for intervention in HTLV infections. PMID:17376912

  12. Robust Type-specific Hemisynapses Induced by Artificial Dendrites

    Science.gov (United States)

    Kim, Eun Joong; Jeon, Chang Su; Lee, Soo Youn; Hwang, Inseong; Chung, Taek Dong

    2016-04-01

    Type-specificity of synapses, excitatory and inhibitory, regulates information process in neural networks via chemical neurotransmitters. To lay a foundation of synapse-based neural interfaces, artificial dendrites are generated by covering abiotic substrata with ectodomains of type-specific synaptogenic proteins that are C-terminally tagged with biotinylated fluorescent proteins. The excitatory artificial synapses displaying engineered ectodomains of postsynaptic neuroligin-1 (NL1) induce the formation of excitatory presynapses with mixed culture of neurons in various developmental stages, while the inhibitory artificial dendrites displaying engineered NL2 and Slitrk3 induce inhibitory presynapses only with mature neurons. By contrast, if the artificial dendrites are applied to the axonal components of micropatterned neurons, correctly-matched synaptic specificity emerges regardless of the neuronal developmental stages. The hemisynapses retain their initially established type-specificity during neuronal development and maintain their synaptic strength provided live neurons, implying the possibility of durable synapse-based biointerfaces.

  13. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene;

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes....... In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages...

  14. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  15. Embryonic stem cell neurogenesis and neural specification.

    Science.gov (United States)

    Germain, Noélle; Banda, Erin; Grabel, Laura

    2010-10-15

    The prospect of using embryonic stem cell (ESC)-derived neural progenitors and neurons to treat neurological disorders has led to great interest in defining the conditions that guide the differentiation of ESCs, and more recently induced pluripotent stem cells (iPSCs), into neural stem cells (NSCs) and a variety of neuronal and glial subtypes. Over the past decade, researchers have looked to the embryo to guide these studies, applying what we know about the signaling events that direct neural specification during development. This has led to the design of a number of protocols that successfully promote ESC neurogenesis, terminating with the production of neurons and glia with diverse regional addresses and functional properties. These protocols demonstrate that ESCs undergo neural specification in two, three, and four dimensions, mimicking the cell-cell interactions, patterning, and timing that characterizes the in vivo process. We therefore propose that these in vitro systems can be used to examine the molecular regulation of neural specification. PMID:20589755

  16. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  17. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  18. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  19. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  20. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells.

    Science.gov (United States)

    Leventhal, Daniel S; Gilmore, Dana C; Berger, Julian M; Nishi, Saki; Lee, Victoria; Malchow, Sven; Kline, Douglas E; Kline, Justin; Vander Griend, Donald J; Huang, Haochu; Socci, Nicholas D; Savage, Peter A

    2016-04-19

    Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.

  1. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  2. T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. I. On the mechanism of a selective suppression of the virus-specific delayed-type hypersensitivity response

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup

    1986-01-01

    pretreated with neutralizing anti-LCMV serum, indicating a suppressive effect of virus transferred with the infected cells. When tolerance induction was attempted with virus alone, a potentially fatal immune reaction could be altered to unresponsiveness (i.e. survival) as late as 4 days after an otherwise......-cell response remains essentially unchanged. When low-dose spleen effectors were transferred intravenously into intracerebrally infected high-dose mice, fatal LCM disease occurred, which means that infected central nervous system target structures in these animals are sensitive to virus-specific T cells. When...

  3. Birth time/order-dependent neuron type specification

    OpenAIRE

    Kao, Chih-Fei; Lee, Tzumin

    2009-01-01

    Neurons derived from the same progenitor may acquire different fates according to their birth timing/order. To reveal temporally guided cell fates, we must determine neuron types as well as their lineage relationships and times of birth. Recent advances in genetic lineage analysis and fate mapping are facilitating such studies. For example, high-resolution lineage analysis can identify each sequentially derived neuron of a lineage and has revealed abrupt temporal identity changes in diverse D...

  4. IL-10-producing type 1 regulatory T cells and allergy.

    Science.gov (United States)

    Wu, Kui; Bi, Yutian; Sun, Kun; Wang, Changzheng

    2007-08-01

    As an important subset of regulatory T (Treg) cells, IL-10-producing type 1 regulatory T cells (Tr1), have some different features to thymic-derived naturally occurring CD4+CD25+Foxp3+ Treg cells(nTreg cells). Similar to nTreg cells, Tr1 also play important roles in the control of allergic inflammation in several ways. There is a fine balance between Tr1 and Th2 responses in healthy subjects. Skewing of allergic-specific effector T cells to a Tr1 phenotype appears to be a critical event in successful allergen-specific immunotherapy and glucocorticoids and beta2-agonists treatment. Tr1 suppress Th2 cells and effector cells of allergic inflammation, such as eosinophils, mast cells, basophils, through producing IL-10, and perhaps TGF-beta. Understanding of Tr1 may be helpful in developing new strategies for treatment of allergic diseases. PMID:17764617

  5. IL-10-Producing Type 1 Regulatory T Cells and Allergy

    Institute of Scientific and Technical Information of China (English)

    Kui Wu; Yutian Bi; Kun Sun; Changzheng Wang

    2007-01-01

    As an important subset of regulatory T (Treg) cells, IL-10-producing type 1 regulatory T cells (Tr1), have some different features to thymic-derived naturally occurring CD4+CD25+Foxp3+ Treg cells(nTreg cells). Similar to nTreg cells, Tr1 also play important roles in the control of allergic inflammation in several ways. There is a fine balance between Tr1 and Th2 responses in healthy subjects. Skewing of allergic-specific effctor T cells to a Tr1 phenotype appears to be a critical event in successful allergen-specific immunotherapy and glucocorticoids and β2-agonists treatment. Tr1 suppress Th2 cells and effector cells of allergic inflammation, such as eosinophils, mast cells, basophils, through producing IL-10, and perhaps TGF-β. Understanding of Tr1 may be helpful in developing new strategies for treatment of allergic diseases.

  6. High efficiency cell-specific targeting of cytokine activity

    Science.gov (United States)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  7. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  8. Cloning of a short HLA-DQ beta locus-specific cDNA probe: typing for DQw specificities.

    Science.gov (United States)

    Sood, S K; McCusker, C T; Singal, D P

    1989-01-01

    A short HLA-DQ beta locus-specific (141 bp) probe was cloned from the full-length pII-beta-1 cDNA. Pst 1-digested genomic DNA from homozygous typing cell lines (HTC) was hybridized with this short DQ beta locus-specific, pDQ beta 141, probe. Restriction fragment length polymorphism (RFLP) patterns generated with this DQ beta locus-specific probe were compared with those obtained with the full-length (627 bp) DQ beta, pII-beta-1, probe. The results demonstrate that the RFLP patterns with the pDQ beta 141 probe were very simple, and no crossreacting DR beta and DX beta bands were observed. DQw1, 2, 3 and 4 specificities could each be identified by a single RFLP. PMID:2467193

  9. Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W

    Directory of Open Access Journals (Sweden)

    Weijers Rob NM

    2010-06-01

    Full Text Available Abstract Background We examined the effects of the R325W mutation on the three-dimensional (3D structure of the β-cell-specific Zn2+ (zinc transporter ZnT-8. Methods A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the Escherichia coli (E. coli zinc transporter YiiP at 3.8 Å resolution. Results The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the E. coli zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH3+ group of Arg325 is predicted to form an ionic interaction with the β-COO- group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins. Conclusions Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer

  10. Measurement of specific [3H]-ouabain binding to different types of human leucocytes

    DEFF Research Database (Denmark)

    Boon, Arnold; Oh, V M; Taylor, John E.;

    1984-01-01

    We have studied the specific binding of [3H]-ouabain to intact mononuclear leucocytes (82% lymphocytes) and polymorphonuclear leucocytes. In both types of cells [3H]-ouabain binding was saturable, confined to a single site of high affinity, slow to reach equilibrium, slow to reverse, temperature-...

  11. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  12. CELL DETACHMENT BY PROLYL-SPECIFIC ENDOPEPTIDASE FROM WOLFIPORIA COCOS

    Directory of Open Access Journals (Sweden)

    Katharina Cierpka

    2014-01-01

    Full Text Available As requirements for Advanced Therapy Medicinal Product (ATMP production differ from other production processes (e.g., therapeutic protein production, cell detachment is often a crucial step for the process success. In most cases, cell detachment is done enzymatically. Although many peptidases are established in cell culture in R&D, e.g., Trypsin as gold standard, many of them seem to be unsuitable in ATMP production processes. Therefore, the present study investigated a novel endopeptidase used in food biotechnology for its applicability in ATMP processes where cell detachment is needed. The Prolyl-specific Peptidase (PsP is of non-mammalian origin and considered as safe for humans. PsP was purified from the supernatant of the fungus Wolfiporia cocos. The isolation and purification resulted in an enzyme solution with 0.19 U mg-1 prolyl-specific activity. By in silico analysis it was confirmed that attachment-promoting proteins can be cleaved by PsP in a similar amount than with Trypsin. Further the proteolytic activity was determined for PsP and Trypsin by using the same enzymatic assay. Detachment with both enzymes was compared for cells used in typical therapeutic production processes namely a mesenchymal stem cell line (hMSC-TERT as a model for a cell therapeutic, Vero and MA104 cells used for viral therapeutic or vaccine production. The cell detachment experiments were performed with comparable enzyme activities (1.6 U mL-1. hMSC-TERT detachment was faster with PsP than with Trypsin. For Vero cells the detachment with PsP was not only faster but also more efficient. For MA104 cells the detachment rate with PsP was similar to Trypsin. For all cell types, detachment with PsP showed less influence on cell growth and metabolism compared to standard Trypsin.Thus, three cell types used in ATMP, viral therapeutics or vaccine production can be detached efficiently and gently with PsP. Therefore, PsP shows

  13. Patient-Specific Pluripotent Stem Cells in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Serpen Durnaoglu

    2011-01-01

    Full Text Available Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.

  14. T-cell regulatory mechanisms in specific immunotherapy.

    Science.gov (United States)

    Jutel, Marek; Akdis, Cezmi A

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, anergy and/or immune response modulation by Treg cells are essential mechanisms of peripheral T-cell tolerance. There is growing evidence that anergy, tolerance and active suppression are not entirely distinct, but rather represent linked mechanisms possibly involving the same cells and multiple suppressor mechanisms. Skewing of allergen-specific effector T cells to Treg cells appears as a crucial event in the control of healthy immune response to allergens and successful allergen-SIT. The Treg cell response is characterized by abolished allergen- induced specific T-cell proliferation and suppressed Thelper (Th)1- and Th2-type cytokine secretion. In addition, mediators of allergic inflammation that trigger cAMP-associated G-protein-coupled receptors, such as histamine receptor-2, may contribute to peripheral tolerance mechanisms. The increased levels of interleukin-10 and transforming growth factor-Beta that are produced by Treg cells potently suppress IgE production, while simultaneously increasing production of non-inflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress effector cells of allergic inflammation such as mast cells, basophils and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms. It is associated with regulation of antibody isotypes and effector cells to the direction of a healthy immune response. By the application of the recent knowledge in Treg

  15. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    Science.gov (United States)

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  16. Prion-Specific Antibodies Produced in Wild-Type Mice

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Bergström, Ann-Louise; Andersen, Heidi Gertz;

    2015-01-01

    method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well...... as a thorough characterization of their reactivity with a range of normal and pathogenic (misfolded) prion proteins. It is demonstrated that immunization of wild-type mice with ovalbumin-conjugated peptides formulated with Freund's adjuvant induces a good immune response, including high levels of specific anti...

  17. Murine Pregnancy-Specific Glycoprotein 23 Induces the Proangiogenic Factors Transforming-Growth Factor Beta 1 and Vascular Endothelial Growth Factor A in Cell Types Involved in Vascular Remodeling in Pregnancy1

    OpenAIRE

    Wu, Julie A.; Johnson, Briana L.; Chen, Yongqing; Ha, Cam T.; Dveksler, Gabriela S.

    2008-01-01

    Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream. PSG23 is one of 17 members of the murine PSG family (designated PSG16 to PSG32). Previous studies determined that PSGs h...

