WorldWideScience

Sample records for cell tumor-associated somatic

  1. Regulation of cancer stem cell activities by tumor-associated macrophages

    OpenAIRE

    Jinushi, Masahisa; Baghdadi, Muhammad; Chiba, Shigeki; Yoshiyama, Hironori

    2012-01-01

    Recent studies revealed that tumor-associated macrophages play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. However, the role of cancer stem cells in the tumorigenic activities of tumor-associated macrophages during the course of transformation and treatment remains largely unknown. Recent studies have clarified the functional aspects of tumor-associated macrophages in the regulation...

  2. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  3. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma

    OpenAIRE

    Liu, Yixiong; Fan, Linni; Wang, Yingmei; Li, Peifeng; Zhu, Jin; Wang, Lu; Zhang, Weichen; Zhang, Yuehua; Huang, Gaosheng

    2014-01-01

    Objective: To explore the relationship between the number of tumor-associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T-cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T-cell lymphoma and detect the numbers of TAMs and the ki-67 label index of the tumor cells in all 31 cases. In addition, 12 cases of inflammatory cases were collected as c...

  4. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  5. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  6. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  7. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures

    DEFF Research Database (Denmark)

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania;

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded...... TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFN¿ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating...

  8. Highlights on FOX03 and tumor-associated dendritic cells in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Kwong Y Tsang; James L Gulley

    2011-01-01

    @@ Cancer immunotherapy sometimes fails to provoke effective immune responses because of immunosuppressive mechanisms present in the tumor-bearing host.Dendritic cells (DCs) are the most potent antigenpresenting cells.After internalizing tumorassociated antigens (TAAs) at the tumor site,CCR7+ DCs traffic to the tumor-draining lymph nodes,where they influence the maturation of T cells.DCs may also be present at the tumor site.These tumor-associated DCs (TADCs) cross-present TAAs to recruited CD8+ T cells,which develop into TAA-specific effector cells.When activated,TADCs can mediate the sensitization of naive T cells that have been recruited into the tumor site.For this reason,interaction between tumor-infiltrating T cells and TADCs is essential for activating and maintaining specific antitumor immune responses.

  9. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer

    Science.gov (United States)

    Eruslanov, Evgeniy B.; Bhojnagarwala, Pratik S.; Quatromoni, Jon G.; Stephen, Tom Li; Ranganathan, Anjana; Deshpande, Charuhas; Akimova, Tatiana; Vachani, Anil; Litzky, Leslie; Hancock, Wayne W.; Conejo-Garcia, José R.; Feldman, Michael; Albelda, Steven M.; Singhal, Sunil

    2014-01-01

    Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%–25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62LloCD54hi) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses. PMID:25384214

  10. Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    International Nuclear Information System (INIS)

    The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Prostate CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. CD90+ prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development

  11. Fibroblast Activation Protein Expression by Stromal Cells and Tumor-Associated Macrophages in Human Breast Cancer

    Science.gov (United States)

    Julia, Tchou; Zhang Paul, J; Yingtao, Bi; Celine, Satija; Rajrupa, Marjumdar; Stephen, TL; Lo, A; Haiying, Chen; Carolyn, Mies; June, Carl H; Jose, Conejo-Garcia; Ellen, Puré

    2013-01-01

    Summary Fibroblast activation protein (FAP) has long been known to be expressed in the stroma of breast cancer. However, very little is known if the magnitude of FAP expression within the stroma may have prognostic value and reflect the heterogeneous biology of the tumor cell. An earlier study had suggested that stromal FAP expression in breast cancer was inversely proportional to prognosis. We, therefore, hypothesized that stromal FAP expression may correlate with clinicopathologic variables and may serve as an adjunct prognostic factor in breast cancer. We evaluated the expression of FAP in a panel of breast cancer tissues (n=52) using a combination of immunostain analyses at the tissue and single cell level using freshly frozen or freshly digested human breast tumor samples respectively. Our results showed that FAP expression was abundantly expressed in the stroma across all breast cancer subtypes without significant correlation with clinicopathologic factors. We further identified a subset of FAP positive or FAP+ stromal cells that also expressed CD45, a pan-leukocyte marker. Using freshly dissociated human breast tumor specimens (n=5), we demonstrated that some of these FAP+ CD45+ cells were CD11b+CD14+MHC-II+ indicating that they were likely tumor associated macrophages (TAMs). Although FAP+CD45+ cells have been demonstrated in the mouse tumor stroma, our results demonstrating that human breast TAMs expressed FAP was novel and suggested that existing and future FAP directed therapy may have dual therapeutic benefits targeting both stromal mesenchymal cells and immune cells such as TAMs. More work is needed to explore the role of FAP as a potential targetable molecule in breast cancer treatment. PMID:24074532

  12. China Succeeded in Somatic Cell Cloning

    Institute of Scientific and Technical Information of China (English)

    Song Jianlan

    2002-01-01

    @@ Chinese scientists have succeeded in cloning a colony of cattle from fully differentiated somatic cells. The news was announced jointly by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NSFC) and the government of Shandong Province at a press conference held on March 7, 2002.

  13. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma.

    Science.gov (United States)

    Behnes, Carl Ludwig; Bremmer, Felix; Hemmerlein, Bernhard; Strauss, Arne; Ströbel, Philipp; Radzun, Heinz-Joachim

    2014-02-01

    Tumor-associated macrophages (TAMs) play a key role in cancer development. Especially, the immunosuppressive M2 phenotype is associated with increased tumor growth, invasiveness and metastasis. The differentiation of macrophages to the alternative phenotype M2 is mediated, inter alia, by macrophage colony-stimulating factor (M-CSF). Papillary renal cell carcinoma (RCC) represents a rare tumor type which, based upon histological criteria, can be subdivided into two subtypes (I and II), of which type II is associated with poor prognosis. In both subtypes, typically, a dense infiltrate of macrophages is found. In the present study, the expression of CD68, CD163, M-CSF, Ki-67, and CD31 was examined in 30 type I and 30 type II papillary RCCs (n = 60). Both types of papillary RCCs contained an equally dense infiltrate of CD68-positive macrophages. Nearly all macrophages in papillary RCC type II expressed CD163, a characteristic for M2 macrophages. In type I papillary RCC, less than 30 % of macrophages expressed CD163. Furthermore, tumor cells in type II papillary RCC expressed significantly more M-CSF and showed increased (Ki-67 expression defined) proliferative activity in comparison with type I papillary RCC. In addition, the (CD31 defined) capillary density was higher in type II than in type I papillary RCC. A dense infiltrate of M2 phenotype TAM and high M-CSF expression in tumor cells are key features of type II papillary RCC. These findings might explain why the prognosis of papillary RCC type II is worse than that of type I. PMID:24327306

  14. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  15. A Novel Copper Chelate Modulates Tumor Associated Macrophages to Promote Anti-Tumor Response of T Cells

    OpenAIRE

    Chatterjee, Shilpak; Mookerjee, Ananda; Mookerjee Basu, Jayati; Chakraborty, Paramita; Ganguly, Avishek; Adhikary, Arghya; Mukhopadhyay, Debanjan; Ganguli, Sudipta; Banerjee, Rajdeep; Ashraf, Mohammad; Biswas, Jaydip; Das, Pradeep K; Sa, Gourisankar; Chatterjee, Mitali; Das, Tanya

    2009-01-01

    Background At the early stages of carcinogenesis, the induction of tumor specific T cell mediated immunity seems to block the tumor growth and give protective anti-tumor immune response. However, tumor associated macrophages (TAMs) might play an immunosuppressive role and subvert this anti tumor immunity leading to tumor progression and metastasis. Methodology/Principal Findings The Cu (II) complex, (chelate), copper N-(2-hydroxy acetophenone) glycinate (CuNG), synthesized by us, has previous...

  16. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  17. Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma.

    Science.gov (United States)

    Ma, Chaoya; Komohara, Yoshihiro; Ohnishi, Koji; Shimoji, Tetsu; Kuwahara, Nao; Sakumura, Yasuo; Matsuishi, Kozue; Fujiwara, Yukio; Motoshima, Takanobu; Takahashi, Wataru; Yamada, Sohsuke; Kitada, Shohei; Fujimoto, Naohiro; Nakayama, Toshiyuki; Eto, Masatoshi; Takeya, Motohiro

    2016-05-01

    Cancer stem-like cells (CSC) or cancer-initiating cells are now considered to be an important cell population related to cancer recurrence and the resistance to anti-cancer therapy. Tumor-associated macrophages (TAM) are a main component of stromal cells and are related to cancer progression in clear cell renal cell carcinoma (ccRCC). Because the detailed mechanisms allowing the maintenance of CSC in cancer tissues remain unclear, we investigated the relationship between TAM and CD44-expressing cancer cells in ccRCC. CD44 was used as a marker for CSC, and CD163 and CD204 were used as markers for TAM. CD44-positive cancer cells were detected in 37 of the 103 cases. Although statistical analysis showed no relationship between CD44-positive cancer cells and the clinical course, the distribution of CD44-positive cancer cells was significantly associated with a high density of TAM. Our in vitro study using RCC cell lines and human macrophages demonstrated that CD44 expression was upregulated by direct co-culture with macrophages. Silencing of TNF-alpha on macrophages abrogated the upregulation of CD44 expression in cancer cells. Macrophage-induced CD44 overexpression was also suppressed by NF-κB inhibitors. These results suggest that TNF-alpha derived from TAM is linked to CD44 overexpression via NF-κB signaling in ccRCC. PMID:26918621

  18. Somatic cell genetic approaches to Down's syndrome.

    Science.gov (United States)

    Patterson, D; Jones, C; Scoggin, C; Miller, Y E; Graw, S

    1982-01-01

    Somatic cell genetic analysis of mutants of Chinese hamster ovary cells with deficient purine synthesis and of hybrids between these mutants and human cells is described. Data are presented substantiating that two genes for enzymes of purine synthesis, AdeC and AdeG, can be coordinately regulated in mammalian cells. Analysis of a human-hamster hybrid cell, Ade C/21, which contains a normal complement of hamster chromosomes and human chromosome 21 as its only human genetic component recognizable by electrophoretic and immunogenetic techniques demonstrates that genes associated with the presence of human chromosome 21 and required for the synthesis of specific polypeptides and specific human lethal cell surface antigens can be detected in these hybrids. PMID:6217778

  19. Direct reprogramming of somatic cells: an update

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-03-01

    Full Text Available Direct epigenetic reprogramming is a technique that converts a differentiated adult cell into another differentiated cell and mdash;such fibroblasts to cardiomyocytes and mdash;without passage through an undifferentiated pluripotent stage. This novel technology is opening doors in biological research and regenerative medicine. Some preliminary studies about direct reprogramming started in the 1980s when differentiated adult cells could be converted into other differentiated cells by overexpressing transcription-factor genes. These studies also showed that differentiated cells have plasticity. Direct reprogramming can be a powerful tool in biological research and regenerative medicine, especially the new frontier of personalized medicine. This review aims to summarize all direct reprogramming studies of somatic cells by master control genes as well as potential applications of these techniques in research and treatment of selected human diseases. [Biomed Res Ther 2015; 2(3.000: 231-240

  20. Somatic Cell Count, Importance and Effect Factors in Dairy Cattle

    OpenAIRE

    İbrahim Aytekin; Saim Boztepe

    2014-01-01

    The somatic cell count (SCC) is commonly used as a measure of udder health and milk quality. Thus, to determine the milk quality standards in many countries, it legally determined as an indicator of somatic cell count raw milk and determines the level of payments to milk producers. The present study investigated that the somatic cell count is an indicator of udder health status, diagnosis of subclinical mastitis, health and quality of milk and milk products, its importance and effect factors ...

  1. Aneuploidy in mammalian somatic cells in vivo.

    Science.gov (United States)

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  2. The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    OpenAIRE

    Zhang Shangfu; Ma Junliang; Pu Qiang; Yu Nanbin; Che Guowei; Liu Lunxu; Dai Fuqiang; Ma Lin; You Zongbing

    2010-01-01

    Abstract Background Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time. Methods Ninety-nine patients with non-small cell lung cancer (NSC...

  3. Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Directory of Open Access Journals (Sweden)

    Pohida Thomas J

    2006-03-01

    Full Text Available Abstract Background A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. Methods Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. Results Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. Conclusion We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature.

  4. CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ke-Fei He

    2014-01-01

    Full Text Available Tumor-associated macrophages (TAMs play an important role in the progression and prognostication of numerous cancers. However, the role and clinical significance of TAM markers in oral squamous cell carcinoma (OSCC has not been elucidated. The present study was designed to investigate the correlation between the expression of TAM markers and pathological features in OSCC by tissue microarray. Tissue microarrays containing 16 normal oral mucosa, 6 oral epithelial dysplasia, and 43 OSCC specimens were studied by immunohistochemistry. We observed that the protein expression of the TAM markers CD68 and CD163 as well as the cancer stem cell (CSC markers ALDH1, CD44, and SOX2 increased successively from the normal oral mucosa to OSCC. The expressions of CD68 and CD163 were significantly associated with lymph node status, and SOX2 was significantly correlated with pathological grade and lymph node status, whereas ALDH1 was correlated with tumor stage. Furthermore, CD68 was significantly correlated with CD163, SOX2, and ALDH1 (P<0.05. Kaplan-Meier analysis revealed that OSCC patients overexpressing CD163 had significantly worse overall survival (P<0.05. TAM markers are associated with cancer stem cell marker and OSCC overall survival, suggesting their potential prognostic value in OSCC.

  5. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2016-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  6. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2015-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  7. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study

    International Nuclear Information System (INIS)

    The receptor for urokinase-type plasminogen activator (uPAR) is associated with cancer development and progression. Within the tumor microenvironment uPAR is expressed by malignant cells as well as tumor-associated stromal cells. However, the contribution of uPAR expression in these stromal cells to malignancy and patient survival in colorectal cancer is still unclear. This study compares the association of uPAR expression in both colorectal tumor-associated stromal cells and neoplastic cells with clinico-pathological characteristics and patient survival using tissue micro arrays (TMA). Immunohistochemical staining of uPAR expression was performed on tumor tissue from 262 colorectal cancer patients. Kaplan-Meier, log rank, and uni- and multivariate Cox’s regression analyses were used to calculate associations between uPAR expression and patient survival. In the colorectal tumor-associated stromal microenvironment, uPAR is expressed in macrophages, (neoangiogenic) endothelial cells and myofibroblasts. uPAR expression in tumor-associated stromal cells and neoplastic cells (and both combined) were negatively associated with overall survival (OS) and Disease Free Survival (DFS). Uni- and multivariate Cox’s regression analysis for combined uPAR expression in tumor-associated stromal and neoplastic cells showed significant and independent negative associations with OS and DFS. Only uPAR expression in tumor-associated stromal cells showed independent significance in the uni- and multivariate analysis for DFS. This study demonstrates a significant independent negative association between colorectal cancer patient survival and uPAR expression in especially tumor-associated stromal cells

  8. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation.

    Science.gov (United States)

    Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas; Mony, Sridevi; Languino, Lucia R; McCaffrey, Judith C; Hockstein, Neil; Guarino, Michael; Masters, Gregory; Penman, Emily; Denstman, Fred; Xu, Xiaowei; Altieri, Dario C; Du, Hong; Yan, Cong; Gabrilovich, Dmitry I

    2016-02-16

    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy. PMID:26885857

  9. C-reactive Protein in Patients with Metastatic Clear Cell Renal Carcinoma: An Important Biomarker for Tumor-associated Inflammation

    Directory of Open Access Journals (Sweden)

    Albrecht Reichle

    2006-01-01

    Full Text Available Two consecutive multi-center phase II trials were designed to prove the hypothesis, whether therapeutic modeling of tumor-associated infl ammatory processes could result in improved tumor response. Therapy in both trials consisted of low-dose capecitabine 1g/m2 twice daily p.o. for 14 days, every 3 weeks, day 1+, and rofecoxib 25 mg daily p.o., day 1+ (from 11/04 etoricoxib 60 mg daily instead plus pioglitazone 60 mg daily p.o., day 1+. In study II low-dose IFN-a 4.5 MU sc. three times a week, week 1+, was added until disease progression. Eighteen, and 33 patients, respectively, with clear cell renal carcinoma and progressive disease were enrolled. Objective response (48% was exclusively observed in study II (PR 35%, CR 13%, and paralleled by a strong CRP response after 4 weeks on treatment, p = 0.0005, in all 29 pts (100% with elevated CRP levels. Median progression-free survival could be more than doubled from a median of 4.7 months (95% CI, 1.0 to 10.4 to 11.5 months (6.8 to 16.2 in study II, p = 0.00001. Median overall survival of population II was 26 months. Efficacious negative regulation of tumor-associated infl ammation by transcription modulators may result in a steep increase of tumor response and survival.

  10. Tumor associated fibroblasts enhance head and neck squamous cell carcinoma proliferation, invasion, and metastasis in preclinical models

    Science.gov (United States)

    Wheeler, Sarah Elizabeth; Shi, Huifang; Lin, Fangchen; Dasari, Sumana; Bednash, Joseph; Thorne, Stephen; Watkins, Simon; Joshi, Radhika; Thomas, Sufi Mary

    2014-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) has had little improvement in mortality rates in decades. A clearer understanding of the HNSCC tumor microenvironment will aid in finding more effective targeted therapies for this disease. Tumor associated fibroblasts (TAFs) are the largest stromal cellular components of the tumor microenvironment in HNSCC. Methods We isolated TAFs from clinical HNSCC cases and propagated in vitro. The effects of TAF secreted paracrine factors on in vitro HNSCC migration, invasion and proliferation was assessed. The effect of TAFs on HNSCC growth and metastases was determined in an orthotopic floor of mouth tumor model. Results TAF conditioned media increased HNSCC cell migration, invasion and proliferation. TAFs increased HNSCC tumor growth and metastases in vivo. Conclusions TAFs play a major role in increasing tumor growth and metastasis in HNSCC. Targeting the tumor stroma may be important to reduce the rate of HNSCC metastasis. PMID:23728942

  11. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis.

    Science.gov (United States)

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M

    2014-08-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This "polarization" has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as "TINKs") and tumor-associated NK (altered peripheral NK cells, which here we call "TANKs") are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology. PMID:25178695

  12. Cytogenetic analysis of human somatic cell haploidization.

    Science.gov (United States)

    Galat, V; Ozen, S; Rechitsky, S; Kuliev, A; Verlinsky, Y

    2005-02-01

    Despite recent interest in the derivation of female and male gametes through somatic cell nuclear transfer, there is still insufficient data on chromosomal analysis of these gametes resulting from haploidization, especially involving a human nuclear donor and recipient oocytes. The objective of this study was to investigate the fidelity of chromosomal separation during haploidization of human cumulus cells by in-vitro matured human enucleated MII oocytes. A total of 129 oocytes were tested 4-7, 8-14, or 15-21 h after nuclear transfer (NT) followed by electro-stimulation, resulting in 71.3% activation efficiency on average. Haploidization was documented by the formation of two separate groups of chromosomes, originating from either polar body/pronucleus (PB/PN), or only 2PN, which were tested by 5-colour FISH, or DNA analysis for copy number of chromosomes 13, 16, 18, 21, 22 and X. Two PN were formed more frequently than PB/PN, irrespective of incubation time. In agreement with recent reports on mouse oocytes, as many as 90.2% of the resulting haploid sets tested showed abnormal chromosome segregation, suggesting unsuitability of the resulting artificial gametes for practical application at the present time. PMID:15823223

  13. Alternative lengthening of telomeres in normal mammalian somatic cells

    OpenAIRE

    Neumann, Axel A.; Watson, Catherine M.; Noble, Jane R.; Hilda A Pickett; Tam, Patrick P.L.; Reddel, Roger R

    2013-01-01

    Alternative lengthening of telomeres (ALT), a mechanism involving the replication of new telomeric DNA from a DNA template, is used by some cancer cells to lengthen their telomeres. Reddel and colleagues now show that ALT activity exists in normal somatic tissues as well. A telomere with a DNA tag is found to be intertelomerically copied in normal somatic cells but not germline cells, providing important implications for understanding telomere maintenance and its evolution.

  14. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Ninova, Maria; Aravin, Alexei

    2015-01-01

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromat...

  15. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  16. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils.

    Directory of Open Access Journals (Sweden)

    Zvi G Fridlender

    Full Text Available The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN and to the granulocytic fraction of MDSC (G-MDSC.In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes, and cytokines (e.g. TNF-α, IL-1-α/β, were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.

  17. Relationship between lactoferrin, minerals, and somatic cells in bovine milk

    OpenAIRE

    Soyeurt, Hélène; Arnould, Valérie; Bruwier, Damien; Dardenne, Pierre; Romnee, Jean-Michel; Gengler, Nicolas

    2008-01-01

    Selection for increased mastitis resistance is hampered by lack of available data. Currently, somatic cell count or score are proven indicators. However, it should be a priority to increase the number of available indicator traits for mastitis resistance. The aim of this research was to study the relationships among potential indicator traits as lactoferrin content, concentrations of major minerals in milk (calcium, Ca; sodium, Na; phosphore, P), and somatic cell count. Firs...

  18. Precocious puberty secondary to a mixed germ cell-sex cord-stromal tumor associated with an ovarian yolk sac tumor: a case report

    OpenAIRE

    Metwalley Kotb; Elsers Dalia; Farghaly Hekma; Abdel-Lateif Hanaa; Abdel-Kader Mohamed

    2012-01-01

    Abstract Introduction Ovarian tumors are the least common cause of sexual precocity in girls. Mixed germ cell-sex cord-stromal tumors associated with a yolk sac tumor of the ovary are rare neoplasms, of which only a small number of well-documented cases have been described so far. Here, we report precocious puberty in a four-year-old Egyptian girl caused by a mixed germ cell-sex cord-stromal tumor associated with a yolk sac tumor of the ovary. Case presentation A four-year-old Egyptian girl w...

  19. Adult granulosa cell tumor associated with endometrial carcinoma: a case report

    Directory of Open Access Journals (Sweden)

    Eke Ahizechukwu C

    2011-08-01

    Full Text Available Abstract Introduction If strict criteria for the diagnosis of carcinoma are used and all patients with granulosa cell tumors are considered, the best estimate of the incidence of associated endometrial carcinomas is under 5%. In patients with granulosa cell tumors, estrogen-dependent endometrial cancers are rarely found, and most of these endometrial cancers are well-differentiated endometrioid adenocarcinomas that carry a good prognosis when detected early. Case presentation We report the case of a 65-year-old post-menopausal Nigerian woman of the Igbo tribe with an adult granulosa cell tumor that was initially treated as endometrial carcinoma. She underwent a total abdominal hysterectomy and a bilateral salpingo-oophorectomy after histopathologic confirmation of a well-differentiated granulosa cell tumor of the ovary and a nuclear grade 1 adenocarcinoma of the endometrium (International Federation of Obstetricians and Gynecologists stage 1B. She had a good post-operative recovery and was discharged 10 days after treatment. Conclusion The association between adult granulosa cell tumors of the ovary and endometrial carcinomas is rare. A high index of suspicion as well as good imaging and histopathologic analyses are important in making this diagnosis.

  20. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review).

    Science.gov (United States)

    Zhang, Sisen; Wu, Lihua

    2015-11-01

    Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a gene exclusively expressed in the brain during embryonic stages but not in brains of adult mice, is an important cytoskeletal protein and regarded as a 'router/hub' in cellular signal transduction processes connecting external stimulation signals with downstream target proteins that can directly promote tumor metastasis. Numerous studies showed that NEDD9 has an essential role in cell proliferation, apoptosis, adhesion, migration and invasion. The roles of NEDD9, including the underlying mechanisms of its regulation of cell migration, its distinctive functions in various tumor stages and its association with other diseases, are required to be elucidated at large. Future studies of NEDD9 may provide a more profound understanding of the development of tumor invasiveness and NEDD9 may serve as a potential novel target for tumor therapy. The present review examined the significant roles of NEDD9 in the abovementioned processes. PMID:26324022

  1. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens.

    Science.gov (United States)

    Altvater, Bianca; Pscherer, Sibylle; Landmeier, Silke; Kailayangiri, Sareetha; Savoldo, Barbara; Juergens, Heribert; Rossig, Claudia

    2012-03-01

    Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+ T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides. Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+ CD25hiFoxP3+) were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer. PMID:21928126

  2. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  3. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome.

    Science.gov (United States)

    Garg, Kanika; Maurer, Margarita; Griss, Johannes; Brüggen, Marie-Charlotte; Wolf, Ingrid H; Wagner, Christine; Willi, Niels; Mertz, Kirsten D; Wagner, Stephan N

    2016-08-01

    B cells often infiltrate the microenvironment of human tumors. B cells can both positively and negatively regulate antitumor immune responses. In several human cancers, higher numbers of CD20(+) TAB are associated with a favorable prognosis, whereas in human primary melanomas, this association is contentious. In this study, we determined the association of TAB numbers in cutaneous primary melanoma tissue samples and patients' overall survival. The CD20 immunohistochemistry on archival nonmetastasized and metastasized cutaneous primary melanoma tissues from 2 independent patient cohorts was performed. One cohort was used in class comparison for metastasis, the most important prognostic factor for overall survival, and the other cohort for a subsequent survival analysis. Survival association was further validated with RNA data from a third independent cohort. Whole tissue sections were read automatically via quantitative digital imaging and analysis. Survival data were analyzed by Cox proportional hazard modeling. We discovered that cutaneous primary melanomas without metastasis contain significantly more TAB than primary melanomas that had metastasized. At time of first diagnosis, a higher number of TAB is associated with a significantly better overall survival in patients with cutaneous primary melanomas of >1 mm Breslow depth. Also, higher CD20/CD19 tumor mRNA levels are correlated with a significantly better overall survival. Thus, our data support TAB numbers as a prognostic biomarker in cutaneous primary melanoma patients with a tumor of >1 mm Breslow depth. For a survey in larger studies, whole tissue section analysis seems to be key to accurate assessment of TAB numbers. PMID:27107457

  4. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  5. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  6. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  7. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection.

    Science.gov (United States)

    Huang, Zhen; Gan, Jingjing; Long, Ziyan; Guo, Guangxing; Shi, Xiafei; Wang, Chunming; Zang, Yuhui; Ding, Zhi; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2016-06-01

    Both tumor associated macrophages (TAMs) and tumor infiltrating dendritic cells (TIDCs) are important components in the tumor microenvironment that mediate tumor immunosuppression and promote cancer progression. Targeting these cells and altering their phenotypes may become a new strategy to recover their anti-tumor activities and thereby restore the local immune surveillance against tumor. In this study, we constructed a nucleic acid delivery system for the delivery of let-7b, a synthetic microRNA mimic. Our carrier has an affinity for the mannose receptors on TAMs/TIDCs and is responsive to the low-pH tumor microenvironment. The delivery of let-7b could reactivate TAMs/TIDCs by acting as a TLR-7 agonist and suppressing IL-10 production in vitro. In a breast cancer mouse model, let-7b delivered by this system efficiently reprogrammed the functions of TAMs/TIDCs, reversed the suppressive tumor microenvironment, and inhibited tumor growth. Taken together, this strategy, designed based upon TAMs/TIDCs-targeting delivery and the dual biological functions of let-7b (TLR-7 ligand and IL-10 inhibitor), may provide a new approach for cancer immunotherapy. PMID:26994345

  8. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2014-02-01

    Full Text Available Myeloid derived suppressor cells (MDSCs and tumor-associated macrophages (TAMs represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80−; (ii “immuno-incompetent” macrophages (F4/80high/CD86neg/MHCIILow strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii “immuno-competent”-M1 like macrophages (F4/80Low/CD86+/MHCIIHigh. SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80High populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80low. Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  9. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  10. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    International Nuclear Information System (INIS)

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80−); (ii) “immuno-incompetent” macrophages (F4/80high/CD86neg/MHCIILow) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80Low/CD86+/MHCIIHigh). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80High populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80low). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor

  11. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    OpenAIRE

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in re...