  18. Circadian control of antigen-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Nobis CC

    2016-09-01

    Full Text Available Chloé C Nobis,1–3 Nathalie Labrecque,2–4 Nicolas Cermakian1,5–8 1Douglas Mental Health University Institute, 2Maisonneuve-Rosemont Hospital Research Centre, 3Department of Microbiology, Infectious Diseases and Immunology, 4Department of Medicine, University of Montreal, 5Department of Psychiatry, 6Department of Microbiology and Immunology, 7Department of Neurology and Neurosurgery, 8Department of Physiology, McGill University, Montreal, QC, Canada Abstract: The immune system is composed of two arms, the innate and the adaptive immunity. While the innate response constitutes the first line of defense and is not specific for a particular pathogen, the adaptive response is highly specific and allows for long-term memory of the pathogen encounter. T lymphocytes (or T cells are central players in the adaptive immune response. Various aspects of T cell functions vary according to the time of day. Circadian clocks located in most tissues and cell types generate 24-hour rhythms of various physiological processes. These clocks are based on a set of clock genes, and this timing mechanism controls rhythmically the expression of numerous other genes. Clock genes are expressed in cells of the immune system, including T cells. In this review, we provide an overview of the circadian control of the adaptive immune response, with emphasis on T cells, including their development, trafficking, response to antigen, and effector functions. Keywords: circadian clock, adaptive immune response, T lymphocyte, antigen, cytokine, proliferation

  19. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  20. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  1. Multiple Effector Functions Mediated by Human Immunodeficiency Virus-Specific CD4+ T-Cell Clones

    OpenAIRE

    Norris, Philip J.; Sumaroka, Marina; Brander, Christian; Moffett, Howell F.; Boswell, Steven L.; Nguyen, Tam; Sykulev, Yuri; Walker, Bruce D; Rosenberg, Eric S.

    2001-01-01

    Mounting evidence suggests that human immunodeficiency virus type 1 (HIV-1) Gag-specific T helper cells contribute to effective antiviral control, but their functional characteristics and the precise epitopes targeted by this response remain to be defined. In this study, we generated CD4+ T-cell clones specific for Gag from HIV-1-infected persons with vigorous Gag-specific responses detectable in peripheral blood mononuclear cells. Multiple peptides containing T helper epitopes were identifie...

  2. HLA-DR Typing by Polymerase Chain Reaction with Sequence- Specific Primers Compared to Serological typing

    Directory of Open Access Journals (Sweden)

    M Adib

    2004-12-01

    Full Text Available Background: Considering the role of HLA matching in transplant outcome, the quality of HLA-DR typing is clearly an important issue. In recent years, serological methods have been replaced with DNA based typing methods. The main objective of this study was to compare HLA-DR typing data obtained from existing serologic method with data obtained by the new PCR-SSP method. Methods: 55 peripheral blood samples were collected from randomly selected individuals who were referred to the transplantation laboratory of Isfahan, in Aliasghar Hospital, and were typed for HLA-DR antigens by both methods. HLA-DR typing by serologic method was performed using 30 different antisera and for PCR-SSP method, specific primers were used for HLA-DRB1*01-10(except DR6, 8, 10, and also for HLA-DR52, and DR53. After DNA extraction, 13 pairs specific primers were used for each sample separately and PCR reaction were done. In this study, the third intron of DR locus was used as internal positive control. After PCR amplification, products of reaction electrophoresis was performed on 2% agarose gel, and after taking photo of gel, interpretation and comparison of results were performed. Results: The results of 31 samples (56.3% corresponded completely to serological method, 12 samples (22% were assigned heterozygous in serology and homozygous in molecular typing, 7 samples (12.7% were heterozygous in both methods but different in one allele. 2 samples (3.6% were homozygous in serology and heterozygous in molecular typing, and also one sample (1.8% was homozygous in both methods but so that in serology DR14, and in molecular typing DR11 were assigned. And finally 2 samples from 55 (3.6% were not detectable in serological method. Conclusion: The typing data obtained from the conventional and the new methods were compared. Sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were calculated. The results indicated that the DNA based method

  3. Prion-Specific Antibodies Produced in Wild-Type Mice.

    Science.gov (United States)

    Heegaard, Peter M H; Bergström, Ann-Louise; Andersen, Heidi Gertz; Cordes, Henriette

    2015-01-01

    Peptide-specific antibodies produced against synthetic peptides are of high value in probing protein structure and function, especially when working with challenging proteins, including not readily available, non-immunogenic, toxic, and/or pathogenic proteins. Here, we present a straightforward method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well as a thorough characterization of their reactivity with a range of normal and pathogenic (misfolded) prion proteins. It is demonstrated that immunization of wild-type mice with ovalbumin-conjugated peptides formulated with Freund's adjuvant induces a good immune response, including high levels of specific anti-peptide antibodies, even against peptides very homologous to murine protein sequences. In general, using the strategies described here for selecting, synthesizing, and conjugating peptides and immunizing 4-5 mice with 2-3 different peptides, high-titered antibodies reacting with the target protein are routinely obtained with at least one of the peptides after three to four immunizations with incomplete Freund's adjuvant. PMID:26424281

  4. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  5. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  6. Evolution of sexes from an ancestral mating-type specification pathway.

    Directory of Open Access Journals (Sweden)

    Sa Geng

    2014-07-01

    Full Text Available Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was

  7. DC-ATLAS : a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  8. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Directory of Open Access Journals (Sweden)

    Eri O Maruyama

    Full Text Available The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER was targeted to the prolactin-induced protein (Pip gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  9. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Science.gov (United States)

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  10. Sex-specific differences in injury types among basketball players

    Directory of Open Access Journals (Sweden)

    Ito E

    2014-12-01

    Full Text Available Eri Ito, Jun Iwamoto, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, JapanAbstract: The purpose of the present study was to investigate sex-specific differences in injury types among basketball players. According to our database, during the 20-year period between October 1991 and June 2011, 1,219 basketball players (640 males and 579 females consulted our sports medicine clinic; in total, 1,414 injuries in basketball players (729 injuries in males and 685 injuries in females were recorded. The mean age of patients was 19.6 years. The most common injury site was the knee, followed by the foot and ankle, lower back, and upper extremities. There was a higher proportion of female players presenting with a knee injury, compared with male players (50.4% vs 41.7%, and a lower proportion of female players presenting with an upper extremity injury (5.1% vs 9.7%. The proportion of anterior cruciate ligament injury in the 10–19-year-old age group was higher among female players than among male players (45.9% vs 22.1%, while the proportions of Osgood–Schlatter disease in the 10–19-year-old age group and jumper's knee (patellar and femoral tendinopathy in the 20–29-year-old age group were higher among male players than among female players (12.5% vs 1.8% and 14.6% vs 3.7%, respectively. However, the proportions of other injuries did not differ significantly between male and female players. The present observational study, which was performed using a retrospective case-series design, showed the existence of sex-specific differences in knee injuries sustained while participating in basketball.Keywords: sports injury, sex, anterior cruciate ligament injury, Osgood–Schlatter disease, basketball

  11. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones.

    OpenAIRE

    Kurane, I; Brinton, M A; Samson, A L; Ennis, F A

    1991-01-01

    Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone re...

  12. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    Science.gov (United States)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  13. Cell-specific modulation of surfactant proteins by ambroxol treatment

    International Nuclear Information System (INIS)

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression

  14. Skin Biopsy and Patient-Specific Stem Cell Lines

    Science.gov (United States)

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  15. Nanomaterial cytotoxicity is composition, size, and cell type dependent

    Directory of Open Access Journals (Sweden)

    Sohaebuddin Syed K

    2010-08-01

    Full Text Available Abstract Background Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs] with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 μm to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT bronchiolar epithelial cells. Results Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Conclusions Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the

  16. Enteric glial cells have specific immunosuppressive properties.

    Science.gov (United States)

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  17. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia

    OpenAIRE

    Dai, D.; Li, L.; Huebner, A; H. Zeng; Guevara, E; Claypool, D J; Liu, A.; Chen, J.

    2012-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP...

  18. Engineering controlled mammalian type O-Glycosylation in plant cells

    DEFF Research Database (Denmark)

    Yang, Zhang; Drew, Damian Paul; Jørgensen, Bodil;

    2011-01-01

    Human mucins are large heavily O-glycosylated glycoproteins (>200 kDa), which account for the majority of proteins in mucus layers that e.g. hydrate, lubricate and protect cells from proteases as well as from pathogens. O-linked mucin glycans are truncated in many cancers, yielding truncated cancer...... specific glyco-peptide epitopes, such as the Tn epitope (GalNAc sugar attached to either Serine or Threonine), which are antigenic to the immune system. In the present study, we have identified plant cells as the only eukaryotic cells without mammalian type O-glycosylation or competing (for sites) O...

  19. DNA typing of epithelial cells after strangulation.

    Science.gov (United States)

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  20. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    OpenAIRE

    Revital Sharivkin; Walker, Michael D.; Yoav Soen

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates sp...

  1. Virus elimination in acute lymphocytic choriomeningitis virus infection. Correlation with virus-specific delayed-type hypersensitivity rather than cytotoxicity

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Volkert, M; Bro-Jørgensen, K

    1983-01-01

    correlation between the host's ability to mount a virus-specific delayed-type hypersensitivity (DTH) response and its capacity to combat virus. Moreover, pretreatment with silica and carrageenan prolonged viraemia without impairment of the peak Tc-cell response. These findings indicate that Tc cells have...

  2. Identification of three new type-specific antigen epitopes in the capsid protein of porcine circovirus type 1.

    Science.gov (United States)

    Huang, Liping; Lu, Yuehua; Wei, Yanwu; Guo, Longjun; Liu, Changming

    2012-07-01

    Porcine circovirus type 1 (PCV1) has been identified as a contaminant of porcine kidney cell line (PK-15). Serological evidence and genetic studies have suggested that PCV1 is widespread in domestic pigs. In this study, monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were generated against a recombinant PCV1 Cap protein (PCV1-Cap), which was expressed using the baculovirus system. PEPSCAN analysis was used to identify epitopes on the PCV1-Cap with mAbs and pAbs. Three linear B-cell epitopes, including residues (85)GGTNPLP(91), (162)FTPKPELDKTIDWFHPNNK(180) and (219)YVQFREFILKDPLNK(233), specific for PCV1-Cap, were finely defined. These results will facilitate future investigations into antigenic differences and differential diagnosis between PCV1 and PCV2. PMID:22437253

  3. Measles virus-specific murine T cell clones: characterization of fine specificity function.

    NARCIS (Netherlands)

    P. de Vries (Petra); J.P.M. Versteeg-van Oosten (José); I.K.G. Visser (Ilona); R.S. van Binnendijk (Rob); S.A. Langeveld (Sacha); A.D.M.E. Osterhaus (Ab); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractMeasles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable

  4. Allergen-Specific CD4(+) T Cells in Human Asthma.

    Science.gov (United States)

    Ling, Morris F; Luster, Andrew D

    2016-03-01

    In allergic asthma, aeroallergen exposure of sensitized individuals mobilizes robust innate and adaptive airway immune responses, stimulating eosinophilic airway inflammation and the activation and infiltration of allergen-specific CD4(+) T cells into the airways. Allergen-specific CD4(+) T cells are thought to be central players in the asthmatic response as they specifically recognize the allergen and initiate and orchestrate the asthmatic inflammatory response. In this article, we briefly review the role of allergen-specific CD4(+) T cells in the pathogenesis of human allergic airway inflammation in allergic individuals, discuss the use of allergen-major histocompatibility complex class II tetramers to characterize allergen-specific CD4(+) T cells, and highlight current gaps in knowledge and directions for future research pertaining to the role of allergen-specific CD4(+) T cells in human asthma. PMID:27027948

  5. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C;

    2011-01-01

    PA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems......Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types......, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found...

  6. Dependence of herpes simplex virus type 1-induced cell fusion on cell type

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.

    1981-04-15

    Syncytial mutants of herpes simplex virus type 1 (HSV-1), such as syn20, cause extensive fusion of human embryonic lung (HEL) cells but only a small amount of fusion of human epidermoid carcinoma No. 2 (HEp-2) cells. In order to determine the cellular basis of this difference in fusion, sparse cultures of syn20-infected HEL or HEp-2 cells, previously labeled with (/sup 3/H)thymidine, were surrounded with uninfected, unlabeled HEL or HEp-2 cells. The fusion of radioactive with nonradioactive cells was determined at different times after infection using radioautography. The major difference in the fusion capacity of HEL and HEp-2 cells was not due to a difference in cell-surface receptors for a fusion factor in the two cell types. The process of infection of HEp-2 cells did not cause the plasma membranes of the cells to become refractory to fusion, because syn20-infected HEL cells fused equally well with either uninfected or infected HEp-2 cells. In a mixed infection with equal numbers of MP and its nonsyncytial parent, mP, extensive fusion was observed for infected HEL cells and significantly less fusion was observed for infected African green monkey (CV-1), baby hamster kidney (BHK-21), and HEp-2 cells.

  7. Single Wall Nanotube Type-Specific Functionalization and Separation

    Science.gov (United States)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  8. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells.

    Science.gov (United States)

    Pournasr, Behshad; Khaloughi, Keynoush; Salekdeh, Ghasem Hosseini; Totonchi, Mehdi; Shahbazi, Ebrahim; Baharvand, Hossein

    2011-12-01

    A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved.

  9. Stem cell treatment for type 1 diabetes

    OpenAIRE

    Li, Ming; Ikehara, Susumu

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion ...

  10. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  11. DNA TYPING FOR HLA - DR ALLELES BY PCR - AMPLIFICATION WITH SEQUENCE- SPECIFIC PRIMERS

    Institute of Scientific and Technical Information of China (English)

    谭建明; 谢桐; 徐琴君

    1999-01-01

    Ohjective To establish a rapid genetyping for HLA- DR alleles by polymerase chain reaction wiht sequence - specifie primers (PCR - SSP) for clinical application. Material and Methods The subjects of study included 69 recipients, 43 unrelated donors and 5 cell lines, Genomic DNA was prepared from peripheral blood leukoeytes by a salting- out method, Thirty primers designed according to the HLA- DRB nucleotide sequences, and synthesized on a 391 DNN synthesizer,Twenty separate PCR reactions were perfomed for each sample, The amplification was accomplished by 34 cycles consisting of denaturation at 94℃ for 30 seconds, annealing at 60℃ for 50 seconds and extension at 72℃ for 40 seconds The specificity of matching was determined by standard DNAs and Southem hybeidization using DIG labeling probes. Results All 112 samples and 5 cell lines were able to be typed by PCR-SSP,No false positive or false negative typing results were obtained. The reproducibility was 100 %,The size of the .specific product was in cnoccrdance with the size of the designed primers. The overall time for genotyping was 4 bours. The typing results were confirned by Southem hybridization.Conelusions Genotyping for HLA- DR by PCR- SSP is a rapid and accurate matching technique suited for clinical application.

  12. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors.

    OpenAIRE

    Nunberg, J H; Schleif, W A; Boots, E J; O'Brien, J A; Quintero, J C; Hoffman, J. M.; Emini, E A; Goldman, M E

    1991-01-01

    Human immunodeficiency virus type 1 (HIV-1)-specific pyridinone reverse transcriptase (RT) inhibitors prevent HIV-1 replication in cell culture (M. E. Goldman, J. H. Nunberg, J. A. O'Brien, J.C. Quintero, W. A. Schleif, K. F. Freund, S. L. Gaul, W. S. Saari, J. S. Wai, J. M. Hoffman, P. S. Anderson, D. J. Hupe, E. A. Emini, and A. M. Stern, Proc. Natl. Acad. Sci. USA 88:6863-6867, 1991). In contrast to nucleoside analog inhibitors, such as AZT, which need to be converted to triphosphates by h...

  13. A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach.

    Science.gov (United States)

    Sachinidis, Agapios; Sotiriadou, Isaia; Seelig, Bianca; Berkessel, Albrecht; Hescheler, Jürgen

    2008-01-01

    Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and "easy-to-handle" parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.

  14. HLA-A2–Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/γcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells

    OpenAIRE

    Whitfield-Larry, Fatima; Young, Ellen F.; Talmage, Garrick; Fudge, Elizabeth; Azam, Anita; Patel, Shipra; Largay, Joseph; Byrd, Warren; Buse, John; Calikoglu, Ali S.; Shultz, Leonard D.; Frelinger, Jeffrey A.

    2011-01-01

    OBJECTIVE Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human ef...

  15. Vaccination Against Human Papilloma Viruses Leads to a Favorable Cytokine Profile of Specific T Cells.

    Science.gov (United States)

    Luckau, Stefanie; Wehrs, Tim P; Brandau, Sven; Horn, Peter A; Lindemann, Monika

    2016-10-01

    Several human papilloma viruses (HPV) are known to cause malignant transformation. The high-risk type HPV 16 is associated with cervical carcinoma and head and neck squamous cell carcinoma. HPV 16-positive tumor cells exclusively carry the HPV 16 oncogenes E6 and E7. These oncogenes appear as excellent targets for an adoptive immunotherapy. We here addressed the question whether specific T cells from HPV-vaccinated healthy volunteers could be especially suitable for an HPV-specific cellular immunotherapy. Of note, vaccines contain HPV 16. To quantify HPV 16 E6-specific and E7-specific cells, enzyme-linked immunospot assays to measure interferon-γ (IFN-γ) and interleukin-10 (Th1-Th2 balance) and the secretion of the cytotoxic molecules granzyme B and perforin have been optimized. The frequency of peripheral blood mononuclear cells secreting IFN-γ and perforin was significantly (PHPV-vaccinated versus nonvaccinated volunteers. Overall, however, the median frequency of HPV 16-specific cells with a favorable secretion profile (Th1 balanced and cytotoxic) was low even in vaccinated volunteers (IFN-γ: 0.0018% and 0.0023%, perforin: 0.01% and 0.0087% for E6-specific and E7-specific cells, respectively). But some vaccinated volunteers showed up to 0.1% HPV-specific, IFN-γ or perforin-secreting cells. In conclusion, our data suggest that vaccinated volunteers are superior to nonvaccinated donors for HPV-specific cellular cancer immunotherapy. PMID:27548034

  16. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  17. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  18. Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Steven;

    2010-01-01

    embedded (FFPE) sections of cervical cancer.Tissue blocks from 35 cases of in situ or invasive cervical squamous cell carcinoma and surrogate FFPE sections containing the cell lines HeLa and SiHa were tested for HPV 16 and HPV18 by conventional PCR using type specific primers, and for the housekeeping gene......ABSTRACT: Human papillomavirus (HPV) infection, and in particularly infection with HPVs 16 and 18, is a central carcinogenic factor in the uterine cervix. We established and optimized a PCR assay for the detection and discrimination of HPV types 16 and 18 in archival formaldehyde fixed and paraffin...... beta-actin. Using HPV 16 E7 primers, PCR products with the expected length were detected in 18 of 35 of FFPE sections (51%). HPV 18 E7 specific sequences were detected in 3 of 35 FFPE sections (9%).In our experience, the PCR technique is a robust, simple and sensitive way of type specific detection...

  19. Potency and fate specification in CNS stem cell populations in vitro.

    Science.gov (United States)

    Ravin, Rea; Hoeppner, Daniel J; Munno, David M; Carmel, Liran; Sullivan, Jim; Levitt, David L; Miller, Jennifer L; Athaide, Christopher; Panchision, David M; McKay, Ronald D G

    2008-12-01

    To realize the promise of stem cell biology, it is important to identify the precise time in the history of the cell when developmental potential is restricted. To achieve this goal, we developed a real-time imaging system that captures the transitions in fate, generating neurons, astrocytes, and oligodendrocytes from single CNS stem cells in vitro. In the presence of bFGF, tripotent cells normally produce specified progenitors through a bipotent intermediate cell type. Surprisingly, the tripotent state is reset at each passage. The cytokine CNTF is thought to instruct multipotent cells to an astrocytic fate. We demonstrate that CNTF both directs astrogliogenesis from tripotent cells, bypassing two of the three normal bipotent intermediates, and later promotes the expansion of specified astrocytic progenitors. These results show how discrete cell types emerge from a multipotent cell and provide a strong basis for future studies to determine the molecular basis of fate specification.

  20. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    To track epitope-specific CD4+ T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVAII, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4+ T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4+ T cells were recruited to the infected lung both in the presence and absence of the OVA323-339 epitope. These data show that, when primed, CD4+ T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  1. Cell Theory, Specificity, and Reproduction, 1837–1870

    OpenAIRE

    Müller-Wille, Staffan

    2010-01-01

    The cell is not only the structural, physiological, and developmental, but also the reproductive unit of life. So far, however, this aspect of the cell has received little attention by historians and philosophers of biology. I will argue that cell theory had far-reaching consequences for how biologists conceptualized the reproductive relationships between germs and adult organisms. Cell theory, as formulated by Theodor Schwann in 1839, implied that this relationship was a specific and lawful ...

  2. Endonuclease specificity and sequence dependence of Type IIS restriction enzymes

    OpenAIRE

    Lundin, Sverker; Finn, Terje-Hegge; Foam, Napoleon; Pettersson, Erik; Käller, Max; Wirta, Valtteri; Lexow, Preben; Lundeberg, Joakim

    2015-01-01

    Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage) and the sequence dependence thereof. We coupled this to massively parallel sequencing in order to provide sensitive and accu...

  3. Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory.

    Science.gov (United States)

    Kitamura, Takashi; Sun, Chen; Martin, Jared; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu

    2015-09-23

    Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions, but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory. PMID:26402611

  4. Do Specific Types of Networking Predict Specific Mobility Outcomes? A Two-Year Prospective Study

    Science.gov (United States)

    Wolff, Hans-Georg; Moser, Klaus

    2010-01-01

    Previous research has established a general relation between networking and career outcomes, as postulated by theories on protean careers and career self management. We suggest that specific facets of networking behavior differentially affect specific career mobility outcomes over time. In a 2-year prospective study, we examined the impact of six…

  5. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  6. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  7. Human muscle fiber type-specific insulin signaling: Impact of obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth; Pedersen, Andreas J T; Birk, Jesper Bratz;

    2015-01-01

    /or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared to type II fibers have higher protein levels of the insulin receptor, GLUT4......-responses to insulin adjusted for protein level were not different between fiber types. Independently of fiber type, insulin signaling was similar (TBC1D1, GS and PDH-E1α) or decreased (Akt and TBC1D4) in muscle from patients with type 2 diabetes compared to lean and obese subjects. We conclude that human type I...

  8. Studies on thyroglobulin-specific suppressor T cell function in autoimmune thyroid disease

    International Nuclear Information System (INIS)

    T cell regulation of the generation of thyroglobulin plaque-forming cells (Tg PFC) and protein A plaque-forming cells (Prot A PFC) was investigated using lymphocytes from patients with autoimmune thyroid disease. T and B cell mixed cultures (T-B MC) were carried out without mitogenic or antigenic stimulation to identify physiological T cell effects in the system. Tg PFC were found in 8 (44%) of 18 patients who had high titers of thyroglobulin antibody in their sera. Tg-specific and nonspecific immunoregulation by T cells from patients and normal subjects was studied using B cells from these eight patients in the T-B MC system. Remarkably lower values of Tg PFC induction compared to Prot A PFC induction were found after T cell addition. Normal T cells inhibited Tg PFC induction, but patient T cells did not, while the same extent of helper effects were found on Prot A PFC induction by the addition of patient and normal T cells. Irradiation (1500 rads) of T cells from patients and normal subjects significantly enhanced both Tg PFC and Prot A PFC induction. Thus, Tg-specific suppressor T cells are present in all normal subjects as part of the radiosensitive suppressor T cell subset. The increase in Tg-PFC caused by irradiation-induced inhibition of Tg-specific suppressor T cell function was significantly greater in normal subjects than in patients. Histamine type 2 receptor-bearing T cells inhibited Prot A PFC induction, but not Tg PFC induction, in the autologous T-B MC system. No Tg PFC were induced from normal B cells in any combination with untreated T cells, irradiated T cells, or histamine type 2 receptor-negative T cells from patients or normal subjects

  9. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke;

    2011-01-01

    In multiple sclerosis (MS), myelin-specific T cells are normally associated with destruction of myelin and axonal damage. However, in acute MS plaque, remyelination occurs concurrent with T-cell infiltration, which raises the question of whether T cells might stimulate myelin repair. We investiga...... of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  10. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells

    Science.gov (United States)

    Church, Sarah E; Jensen, Shawn M; Antony, Paul A; Restifo, Nicholas P; Fox, Bernard A

    2014-01-01

    Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4+ T cells enhance CD8+ T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4+ transgenic T cells-CD4+ T cells and pmel-CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor-specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4+ and CD8+ T cells for treatment of patients with cancer. PMID:24114780

  11. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  12. Moving hot cell for LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1994-09-16

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.).

  13. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  14. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  15. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    OpenAIRE

    Hsiu-Ni Kung; Marks, Jeffrey R.; Jen-Tsan Chi

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In th...

  16. Role of SCHIZORIZA in asymmetric cell division, cell fate segregation and specification in Arabidopsis root development

    NARCIS (Netherlands)

    Jansweijer, V.M.A.

    2013-01-01

    Multicellular organisms develop their large variety of cell types from just one single cell, the zygote. Both plants and animals use asymmetric cell division to establish a multicellular body plan How different cell and tissue types are determined, how patterns are created and maintained, and which

  17. Human alveolar epithelial type II cells in primary culture.

    Science.gov (United States)

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  18. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue.

  19. 49 CFR 178.350 - Specification 7A; general packaging, Type A.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 7A; general packaging, Type A. 178... FOR PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.350 Specification 7A; general packaging, Type A. (a) Each packaging must meet all applicable requirements of...

  20. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  1. Endonuclease specificity and sequence dependence of type IIS restriction enzymes.