  12. Generation of bovine transgenics using somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Stice Steven L

    2003-11-01

    Full Text Available Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.

  13. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells

    OpenAIRE

    Li, Hongzhong; Yang, Bing; Huang, Jing; Lin, Yong; Xiang, Tingxiu; Wan, Jingyuan; Li, Hongyuan; Chouaib, Salem; Ren, Guosheng

    2015-01-01

    Tumor-associated macrophages (TAMs) play an important role in cancer cell survival, however, the mechanism of which remains elusive. In this study, we found that COX-2 was abundantly expressed in breast TAMs, which was correlated to poor prognosis in breast cancer patients. Ectopic over-expression of COX-2 in TAMs enhanced breast cancer cell survival both in vitro and in vivo. COX-2 in TAMs was determined to be essential for the induction and maintenance of M2-phenotype macrophage polarity. C...

  14. The histone chaperone CAF-1 safeguards somatic cell identity.

    Science.gov (United States)

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Youngsook L; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Euong Ang, Cheen; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter J; Penninger, Josef M; Zuber, Johannes; Hochedlinger, Konrad

    2015-12-10

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting. PMID:26659182

  15. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  16. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Aref AM

    2014-06-01

    Full Text Available Ahmed M Aref,1–3 Neil T Hoa,3 Lisheng Ge,3 Anshu Agrawal,4 Maria Dacosta-Iyer,5,6 Nils Lambrecht,5,6 Yi Ouyang,5,6 Andrew N Cornforth,7 Martin R Jadus5,6,8 1Biological Science Department, Modern Sciences and Arts University, Faculty of Dentistry, Cairo, Egypt; 2Southern California Institute for Research and Education, Veterans Affairs Medical Center, Long Beach, CA, USA; 3Research Health Care Group, Veterans Affairs Medical Center Long Beach, CA, USA; 4Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA, USA; 5Pathology and Laboratory Medicine Department, Veterans Affairs Medical Center Long Beach, CA, USA; 6Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA; 7California Stem Cells, Inc., CA, USA; 8Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, CA, USA Background: Immunotherapy for human hepatocellular cancer (HCC is slowly making progress towards treating these fatal cancers. The identification of new antigens can improve this approach. We describe a possible new antigen, hepatocellular carcinoma-associated antigen-519/targeting protein for Xklp-2 (HCA519/TPX2, for HCC that might be beneficial for T-cell specific HCC immunotherapy. Methods: HCC was studied for the expression for 15 tumor-associated antigens considered useful for immunotherapy within three HCC cell lines (HepG2, Hep3B, and PLC/PRF/5, lymphocytes, non-cancerous livers, and clinical HCC. The expression of tumor antigenic precursor proteins (TAPPs messenger RNA was first screened by reverse transcriptase quantitative real-time polymerase chain reaction. Results: Four antigens (alpha fetoprotein, aspartyl/asparaginyl β-hydroxylase, glypican-3 and HCA519/TPX2 proved to be the best expressed TAPPs within the HCC specimens by molecular analyses. HCA519/TPX2 was detected by intracellular cell flow cytometry within HCC cell lines by using a specific

  17. Oocyte-somatic cells interactions, lessons from evolution

    Directory of Open Access Journals (Sweden)

    Charlier Cathy

    2012-10-01

    Full Text Available Abstract Background Despite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates. Results Using a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis. Conclusions Our study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg.

  18. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  19. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n = 14

  20. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    OpenAIRE

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2010-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of “genetically tailored” human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to s...

  1. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  2. Generation of bovine transgenics using somatic cell nuclear transfer

    OpenAIRE

    Stice Steven L; Hodges Craig A

    2003-01-01

    Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This revi...

  3. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  4. Mitochondria, cellular stress resistance, somatic cell depletion and lifespan.

    Science.gov (United States)

    Robb, Ellen L; Page, Melissa M; Stuart, Jeffrey A

    2009-03-01

    The causes of aging and determinants of maximum lifespan in animal species are multifaceted and complex. However, a wealth of experimental data suggests that mitochondria are involved both in the aging process and in regulating lifespan. Here we outline a somatic cell depletion (SCD) model to account for correlations between: (1) mitochondrial reactive oxygen species and lifespan; (2) mitochondrial antioxidant enzymes and lifespan; (3) mitochondrial DNA mutation and lifespan and (4) cellular stress resistance and lifespan. We examine the available data from within the framework of the SCD model, in which mitochondrial dysfunction leading to cell death and gradual loss of essential somatic cells eventually contributes to the decline in physiological performance that limits lifespan. This model is useful in explaining many of the mitochondrial manipulations that alter maximum lifespan in a variety of animal species; however, there are a number of caveats and critical experiments outstanding, and these are outlined in this review. PMID:20021396

  5. Somatic cell bovine cloning: Effect of donor cell and recipients

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Adult somatic cell nuclear transfer was conducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into blastocysts were similar in GN (23.98%, 123 of 513) and in GLV groups (29.55%, 138 of 467). However, the rate of reconstructed female (GN) embryos developed into term was higher than that of male (GLV) (8.02% and 1.82%, respectively). Three kinds of cows, Luxi Yellow cows, Holstein heifers and Holstein cows with normal reproductive records were used as recipients. When the reconstructed embryos from GN were transferred, there was no difference in the pregnancy rate among three kinds of recipients, but the abortion rate of Luxi Yellow cows was significantly higher (85.71%) than in the other two groups (14.29% and 0%, respectively; P < 0.05). And the percentages of newborn calves in transferred embryos were significantly different between Luxi Yellow cows and Holstein breed (1.54%, 10.39% and 20.0%, respectively, P < 0.05). However, when reconstructed embryos from GLV were transferred, there was no difference among three kinds of recipients in the pregnancy rate, the abortion rate and the delivery rate.

  6. Buffalo milk: proteins electrophoretic profile and somatic cell count

    OpenAIRE

    S. Mattii; B. Tommei; Pasquini, M.

    2011-01-01

    Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999) and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000). In particular the inverse correlation between cheese ...

  7. Cytogenetic effects of irradiation on somatic and germ cells

    OpenAIRE

    Egozcue, Josep; Álvarez Arpal, Ricardo; Barquinero, J. F.; BARRIOS, L; Caballín, M. R.; Genescà i Garrigosa, Anna; Miró, Rosa; Ponsa Arjona, Immaculada; Tusell Padrós, Laura

    1999-01-01

    This paper summarizes the results obtained in two of the research projects carried out in our laboratory within the radiation protection programs of the Consejo de Seguridad Nuclear and the European Union. These two research lines are fundamentally interconnected, since the analysis of the cytogenetic effects of radiation on somatic cells studies the consequences of occupational or accidental exposure to radiation for the individual, especially from the point of view of developing some type o...

  8. Normal somatic cell count and subclinical mastitis in Murrah buffaloes.

    Science.gov (United States)

    Dhakal, I P

    2006-03-01

    This study was conducted to investigate the normal somatic cell count (SCC) and to define subclinical mastitis in Murrah buffaloes. Data were collected from 60 clinically normal buffaloes stationed at five farms of Chitwan Nepal and Buffalo Research Center, Hissar, India. Somatic cell count was measured using the Newman-Lampert staining technique. The upper limit of SCC was determined >or=200 000/ml of milk based on the mean +/- 2SD of a total SCC. Abnormal data of the SCC was repeatedly removed, which lie beyond the values of more than mean + 2SD until all the data come to lie within (mean + 2SD). Averages of SCC of right front and right hind quarters were significantly higher than left front and left hind quarters. Nearly 94% of California mastitis test (CMT) negative quarters were having somatic cells >or=200 000/ml. The mean SCC of CMT positive quarter was significantly higher (P CMT negative quarters. Subclinical mastitis was diagnosed on the basis of samples with SCCs >or=200 000/ml with positive bacterial cultures. Subclinical mastitis was found in 21.7% buffaloes and 8% of the quarter foremilk samples. Neutrophil counts were significantly higher in subclinical mastitis milk. PMID:16626405

  9. Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1

    Science.gov (United States)

    Ding, Chuanlin; Wang, Li; Marroquin, Jose

    2008-01-01

    B cells are antibody (Ab)–secreting cells as well as potent antigen (Ag)–presenting cells that prime T-cell activation, which evokes great interest in their use for vaccine development. Here, we targeted ovalbumin (OVA) to B cells via CD19 and found that a single low dose of anti–CD19-OVA conjugates, but not isotype mAb-OVA, stimulated augmented CD4 and CD8 T-cell proliferation and expansion. Administration of TLR9 agonist CpG could significantly enhance long-term T-cell survival. Similar results were obtained when the tumor-associated Ag MUC1 was delivered to B cells. MUC1 transgenic (Tg) mice were previously found to lack effective T-cell help and produce low-titer of anti-MUC1 Abs after vaccination. Targeting MUC1 to B cells elicited high titer of anti-MUC1 Abs with different isotypes, predominantly IgG2a and IgG2b, in MUC1 Tg mice. The isotype switching of anti-MUC1 Ab was CD4 dependent. In addition, IFN-γ–producing CD8 T cells and in vivo cytolytic activity were significantly increased in these mice. The mice also showed significant resistance to MUC1+ lymphoma cell challenge both in the prophylactic and therapeutic settings. We conclude that Ags targeting to B cells stimulate CD4 and CD8 T-cell responses as well as Th-dependent humoral immune responses. PMID:18669871

  10. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis.

    Science.gov (United States)

    Voog, Justin; D'Alterio, Cecilia; Jones, D Leanne

    2008-08-28

    Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10-15 somatic cells that is required for stem cell self-renewal and maintenance. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life. PMID:18641633

  11. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell.

    Science.gov (United States)

    Jianping, Du

    2010-01-01

    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back) easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function. PMID:20181100

  12. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  13. The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time. Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0). The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma

  14. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  15. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  16. Generation of cloned calves from different types of somatic cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Six types of bovine somatic cell lines,including a granulosa cell line of Chinese red-breed yellow cattle(YGR),a granulosa cell line of Holstein cow(HGR),two skin fibroblast cell lines of two adult Holstein cows respectively(AFB1 and AFB2),a skin fibroblast cell line(FFB)and an oviduct epithelial cell line(FOV)of a Holstein fetus,were established.Somatic cell nuclear transfer(SCNT)was carried out using these cells as nuclei donor,and a total of 12 healthy calves were cloned.The effects of different types of donor cells on developmental potential of bovine SCNT embryos were investigated.(i)There was no significant difference in development rates to the blastocyst stage for SCNT embryos from YGR and HGR(33.2% and 35.1%,respectively).Pregnancy rates of them were 33.3% and 30.2%,respectively; and birth rates were 16.7%and 11.6%,respectively.(ii)Development rates to the blastocyst stage for SCNT embryos from diffetent individuals(AFB1 and AFB2)differed significantly(27.9% and 39.4%,respectively,P <0.05).Pregnancy rates of them were 36.2% and 36.4%,respectively; and birth rates were 14.9% and 27.3%,respectively.(iii)There was significant difference in development rates to the blastocyst stage for SCNT embryos from FFB and FOV of the same fetus(37.9% and 41.5%,respectively,P < 0.05).Pregnancy rates of them were 45.7% and 24.1%,respectively; and birth rates were 22.9 % and 10.3%,respectively.Finally,developmental potential of bovine SCNT embryos from all four types of somatic cells from Holstein cows(HGR,AFB,FFB and FOV)were compared.For in vitro development stage,development rates to the blastocyst stage for SCNT embryos from HGR,AFB,FFB and FOV were 35.1%A,29.4%B,37.9%A and 41.5%C,respectively(pABC<0.05); for in vivo development stage,pregnancy rates of them were 30.2%,36.2%,45.7%and 24.1%,respectively; and birth rates of them were 11.6%,17.2%,22.9% and 10.3% respectively.

  17. Somatic cell count control strategies in dairy ewes

    OpenAIRE

    Spanu, Carlo

    2010-01-01

    The consumption of milk products, especially made from raw milk, have been reported to be associated with food borne diseases. Since most sheep’s milk products are made from raw milk, it is clear how udder health is an important prerequisite to produce hygienic milk. Ewes with mastitis, particularly in their subclinical form, serve as reservoir of pathogens that can be shed into the milk and constitute a potential risk for human health. Milk somatic cell count (SCC) is not a public health con...

  18. Reconstruction of human embryos derived from somatic cells

    Institute of Scientific and Technical Information of China (English)

    LU Changfu; LIN Ge; XIE Changqing; GONG Fei; ZHOU Hong; TAN Yueqiu; LU Guangxiu

    2003-01-01

    Reconstruction of human nuclear transfer embryos is a necessary step of therapeutic cloning. In this study we injected somatic cell nuclei into MⅡ oocytes and activated reconstructed oocytes with calcium ionophore A23187 (CaA) and 6-dimethylaminopurine (6-DMAP). After oocyte activation and 2PN formation, we removed the female PN. By using this method, we avoided the application of DNA fluorescent stain and ultraviolet light for oocyte enucleation, and over elimination of ooplasm was also mitigated. Some reconstructed embryos developed into theblastocyst stage in vitro.