    Directory of Open Access Journals (Sweden)

    Sverker Lundin

    Full Text Available Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage and the sequence dependence thereof. We coupled this to massively parallel sequencing in order to provide sensitive and accurate measurement. With this system 14 enzymes were assayed (AcuI, BbvI, BpmI, BpuEI, BseRI, BsgI, Eco57I, Eco57MI, EcoP15I, FauI, FokI, GsuI, MmeI and SmuI. We report significant variation of slippage ranging from 1-54%, variations in sequence context dependence, as well as variation between isoschizomers. We believe this largely overlooked property of enzymes with shifted cleavage would benefit from further large scale classification and engineering efforts seeking to improve performance. The gained insights of in-vitro performance may also aid the in-vivo understanding of these enzymes.

  2. Glow in the Dark: Fluorescent Proteins as Cell and Tissue-Specific Markers in Plants

    Institute of Scientific and Technical Information of China (English)

    Wenzislava Ckurshumova; Adriana E. Caragea; Rochelle S. Goldstein; Thomas Berleth

    2011-01-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants,fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types,to monitor dynamic cell fate selection processes,and to obtain cell type-specific transcriptomes.Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes.The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms.In developmental studies,the use of fluorescent proteins has become critical,where morphological markers of tissues,cell types,or differentiation stages are either not known or not easily recognizable.In this review,we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  3. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  4. T-cell regulatory mechanisms in specific immunotherapy

    OpenAIRE

    Jutel, M; Akdis, C. A.

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, ...

  5. Hematopoietic cells as sources for patient-specific iPSCs and disease modeling.

    Science.gov (United States)

    Ye, Zhaohui; Liu, Cyndi F; Jang, Yoon-Young

    2011-09-01

    In addition to being an attractive source for cell replacement therapy, human induced pluripotent stem cells (iPSCs) also have great potential for disease modeling and drug development. During the recent several years, cell reprogramming technologies have evolved to generate virus-free and integration-free human iPSCs from easily accessible sources such as patient skin fibroblasts and peripheral blood samples. Hematopoietic cells from umbilical cord blood banks and Epstein Barr virus (EBV) immortalized B lymphocyte repositories represent alternative sources for human genetic materials of diverse backgrounds. Ability to reprogram these banked blood cells to pluripotency and differentiate them into a variety of specialized and functional cell types provides valuable tools for studying underlying mechanisms of a broad range of diseases including rare inherited disorders. Here we describe the recent advances in generating disease specific human iPSCs from these different types of hematopoietic cells and their potential applications in disease modeling and regenerative medicine. PMID:21857158

  6. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.

    Science.gov (United States)

    Liu, Qi; Zhang, Ru-Zhi; Li, Di; Cheng, Sai; Yang, Yu-Hua; Tian, Ting; Pan, Xiao-Ru

    2016-04-01

    A new type of mesenchymal stem cells (MSCs) that expresses stage-specific embryonic antigen 3 (SSEA-3) and the mesenchymal cell marker CD105 are known as multilineage-differentiating stress-enduring (Muse) cells. Studies have shown that stem cells in suspension cultures are more likely to generate embryoid body-like stem cell spheres and maintain an undifferentiated phenotype and pluripotency. We separated Muse cells derived from human dermal fibroblasts by long-term trypsin incubation (LTT) through suspension cultures in methylcellulose. The Muse cells obtained expressed several pluripotency markers, including Nanog, Oct4, Sox2, and SSEA-3, and could differentiate in vitro into cells of the three germ layers, such as hepatocytes (endodermal), neural cells (ectodermal) and adipocytes, and osteocytes (mesodermal cells). These cells showed a low level of DNA methylation and a high nucleo-cytoplasmic ratio. Our study provides an innovative and exciting platform for exploring the potential cell-based therapy of various human diseases using Muse cells as well as their great possibility for regenerative medicine. PMID:27055628

  7. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara;

    2015-01-01

    ) ). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise......-type specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling. This article is protected by copyright. All rights reserved....

  8. Human Y-79 retinoblastoma cells exhibit specific insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Saviolakis, G.A.; Kyritsis, A.P.; Chader, G.J.

    1986-07-01

    The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of (/sup 125/I) insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.

  9. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  10. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  11. Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Stephen Jacques;

    2010-01-01

    embedded (FFPE) sections of cervical cancer. Tissue blocks from 35 cases of in situ or invasive cervical squamouscell carcinoma and surrogate FFPE sections containing the cell lines HeLa and SiHa were tested for HPV 16 and HPV18 and for the housekeeping gene beta-actin by conventional PCR using type......ABSTRACT: Human papillomavirus (HPV) infection, and in particularly infection with HPVs 16 and 18 is a central carcinogenic factor in the uterine cervix. We established and optimized a PCR assay for the detection and discrimination of HPV types 16 and 18 in archival formaldehyde fixed and paraffin...... specific primers. Using HPV 16 E7 primers, PCR products with the expected length were detected in 18 of 35 of FFPE sections (51%). HPV 18 E7 specific sequences were detected in 3 of 35 FFPE sections (9%). In our experience, the PCR technique is a robust, simple and sensitive way of type specific detection...

  12. Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more.

    Science.gov (United States)

    Verhagen, Johan; Blaser, Kurt; Akdis, Cezmi A; Akdis, Mübeccel

    2006-05-01

    Activation-induced cell death, anergy, or immune response modulation by regulatory T cells (Treg cells) are essential mechanisms of peripheral T-cell tolerance. Genetic predisposition and environmental instructions tune thresholds for the activation of T cells, other inflammatory cells, and resident tissue cells in allergic diseases. Skewing allergen-specific effector T cells to a Treg-cell phenotype seems to be crucial in maintaining a healthy immune response to allergens and successful allergen-specific immunotherapy. The Treg-cell response is characterized by an abolished allergen-specific T-cell proliferation and the suppressed secretion of T-helper 1- and T-helper 2-type cytokines. Suppressed proliferative and cytokine responses against allergens are induced by multiple suppressor factors, including cytokines such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-beta), and cell surface molecules such as cytotoxic T-lymphocyte antigen-4, programmed death-1, and histamine receptor 2. The increased levels of IL-10 and TGF-beta produced by Treg cells potently suppress IgE production while simultaneously increasing the production of noninflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress the activity of effector cells of allergic inflammation, such as mast cells, basophils, and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms on T cells, regulation of antibody isotypes, and suppression of effector cells. The application of current knowledge of Treg cells and related mechanisms of peripheral tolerance may soon lead to more rational and safer approaches to the prevention and cure of allergic disease. PMID:16701141

  13. Isolation of a nucleocapsid polypeptide of herpes simplex virus types 1 and 2 possessing immunologically type-specific and cross-reactive determinants.

    Science.gov (United States)

    Heilman, C J; Zweig, M; Stephenson, J R; Hampar, B

    1979-01-01

    A polypeptide (p40) of approximately 40,000 molecular weight was isolated from herpes simplex virus type 1 and 2 nucleocapsids by gel filtration and ion exchange chromatography. This protein appears to be the same as protein 22a described previously (Gibson and Roizman, J. Virol. 10:1044--1052, 1972). Competition immunoassays were developed by using purified p40 and antisera prepared in guinea pigs. The assays indicated that the p40's from herpes simplex virus types 1 and 2 possess both type-specific and cross-reactive antigenic determinants. Antibodies to the p40 cross-reactive determinant reacted with antigens in simian herpes virus SA8-infected cells, but not with antigens induced by pseudorabies virus. Preliminary results indicated that a radioimmunoprecipitation test can be used to detect type-specific herpes simplex virus p40 antibodies in human sera. PMID:85720

  14. Secondary specific immune response in vitro to MSV tumor cells.

    Science.gov (United States)

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  15. Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells

    Directory of Open Access Journals (Sweden)

    Ruley H Earl

    2004-10-01

    Full Text Available Abstract Background Cell-permeant Cre DNA site-specific recombinases provide an easily controlled means to regulate gene structure and function in living cells. Since recombination provides a stable and unambiguous record of protein uptake, the enzyme may also be used for quantitative studies of cis- and trans-acting factors that influence the delivery of proteins into cells. Results In the present study, 11 recombinant fusion proteins were analyzed to characterize sequences and conditions that affect protein uptake and/or activity and to develop more active cell-permeant enzymes. We report that the native enzyme has a low, but intrinsic ability to enter cells. The most active Cre proteins tested contained either an N-terminal 6xHis tag and a nuclear localization sequence from SV40 large T antigen (HNC or the HIV Tat transduction sequence and a C-terminal 6xHis tag (TCH6. The NLS and 6xHis elements separately enhanced the delivery of the HNC protein into cells; moreover, transduction sequences from fibroblast growth factor 4, HIV Tat or consisting of the (KFF3K sequence were not required for efficient protein transduction and adversely affected enzyme solubility. Transduction of the HNC protein required 10 to 15 min for half-maximum uptake, was greatly decreased at 4°C and was inhibited by serum. Efficient recombination was observed in all cell types tested (a T-cell line, NIH3T3, Cos7, murine ES cells, and primary splenocytes, and did not require localization of the enzyme to the nucleus. Conclusions The effects of different sequences on the delivery and/or activity of Cre in cultured cells could not be predicted in advance. Consequently, the process of developing more active cell-permeant recombinases was largely empirical. The HNC protein, with an excellent combination of activity, solubility and yield, will enhance the use of cell-permeant Cre proteins to regulate gene structure and function in living cells.

  16. Gene Transfer from Targeted Liposomes to Specific Lymphoid Cells by Electroporation

    Science.gov (United States)

    Machy, Patrick; Lewis, Florence; McMillan, Lynette; Jonak, Zdenka L.

    1988-11-01

    Large unilamellar liposomes, coated with protein A and encapsulating the gene that confers resistance to mycophenolic acid, were used as a model system to demonstrate gene transfer into specific lymphoid cells. Protein A, which selectively recognizes mouse IgG2a antibodies, was coupled to liposomes to target them specifically to defined cell types coated with IgG2a antibody. Protein A-coated liposomes bound human B lymphoblastoid cells preincubated with a mouse IgG2a anti-HLA monoclonal antibody but failed to adhere to cells challenged with an irrelevant (anti-H-2) antibody of the same isotype or to cells incubated in the absence of antibody. Transfection of target cells bound to protein A-coated liposomes was achieved by electroporation. This step was essential since only electroporated cells survived in a selective medium containing mycophenolic acid. Transfection efficiency with electroporation and targeted liposomes was as efficient as conventional procedures that used unencapsulated plasmids free in solution but, in the latter case, cell selectivity is not possible. This technique provides a methodology for introducing defined biological macromolecules into specific cell types.

  17. New type of adhesive specificity revealed by oligosaccharide probes in Escherichia coli from patients with urinary tract infection.

    Science.gov (United States)

    Rosenstein, I J; Stoll, M S; Mizuochi, T; Childs, R A; Hounsell, E F; Feizi, T

    1988-12-10

    A series of oligosaccharides derived from glycoproteins or from human milk were coupled to lipid and used as probes of the binding specificities of Escherichia coli isolated from patients with urinary tract infections. Selective binding to the glycoprotein oligosaccharide probes rich in mannose residues (high-mannose type) was demonstrated with fimbriated E coli that give mannose-inhibitable haemagglutination. This observation is in accordance with predictions from inhibition studies. Binding studies with the human milk oligosaccharide probes, which resemble structures found on host-cell membranes, revealed adhesive specificity unrelated to the presence of fimbriae. This new type of host oligosaccharide receptor is affected by the presence of the blood group genetic markers. It involves the disaccharide sequence linked to the membrane-associated lipid moiety of host-cell glycolipids, and may have a role in initiation of infection on damaged epithelial cell membranes.

  18. A versatile method for cell-specific profiling of translated mRNAs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda Thomas

    Full Text Available In Drosophila melanogaster few methods exist to perform rapid cell-type or tissue-specific expression profiling. A translating ribosome affinity purification (TRAP method to profile actively translated mRNAs has been developed for use in a number of multicellular organisms although it has only been implemented to examine limited sets of cell- or tissue-types in these organisms. We have adapted the TRAP method for use in the versatile GAL4/UAS system of Drosophila allowing profiling of almost any tissue/cell-type with a single genetic cross. We created transgenic strains expressing a GFP-tagged ribosomal protein, RpL10A, under the control of the UAS promoter to perform cell-type specific translatome profiling. The GFP::RpL10A fusion protein incorporates efficiently into ribosomes and polysomes. Polysome affinity purification strongly enriches mRNAs from expected genes in the targeted tissues with sufficient sensitivity to analyze expression in small cell populations. This method can be used to determine the unique translatome profiles in different cell-types under varied physiological, pharmacological and pathological conditions.

  19. 78 FR 26847 - Including Specific Pavement Types in Federal-aid Highway Traffic Noise Analyses

    Science.gov (United States)

    2013-05-08

    ... Federal Highway Administration Including Specific Pavement Types in Federal-aid Highway Traffic Noise...: The FHWA requests input from stakeholders and interested parties on expanding the specific pavement... data from three pavement types: dense-graded asphaltic concrete (DGAC), open-graded asphaltic...

  20. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  1. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells.

    Science.gov (United States)

    Kanninen, Liisa K; Harjumäki, Riina; Peltoniemi, Pasi; Bogacheva, Mariia S; Salmi, Tuuli; Porola, Pauliina; Niklander, Johanna; Smutný, Tomáš; Urtti, Arto; Yliperttula, Marjo L; Lou, Yan-Ru

    2016-10-01

    Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied, only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511, laminin-521, and fibronectin, found in human liver progenitor cells, as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels, secreted human albumin, stored glycogen, and exhibited cytochrome P450 enzyme activity and inducibility. Altogether, we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells. PMID:27372423

  2. Drilling and completion specifications for Wanapum (Type W) and Grande Ronde (Type GR) multilevel piezometer nest boreholes

    International Nuclear Information System (INIS)

    Wanapum (Type W) and Grande Ronde (Type GR) multilevel piezometer boreholes will provide information on hydraulic heads in seven horizons adjacent to the reference repository location. In addition, the boreholes will be used to determine horizontal and vertical flow rates, and identify possible geologic structures.. This specification includes details for drilling, piezometer design, hydrologic testing, and hydrochemical sampling of the boreholes. It includes drilling requirements, design, and installation procedures for the Type W and Type GR-series piezometer nests, intervals selected for head monitoring and schedules for drilling and piezometer installation. Specific drilling and piezometer installation specifications for the first two boreholes in this series, DC-23W and DC-23GR, are also included. 5 refs., 11 figs., 10 tabs

  3. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  4. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels;

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-as...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined.......Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma......-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...

  5. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii.

    Directory of Open Access Journals (Sweden)

    Vinoth Babu Veedin-Rajan

    Full Text Available The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz. TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.

  6. A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Zu Youli

    2011-01-01

    Full Text Available Abstract Background Many in vitro studies have demonstrated that silencing of cancerous genes by siRNAs is a potential therapeutic approach for blocking tumor growth. However, siRNAs are not cell type-selective, cannot specifically target tumor cells, and therefore have limited in vivo application for siRNA-mediated gene therapy. Results In this study, we tested a functional RNA nanocomplex which exclusively targets and affects human anaplastic large cell lymphoma (ALCL by taking advantage of the abnormal expression of CD30, a unique surface biomarker, and the anaplastic lymphoma kinase (ALK gene in lymphoma cells. The nanocomplexes were formulated by incorporating both ALK siRNA and a RNA-based CD30 aptamer probe onto nano-sized polyethyleneimine-citrate carriers. To minimize potential cytotoxicity, the individual components of the nanocomplexes were used at sub-cytotoxic concentrations. Dynamic light scattering showed that formed nanocomplexes were ~140 nm in diameter and remained stable for more than 24 hours in culture medium. Cell binding assays revealed that CD30 aptamer probes selectively targeted nanocomplexes to ALCL cells, and confocal fluorescence microscopy confirmed intracellular delivery of the nanocomplex. Cell transfection analysis showed that nanocomplexes silenced genes in an ALCL cell type-selective fashion. Moreover, exposure of ALCL cells to nanocomplexes carrying both ALK siRNAs and CD30 RNA aptamers specifically silenced ALK gene expression, leading to growth arrest and apoptosis. Conclusions Taken together, our findings indicate that this functional RNA nanocomplex is both tumor cell type-selective and cancer gene-specific for ALCL cells.

  7. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  8. A web-server of cell type discrimination system.

    Science.gov (United States)

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634

  9. Immunohistochemical visualization of neurons and specific glial cells for stereological application in the porcine neocortex

    DEFF Research Database (Denmark)

    Lyck, Lise; Jelsing, Jacob; Jensen, Pia Søndergaard;

    2006-01-01

    The pig is becoming an increasingly used non-primate model in basic experimental studies of human neurological diseases. In spite of the widespread use of immunohistochemistry and cell type specific markers, the application of immunohistochemistry in the pig brain has not been systematically...

  10. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides.

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Luo, Ningguang; Liu, Zhiqi; Lee, Jung-Eun; Khambay, Bhupinder; Dong, Ke

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an alpha-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G(1111) and two positively charged lysines immediately downstream of G(1111) in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G(1111), a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G(1111) had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.

  11. Construction of Mouse Melanoma Cell Models of Wild-type Overexpression Connexin 43 and Site-specific Mutant Connexin 43%过表达及定点突变缝隙连接蛋白Cx43小鼠黑色素瘤细胞模型的构建

    Institute of Scientific and Technical Information of China (English)

    李玢; 张广献; 刘娟; 赵青; 谭宇蕙; 吴映雅; 易华; 杜标炎

    2014-01-01

    目的:构建小鼠黑色素瘤细胞(B16)过表达野生型及点突变型缝隙连接蛋白43(Connexin43, Cx43)细胞模型,为以缝隙连接(Gap Junction, GJ)为靶点的中药复方、中药单药及药物单体的研究提供可靠阳性对照和阴性对照。方法构建野生型Cx43、突变型Cx43G21R、突变型Cx43G138R重组荧光蛋白融合慢病毒表达质粒,用定点突变技术获得Cx43G21R和Cx43G138R突变体,对上述3种质粒进行双酶切和测序鉴定,并分别包装病毒感染B16细胞,使B16细胞过表达野生型Cx43、突变型Cx43G21R、突变型Cx43G138R。 Western blot检测Cx43蛋白表达水平变化,荧光示踪法观察缝隙连接通讯(Gap Junction Intercellular Communication, GJIC)功能变化。结果①酶切及测序证明,成功构建 pLVCx43-mCherry、 pLVCx43-mCherryG21R、 pLVCx43-mCherryG138R重组荧光蛋白融合慢病毒表达质粒。②成功感染B16细胞并筛选稳定过表达Cx43、 Cx43G21R、Cx43G138R细胞株, Western blot检测显示上述细胞株Cx43蛋白表达均高于对照组。③过表达野生型Cx43后B16细胞GJIC功能较对照组增强;过表达突变型Cx43后B16细胞GJIC功能较对照组减弱。结论过表达野生型Cx43可增强B16细胞GJIC功能,过表达突变型Cx43可抑制B16细胞GJIC功能。%Objective To construct mouse B16 melanoma cell models of wild-type overexpression Cx43 and site-specific mutant Cx43, thus to provide reliable positive and negative control for the study of gap junction targeted Chinese herbal formula, Chinese medicine ingredient, and drug monomer. Methods We constructed the recombined fluorescent protein(mCherry) infused with Lentivirus expression plasmid of wild-type Cx43(pLVCx43-mCherry), mutant R (pLVCx43G21R-mCherry) and mutant Cx43G138R(pLVCx43 G138R-mCherry). The Cx43G21R and Cx43G138R mutants were obtained by site-specific mutagenesis. The three kinds of plasmid were performed double restriction

  12. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  13. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    Science.gov (United States)

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation. PMID:9551939

  14. Implications of epigenetic variability within a cell population for cell type classification

    Directory of Open Access Journals (Sweden)

    Inna eTabansky

    2015-12-01

    Full Text Available Here we propose a new approach to defining nerve ‘cell types’ in reaction to recent advances in single cell analysis. Among cells previously thought to be equivalent, considerable differences in global gene expression and biased tendencies among differing developmental fates have been demonstrated within multiple lineages. The model of classifying cells into distinct types thus has to be revised to account for this intrinsic variability. A ‘cell type’ could be a group of cells that possess similar, but not necessarily identical properties, variable within a spectrum of epigenetic adjustments that permit its developmental path toward a specific function to be achieved. Thus, the definition of a cell type is becoming more similar to the definition of a species: sharing essential properties with other members of its group, but permitting a certain amount of deviation in aspects that do not seriously impact function. This approach accommodates, even embraces the spectrum of natural variation found in various cell populations and consequently avoids the fallacy of false equivalence. For example, developing neurons will react to their microenvironments with epigenetic changes resulting in slight changes in gene expression and morphology. Addressing the new questions implied here will have significant implications for developmental neurobiology.

  15. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  16. Quantification of Non-Specific Binding of Magnetic Micro and Nano particles using Cell Tracking Velocimetry: Implication for magnetic cell separation and detection

    OpenAIRE

    Chalmers, J. J.; Xiong, Y; X. Jin; Shao, M.; Tong, X; Farag, S.; Zborowski, M.

    2010-01-01

    The maturation of magnetic cell separation technology places increasing demands on magnetic cell separation performance. While a number of factors can cause suboptimal performance, one of the major challenges can be non-specific binding of magnetic nano or micro particles to non-targeted cells. Depending on the type of separation, this non-specific binding can have a negative effect on the final purity, the recovery of the targeted cells, or both. In this work, we quantitatively demonstrate t...

  17. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    Science.gov (United States)

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  18. Type- and Subcomplex-Specific Neutralizing Antibodies against Domain III of Dengue Virus Type 2 Envelope Protein Recognize Adjacent Epitopes▿

    Science.gov (United States)

    Sukupolvi-Petty, Soila; Austin, S. Kyle; Purtha, Whitney E.; Oliphant, Theodore; Nybakken, Grant E.; Schlesinger, Jacob J.; Roehrig, John T.; Gromowski, Gregory D.; Barrett, Alan D.; Fremont, Daved H.; Diamond, Michael S.

    2007-01-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials. PMID:17881453

  19. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.

    Science.gov (United States)

    Sukupolvi-Petty, Soila; Austin, S Kyle; Purtha, Whitney E; Oliphant, Theodore; Nybakken, Grant E; Schlesinger, Jacob J; Roehrig, John T; Gromowski, Gregory D; Barrett, Alan D; Fremont, Daved H; Diamond, Michael S

    2007-12-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

  20. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety...

  1. Stem cell transplantation for type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Voltarelli Júlio C

    2009-09-01

    Full Text Available Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence in most patients with early onset type 1 diabetes mellitus.

  2. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available BACKGROUND: Directed differentiation of human induced pluripotent stem cells (hiPSC into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders.

  3. Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy

    Science.gov (United States)

    2016-01-01

    CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.

  4. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Science.gov (United States)

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  5. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

  6. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Nancy L Monson

    Full Text Available Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS. The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues.

  7. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  8. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  9. Algebraic Specifications, Higher-order Types and Set-theoretic Models

    DEFF Research Database (Denmark)

    Kirchner, Hélène; Mosses, Peter David

    2001-01-01

    In most algebraic  specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces......, and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard...

  10. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  11. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  12. Redirecting T Cell Specificity Using T Cell Receptor Messenger RNA Electroporation.

    Science.gov (United States)

    Koh, Sarene; Shimasaki, Noriko; Bertoletti, Antonio

    2016-01-01

    Autologous T lymphocytes genetically modified to express T cell receptors or chimeric antigen receptors have shown great promise in the treatment of several cancers, including melanoma and leukemia. In addition to tumor-associated antigens and tumor-specific neoantigens, tumors expressing viral peptides can also be recognized by specific T cells and are attractive targets for cell therapy. Hepatocellular carcinoma cells often have hepatitis B virus DNA integration and can be targeted by hepatitis B virus-specific T cells. Here, we describe a method to engineer hepatitis B virus-specific T cell receptors in primary human T lymphocytes based on electroporation of hepatitis B virus T cell receptor messenger RNA. This method can be extended to a large scale therapeutic T cell production following current good manufacturing practice compliance and is applicable to the redirection of T lymphocytes with T cell receptors of other virus specificities such as Epstein-Barr virus, cytomegalovirus, and chimeric receptors specific for other antigens expressed on cancer cells. PMID:27236807

  13. [Dendritic cells and interaction with other cell types. Immune tolerance].

    Science.gov (United States)

    Guerder, S

    2001-07-01

    T cell tolerance to self antigen is mainly established in the thymus were self-reactive T cells are deleted. Interdigitating dendritic cells and medulary epithelial cells are directly involved in the deletion process. Some self-reactive T cells escape, however this thymic censorship and enter the peripheral pool of naive T cells. Multiple mechanisms are also at play in the periphery to control this potentially armfull T cells, this include deletion and immune deviation.