  19. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    Science.gov (United States)

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells. PMID:21447831

  20. Human somatic cell mutagenesis creates genetically tractable sarcomas.

    Science.gov (United States)

    Molyneux, Sam D; Waterhouse, Paul D; Shelton, Dawne; Shao, Yang W; Watling, Christopher M; Tang, Qing-Lian; Harris, Isaac S; Dickson, Brendan C; Tharmapalan, Pirashaanthy; Sandve, Geir K; Zhang, Xiaoyang; Bailey, Swneke D; Berman, Hal; Wunder, Jay S; Izsvák, Zsuzsanna; Iszvak, Zsuzsanna; Lupien, Mathieu; Mak, Tak W; Khokha, Rama

    2014-09-01

    Creating spontaneous yet genetically tractable human tumors from normal cells presents a fundamental challenge. Here we combined retroviral and transposon insertional mutagenesis to enable cancer gene discovery starting with human primary cells. We used lentiviruses to seed gain- and loss-of-function gene disruption elements, which were further deployed by Sleeping Beauty transposons throughout the genome of human bone explant mesenchymal cells. De novo tumors generated rapidly in this context were high-grade myxofibrosarcomas. Tumor insertion sites were enriched in recurrent somatic copy-number aberration regions from multiple cancer types and could be used to pinpoint new driver genes that sustain somatic alterations in patients. We identified HDLBP, which encodes the RNA-binding protein vigilin, as a candidate tumor suppressor deleted at 2q37.3 in greater than one out of ten tumors across multiple tissues of origin. Hybrid viral-transposon systems may accelerate the functional annotation of cancer genomes by enabling insertional mutagenesis screens in higher eukaryotes that are not amenable to germline transgenesis. PMID:25129143

  1. Evaluation of milk yield in tsigaiewes by somatic cell count

    Directory of Open Access Journals (Sweden)

    Martina Vršková

    2015-08-01

    Full Text Available The objective of our research was to study daily milk production which was affected by somatic cell count (SCC. The study was performed on a selected flock of purebred Tsigai ewes (326 animals. Regular milk yield recording was performed during the evening milking in around the middle of April, May and June. Milk samples were analyzed for basic milk composition (fat, protein and lactose and somatic cells count. SCC were evaluated using decadic logarithm (logSCC.According to animals, the dairy ewes were divided into the four groups on the basis of individual SCC (G1 = SCC <100 × 103 cells.mL-1, G2 = SCC between 100 – 300 × 103 cells.mL-1, G3 = SCC between 300 – 600 × 103 cells.mL-1, G4 = SCC >600 × 103 cells.mL-1 to study the frequency of distribution of animals in selected group of ewes throughout experimental period. The average daily milk production in selected flock of Tsigai was 421.02 mL. We reached the highest daily milk production in April 476.40 ml and the highest content of fat and protein in June, while milk production was the lowest. From this flock of purebred Tsigai 76% of eweswere below SCC 300 × 103 cells.mL-1. This SCC indicated a good health status of experimental ewes, at which 61% sheep were at the first lactation. We found a tendency to lower milk production by a higher SCC. With the increasing SCC decreased lactose content from 4.78% (G1 to 4.32% (G4. Reduced lactose content refers to the occurrence of mastitis and there is a need for performing bacteriological examination in milk.

  2. Precocious puberty secondary to a mixed germ cell-sex cord-stromal tumor associated with an ovarian yolk sac tumor: a case report

    Directory of Open Access Journals (Sweden)

    Metwalley Kotb

    2012-06-01

    Full Text Available Abstract Introduction Ovarian tumors are the least common cause of sexual precocity in girls. Mixed germ cell-sex cord-stromal tumors associated with a yolk sac tumor of the ovary are rare neoplasms, of which only a small number of well-documented cases have been described so far. Here, we report precocious puberty in a four-year-old Egyptian girl caused by a mixed germ cell-sex cord-stromal tumor associated with a yolk sac tumor of the ovary. Case presentation A four-year-old Egyptian girl was referred to our pediatric endocrinology unit for evaluation of bilateral breast budding, pubic hair and vaginal bleeding. On examination, we found that her breast enlargement and pubic hair were compatible with Tanner III. A thorough workup revealed a large mass in her right ovary. Magnetic resonance imaging ofher brain showed that her pituitary gland was normal. A hormonal assay revealed high levels of estradiol, 280 to 375pmol/L; progesterone, 5.3 nmol/L; testosterone 38.9 pg/mL; and androstenedione, 4.1 ng/mL. Her basal and stimulated levels of luteinizing hormone and follicle-stimulating hormone were low. Tumor markers levels were high, with a total inhibin of 1,069U/L and an alpha-fetoprotein of 987 μg/L. Her chromosomes were normal (46XX. Our patient underwent an explorative laparotomy and a solid tumor localized to her right ovary was identified. A right salpingo-oophorectomy was performed and the histopathological diagnosis was a mixed germ cell-sex cord-stromal tumorwith a yolk sac tumor of the ovary. Postoperatively, she was started on treatment with chemotherapy. Our patient is doing well without evidence of tumor recurrence or metastasis during eight months of postoperative follow-up. Conclusion Although a mixed germ cell-sex cord-stromal tumor associated with a yolk sac tumor of the ovary is a rare occurrence, it should be considered in the differential diagnosis for a prepubescent girl with an abdominal mass and precocious puberty.

  3. Somatic cell genetics approach to dissecting mammalian DNA repair

    International Nuclear Information System (INIS)

    This review article examines the application of the methods and concepts of somatic cell genetics to the study of DNA repair. The first steps of this approach involve classical procedures of mutant isolation, complementation analysis, and mapping of genes using hybrid cells. Subsequent steps utilize the techniques of DNA-mediated gene transfer and methodologies of the recombinant DNA field. Several human repair genes have been cloned, but they have not been used to overproduce proteins thus far. This article highlights the more important developments and attempts to review in detail all of the isolated mutant cell lines that may be altered in the repair processes. Faster methods of gene cloning are greatly needed because the procedures for making secondary transformants from total genomic DNA are tedious

  4. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    OpenAIRE

    Chung, H.J.; Hassan, M. M.; Park, J O; Kim, H. J.; S.T. Hong

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells gene...

  5. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation.

    Science.gov (United States)

    Hwang, Jeong Ho; Kim, Sang Eun; Gupta, Mukesh Kumar; Lee, HoonTaek

    2016-08-01

    Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos. PMID:27459580

  6. NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of esophageal cancer regulates the survival and migration of tumor-associated macrophages and cancer cells.

    Science.gov (United States)

    Takase, Nobuhisa; Koma, Yu-Ichiro; Urakawa, Naoki; Nishio, Mari; Arai, Noriaki; Akiyama, Hiroaki; Shigeoka, Manabu; Kakeji, Yoshihiro; Yokozaki, Hiroshi

    2016-09-28

    Tumor-associated macrophages (TAMs) have important roles in the angiogenesis and tumor immunosuppression of various cancers, including esophageal squamous cell carcinomas (ESCCs). To elucidate the roles of TAMs in ESCCs, we compared the gene expression profiles between human peripheral blood monocyte-derived macrophage-like cells (Macrophage_Ls) and Macrophage_Ls stimulated with conditioned medium of the TE series human ESCC cell line (TECM) (TAM_Ls) using cDNA microarray analysis. Among the highly expressed genes in TAM_Ls, we focused on neural cell adhesion molecule (NCAM). NCAM knockdown in TAM_Ls revealed a significant decrease of migration and survival via a suppression of PI3K-Akt and fibroblast growth factor receptor 1 (FGFR1) signaling. Stimulation by TECM up-regulated the level of FGFR1 in Macrophage_Ls. Recombinant human fibroblast growth factor-2 (rhFGF-2) promoted the migration and survival of TAM_Ls and TE-cells through FGFR1 signaling. Our immunohistochemical analysis of 70 surgically resected ESCC samples revealed that the up-regulated FGF-2 in stromal cells, including macrophages, was associated with more aggressive phenotypes and a high number of infiltrating M2 macrophages. These findings may indicate a novel role of NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of ESCCs. PMID:27317650

  7. Agronomic traits and RAPD analysis of two mutants derived from rice somatic cell culturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic variation, including agronomic trait variation, often occurs in somatic cell culturing. In this study, we compared the main agronomic traits of two rice mutants, M3 and M14, which were derived from Shenxiangjing 5 somatic cell culturing. Significant differences were found between the two mutants and the wild rice Shenxiangjing 5 (Table 1). Results were as follows:

  8. Production of transgenic calves by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; WAN Rong; HUANG Yinghua; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Lili; WANG Haiping; TANG Bo; LIU Ying; LI Rong

    2004-01-01

    Bovine fetal oviduct epithelial cells were transfected with constructed double marker selective vector (pCE-EGFP-IRES-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation, and a transgenic cell line was obtained. Somatic cell nuclear transfer (SCNT) was carried out using the transgenic cells as nuclei donor. A total of 424 SCNT embryos were reconstructed and 208 (49.1%) of them developed to blastocyst stage. 17 blastocysts on D 7 after reconstruction were transferred to 17 surrogate calves, and 5 (29.4%) recipients were found to be pregnant. Three of them maintained to term and delivered three cloned calves. PCR and Southern blot analysis confirmed the integration of transgene in all of the three cloned calves. In addition, expression of EGFP was detected in biopsy isolated from the transgenic cloned calves and fibroblasts derived from the biopsy. Our results suggest that transgenic calves could be efficiently produced by SCNT using transgenic cells as nuclei donor. Furthermore, all cloned animals could be ensured to be transgenic by efficiently pre-screening transgenic cells and SCNT embryos using the constructed double marker selective vector.

  9. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    OpenAIRE

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    BACKGROUND: Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activati...

  10. Somatic cell and factors which affect their count in milk

    Directory of Open Access Journals (Sweden)

    Zrinka Čačić

    2003-01-01

    Full Text Available Milk quality is determined by chemical composition, physical characteristics and hygienic parameters. The main indicators of hygienic quality of milk are total number of microorganisms and somatic cell count (SCC. Environmental factors have the greatest influence on increasing SCC. The most important environmental parameters are status of udder infection, age of cow, stage of lactation, number of lactation, breed, housing, geographicalarea and seasons, herd size, stress, heavy physical activity and, milking. A farmer (milk producer himself can control a great number of environmental factors using good management practise and permanent education. Since SCC participate in creating the price of milk, it is necessary to inform milk producers how to organise their production so that they would produce maximum quantity of good hygienic quality milk.

  11. New Rapid Method of DNA Isolation from Milk Somatic Cells.

    Science.gov (United States)

    Pokorska, Joanna; Kułaj, Dominika; Dusza, Magdalena; Żychlińska-Buczek, Justyna; Makulska, Joanna

    2016-04-01

    Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses. PMID:26913552

  12. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  13. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    Science.gov (United States)

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. PMID:27130449

  14. Strong CD8+ T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    We investigated whether tumor-specific CD8+T-cell responses affect tumor-free survival as well as the relationship between CD8+T-cell responses against tumor-associated antigens (TAAs) and the clinical course after tumor treatment in patients with hepatocellular carcinoma (HCC). Twenty patients with HCC that were treated by radiofrequency ablation or trans-catheter chemo-embolization (TACE) and in whom HCC was undetectable by ultrasonography, CT, and/or MRI 1 month after treatment were enrolled in the study. Before and after treatment for HCC, analyses of TAA (glypican-3, NY-ESO-1, and MAGE-1)-specific CD8+T-cell responses were evaluated with an interferon-γ enzyme-linked immunospot (ELISpot) assay using peripheral CD8+T-cells, monocytes, and 104 types of 20-mer synthetic peptide overlapping by 10 residues and spanning the entirety of the 3 TAAs. Sixteen out of 20 patients (80%) showed a positive response (≥10 TAA-specific cells/105 CD8+T-cells) before or after treatment. When we performed univariate analysis of prognostic factors for the tumor-free period in the 20 patients, platelet count, prothrombin time, and the number of TAA-specific CD8+T-cells after treatment were significant factors (P=0.027, 0.030, and 0.004, respectively). In multivariate analysis, the magnitude of the TAA-specific CD8+T-cell response (≥40 TAA-specific cells/105 CD8+T-cells) was the only significant prognostic factor for a prolonged tumor-free interval (hazard ratio 0.342, P=0.022). Our results suggest that strong TAA-specific CD8+T-cell responses suppress the recurrence of HCC. Immunotherapy to induce TAA-specific cytotoxic T lymphocytes by means such as the use of peptide vaccines should be considered for clinical application in patients with HCC after local therapy. (author)

  15. Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Depontieu, F; Sidney, J; Salay, T; Engelhard, V; Hunt, D; Sette, A; Topalian, S; Mariuzza, R

    2010-01-01

    Dysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self-peptides and how MHC class II molecules present phosphopeptides for CD4{sup +} T-cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1. The structure revealed that the phosphate moiety attached to the serine residue at position P5 of pMART-1 is available for direct interactions with T-cell receptor (TCR) and that the peptide N-terminus adopts an unusual conformation orienting it toward TCR. This structure, combined with measurements of peptide affinity for HLA-DR1 and of peptide-MHC recognition by pMART-1-specific T cells, suggests that TCR recognition is focused on the N-terminal portion of pMART-1. This recognition mode appears to be distinct from that of foreign antigen complexes but is remarkably reminiscent of the way autoreactive TCRs engage self- or altered self-peptides, consistent with the tolerogenic nature of tumor-host immune interactions.

  16. Demonstration and characterization of tumor-associated antigenic components from cell membranes of a UV-induced mouse sarcoma using the macrophage-electrophoretic-mobility (MEM) test

    International Nuclear Information System (INIS)

    Purification of tumor-associated antigenic material from the ascites sarcoma cells was carried out by extraction with 3 M KCl and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The antigenic activity was assayed in the MEM test. Extraction of whole tumor cells with 3 M KCl results in preparations with low antigenic activity which on SDS-PAGE show a very heterogeneous composition of more than 2o protein bands. In comparing the antigenic activity of different subcellular fractions obtained by differential centrifugation of the homogenate, the antigenic activity could be attributed to the cell membrane fraction. With this cell membrane fraction, three extraction media - 3 M KCl, 2% Triton X-100, and 5% sodium cholate - were tested for their ability to extract selectively the antigenic membrane proteins. The Triton X-100 treatment sobubilized the greatest amount of membrane protein. Both Triton X-100 and sodium cholate, however, produced very heterogeneous protein extracts. In contrast, 3 M KCl extracted selectively three membrane components: a glycoprotein of high molecular weight and two low-molecular weight carbohydrate-free proteins. Removal of the KCl in the presence of Triton X-100 precipitates the carbohydrate-free proteins, while the glycoprotein remains in solution. Testing the components of the KCl extracts in the MEM test after isolation by preparative SDS-PAGE revealed antigenic activity only with the glycoprotein component. (author)

  17. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  18. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    OpenAIRE

    Akagi, Satoshi; Matsukawa, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has re...