  14. Potential cell-specific functions of CXCR4 in atherosclerosis.

    Science.gov (United States)

    Weber, Christian; Döring, Yvonne; Noels, Heidi

    2016-05-10

    The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis. PMID:25586789

  15. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  16. Delayed type hypersensitivity to allogeneic mouse epidermal cell antigens, 2

    International Nuclear Information System (INIS)

    A low dose of ultraviolet B radiation impairs the effectiveness of epidermal cell antigens. We studied the effect of ultraviolet B radiation on the delayed type hypersensitivity induced by allogeneic epidermal cell antigen. The delayed type hypersensitivity response was assayed by footpad swelling in mice. When epidermal cells were exposed to ultraviolet B radiation (660 J/m2), their ability to induce T cells of delayed type hypersensitivity activation was markedly inhibited in any combination of recipient mice and allogeneic epidermal cells. The effect of ultraviolet B radiation on epidermal cells was observed before immunization and challenge. Ultraviolet B treated epidermal cells did not induce suppressor T cells in mice. These results indicate that ultraviolet B radiation destroys the antigenicity of epidermal cells. (author)

  17. Automated type specific ELISA probe detection of amplified NS3 gene products of dengue viruses.

    OpenAIRE

    Chow, V T; Yong, R Y; Ngoh, B L; Chan, Y. C.

    1997-01-01

    AIM: To apply an automated system of nucleic acid hybridisation coupled with the enzyme linked immunosorbent assay (ELISA) for the type specific detection of amplification products of dengue viruses. METHODS: Non-structural 3 (NS3) gene targets of reference strains of all four dengue and other flaviviruses, as well as dengue patient viraemic sera, were subjected to reverse transcription and polymerase chain reaction using consensus and dengue type specific primers and digoxigenin-11-dUTP labe...

  18. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  19. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  20. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Crew, Jennifer R.; Falzari, Kanakeshwari [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  1. Evaluation of prenatal RHD typing strategies on cell-free fetal DNA from maternal plasma

    NARCIS (Netherlands)

    M.G.H.M. Grootkerk-Tax; A.A. Soussan; M. de Haas; P.A. Maaskant-van Wijk; C.E. van der Schoot

    2006-01-01

    BACKGROUND: The discovery of cell-free fetal DNA in maternal plasma led to the development of assays to predict the fetal D status with RHD-specific sequences. Few assays are designed in such a way that the fetus can be typed in RHD psi mothers and that RHD psi fetuses are correctly typed. Owing to

  2. Cell-specific regulation of apoptosis by designed enediynes.

    OpenAIRE

    Nicolaou, K. C.; Stabila, P; Esmaeli-Azad, B; Wrasidlo, W; Hiatt, A

    1993-01-01

    The naturally occurring enediyne antibiotics are a unique class of antitumor drugs that combine reactive enediynes with additional structural features conferring affinity for DNA. Dynemicin A, in which an enediyne core is attached to an anthraquinone group capable of DNA intercalation, readily cleaves double-stranded DNA. This activity is thought to be the basis of its potent antitumor cytotoxicity. To investigate cell-specific mechanisms of cytotoxicity in the absence of DNA affinity, we hav...

  3. Pathogenic memory type Th2 cells in allergic inflammation.

    Science.gov (United States)

    Endo, Yusuke; Hirahara, Kiyoshi; Yagi, Ryoji; Tumes, Damon J; Nakayama, Toshinori

    2014-02-01

    Immunological memory is a hallmark of adaptive immunity. Memory CD4 T helper (Th) cells are central to acquired immunity, and vaccines for infectious diseases are developed based on this concept. However, memory Th cells also play a critical role in the pathogenesis of various chronic inflammatory diseases, including asthma. We refer to these populations as 'pathogenic memory Th cells.' Here, we review recent developments highlighting the functions and characteristics of several pathogenic memory type Th2 cell subsets in allergic inflammation. Also discussed are the similarities and differences between pathogenic memory Th2 cells and recently identified type 2 innate lymphoid cells (ILC2), focusing on cytokine production and phenotypic profiles.

  4. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level.

  5. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  6. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  7. A mutant chaperone converts a wild-type protein into a tumor-specific antigen.

    Science.gov (United States)

    Schietinger, Andrea; Philip, Mary; Yoshida, Barbara A; Azadi, Parastoo; Liu, Hui; Meredith, Stephen C; Schreiber, Hans

    2006-10-13

    Monoclonal antibodies have become important therapeutic agents against certain cancers. Many tumor-specific antigens are mutant proteins that are predominantly intracellular and thus not readily accessible to monoclonal antibodies. We found that a wild-type transmembrane protein could be transformed into a tumor-specific antigen. A somatic mutation in the chaperone gene Cosmc abolished function of a glycosyltransferase, disrupting O-glycan Core 1 synthesis and creating a tumor-specific glycopeptidic neo-epitope consisting of a monosaccharide and a specific wild-type protein sequence. This epitope induced a high-affinity, highly specific, syngeneic monoclonal antibody with antitumor activity. Such tumor-specific glycopeptidic neo-epitopes represent potential targets for monoclonal antibody therapy.

  8. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    OpenAIRE

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staini...

  9. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs.

    Directory of Open Access Journals (Sweden)

    Brian W Busser

    Full Text Available Homeodomain (HD proteins are a large family of evolutionarily conserved transcription factors (TFs having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs, but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs. Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory

  10. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins.

    Science.gov (United States)

    Tjin, Monica Suryana; Chua, Alvin Wen Choong; Ma, Dong Rui; Lee, Seng Teik; Fong, Eileen

    2014-08-01

    Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.

  11. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    Science.gov (United States)

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  12. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  13. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    Science.gov (United States)

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  14. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C;

    2009-01-01

    Effector T cells are a crucial component of the adaptive immune response to respiratory virus infections. Although it was previously reported that the chemokine receptors CCR5 and CXCR3 affect trafficking of respiratory virus-specific CD8(+) T cells, it is unclear whether these receptors govern...... effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype...

  15. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  16. Cell-specific Regulation of APOBEC3F by Interferons

    Institute of Scientific and Technical Information of China (English)

    Songcheng YING; Xuzhao ZHANG; Phuong Thi Nguyen SARKIS; Rongzhen XU; Xiaofang YU

    2007-01-01

    Human cytidine deaminase APOBEC3F (A3F) has broad anti-viral activity against hepatitis B virus and retroviruses including human immunodeficiency virus type 1. However, its regulation in viral natural target cells such CD4+ T lymphocytes, macrophages, and primary liver cells has not been well studied. Here we showed that A3F was up-regulated by interferon (IFN)-α in primary hepatocytes and multiple liver cell lines as well as macrophages. Although the IFN-α signaling pathway was active in T lymphoid cells and induction of other IFN stimulated genes such as PKR was detected, A3F and APOBEC3G (A3G) were not induced by IFN-o in these cells. Thus, additional factors other than known IFN-stimulated genes also regulated IFN-α-induced A3F expression distinctly. A3F and A3G expression levels in primary hepatocytes, especially after IFN-α stimulation, were comparable to those in CD4+ T lymphocytes in some individuals. Significant variations of A3F and A3G expression in primary hepatocytes from various subjects were observed. Individual variations in A3F and/or A3G regulation and expression might influence the clinical outcomes of hepatitis B infection.

  17. Mathematical model for HIV dynamics in HIV-specific helper cells

    Science.gov (United States)

    Pinto, Carla M. A.; Carvalho, Ana

    2014-03-01

    In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R01, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.

  18. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies.

    Science.gov (United States)

    Carrillo-Reid, Luis; Hernández-López, Salvador; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José

    2011-10-19

    Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

  19. The Macrophage Galactose-Type C-Type Lectin (MGL Modulates Regulatory T Cell Functions.

    Directory of Open Access Journals (Sweden)

    Ilaria Grazia Zizzari

    Full Text Available Regulatory T cells (Tregs are physiologically designed to prevent autoimmune disease and maintain self-tolerance. In tumour microenvironments, their presence is related to a poor prognosis, and they influence the therapeutic outcome due to their capacity to suppress the immune response by cell-cell contact and to release immunosuppressive cytokines. In this study, we demonstrate that Treg immunosuppressive activity can be modulated by the cross-linking between the CD45RA expressed by Tregs and the C-type lectin MGL. This specific interaction strongly decreases the immunosuppressive activity of Tregs, restoring the proliferative capacity of co-cultured T lymphocytes. This effect can be attributed to changes in CD45RA and TCR signalling through the inhibition of Lck and inactivation of Zap-70, an increase in the Foxp3 methylation status and, ultimately, the reduced production of suppressive cytokines. These results indicate a role of MGL as an immunomodulator within the tumour microenvironment interfering with Treg functions, suggesting its possible use in the design of anticancer vaccines.

  20. Fine specificities of two lectins from Cymbosema roseum seeds: a lectin specific for high-mannose oligosaccharides and a lectin specific for blood group H type II trisaccharide.

    Science.gov (United States)

    Dam, Tarun K; Cavada, Benildo S; Nagano, Celso S; Rocha, Bruno Am; Benevides, Raquel G; Nascimento, Kyria S; de Sousa, Luiz Ag; Oscarson, Stefan; Brewer, C Fred

    2011-07-01

    The legume species of Cymbosema roseum of Diocleinae subtribe produce at least two different seed lectins. The present study demonstrates that C. roseum lectin I (CRL I) binds with high affinity to the "core" trimannoside of N-linked oligosaccharides. Cymbosema roseum lectin II (CRL II), on the other hand, binds with high affinity to the blood group H trisaccharide (Fucα1,2Galα1-4GlcNAc-). Thermodynamic and hemagglutination inhibition studies reveal the fine binding specificities of the two lectins. Data obtained with a complete set of monodeoxy analogs of the core trimannoside indicate that CRL I recognizes the 3-, 4- and 6-hydroxyl groups of the α(1,6) Man residue, the 3- and 4-hydroxyl group of the α(1,3) Man residue and the 2- and 4-hydroxyl groups of the central Man residue of the trimannoside. CRL I possesses enhanced affinities for the Man5 oligomannose glycan and a biantennary complex glycan as well as glycoproteins containing high-mannose glycans. On the other hand, CRL II distinguishes the blood group H type II epitope from the Lewis(x), Lewis(y), Lewis(a) and Lewis(b) epitopes. CRL II also distinguishes between blood group H type II and type I trisaccharides. CRL I and CRL II, respectively, possess differences in fine specificities when compared with other reported mannose and fucose recognizing lectins. This is the first report of a mannose-specific lectin (CRL I) and a blood group H type II-specific lectin (CRL II) from seeds of a member of the Diocleinae subtribe.

  1. Liver-specific gene expression in mesenchymal stem cells is induced by liver cells

    Institute of Scientific and Technical Information of China (English)

    Claudia Lange; Philipp Bassler; Michael V. Lioznov; Helge Bruns; Dietrich Kluth; Axel R. Zander; Henning C. Fiegel

    2005-01-01

    AIM: The origin of putative liver cells from distinct bone marrow stem cells, e.g. hematopoietic stem cells or multipotent adult progenitor cells was found in recent in vitro studies. Cell culture experiments revealed a key role of growth factors for the induction of liver-specific genes in stem cell cultures. We investigated the potential of rat mesenchymal stem cells (MSC) from bone marrow to differentiate into hepatocytic cells in vitro. Furthermore,we assessed the influence of cocultured liver cells on induction of liver-specific gene expression.METHODS: Mesenchymal stem cells were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSC were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with SCF, HGF,EGF, and FGF-4 alone, or in presence of freshly isolated rat liver cells. Cells in cocultures were harvested and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. RT-PCR analysis for the stem cell marker Thy1 and the hepatocytic markers CK-18, albumin, CK-19,and AFP was performed in the different cell populations.RESULTS: Under the specified culture conditions, rat MSC cocultured with liver cells expressed albumin-, CK-18,CK-19, and AFP-RNA over 3 weeks, whereas MSC cultured alone did not show liver specific gene expression.CONCLUSION: The results indicate that (1) rat MSC from bone marrow can differentiate towards hepatocytic lineage in vitro, and (2) that the microenvironment plays a decisive role for the induction of hepatic differentiation of rMSC.

  2. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages.