  19. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  20. Vasohibin-1 Expression Is Regulated by Transforming Growth Factor-β/Bone Morphogenic Protein Signaling Pathway Between Tumor-Associated Macrophages and Pancreatic Cancer Cells

    Science.gov (United States)

    Seppänen, Hanna; Kauttu, Tuuli; Vainionpää, Sanna; Ye, Yingjiang; Mustonen, Harri

    2013-01-01

    Vasohibin-1 has been detected in endothelial cells as an intrinsic angiogenesis inhibitor. Both tumor-associated macrophages (TAMs) and transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP) signaling have been reported to promote angiogenesis in cancer. However, whether vasohibin-1 expression is regulated by TGF-β/BMP signaling between TAMs and cancer cells remains unclear. The expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 in TAMs and the expression of vasohibin-1, vascular endothelial growth factor-A (VEGF-A), and VEGF-C in two pancreatic cancer cell lines (a nonmetastatic cell line Panc-1 and a distant metastatic cell line HPAF-II) were measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). The TGF-β receptor 1 and BMP receptor 1 were inhibited by the inhibitor SB-431542 and LDN193189, respectively. Thereafter, vasohibin-1, VEGF-A, and VEGF-C expression was detected by real-time RT-PCR. We found that the expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 was upregulated in TAMs cocultured with pancreatic cancer cells. Vasohibin-1, VEGF-A, and VEGF-C mRNA expression in pancreatic cancer cells was upregulated by TAMs. Vasohibin-1 expression in pancreatic cancer cells cocultured with TAMs was upregulated significantly when TGF-β receptors or BMP receptors were inhibited, but VEGF-C expression was downregulated. Therefore, Vasohibin-1 expression is regulated by the TGF-β/BMP signaling between TAMs and pancreatic cancer cells. These results might shed a new light on the antiangiogenesis therapy in the pancreatic cancer. PMID:23651239

  1. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  2. Development of 111In-labeled tumor-associated antigen peptides for monitoring dendritic-cell-based vaccination

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are professional antigen-presenting cells capable of inducing potent immune responses. In our ongoing clinical trials, human leukocyte antigen (HLA)-A2.1+ melanoma patients are vaccinated with mature DC, presenting tumor-derived peptides in major histocompatibility complexes (MHC) to naive T cells. Previously, we have shown that both intradermally and intranodally injected 111In-labeled mature DC migrate to draining lymph nodes. However, little is known about the fate of the MHC-peptide complex after injection of these peptide-loaded DC. The aim of the present study was to develop radiolabeled, tumor-derived peptides to monitor their binding to MHC Class I. Methods: The HLA-A2.1 binding peptide gp100:154-162mod (gp100:154m) was conjugated with diethylenetriamine pentaacetic acid (DTPA) either at the N-terminus (α-DTPA-gp100:154m) or at the epsilon amino group of the Lys154 residue (ε-DTPA-gp100:154m) and labeled with 111In. Results: The maximum specific activity for both peptides was 13 GBq/μmol. The IC5 of the α-[111In]DTPA-gp100:154m peptide was >75 μM. The IC5 of the 111In-labeled ε-DTPA-gp100:154m was 3 μM, similar to the unconjugated peptide. MHC binding studies showed specific binding of the ε-[111In]DTPA-gp100:154m peptide to the JY cells at 4 deg. C. Interestingly, no specific binding was observed for the α-[111In]DTPA-gp100:154m peptide. In contrast to the α-[111In]DTPA-gp100:154m peptide, the ε-[111In]DTPA-gp100:154m peptide was recognized by cytotoxic T cells. Conclusion: When DTPA was conjugated to the epsilon NH2 group of the Lys154 residue, MHC binding of the peptide was preserved and could still be recognized by cytotoxic T cells. These studies allow the noninvasive determination of the behavior of MHC-peptide complexes on DC in vivo

  3. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  4. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels; Dohlsten, M

    1999-01-01

    mitogenesis. In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast...

  5. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somati...c cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  6. Propagation of elite rescue dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Oh, Hyun Ju; Choi, Jin; Kim, Min Jung; Kim, Geon A; Jo, Young Kwang; Choi, Yoo Bin; Lee, Byeong Chun

    2016-01-01

    The objective of the present study was to compare the efficiency of two oocyte activation culture media to produce cloned dogs from an elite rescue dog and to analyze their behavioral tendencies. In somatic cell nuclear transfer procedure, fused couplets were activated by calcium ionophore treatment for 4 min, cultured in two media: modified synthetic oviduct fluid (mSOF) with 1.9 mmol/L 6-dimethylaminopyridine (DMAP) (SOF-DMAP) or porcine zygote medium (PZM-5) with 1.9 mmol/L DMAP (PZM-DMAP) for 4 h, and then were transferred into recipients. After embryo transfer, pregnancy was detected in one out of three surrogate mothers that received cloned embryos from the PZM-DMAP group (33.3%), and one pregnancy (25%) was detected in four surrogate mothers receiving cloned embryos from the SOF-DMAP group. Each pregnant dog gave birth to one healthy cloned puppy by cesarean section. We conducted the puppy aptitude test with two cloned puppies; the two cloned puppies were classified as the same type, accepting humans and leaders easily. The present study indicated that the type of medium used in 6-DMAP culture did not increase in cloning efficiency and dogs cloned using donor cells derived from one elite dog have similar behavioral tendencies. PMID:26387964

  7. Utilization of zinc methionine supplementation in Friesian cows: somatic cell count in milk and mastitis

    International Nuclear Information System (INIS)

    Full text: Two hundreds and forty lactating Friesian cows on the 1st to 8th of lactation and different stages of lactation were used to study some factors affecting on somatic cell count and its effects on milk yield and composition. Also, 12 normal cows, 15 subclinical and 15 clinical mastitis cows were used to study the effect of zinc methionine supplementation on somatic cell count and mastitis. Cows were divided into three similar groups, the first groups was unsupplemented, while the second and third groups were supplemented with 5 and 10 gm zinc methionine / head / day, respectively. Subclinical and clinical mastitis cows were intramammary injected by antibiotic Gentamast (Gentamicin 100 mg) till complete recovery. The obtained results showed that winter season showed significantly (P < 0.05) the highest somatic cell count followed by summer season, while the lowest value was in autumn season. Somatic cell count tended to decrease with the progress of lactation up to the peak period and increased significantly (P < 0.05) thereafter and also with the progress number of lactation. The percentages of normal, subclinical and clinical mastitis cows were 77.71, 15.82 and 6.46%, respectively. Milk yield and composition and its output decreased significantly (P < 0.05) with increasing somatic cell count. Zinc methionine supplementation resulted in significant (P < 0.05) decrease in somatic cell count in milk. Zinc methionine supplementation for subclinical and clinical mastitis cows led to significant decrease (P < 0.05) on somatic cell count, electrical conductivity, recovery time and the cost of therapy compared with unsupplemented group. It could be concluded that increasing somatic cell count decreased milk yield and composition. Zinc methionine supplementation at the level of 5 g per head daily to lactating Friesian cows reduced somatic cell count in milk, recovery time and therapy cost of mastitis. (author)

  8. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  9. Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  10. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  11. Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens.

    Directory of Open Access Journals (Sweden)

    Junji Yatsuda

    Full Text Available Reports have shown that activation of tumor-specific CD4(+ helper T (Th cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05 transgenic mice (Tgm, since this HLA-DR allele is most frequent (13.6% in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-E(d, where I-E(d α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-E(d has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191

  12. Addition of 10-Day Decitabine to Fludarabine/Total Body Irradiation Conditioning is Feasible and Induces Tumor-Associated Antigen-Specific T Cell Responses.

    Science.gov (United States)

    Cruijsen, Marjan; Hobo, Willemijn; van der Velden, Walter J F M; Bremmers, Manita E J; Woestenenk, Rob; Bär, Brigitte; Falkenburg, J H Frederik; Kester, Michel; Schaap, Nicolaas P M; Jansen, Joop; Blijlevens, Nicole N M; Dolstra, Harry; Huls, Gerwin

    2016-06-01

    Allogeneic hematopoietic cell transplantation (HCT) offers the possibility of curative therapy for patients with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and acute myelogenous leukemia (AML). However, post-HCT relapse remains a major problem, particularly in patients with high-risk cytogenetics and in patients who cannot tolerate consolidation chemotherapy (eg, due to previous toxicity). We assessed the toxicity and efficacy of 10-day decitabine (Dec), fludarabine (Flu), and 2 Gy total body irradiation (TBI) as a new conditioning regimen for allogeneic HCT in patients with MDS, CMML, or AML. Thirty patients were enrolled, including 11 with MDS, 2 with CMML, and 17 with AML. Patients received 20 mg/m(2)/day Dec on days -11 to -2, 30 mg/m(2)/day Flu on days -4 to -2, and 2 Gy TBI on day -1, followed by infusion of a donor stem cell graft on day 0. Postgrafting immunosuppression consisted of cyclosporin A and mycophenolate mofetil. At a median follow-up of 443 days, the overall survival was 53%, relapse incidence was 27%, and nonrelapse mortality was 27%. The incidence of severe acute (grade III/IV) graft-versus-host disease (GVHD) was 27%, and that of (predominantly mild) chronic GVHD was 60%. Immunomonitoring studies revealed that specific CD8(+) T cell responses against epigenetically silenced tumor-associated antigens (TAAs), including cancer-testis antigens (MAGE-A1/A2/A3 and PRAME) and RHAMM, occurred more frequently in patients who had received Dec/Flu/TBI conditioning (8 of 11 patients) compared with a control group of patients who had received only Flu/TBI conditioning (2 of 9 patients). In summary, Dec/Flu/TBI conditioning proved feasible and effective and enhanced the induction of TAA-reactive CD8(+) T cell responses in vivo, which may contribute to disease control post-transplantation. PMID:26860635

  13. Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage

    Directory of Open Access Journals (Sweden)

    Cianfriglia Maurizio

    2004-11-01

    Full Text Available Abstract Background Tumor-associated antigens recognized by humoral effectors of the immune system are a very attractive target for human cancer diagnostics and therapy. Recent advances in molecular techniques have led to molecular definition of immunogenic tumor proteins based on their reactivity with autologous patient sera (SEREX. Methods Several high complexity phage-displayed cDNA libraries from breast carcinomas, human testis and breast carcinoma cell lines MCF-7, MDA-MB-468 were constructed. The cDNAs were expressed in the libraries as fusion to bacteriophage lambda protein D. Lambda-displayed libraries were efficiently screened with sera from patients with breast cancer. Results A panel of 21 clones representing 18 different antigens, including eight proteins of unknown function, was identified. Three of these antigens (T7-1, T11-3 and T11-9 were found to be overexpressed in tumors as compared to normal breast. A serological analysis of the 21 different antigens revealed a strong cancer-related profile for at least five clones (T6-2, T6-7, T7-1, T9-21 and T9-27. Conclusions Preliminary results indicate that patient serum reactivity against five of the antigens is associated with tumor disease. The novel T7-1 antigen, which is overexpressed in breast tumors and recognized specifically by breast cancer patient sera, is potentially useful in cancer diagnosis.

  14. Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage

    International Nuclear Information System (INIS)

    Tumor-associated antigens recognized by humoral effectors of the immune system are a very attractive target for human cancer diagnostics and therapy. Recent advances in molecular techniques have led to molecular definition of immunogenic tumor proteins based on their reactivity with autologous patient sera (SEREX). Several high complexity phage-displayed cDNA libraries from breast carcinomas, human testis and breast carcinoma cell lines MCF-7, MDA-MB-468 were constructed. The cDNAs were expressed in the libraries as fusion to bacteriophage lambda protein D. Lambda-displayed libraries were efficiently screened with sera from patients with breast cancer. A panel of 21 clones representing 18 different antigens, including eight proteins of unknown function, was identified. Three of these antigens (T7-1, T11-3 and T11-9) were found to be overexpressed in tumors as compared to normal breast. A serological analysis of the 21 different antigens revealed a strong cancer-related profile for at least five clones (T6-2, T6-7, T7-1, T9-21 and T9-27). Preliminary results indicate that patient serum reactivity against five of the antigens is associated with tumor disease. The novel T7-1 antigen, which is overexpressed in breast tumors and recognized specifically by breast cancer patient sera, is potentially useful in cancer diagnosis

  15. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis.

    Science.gov (United States)

    Poon, Jessica; Wessel, Gary M; Yajima, Mamiko

    2016-07-01

    Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis. PMID:27179696

  16. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  17. Overexpression of interleukin-17 in tumor-associated macrophages is correlated with the differentiation and angiogenesis of laryngeal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    MENG Cui-da; ZHU Dong-dong; JIANG Xiao-dan; LI Lin; SHA Ji-chao; DONG Zhen; KONG Hong

    2012-01-01

    Background Interleukin-17 (IL-17),which exerts strong pro-inflammatory effects,has emerged as an important mediator in inflammation-associated cancer.The aim of this study was to clarify the relationship between IL-17 and tumor associated macrophages (TAMs),and the correlation of the microvessel density in the development of laryngeal squamous cell carcinoma (LSCC).Methods Histopathological observations and immunohistochemistry staining for IL-17,CD68,and CD34 were performed on 72 specimens (32 cases of LSCC,20 cases of adjacent tissues of carcinoma as controls,and 20 cases of chronic hypertrophic laryngitis).Double immunohistochemical staining was done to determine which cells expressed IL-17.Real-time quantitative PCR determined the mRNA expression of IL-17.ELISA was used to detect the expression of the serum level of IL-17 in the three groups.Results The inflammation response had increased in LSCC.Overexpression of IL-17 and CD68 protein were seen in LSCC (P <0.01).The expression of IL-17 was different between well and poorly differentiated LSCC (P <0.01).The IL-17expressing cells were mainly located in macrophages (CD68+/IL17+) as demonstrated by double immunohistochemical staining.IL-17 expression significantly correlated with high microvessel density (CD34+) in LSCC (P <0.05).Relatively higher mRNA expression levels of IL-17 were seen in LSCC compared to the controls (P <0.05).The serum expression of IL-17 was similar among the three groups (P >0.05).Conclusion IL-17 was expressed by TAMs,and IL-17 may significantly correlate to the differentiation and angiogenesis in the development of LSCC.

  18. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  19. Enhancing the recognition of tumor associated antigens

    OpenAIRE

    Restifo, Nicholas P; Irvine, Kari R.; Minev, Boris R.; Taggarse, Akash S.; McFariand, Barbra J.; Wang, Michael

    1994-01-01

    Activated CD8+ T cells (TCD8+) can directly recognize malignant cells because processed fragments of tumor associated antigens (TAA), 8-10 amino acids in length and complexed with MHC class I molecules, are displayed on tumor cell surfaces. Tumor cells have been genetically modified in a variety of ways in efforts to enhance the immune recognition of TAA. An alternative strategy is the expression of TAA in recombinant or synthetic form. This has been made possible by the recent cloning of TAA...

  20. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    Science.gov (United States)

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  1. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis

    OpenAIRE

    Su, Ying Hua; Zhang, Xian Sheng

    2009-01-01

    Single or a group of somatic cells could give rise to the whole plant, which require hormones, or plant growth regulators. Although many studies have been done during past years, how hormones specify cell fate during in vitro organogenesis is still unknown. To uncover this mechanism, Arabidopsis somatic embryogenesis has been recognized as a model for studying in vitro plant organogenesis. In this paper, we showed that establishment of auxin gradients within embryonic callus is essential for ...

  2. Reproductional indicator influence on the somatic cell count of cow's milk

    OpenAIRE

    Jonikaitė, Inga

    2007-01-01

    Research data show that the somatic cell count increases during the transition period when dairy cows are transferred from barns to pastures (month of May) and during the transition period when dairy cows are transferred from pasture to barn (month of October). During these period’s feedstuff composition changes, as does the temperature, microclimate parameters, which also have an influence on cows with Sub-clinical mastitis. Somatic cell counts are lowest in 1st lactation cows. 1st lactat...

  3. Expression of Cathepsin L in tumor cells and tumor-associated macrophages in patients with Ewing sarcoma family of tumors: A pilot study

    Directory of Open Access Journals (Sweden)

    Bivas Biswas

    2015-01-01

    Full Text Available Background: Cysteine protease Cathepsin L is involved in bone remodeling and expressed in activated macrophages. It is highly expressed in metastatic tumor tissue, especially with bone metastases. Aims: We evaluated immunohistochemical expression of Cathepsin L in tumor cells and tumor-associated macrophages (TAMs in chemo-naive Ewing sarcoma. Settings and Design: Retrospective evaluation of archived specimens of Ewing sarcoma. Materials and Methods: Immunohistochemical staining was performed on archived blocks of chemo-naive patients with Ewing sarcoma treated with uniform chemotherapy at our institute between January 2009 and November 2011. Statistical Analysis: Immunohistochemical expression was co-related with baseline demographics and survival. Results: During the study period, we had evaluable baseline samples from 62 patients with median age 15 years (range: 2-40; 26 (42% had metastases. Cathepsin L expression in tumor cells was observed in 8/62 (13% specimens. None of the baseline clinical characteristics correlated with Cathepsin L expression. Cathepsin L positivity was associated with poor response to neoadjuvant chemotherapy (NACT (P = 0.05, but did not influence either event-free-survival (EFS or overall survival. Cathepsin L was expressed in TAMs in all specimens. Grade 3 TAMs (>10 TAMs/high power field was associated with better response to NACT (P = 0.05. On univariate analysis Grade 3 TAMs predicted superior EFS (median EFS 28.5 months in those with Grade 3 TAMs versus 14.8 months in those with grade ½ TAMs [P = 0.04]. Conclusions: Cathepsin L expression by immunohistochemistry was low in our patient cohort, and it did not affect the outcome. In addition, Grade 3 TAMs with Cathepsin L expression was associated with improved EFS.

  4. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  5. Plant Hormones Increase Efficiency of Reprogramming Mouse Somatic Cells to Induced Pluripotent Stem Cells and Reduce Tumorigenicity

    OpenAIRE

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Michael J. Edel

    2013-01-01

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for ov...

  6. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    OpenAIRE

    Ruiz, Sergio; Lopez Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Guti??rrez Mart??nez, Paula; Bua, Sabela; Ram??rez, Oscar; Olalde, I??igo; Rodrigo Perez, Sara; Li, Han; Marqu??s i Bonet, Tom??s, 1975-; Serrano, Manuel; Blasco, Maria A; Batada, Nizar N; Fern??ndez Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress....

  7. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell

    OpenAIRE

    Jianping Du

    2010-01-01

    Abstract Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compare...

  8. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  9. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  10. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells

    OpenAIRE

    Kanno, Hiroshi

    2013-01-01

    Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the abil...

  11. Embryonic stem cells and somatic cells differ in mutation frequency and type

    Science.gov (United States)

    Cervantes, Rachel B.; Stringer, James R.; Shao, Changshun; Tischfield, Jay A.; Stambrook, Peter J.

    2002-01-01

    Pluripotent embryonic stem (ES) cells have been used to produce genetically modified mice as experimental models of human genetic diseases. Increasingly, human ES cells are being considered for their potential in the treatment of injury and disease. Here we have shown that mutation in murine ES cells, heterozygous at the selectable Aprt locus, differs from that in embryonic somatic cells. The mutation frequency in ES cells is significantly lower than that in mouse embryonic fibroblasts, which is similar to that in adult cells in vivo. The distribution of spontaneous mutagenic events is remarkably different between the two cell types. Although loss of the functional allele is the predominant mutation type in both cases, representing about 80% of all events, mitotic recombination accounted for all loss of heterozygosity events detected in somatic cells. In contrast, mitotic recombination in ES cells appeared to be suppressed and chromosome loss/reduplication, leading to uniparental disomy (UPD), represented more than half of the loss of heterozygosity events. Extended culture of ES cells led to accumulation of cells with adenine phosphoribosyltransferase deficiency and UPD. Because UPD leads to reduction to homozygosity at multiple recessive disease loci, including tumor suppressor loci, in the affected chromosome, the increased risk of tumor formation after stem cell therapy should be viewed with concern. PMID:11891338

  12. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    OpenAIRE

    Page Grier P; Kasinathan Poothappillai; Wang Zhongde; Rodriguez-Osorio Nelida; Robl James M; Memili Erdogan

    2009-01-01

    Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clo...

  13. Transcriptional Reprogramming of Gene Expression in Bovine Somatic Cell Chromatin Transfer Embryos

    OpenAIRE

    Rodriguez-Osorio, N.; Wang, Zhongde; Page, G. P.; Robl, J M; Memili, E.

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from ...

  14. Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Subramanian, Arjunan; Shu-Uin, Gan; Kae-Siang, Ngo; Gauthaman, Kalamegam; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff; Chui-Yee, Fong

    2012-06-01

    Human bone marrow mesenchymal stem cells (hBMMSCs) were shown to transform into tumor-associated fibroblasts (TAFs) when in the vicinity of breast cancer tumors and played an important role in tumor enhancement and metastasis. In early human development MSCs migrating from the yolk sac and aorta-gonad-mesonephros (AGM) via the umbilical cord to the placenta and back to the fetal bone marrow were shown to get trapped in the gelatinous Wharton's jelly of the umbilical cord. The common origin of the Wharton's jelly MSCs and the finally homed hBMMSCs prompted us to evaluate whether hWJSCs are also involved in TAF transformation. hWJSCs and hBMMSCs were grown in the presence of breast and ovarian cancer cell conditioned medium (MDA-TCM, TOV-TCM) for 30 days. No changes were observed in the hWJSCs but the hBMMSCs transformed from short to thin long fibroblasts, their proliferation rates increased and CD marker expression decreased. The transformed hBMMSCs showed positive staining for the tumor-associated markers FSP, VEGF, EGF, and Tn-C. Real-time PCR and multiplex luminex bead analysis showed upregulation of TAF-related genes (FSP, FAP, Tn-C, Tsp-1, EGF, bFGF, IL-6, α-SMA, VEGF, and TGF-β) for hBMMSCs with low expression for hWJSCs. The luciferase assay showed that hWJSCs previously exposed to MDA-TCM or TOV-TCM had no stimulatory growth effect on luciferase-tagged MDA or TOV cells unlike hBMMSCs. The results confirmed that hWJSCs do not transform to the TAF phenotype and may therefore not be associated with enhanced growth of solid tumors making them a safe MSC for cell based therapies. PMID:22234854

  15. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    Science.gov (United States)

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. PMID:27405489

  16. [Antiviral activity of interferon and its inducers in human lymphoblastoid and somatic cells].

    Science.gov (United States)

    Novokhatskiĭ, A S; Labzo, S S; Tsareva, A A

    1979-04-01

    The antiviral effect of interferon inductors, such as poly-I--poly-C, phage f2 RNA replicative form and low molecular inductor GSN and their influence on cellular DNA synthesis were studied in the cultures of lymphoblastoid (inplanting lines Raji Namalva) and somatic human cells. The Semliki forest virus used as the test organism multiplicated well in cells Raji accumulating up to 9 lg BOU/ml. The two-strand RNA was less active in the lymphoid cells than in the somatic ones. GSN was 10 times more active and less toxic in cells Raji as compared to the fibroblasts. The lymphoblastoid interferon had higher antiviral activity as compared to the fibroblast interferon in the system of Raji--Semliki forest virus than in the system of the human embryon fibroblast--Venezuela Horse Encephalytic Virus. Romantadin actively inhibited (100 times) production of the alfavirus in both the somatic and lymphoblastoid cells. PMID:220908

  17. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time

    International Nuclear Information System (INIS)

    Tumor-associated macrophages (TAMs) play an important role in growth, progression and metastasis of tumors. In non-small cell lung cancer (NSCLC), TAMs' anti-tumor or pro-tumor role is not determined. Macrophages are polarized into M1 (with anti-tumor function) and M2 (with pro-tumor function) forms. This study was conducted to determine whether the M1 and M2 macrophage densities in NSCLC are associated with patient's survival time. Fifty patients with an average of 1-year survival (short survival group) and 50 patients with an average of 5-year survival (long survival group) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical double-staining of CD68/HLA-DR (markers for M1 macrophages) and CD68/CD163 (markers for M2 macrophages) was performed and evaluated in a blinded fashion. The M1 and M2 macrophage densities in the tumor islets, stroma, or islets and stroma were determined using computer-aided microscopy. Correlation of the macrophage densities and patient's survival time was analyzed using the Statistical Package for the Social Sciences. Approximately 70% of TAMs were M2 macrophages and the remaining 30% were M1 macrophages in NSCLC. The M2 macrophage densities (approximately 78 to 113 per mm2) in the tumor islets, stroma, or islets and stroma were not significantly different between the long survival and short survival groups. The M1 macrophage densities in the tumor islets (approximately 70/mm2) and stroma (approximately 34/mm2) of the long survival group were significantly higher than the M1 macrophage densities in the tumor islets (approximately 7/mm2) and stroma (13/mm2) of the short survival group (P < 0.001 and P < 0.05, respectively). The M2 macrophage densities were not associated with patient's survival time. The M1 macrophage densities in the tumor islets, stroma, or islets and stroma were

  18. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation...... capacity. Here we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules...... influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations....

  19. Factors Affecting on Somatic Cells Count in Slovak Simmental Dairy Cows

    Directory of Open Access Journals (Sweden)

    Jozef Bujko

    2014-11-01

    Full Text Available The aim this work was to analyse factors affecting on the somatic cells count in Slovak Simmental dairy cows. Data were analysed using the SAS version 9.1.3. and linear model with fixed effects of herd, years and months controls, sire and breeding types. The analyses by the effect on somatic cells count was the highest effect of herd-years-months of control R2 = 0.151316 and effect of sire R2 = 0.054182. These effects were high statistical significant P<0.01. Correlation coefficients between milk in kg, fat, protein, lactose in % with somatic cells count were r= -0.25096, r= 0.02593, r= 0.22321and r=-0.39567.

  20. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    OpenAIRE

    Joydeep Das; Min-Hee Kang; Eunsu Kim; Deug-Nam Kwon; Yun-Jung Choi; Jin-Hoi Kim

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis...

  1. Induction of an antitumor response using dendritic cells transfected with DNA constructs encoding the HLA-A*02:01-restricted epitopes of tumor-associated antigens in culture of mononuclear cells of breast cancer patients.

    Science.gov (United States)

    Sennikov, Sergey Vital'evich; Shevchenko, Julia Alexandrovna; Kurilin, Vasilii Vasil'evich; Khantakova, Julia Nikolaevna; Lopatnikova, Julia Anatol'evna; Gavrilova, Elena Vasil'evna; Maksyutov, Rinat Amirovich; Bakulina, Anastasiya Yur'evna; Sidorov, Sergey Vasil'evich; Khristin, Alexander Alexandrovich; Maksyutov, Amir Zakievich

    2016-02-01

    Advances in oncoimmunology related to the definition of the basic mechanisms of the formation of antitumor immune response, as well as the opening of tumor-associated antigens recognized by immune cells, allowed to start developing ways to influence the effector cells of the immune system to generate effective antitumor cytotoxic response. We investigated the possibility to stimulate an antitumor response in a culture of mononuclear cells of breast cancer patients by dendritic cells transfected with HLA-A*02:01-restricted DNA constructs. We isolated dendritic cells from peripheral blood monocytes and delivered our constructs to these cells by magnetic transfection. Additionally, a series of experiments with loading of dendritic cells with autologous tumor cell lysate antigens was conducted. We have shown that dendritic cells transfected with the HLA-A*02:01-restricted DNA constructs are effective in inducing an antitumor response in a culture of mononuclear cells of breast cancer patients. Dendritic cells transfected with DNA constructor dendritic cells loaded with lysate antigens revealed a comparable stimulated cytotoxic response of mononuclear cells to these two ways of antigen delivery. We conclude that using DNA constructs in conjunction with patient stratification by HLA type allows the application of transfected DCs as an effective method to stimulate antitumor immunity in vitro. PMID:26590947

  2. Number and importance of somatic cells in goat’s milk

    OpenAIRE

    Lidija Kozačinski; Majić, T.; Željka Cvrtila; Mirza Hadžiosmanović

    2001-01-01

    Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test). 427 of the examined milk samples (46.82%) had positive reaction from 1 to 3 while other 485 samples (53.18%) had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT) with the number of somatic cells and findings of ...