    Science.gov (United States)

    Nair, Meera G; Herbert, De'Broski R

    2016-06-01

    Cellular and molecular investigation of parasitic helminth infections has greatly accelerated the understanding of type 2 immune responses. However, there remains considerable debate regarding the specific leucocytes that kill parasites and whether these mechanisms are distinct from those responsible for tissue repair. Herein, we chronicle discoveries over the past decade highlighting current paradigms in type 2 immunity with a particular emphasis upon how CD4(+) T helper type 2 cells, type 2 innate lymphoid cells and alternatively activated macrophages coordinately control helminth-induced parasitism. Primarily, this review will draw from studies of the murine nematode parasite Nippostrongylus brasiliensis, which bears important similarities to the human hookworms Ancylostoma duodenale and Necator americanus. Given that one or more hookworm species currently infect millions of individuals across the globe, we propose that vaccine and/or pharmaceutical-based cure strategies targeting these affected human populations should incorporate the conceptual advances outlined herein. PMID:26928141

  3. Uptake of palmitic acid by rabbit alveolar type II cells

    International Nuclear Information System (INIS)

    Alveolar type II cells require a source of palmitic acid for synthesis of dipalmitoyl phosphatidylcholine (DPPC), a major constituent of pulmonary surfactant. Previous studies indicated that maximal rates of DPPC synthesis are achieved only if exogenous palmitate is available to the type II cell. Little is known of the mechanisms by which fatty acids enter type II cells. To determine if uptake is mediated by a membrane carrier system, as described in other cell types, we examined the kinetics of palmitate uptake. Using freshly isolated rabbit type II cells, we demonstrated that radiolabeled palmitate uptake was maximal and linear for 45 s; after 1 min the apparent rate of uptake declined. The initial uptake phase was taken as a measure of cellular fatty acid influx because intracellular radiolabeled palmitate remained 80% nonesterified at this time but was 55% esterified by 2 min. Cellular influx of palmitate showed saturation kinetics with increasing concentration of nonalbumin bound palmitate. Michaelis constant was 52.6 nM, and maximum velocity was 152 pmol.10(6) cells-1.min-1. The hypothesis that saturable cellular influx of palmitate is likely linked to the previously identified membrane fatty acid binding protein (MFABP) was supported by Western-blot analysis of rat lung tissue with an antibody to MFABP that demonstrated the presence of this carrier protein in lung tissue. These data suggest that palmitate uptake by type II cells is saturable and may be mediated by a membrane-associated carrier as described in other cell types

  4. Ultra-low specific on-resistance SOI double-gate trench-type MOSFET

    Science.gov (United States)

    Tianfei, Lei; Xiaorong, Luo; Rui, Ge; Xi, Chen; Yuangang, Wang; Guoliang, Yao; Yongheng, Jiang; Bo, Zhang; Zhaoji, Li

    2011-10-01

    An ultra-low specific on-resistance (Ron, sp) silicon-on-insulator (SOI) double-gate trench-type MOSFET (DG trench MOSFET) is proposed. The MOSFET features double gates and an oxide trench: the oxide trench is in the drift region, one trench gate is inset in the oxide trench and one trench gate is extended into the buried oxide. Firstly, the double gates reduce Ron, sp by forming dual conduction channels. Secondly, the oxide trench not only folds the drift region, but also modulates the electric field, thereby reducing device pitch and increasing the breakdown voltage (BV). ABV of 93 V and a Ron, sp of 51.8 mΩ·mm2 is obtained for a DG trench MOSFET with a 3 μm half-cell pitch. Compared with a single-gate SOI MOSFET (SG MOSFET) and a single-gate SOI MOSFET with an oxide trench (SG trench MOSFET), the Ron, sp of the DG trench MOSFET decreases by 63.3% and 33.8% at the same BV, respectively.

  5. Restriction specificity of virus-specific cytotoxic T cells from thymectomised irradiated bone marrow chimeras reconstituted with thymus grafts

    International Nuclear Information System (INIS)

    Adult-thymectomised lethally irradiated mice A that were reconstituted with T-cell-depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of (B X C)F1 origin generated virus-specific T cells restricted to B alone; adult-thymectomised and lethally irradiated (A X B)F1 mice that were reconstituted with T-cell depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of A and of B origin generated virus-specific T cells restricted to A or to B. These results do not reveal obvious suppressive influences of host or stem-cell origin that might have explained results obtained with various irradiated bone marrow or thymus chimeras, they indicate that the thymus' influence on maturing T cells is one of the limiting steps in the selection of T cells' restriction specificities. (Auth.)

  6. The intensity of T cell receptor engagement determines the cytokine pattern of human allergen-specific T helper cells.

    Science.gov (United States)

    Carballido, J M; Faith, A; Carballido-Perrig, N; Blaser, K

    1997-02-01

    Enhanced production of T helper (Th)2 cytokines by allergen-specific Th cells plays a major role in the induction and maintenance of IgE-mediated allergic disorders. The mechanism that triggers this type of response in atopic individuals is not fully understood. Allergen-specific human Th cell clones produce interleukin (IL)-4 and low or undetectable levels of interferon (IFN)-gamma after stimulation with low concentrations of antigen. However, these Th cell clones are capable of generating significant amounts of IFN-gamma after optimal activation through their T cell receptor (TcR). Allergen-specific Th cell clones isolated from allergic individuals required higher doses of antigen to reach the plateau of proliferation and to generate Th0 cytokine responses than their counterparts isolated from nonallergic subjects. On the other hand, if allergen was replaced by anti-CD3 monoclonal antibody (mAb), both allergic and nonallergic Th cell clones attained the highest level of proliferation and significant IFN-gamma production in response to equivalent concentrations of anti-CD3 mAb. These results indicate that the strength of T cell ligation, which can be modulated by the availability of the TcR ligand, controls the balance of Thl/Th2 cytokines produced by memory Th cells in vitro. In the particular case of bee venom phospholipase A2, it is shown that the expression of allergen-specific surface Ig on antigen-presenting B cells has little influence on antigen uptake and therefore in determining the levels of T cell activation and cytokine production. Alternatively, the affinity of particular major histocompatibility complex class II molecules on antigen-presenting cells for allergen-derived peptides might determine the amount of specific ligand presented to the Th cells and play a decisive role skewing the Th cell cytokine production towards Th1 or Th2 phenotypes. These findings, which are consistent with the changes in cytokine patterns observed following clinical

  7. Functional cell types in taste buds have distinct longevities.

    Directory of Open Access Journals (Sweden)

    Isabel Perea-Martinez

    Full Text Available Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  8. Cell-specific expression of TLR9 isoforms in inflammation.

    Science.gov (United States)

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  9. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  10. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies.

    Science.gov (United States)

    Bodle, Josephine C; Loboa, Elizabeth G

    2016-06-01

    Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.

  11. HPMA Polymer-based Site-specific Delivery of Oligonucleotides to Hepatic Stellate Cells

    OpenAIRE

    Yang, Ningning; Ye, Zhaoyang; Li, Feng; Mahato, Ram I.

    2009-01-01

    The objective was to determine whether bioconjugation of type I collagen specific triplex forming oligonucleotide (TFO) to N-(2-hydroxypropyl) methacrylamide (HPMA) containing tetrapeptide Gly-Phe-Leu-Gly (GFLG) and mannose 6-phosphate (M6P) can provide their targeted delivery to hepatic stellate cells (HSCs). Following bioconjugation, M6P-GFLG-HPMA-GFLG-32P-TFO was characterized by PAGE, HPLC and GPC, and then its biodistribution was determined. TFO was dissociated from the conjugate when in...

  12. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders

    Science.gov (United States)

    Muraro, Paolo A.; Wandinger, Klaus-Peter; Bielekova, Bibiana; Gran, Bruno; Marques, Adriana; Utz, Ursula; McFarland, Henry F.; Jacobson, Steve; Martin, Roland

    2016-01-01

    Summary T cells recognizing self or microbial antigens may trigger or reactivate immune-mediated diseases. Monitoring the frequency of specific T cell clonotypes to assess a possible link with the course of disease has been a difficult task with currently available technology. Our goal was to track individual candidate pathogenic T cell clones, selected on the basis of previous extensive studies from patients with immune-mediated disorders of the CNS, including multiple sclerosis, HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/ TSP) and chronic Lyme neuroborreliosis. We developed and applied a highly specific and sensitive technique to track single CD4+ and CD8+ T cell clones through the detection and quantification of T cell receptor (TCR) α or β chain complementarity-determining region 3 transcripts by real-time reverse transcriptase (RT)-PCR. We examined the frequency of the candidate pathogenic T cell clones in the peripheral blood and CSF during the course of neurological disease. Using this approach, we detected variations of clonal frequencies that appeared to be related to clinical course, significant enrichment in the CSF, or both. By integrating clono-type tracking with direct visualization of antigen-specific staining, we showed that a single T cell clone contributed substantially to the overall recognition of the viral peptide/MHC complex in a patient with HAM/ TSP. T cell clonotype tracking is a powerful new technology enabling further elucidation of the dynamics of expansion of autoreactive or pathogen-specific T cells that mediate pathological or protective immune responses in neurological disorders. PMID:12477694

  13. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  14. Unique Expression of Angiotensin Type-2 Receptor in Sex-Specific Distribution of Myelinated Ah-Type Baroreceptor Neuron Contributing to Sex-Dimorphic Neurocontrol of Circulation.

    Science.gov (United States)

    Liu, Yang; Zhou, Jia-Ying; Zhou, Yu-Hong; Wu, Di; He, Jian-Li; Han, Li-Min; Liang, Xiao-Bo; Wang, Lu-Qi; Lu, Xiao-Long; Chen, Hanying; Qiao, Guo-Fen; Shou, Weinian; Li, Bai-Yan

    2016-04-01

    This study aims to understand the special expression patterns of angiotensin-II receptor (AT1R and AT2R) in nodose ganglia and nucleus of tractus solitary of baroreflex afferent pathway and their contribution in sex difference of neurocontrol of blood pressure regulation. In this regard, action potentials were recorded in baroreceptor neurons (BRNs) using whole-cell patch techniques; mRNA and protein expression of AT1R and AT2R in nodose ganglia and nucleus of tractus solitary were evaluated using real time-polymerase chain reaction, Western blot, and immunohistochemistry at both tissue and single-cell levels. The in vivo effects of 17β-estradiol on blood pressure and AT2R expression were also tested. The data showed that AT2R, rather than AT1R, expression was higher in female than age-matched male rats. Moreover, AT2R was downregulated in ovariectomized rats, which was restored by the administration of 17β-estradiol. Single-cell real time-polymerase chain reaction data indicated that AT2R was uniquely expressed in Ah-type BRNs. Functional study showed that long-term administration of 17β-estradiol significantly alleviated the blood pressure increase in ovariectomized rats. Electrophysiological recordings showed that angiotensin-II treatment increased the neuroexcitability more in Ah- than C-type BRNs, whereas no such effect was observed in A-types. In addition, angiotensin-II treatment prolonged action potential duration, which was not further changed by iberiotoxin. The density of angiotensin-II-sensitive K(+) currents recorded in Ah-types was equivalent with iberiotoxin-sensitive component. In summary, the unique, sex- and afferent-specific expression of AT2R was identified in Ah-type BRNs, and AT2R-mediated KCa1.1 inhibition in Ah-type BRNs may exert great impacts on baroreflex afferent function and blood pressure regulation in females. PMID:26883269

  15. Live Staining and Isolation of Specific Hormone-Producing Cells from Rat Anterior Pituitary by Cytochemistry with Lectins and Cholera Toxin B Subunit

    International Nuclear Information System (INIS)

    Anterior pituitary glands contain five types of hormone-producing cells. Distinguishing and isolating specific types of living cells are essential for studying their function. Although many such attempts have been made, the results have been disappointing. In the present study, we labeled specific types of living hormone-producing cells by using potential differences in sugar chains on the cell surfaces. Cytochemical analysis with lectins and cholera toxin B subunit revealed that PNA, S-WGA, and cholera toxin B subunit recognized sugar chains specific to prolactin cells, ACTH cells, and GH cells, respectively, and that UEA-I recognized most of prolactin cells and GH cells. Next, fluorescence-activated cell sorting was used to isolate GH cells labeled by fluoresceinated cholera toxin B. The purity of the GH cell fraction estimated by immunocytochemistry and quantitative real-time PCR for cell type-specific genes was more than 98%, which was higher than that reported in earlier studies, including those using transgenic animals. We conclude that cytochemistry with lectins and cholera toxin B subunit is a straightforward, acceptable method of isolating specific types of anterior pituitary cells and that the cells isolated by this method can serve as useful materials in the study of anterior pituitary cells

  16. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma.

    Science.gov (United States)

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M; Blokland, Nina J G; van Noesel, Max M; Molenaar, Jan J; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-11-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.

  17. Alveolar epithelial type II cell: defender of the alveolus revisited

    OpenAIRE

    Fehrenbach Heinz

    2001-01-01

    Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, a...

  18. Molecular basis of sidekick-mediated cell-cell adhesion and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Kerry M.; Yamagata, Masahito; Jin, Xiangshu; Mannepalli, Seetha; Katsamba, Phinikoula S.; Ahlsén, Göran; Sergeeva, Alina P.; Honig, Barry; Sanes, Joshua R.; Shapiro, Lawrence

    2016-09-19

    Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (viatransinteractions) and Sdk clustering in isolated cells (viacisinteractions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition betweencisandtransinteractions provides a novel mechanism to sharpen the specificity of cell-cell interactions.