  3. The Drosophila BCL6 homolog ken and barbie promotes somatic stem cell self-renewal in the testis niche

    OpenAIRE

    Issigonis, Melanie; Matunis, Erika

    2012-01-01

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somat...

  4. Breaching the kinetic barrier to in vitro somatic stem cell propagation

    OpenAIRE

    Merok, Joshua R.; Sherley, James L.

    2001-01-01

    Abstract Here we have reviewed the conventional definitions and fundamental characteristics of the two basic types of stem cells, embryonic stem cells (ESCs) and somatic stem cells (SSCs). By taking into account the often-overlooked asymmetric cell kinetics of SSCs, we consider the evidence that should SSCs retain these growth kinetics in vitro, a natural kinetic barrier to SSC propagation exists. Recent discoveries showing that the tumor suppressor gene p53 can act as a regulator of asymmetr...

  5. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes

    Institute of Scientific and Technical Information of China (English)

    YING CHEN; QING ZHANG YANG; DA YUAN CHEN; MIN KANG WANG; JIN SONG LI; SHAO LIANG HUANG; XIANG YIN KONG; YAO ZHOU SHI; ZHI QIANG WANG; JIA HUI XIA; ZHI GAO LONG; ZHI XU HE; ZHI GANG XUE; WEN XIANG DING; HUI ZHEN SHENG; AILIAN LIU; KAI WANG; WEN WEI MAO; JIAN XIN CHU; YONG LU; ZHENG FU FANG; YING TANG SHI

    2003-01-01

    To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PGR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

  6. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis, I f

  7. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  8. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc;

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...

  9. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2013-12-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  10. Genetic correlations between pathogen-specific mastitis and somatic cell count in Danish Holsteins

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Madsen, P.;

    2009-01-01

    The aim of this study was to estimate genetic correlations (r(a)) between 2 lactation average somatic cell count (LASCC) traits and 6 different mastitis traits in 226,482 first-parity Danish Holstein cows that calved between 1998 and 2008. The LASCC traits were defined from 5 to either 170 d (LASCC...

  11. Relationship between somatic cell count status and subsequent clinical mastitis in Dutch dairy cows

    NARCIS (Netherlands)

    Borne, van den B.H.P.; Vernooij, J.C.M.; Lupindu, A.M.; Schaik, van G.; Frankena, K.; Lam, T.J.G.M.; Nielen, M.

    2011-01-01

    High composite somatic cell counts (CSCC) in dairy cows may develop into clinical mastitis (CM), suggesting that prevention or intervention of high CSCC may prevent CM later in lactation. The objective of this study was to quantify the relationship between high CSCC in dairy cows and the first subse

  12. Impact of selection for decreased somatic cell score on productive life and culling for mastitis

    Science.gov (United States)

    Impact of continued selection for decreased somatic cell score (SCS) was examined to determine if such selection resulted in greater mastitis susceptibility and shorter productive life (PL). Holstein artificial-insemination bulls with a predicted transmitting ability (PTA) for SCS based on >=35 daug...

  13. Number and importance of somatic cells in goat’s milk

    Directory of Open Access Journals (Sweden)

    Lidija Kozačinski

    2001-04-01

    Full Text Available Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test. 427 of the examined milk samples (46.82% had positive reaction from 1 to 3 while other 485 samples (53.18% had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT with the number of somatic cells and findings of mastitis agents in milk showed that higher number of somatic cells is not the only indication of goat’s mammary gland illness. Mastitis-test is method that can exclude inflammation of goat’s mammary gland, but every positive reaction should be confirmed or eliminate with bacteriological examination. Based on the results of this research, it has been shown that the limit for somatic cells number in goat's milk can be over 1 000 000/ml.

  14. The ups and downs of somatic cell nucleus transfer (SCNT) in humans

    OpenAIRE

    Fulka, Josef; Langerova, Alena; Loi, Pasqualino; Ptak, Grazyna; Albertini, David; Fulka, Helena

    2013-01-01

    Achieving successful somatic cell nuclear transfer (SCNT) in the human and subhuman primate relative to other mammals has been questioned for a variety of technical and logistical issues. Here we summarize the gradual evolution of SCNT technology from the perspective of oocyte quality and cell cycle status that has recently led to the demonstration of feasibility in the human for deriving chromosomally normal stem cells lines. With these advances in hand, prospects for therapeutic cloning mus...

  15. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  16. Testicular Somatic Cells, not Gonocytes, Are the Major Source of Functional Activin A during Testis Morphogenesis

    OpenAIRE

    Archambeault, Denise R.; Tomaszewski, Jessica; Childs, Andrew J.; Anderson, Richard A.; YAO, HUMPHREY HUNG-CHANG

    2011-01-01

    Proper development of the seminiferous tubules (or testis cords in embryos) is critical for male fertility. Sertoli cells, somatic components of the seminiferous tubules, serve as nurse cells to the male germline, and thus their numbers decide the quantity of sperm output in adulthood. We previously identified activin A, the protein product of the activin βA (Inhba) gene, as a key regulator of murine Sertoli cell proliferation and testis cord expansion during embryogenesis. Although our genet...

  17. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  18. Tumor Associated Macrophages Protect Colon Cancer Cells from TRAIL-Induced Apoptosis through IL-1β- Dependent Stabilization of Snail in Tumor Cells

    OpenAIRE

    Kaler, Pawan; Galea, Vincent; Augenlicht, Leonard; Klampfer, Lidija

    2010-01-01

    Background We recently reported that colon tumor cells stimulate macrophages to release IL-1β, which in turn inactivates GSK3β and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells. Principal Findings Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1β by neutralizing IL-1β antibody, or silencing of IL-1β in macrophages inhibited their ability to ...

  19. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    Full Text Available BACKGROUND: We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells. PRINCIPAL FINDINGS: Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL. SIGNIFICANCE: We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages

  20. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahito [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Umeyama, Kazuhiro [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); International Cluster for Bio-Resource Research, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Matsunari, Hitomi [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Takayanagi, Shuko [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Nakauchi, Hiromitsu [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, Tokyo University, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  1. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  2. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Institute of Scientific and Technical Information of China (English)

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  3. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Zhang XF

    2015-02-01

    Full Text Available Xi-Feng Zhang,* Yun-Jung Choi,* Jae Woong Han, Eunsu Kim, Jung Hyun Park, Sangiliyandi Gurunathan, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, South Korea *These authors contributed equally to this work Background: Silver nanoparticles (AgNPs possess unique physical, chemical, and biological properties. AgNPs have been increasingly used as anticancer, antiangiogenic, and antibacterial agents for the treatment of bacterial infections in open wounds as well as in ointments, bandages, and wound dressings. The present study aimed to investigate the effects of two different sizes of AgNPs (10 nm and 20 nm in male somatic Leydig (TM3 and Sertoli (TM4 cells and spermatogonial stem cells (SSCs. Methods: Here, we demonstrate a green and simple method for the synthesis of AgNPs using Bacillus cereus culture supernatants. The synthesized AgNPs were characterized using ultraviolet and visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM. The toxicity of the synthesized AgNPs was evaluated by the effects on cell viability, metabolic activity, oxidative stress, apoptosis, and expression of genes encoding steroidogenic and tight junction proteins. Results: AgNPs inhibited the viability and proliferation of TM3 and TM4 cells in a dose- and size-dependent manner by damaging cell membranes and inducing the generation of reactive oxygen species, which in turn affected SSC growth on TM3 and TM4 as feeder cells. Small AgNPs (10 nm were more cytotoxic than medium-sized nanoparticles (20 nm. TEM revealed the presence of AgNPs in the cell cytoplasm and nucleus, and detected mitochondrial damage and enhanced formation of autosomes and autolysosomes in the AgNP-treated cells. Flow cytometry analysis using Annexin V/propidium iodide staining showed massive cell death by apoptosis or necrosis. Real-time polymerase chain reaction and western blot analyses

  4. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida;

    2011-01-01

    intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body......Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one......-cell stage embryos were processed at different points in time post activation (2 hpa, 4 hpa, 8 hpa, and 12 hpa) for detailed nuclear and nucleolar analysis by TEM, and immunofluorescence for visualization of nucleolar proteins related to transcription (UBF) and processing (fibrillarin). Bovine and porcine...

  5. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages12

    Science.gov (United States)

    Kobayashi, Kana; Yano, Hajime; Umakoshi, Akihiro; Matsumoto, Shirabe; Mise, Ayano; Funahashi, Yu; Ueno, Yoshitomo; Kamei, Yoshiaki; Takada, Yasutsugu; Kumon, Yoshiaki; Ohnishi, Takanori; Tanaka, Junya

    2016-01-01

    CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas. PMID:27108386

  6. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  7. The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype.

    Science.gov (United States)

    Schultz, Matthew J; Holdbrooks, Andrew T; Chakraborty, Asmi; Grizzle, William E; Landen, Charles N; Buchsbaum, Donald J; Conner, Michael G; Arend, Rebecca C; Yoon, Karina J; Klug, Christopher A; Bullard, Daniel C; Kesterson, Robert A; Oliver, Patsy G; O'Connor, Amber K; Yoder, Bradley K; Bellis, Susan L

    2016-07-01

    The glycosyltransferase ST6Gal-I, which adds α2-6-linked sialic acids to substrate glycoproteins, has been implicated in carcinogenesis; however, the nature of its pathogenic role remains poorly understood. Here we show that ST6Gal-I is upregulated in ovarian and pancreatic carcinomas, enriched in metastatic tumors, and associated with reduced patient survival. Notably, ST6Gal-I upregulation in cancer cells conferred hallmark cancer stem-like cell (CSC) characteristics. Modulating ST6Gal-I expression in pancreatic and ovarian cancer cells directly altered CSC spheroid growth, and clonal variants with high ST6Gal-I activity preferentially survived in CSC culture. Primary ovarian cancer cells from patient ascites or solid tumors sorted for α2-6 sialylation grew as spheroids, while cells lacking α2-6 sialylation remained as single cells and lost viability. ST6Gal-I also promoted resistance to gemcitabine and enabled the formation of stably resistant colonies. Gemcitabine treatment of patient-derived xenograft tumors enriched for ST6Gal-I-expressing cells relative to pair-matched untreated tumors. ST6Gal-I also augmented tumor-initiating potential. In limiting dilution assays, subcutaneous tumor formation was inhibited by ST6Gal-I knockdown, whereas in a chemically induced tumor initiation model, mice with conditional ST6Gal-I overexpression exhibited enhanced tumorigenesis. Finally, we found that ST6Gal-I induced expression of the key tumor-promoting transcription factors, Sox9 and Slug. Collectively, this work highlighted a previously unrecognized role for a specific glycosyltransferase in driving a CSC state. Cancer Res; 76(13); 3978-88. ©2016 AACR. PMID:27216178

  8. Production of transgenic7blastocyst of sheep by somatic cell cloning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Five samples from primary cultures of five sheep ovarian granulosa cells were transfeeted by pEGFP N1 DNA. Five transgenic positive cell lines, each from one of the five samples above, were used as donor nuclei for somatic nucleus transfer. A total of 352 in vitro matured and enucle ated sheep oocytes were fused electrically with transgenic granulosa cells and 329 reconstructed embryos were ob tained after activation by Ionomycin/6-DMAP, and these embryos were cultured in SOFaaBSA medium for 7 d. The result shows that 312 embryos (94.8%) had gone through cleavage and among them 63 (19.1%) had developed to the blastocyst stage. Expression of GFP gene was detected in various stages of early embryonic development by sampling randomly. Blastocyst rates given by the four cells treated with 0.5% FCS starvation was 19.6% (55/280) and it had not shown difference significantly (P>0.05) with the result ob tained with another cell line that had not gone through se rum starvation (16.3%, 8/49). This experiment indicates that sheep transgenic embryos up to the blastocyst stage can be produced effectively by the combination of gene transfection in somatic cells in culture and somatic cell cloning.

  9. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells

    OpenAIRE

    Maiato, Helder; Hergert, Polla J.; Moutinho-Pereira, Sara; Dong, Yimin; VandenBeldt, Kristin J.; Rieder, Conly L.; McEwen, Bruce F.

    2006-01-01

    Drosophila melanogaster is a widely used model organism for the molecular dissection of mitosis in animals. However, despite the popularity of this system, no studies have been published on the ultrastructure of Drosophila kinetochores and kinetochore fibers (K-fibers) in somatic cells. To amend this situation, we used correlative light (LM) and electron microscopy (EM) to study kinetochores in cultured Drosophila S2 cells during metaphase, and after colchicine treatment to depolymerize all m...

  10. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  11. Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain.

    Science.gov (United States)

    Friend, K K; Chen, S; Ruddle, F H

    1976-03-01

    Staining of chromosome preparations of Chinese hamster-human hybrid cells and mouse-chimpanzee hybrids with alkaline Giemsa has yielded color differentiation of the interspecific chromosomes. Bicolor chromosomes, indicating apparent translocations also are observed for each of these hybrids. The specific color differences observed provide a rapid means of recognizing and aiding in the identification of the interspecific chromosomes and apparent translocations in these somatic cell hybrids. PMID:1028166

  12. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    OpenAIRE

    Olofsson Ida; Persson Ylva

    2011-01-01

    Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC) by California Mastitis Test (CMT) and direct measurement of SCC using a portable deLaval cell counter (DCC) are evaluated. Swedish goat farmers would primarily benefit from diagnostic metho...

  13. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer

    OpenAIRE

    Degrelle, Severine; Jaffrézic, Florence; Campion, Evelyne; Le Cao, Kim-Anh; Le Bourhis, Daniel; Richard, Christophe; Rodde, Nathalie; Fleurot, Renaud; Everts, Robin E.; Lecardonnel, Jérôme; Heyman, Yvan; Vignon, Xavier; Yang, Xiangzhong; Tian, Xiuchun C.; Lewin, Harris A

    2012-01-01

    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulatin...

  14. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  15. A molecular roadmap of reprogramming somatic cells into iPS cells.