  19. Heterogeneity of stromal cells in the human splenic white pulp. Fibroblastic reticulum cells, follicular dendritic cells and a third superficial stromal cell type

    Science.gov (United States)

    Steiniger, Birte S; Wilhelmi, Verena; Seiler, Anja; Lampp, Katrin; Stachniss, Vitus

    2014-01-01

    At least three phenotypically and morphologically distinguishable types of branched stromal cells are revealed in the human splenic white pulp by subtractive immunohistological double-staining. CD271 is expressed in fibroblastic reticulum cells of T-cell zones and in follicular dendritic cells of follicles. In addition, there is a third CD271− and CD271+/− stromal cell population surrounding T-cell zones and follicles. At the surface of follicles the third population consists of individually variable partially overlapping shells of stromal cells exhibiting CD90 (Thy-1), MAdCAM-1, CD105 (endoglin), CD141 (thrombomodulin) and smooth muscle α-actin (SMA) with expression of CD90 characterizing the broadest shell and SMA the smallest. In addition, CXCL12, CXCL13 and CCL21 are also present in third-population stromal cells and/or along fibres. Not only CD27+ and switched B lymphocytes, but also scattered IgD++ B lymphocytes and variable numbers of CD4+ T lymphocytes often occur close to the third stromal cell population or one of its subpopulations at the surface of the follicles. In contrast to human lymph nodes, neither podoplanin nor RANKL (CD254) were detected in adult human splenic white pulp stromal cells. The superficial stromal cells of the human splenic white pulp belong to a widespread cell type, which is also found at the surface of red pulp arterioles surrounded by a mixed T-cell/B-cell population. Superficial white pulp stromal cells differ from fibroblastic reticulum cells and follicular dendritic cells not only in humans, but apparently also in mice and perhaps in rats. However, the phenotype of white pulp stromal cells is species-specific and more heterogeneous than described so far. PMID:24890772

  20. Specific cytotoxic T-cell immune responses against autoantigens recognized by chronic lymphocytic leukaemia cells.

    Science.gov (United States)

    Zaleska, Joanna; Skorka, Katarzyna; Zajac, Malgorzata; Karczmarczyk, Agnieszka; Karp, Marta; Tomczak, Waldemar; Hus, Marek; Wlasiuk, Paulina; Giannopoulos, Krzysztof

    2016-08-01

    Mounting evidence suggests that autoreactivity and inflammatory processes are involved in the pathogenesis of chronic lymphocytic leukaemia (CLL). Cytoskeletal proteins, including non-muscle myosin heavy chain IIA (MYHIIA), vimentin (VIM) and cofilin-1 (CFL1), exposed on the surface of apoptotic cells have been identified as autoantigens that are recognized by the specific B-cell receptors of the CLL cells. In 212 CLL patients analysed with quantitative reverse transcriptase-polymerase chain reaction we found CFL1 overexpression and low expression of MYH9 in comparison with healthy volunteers. We detected specific cytotoxic immune responses for peptides derived from MYHIIA in 66·7%, VIM in 87·5% and CFL1 in 62·5% CLL patients in an Enzyme-Linked ImmunoSpot assay. Low frequencies of autoreactive peptide-specific T cells were detected against MYHIIA, VIM and CFL1 in CLL patients ex vivo; most of the detected cells had an effector-memory phenotype. Our findings support the existence of cytotoxic immune responses against three autoantigens that have been identified as targets of CLL clonotypic B-cell receptors. The presence of autoreactive CD8(+) T cells against MYHIIA, VIM and CFL1 in CLL patients indicates the involvement of antigen-specific autoreactive T cells in the pathogenesis of CLL.

  1. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  2. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  3. Characterization of Boron Diffusion Phenomena According to the Specific Resistivity of N-Type Si Wafer.

    Science.gov (United States)

    Lee, Woo-Jin; Choi, Chel-Jong; Park, Gye-Choon; Yang, O-Bong

    2016-02-01

    This paper is directed to characterize the boron diffusion process according to the specific resistivity of the Si wafer. N-type Si wafers were used with the specific resistivity of 0.5-3.2 omega-cm, 1.0-6.5 omega-cm and 2.0-8.0 omega-cm. The boron tribromide (BBr3) was used as boron source to create the PN junction on N-type Si wafer. The boron diffusion in N-type Si wafer was characterized by sheet resistance of wafer surface, secondary ion mass spectroscopy measurements (SIMS) and surface life time analysis. The degree of boron diffusion was depended on the variation in specific resistivity and sheet resistance of the bare N-type Si wafer. The boron diffused N-Si wafer exhibited the average junction depth of 750 nm and boron concentration of 1 x 10(19). N-type Si wafer with the different specific resistance considerably affected the boron diffusion length and life time of Si wafer. It was found that the lifetime of boron diffused wafer was proportional to the sheet resistance and resistivity. However, optimization process may necessary to achieve the high efficiency through the high sheet resistance wafer, because the metallization process control is very sensitive.

  4. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    OpenAIRE

    Ru Shen; Xiaosheng Wang; Chittibabu Guda

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological networ...

  5. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency.

    Science.gov (United States)

    Tailor, Jignesh; Kittappa, Raja; Leto, Ketty; Gates, Monte; Borel, Melodie; Paulsen, Ole; Spitzer, Sonia; Karadottir, Ragnhildur Thora; Rossi, Ferdinando; Falk, Anna; Smith, Austin

    2013-07-24

    Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.

  6. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten;

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment. A candid......BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment...... appeared to be mediated via IFN-γ and dependent on contact with antigen-specific T cells recognizing the antigen. CONCLUSION: Human B cells are able to produce CXCL10 in an IFN-γ and T cell contact-dependent manner. The present findings suggest a possible mechanism through which B cells in part may...

  7. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    Science.gov (United States)

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  8. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis

    Institute of Scientific and Technical Information of China (English)

    Yu-Chieh Wang; Trevor R Leonardo; Ying Liu; Suzanne E Peterson; Louise C Laurent; Shinya Yamanaka; Jeanne F Loring; Masato Nakagawa; Ibon Garitaonandia; Ileana Slavin; Gulsah Altun; Robert M Lacharite; Kristopher L Nazor; Ha T Tran; Candace L Lynch

    2011-01-01

    Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications.Using lectin arrays,we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples,and identified a small group of iectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types.These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined,regardless of the laboratory of origin,the culture conditions,the somatic cell type reprogrammed,or the reprogramming method used.We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry,and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation.Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases,which may underlie these differences in protein glycosylation and lectin binding.Taken together,our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells,and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations.

  9. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection

    Science.gov (United States)

    Henderson, Kelley C.; Benitez, Alvaro J.; Ratliff, Amy E.; Crabb, Donna M.; Sheppard, Edward S.; Winchell, Jonas M.; Dluhy, Richard A.; Waites, Ken B.; Atkinson, T. Prescott; Krause, Duncan C.

    2015-01-01

    Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP). At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS) biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl) and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA) of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains. PMID:26121242

  10. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection.

    Directory of Open Access Journals (Sweden)

    Kelley C Henderson

    Full Text Available Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP. At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR, which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains.

  11. Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour.

    Directory of Open Access Journals (Sweden)

    Daniel Stockholm

    Full Text Available BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.

  12. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  13. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  14. Cleavage patterns, cell-lineages and cell specification are clues to phyletic lineages in Spiralia.

    Science.gov (United States)

    van den Biggelaar, J A; Dictus, W J; van Loon, A E

    1997-08-01

    Embryos of molluscs, annelids, nemerteans and platyhelminthes show remarkable intra- and interphyletic resemblances and differences in mesentoblast, dorso-ventral axis and trochoblast specification. These variations have been used to investigate their evolutionary relationship. In molluscs and annelids a heterochronic shift parallels evolutionary relations based on adult characters. Nemerteans and platyhelminthes lack trochal cells and differ in the specification of the mesodermal precursor cell. Nemerteans also differ fundamentally with respect to axis specification related to the first cleavage. Therefore, close phylogenetic relations exist between molluscs and annelids, whereas nemerteans and platyhelminthes are only remotely related with each other and with molluscs and annelids. PMID:15001075

  15. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  16. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna;

    2013-01-01

    to the T cell attack against beta cells is presented. In this model, PTM plays a prominent role in triggering beta cell destruction. We discuss literature of relevance and perform genetic and human islet gene expression analyses. Both direct and circumstantial support for the involvement of PTM in type 1...... forms capable of specifically triggering beta cell destruction. In other immune-mediated diseases, autoantigens targeted by the immune system have undergone post-translational modification (PTM), thereby creating tissue-specific neo-epitopes. In a similar manner, PTM of beta cell proteins might create...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...

  17. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.

    Directory of Open Access Journals (Sweden)

    Muriel Vayssier-Taussat

    Full Text Available Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage

  18. Inhibition of breast cancer cell proliferation and migration by monoclonal antibody m590 specific for insulin-like growth factor receptor type Ⅰ%抗胰岛素样生长因子Ⅰ型受体单克隆抗体m590抑制乳腺癌细胞增生和迁移

    Institute of Scientific and Technical Information of China (English)

    符晓阳; 陈超; 潘华雄; 黄韬; 章美云; 郑鸿

    2012-01-01

    Objective To investigate the mechanism(s) that a human-mouse chimeric monoclonal anti-insulin-like growth factor receptor type Ⅰ (IGF-IR) antibody,m590,inhibits breast cancer cells proliferation and migration.Methods Binding of m590 to IGF-IR in 30 breast cancer samples was detected by using immunohistochemistry.Western blotting,immunocytofluorescence and other tests were used for analyzing the effects of m590 on breast cancer cells ( MCF-7 ) proliferation,survival,adhesion and migration as well as signaling pathways.Results m590 specifically bound to IGF-IR was overexpressed in invasive ductal carcinoma of the breast (87% of cases).Treatment of MCF-7 cells with m590 significantly suppressed IGF-I-induced phosphorylation of ERK and Akt,which led to reduced cell proliferation by 58%and increased apoptosis.m590 also inhibited IGF-Ⅰ-induced polymerization of F-actin and relocation of vinculin in cell edge,resulting in dramatically decreased cell migration by 56% and cell adhesion by 55%.Furthermore,herceptin in combination with m590 synergistically inhibited IGF-IR-induced phosphorylation of ERK and AKT,and decreased MCF-7 cells proliferation by 76% as compared with IGF-I treatment alone.Conclusion m590 is an effective anti-IGF-IR antibody and may have the potential in clinical use for diagnosis and treatment of breast cancer.%目的 探讨抗胰岛素样生长因子Ⅰ型受体(IGF-IR)抗体,m590,抑制乳腺癌细胞增生、迁移及其机制.方法 免疫组织化学染色30例乳腺浸润性导管癌标本;免疫印迹法、免疫荧光细胞染色及其他试验检测m590 对MCF-7细胞的作用及其机制.结果 87%的乳腺浸润性导管癌高表达IGF-IR;m590抑制胰岛素样生长因子Ⅰ(IGF-I)诱导的细胞外调节蛋白激酶(ERK)和蛋白激酶B(Akt)磷酸化以及细胞骨架蛋白(F-actin)和细胞骨架黏合班蛋白(Vinculin)在细胞内的分布,使细胞增生、迁移和黏附分别降低至58%、56%和55

  19. Reconstruction of the “phase separation – ordering” type and specific heat in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, Alexander N., E-mail: alex@ispms.tsc.ru, E-mail: val110@mail.ru; Egorushkin, Valery E., E-mail: alex@ispms.tsc.ru, E-mail: val110@mail.ru; Bobenko, Nadezda G., E-mail: nlitvin86@mail.ru [Institute of Strength Physics and Material Science SB RAS, Tomsk, 634055 (Russian Federation); Melnikova, Natalia V., E-mail: phdmelnikova@gmail.com [V.D. Kuznetsov Siberian Physical Technical Institute of TSU, Tomsk, 634050 (Russian Federation)

    2014-11-14

    The low-temperature behavior of the specific heat in disordered nanotubes strongly depends on structure changes and was not explained by the phonon contribution. Expression for electronic specific heat was carried out taking into account the multiple elastic scattering of electrons on impurities and structural inhomogeneities of short-range order type, it includes dependence on diameter of nanotube, concentration of impurities, parameters of short-range order (structural heterogeneity) and temperature. Anomalous low-temperature behavior of the specific heat of disordered CNT is shown to have electronic nature and may be associated with the electrons that are involved in restructuring.

  20. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    Science.gov (United States)

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  1. Evidence for Differential Glycosylation of Trophoblast Cell Types.

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F

    2016-06-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217

  2. Ovarian Small Cell Carcinoma Hypercalcemic Type: A Case Report

    LENUS (Irish Health Repository)

    Rahma, M B.

    2016-09-01

    A 31-year-old female was diagnosed with small cell carcinoma of the ovary hypercalcaemic type (OSCCHT) post left oophorectomy. This is a rare aggressive ovarian tumour of which less than 300 cases were reported.

  3. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  4. Planar cell polarity effector gene Intu regulat