    Science.gov (United States)

    Polo, Jose M; Anderssen, Endre; Walsh, Ryan M; Schwarz, Benjamin A; Nefzger, Christian M; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy; Natesan, Sridaran; Melnick, Ari; Zhu, Jinfang; Ramaswamy, Sridhar; Hochedlinger, Konrad

    2012-12-21

    Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming. PMID:23260147

  16. Unusual Sertoli Cell Tumor Associated With Sex Cord Tumor With Annular Tubules in Peutz-Jeghers Syndrome: Report of a Case and Review of the Literature on Ovarian Tumors in Peutz-Jeghers Syndrome.

    Science.gov (United States)

    Ravishankar, Sanjita; Mangray, Shamlal; Kurkchubasche, Arlet; Yakirevich, Evgeny; Young, Robert H

    2016-05-01

    We report the case of an 11-year-old girl with Peutz-Jeghers syndrome and a unilateral ovarian tumor most consistent with Sertoli cell tumor associated with sex cord tumor with annular tubules. The ovary was replaced by a lobular, solid, yellow tumor. Microscopic examination showed 2 components that focally merged. The first was composed of uniform, cytologically bland cells arranged mostly in diffuse sheets and focally in tubules. The second showed typical sex cord tumor with annular tubules with extensive calcification. The predominant component of the tumor clearly fell in the sex cord category and most closely resembled Sertoli cell tumor. This case adds to the limited information on ovarian sex cord tumors, other than typical sex cord tumor with annular tubules, arising in association with Peutz-Jeghers syndrome, a topic reviewed herein. PMID:26621753

  17. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  18. Somatic mutation and cell differentiation in neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  19. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  20. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  1. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    Directory of Open Access Journals (Sweden)

    H.J. Chung

    2015-05-01

    Full Text Available Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery.

  2. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells.

    Science.gov (United States)

    Chung, H J; Hassan, M M; Park, J O; Kim, H J; Hong, S T

    2015-05-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  3. Evidence for estrogen receptor expression in germ cell and somatic cell subpopulations in the ovary of the newly hatched chicken.

    Science.gov (United States)

    Méndez, M C; Chávez, B; Echeverría, O; Vilchis, F; Vázquez Nin, G H; Pedernera, E

    1999-10-01

    Estrogens are involved in the gonadal morphogenesis of vertebrates, and almost all hormonal effects of 17beta-estradiol are mediated through specific receptors. At the time of sexual differentiation in the chicken, or even before, there is evidence of the presence of estrogen receptors and the secretion of 17beta-estradiol. However, no information is available regarding the cellular types that express the estrogen receptor in the immature chick ovary. The present study analyzes estrogen receptor expression in germ and somatic cells of the ovary in the newly hatched chicken. Highly purified cell subpopulations of germ and somatic cells were evaluated for specific 17beta-estradiol nuclear binding. In addition, the estrogen receptor was localized at the ultrastructural level by the immunogold technique. Finally, reverse transcription and polymerase chain reaction procedures detected a steady-state level of mRNA for the estrogen receptor. Somatic cells including typical steroidogenic cells showed specific 17beta-estradiol nuclear binding, displayed the estrogen receptor, and possessed estrogen receptor transcripts. The same result was observed in primary oocytes, together with the ultrastructural localization of estrogen receptor in extended chromatin filaments. Our experimental data support the hypothesis that estrogens are involved in the function of somatic and germ cells subpopulations in the immature chicken ovary. PMID:10555548

  4. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.

  5. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  6. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  7. Increased somatic cell mutant frequency in atomic bomb survivors

    International Nuclear Information System (INIS)

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10-6; range 0.8 - 14.4 x 10-6) was significantly higher than in controls (3.4 x 10-6; range 1.3 - 9.3 x 10-6), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  8. Rescue of marker phenotypes mediated by somatic cell hybridization

    International Nuclear Information System (INIS)

    The effect of irradiation prior to virus-induced cell fusion on the frequency of hybrid production has been measured as a function of radiation dose. The Chinese hamster line wg3h (HGPRT-) was crossed with the TK- mutants; Chinese hamster A23 or mouse 3T34E, and hybrids were selected in HAT medium. Irradiation of one (marker rescue) or both (mutual rescue) partners before fusion yielded qualitatively different results. After X-irradiation, marker rescue curves were of single-hit type, with D0 values about five-fold greater than the irradiated parent cell. Mutual rescue curves were of the multi-hit type, with zero-dose extrapolation value (n) greater than that of the more resistant partner, but no significant alteration in D0. Qualitatively similar results were obtained after U.V.- irradiation, but the probability of rescue per surviving parent cell was

  9. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    OpenAIRE

    Engelhardt John F; Li Ziyi

    2003-01-01

    Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not...

  10. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer

    OpenAIRE

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-01-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast ce...

  11. Machine Learning as an aid to management decisions on high somatic cell counts in dairy farms

    OpenAIRE

    Goyache, Félix; Díez, Jorge; López, Secundino; Pajares-Bernaldo, Gerardo; Santos, Begoña; Fernández, Iván; Prieto, Miguel

    2005-01-01

    High somatic cell counts (SCC) is associated with mastitis infection, in dairy herds, worldwide. This work describes Machine Learning (ML) techniques designed to improve the information offered to farmers on animals producing high SCCs according to particular herd profiles. The analysed population included 71 dairy farms in Asturias (Northern Spain) and a total of 2,407 lactating cows. Four sources of information were available: a) a questionnaire survey describing facilities, milking routine...

  12. Mastitis diagnosis in dairy goats through somatic cell counts and Californian Mastitis Test. Preliminary results

    OpenAIRE

    Mendonça, Álvaro; Valentim, Ramiro; Nunes, Manuel; Correia, Teresa Montenegro; Trigo, Margarida; Maurício, Raimundo; Costa, Cristina; Coelho, Alípio

    2004-01-01

    The aim of this work was to evaluate somatic cell count (SCC) and Californian mastitis test (CMT) reliability as methods to survey mastitis in Serrana goats. Microbiological diagnosis, SCC and CTM were performed on 2028 samples, collected from individual glands during a lactation period. According to results CMT (predictive negative value = 69.5%) may be used as a cheap and practical method for sub clinical mastitis survey in Serrana goats. Decision on SCC use will depend on additional resear...

  13. Histocompatibility genes and Somatic Cell Count (SCC) in Italian Holstein Friesian

    OpenAIRE

    Longeri, M.; A. B. Samoré; I. Taboni; Strillacci, M G; Zanotti, M.

    2011-01-01

    Mastitis is a dairy cattle disease leading to great economic losses in milk production, management costs and veterinary treatments. This character generally shows an unfavourable genetic correlation with milk production. However, genetic factors influencing mastitis susceptibility independent from those influencing milk production could exist. Therefore, it should be possible to select at the same time against mastitis and for high milk production. The “somatic cell count” (SCC) c...

  14. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    OpenAIRE

    Barillet, Francis; Rupp, Rachel; Mignon-Grasteau, S.; Astruc, J.M.; Jacquin, M.

    2001-01-01

    Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flock...

  15. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    OpenAIRE

    Astruc Jean-Michel; Mignon-Grasteau Sandrine; Rupp Rachel; Barillet Francis; Jacquin Michèle

    2001-01-01

    Abstract Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among...

  16. Use of California mastitis test, somatic cells count and bacteriological findings in diagnostics of subclinical mastitis

    OpenAIRE

    Varatanović N.; Podžo M.; Mutevelić T.; Podžo K.; Čengić B.; Hodžić A.; Hodžić E.

    2010-01-01

    We have performed diagnostics of sub clinical mastitis in three different cow breeds with comparison of California mastitis test results, somatic cells count at quarter level and with bacteriological findings confirmation in order to justify their appliance in mastitis diagnostics. In total, 90 cows or 360 quarters of mammary gland have been examined. In 63.3 % of the examined cows, with different racial origin, positive reaction to California mastitis test have been established. Usually, pos...

  17. Effect of somatic cell count and lactation stage on sheep milk quality

    OpenAIRE

    Emilia Duranti; Arianna Bolla; Anna Caroli; Elena Budelli; Mariano Pauselli; Carmen Casoli; Leonardo Bianchi

    2010-01-01

    In order to evaluate the effects of mammary health status and lactation phase on the qualitative parameters of ovinemilk, 213 individual milk samples were repeatedly collected from 40 primiparous Sarda ewes on a monthly basis. Yield,physico-chemical characteristics, casein fractions quantitative distribution, somatic cell count (SCC), cheese making propertiesand plasmin-plasminogen activity were determined on each sample. Repeated individual milk SCC were used as amarker of udder health statu...

  18. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    Science.gov (United States)

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  19. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  20. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins.

    Science.gov (United States)

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M; Telugu, Bhanu P

    2016-01-01

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals. PMID:27240344

  1. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    OpenAIRE

    Riggio, V

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis, I focus on the genetic parameters of SCS as indicator of mastitis, and on the possibilities of using this trait for selection for mastitis resistance in the Valle del Belice dairy sheep. In Chapter 1,...

  2. Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle

    OpenAIRE

    Strapáková, Eva; Candrák, Juraj; Strapák, Peter

    2016-01-01

    The objective of this study was to estimate the breeding values (BVs) of lactation persistency, the test day of milk yield, the somatic cell score, reproductive traits (calving interval, days open), longevity in Slovak Holstein dairy cattle. BVs were used for the detection of relationships among the persistency of lactation and other selected traits. Data for the estimation of BVs of milk production and somatic cell score were collected from 855 240 cows. BVs for reproductive t...

  3. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  4. The glycophorin A assay for somatic cell mutations in humans

    International Nuclear Information System (INIS)

    In this report we briefly review our past experience and some new developments with the GPA assay. Particular emphasis will be placed on two areas that affect the utility of the GPA assay for human population monitoring. The first is our efforts to simplify the GPA assay to make it more generally available for large population studies. The second is to begin to understand some of the characteristics of human hemopoiesis which affect the accumulation and expression of mutant phenotype cells. 11 refs., 4 figs

  5. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  6. Cats cloned from fetal and adult somatic cells by nuclear transfer.

    Science.gov (United States)

    Yin, X J; Lee, H S; Lee, Y H; Seo, Y I; Jeon, S J; Choi, E G; Cho, S J; Cho, S G; Min, W; Kang, S K; Hwang, W S; Kong, I K

    2005-02-01

    This work was undertaken in order to study the developmental competence of nuclear transfer (NT) into cat embryos using fetal fibroblast and adult skin fibroblast cells as donor nuclei. Oocytes were recovered by mincing the ovaries in Hepes-buffered TCM199 and selecting the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark color. Homogenous ooplasm was cultured for maturation in TCM199+10% fetal bovine serum (FBS) for 12 h and used as a source of recipient cytoplast for exogenous somatic nuclei. In experiment 1, we evaluated the effect of donor cell type on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate were not different between fetal fibroblasts and adult skin cells (71.2 vs 66.8; 71.0 vs 57.6; 4.0 vs 6.1% respectively; P < 0.05). In experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of the seven recipient queens was delivered naturally of 2 healthy cloned cats and 1 stillborn from fetal fibroblast cells of male origin 65 days after embryo transfer. One of three recipient queens was delivered naturally of 1 healthy cloned cat from adult skin cells of female origin 65 days after embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning. PMID:15695619

  7. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.

    Directory of Open Access Journals (Sweden)

    David R Riley

    Full Text Available There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA, we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a tumors than normal samples, (b RNA than DNA samples, and (c the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5'-UTR and 3'-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome.

  8. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    Science.gov (United States)

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  9. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  10. Genetically modified natural killer cells specifically recognizing the tumor-associated antigens ErbB2/HER2 and EpCAM

    OpenAIRE

    Uherek B; Tonn T; Müller T.; Uherek C; Klingemann H-G; Wels WS

    2007-01-01

    The continuously growing natural killer (NK) cell line NK-92 is highly cytotoxic against malignant cells of various origin without affecting normal human cells. Based on this selectivity, the potential of NK-92 cells for adoptive therapy is currently being investigated in phase I clinical studies. To further enhance the antitumoral activity of NK-92 cells and expand the range of tumor entities suitable for NK-92-based therapies, here by transduction with retroviral vectors we have generated g...

  11. The Transcriptional Consequences of Somatic Amplifications, Deletions, and Rearrangements in a Human Lung Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    2012-11-01

    Full Text Available Lung cancer causes more deaths, worldwide, than any other cancer. Several histologic subtypes exist. Currently, there is a dearth of targeted therapies for treating one of the main subtypes: squamous cell carcinoma (SCC. As for many cancers, lung SCC karyotypes are often highly anomalous owing to large somatic structural variants, some of which are seen repeatedly in lung SCC, indicating a potential causal association for genes therein. We chose to characterize a lung SCC genome to unprecedented detail and integrate our findings with the concurrently characterized transcriptome. We aimed to ascertain how somatic structural changes affected gene expression within the cell in ways that could confer a pathogenic phenotype. We sequenced the genomes of a lung SCC cell line (LUDLU-1 and its matched lymphocyte cell line (AGLCL to more than 50x coverage. We also sequenced the transcriptomes of LUDLU-1 and a normal bronchial epithelium cell line (LIMM-NBE1, resulting in more than 600 million aligned reads per sample, including both coding and non-coding RNA (ncRNA, in a strand-directional manner. We also captured small RNA (<30 bp. We discovered significant, but weak, correlations between copy number and expression for protein-coding genes, antisense transcripts, long intergenic ncRNA, and microRNA (miRNA. We found that miRNA undergo the largest change in overall expression pattern between the normal bronchial epithelium and the tumor cell line. We found evidence of transcription across the novel genomic sequence created from six somatic structural variants. For each part of our integrated analysis, we highlight candidate genes that have undergone the largest expression changes.

  12. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  13. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. PMID:27319353

  14. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  15. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  16. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  17. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes

    OpenAIRE

    Astolfi, P.A.; Salamini, F.; Sgaramella, V

    2010-01-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental...

  18. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  19. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  20. Polycomb Group Proteins: Multi-Faceted Regulators of Somatic Stem Cells and Cancer

    Science.gov (United States)

    Sauvageau, Martin; Sauvageau, Guy

    2016-01-01

    Polycomb Group (PcG) proteins are transcriptional repressors that epigenetically modify chromatin and participate in the establishment and maintenance of cell fates. These proteins play important roles in both stem cell self-renewal and in cancer development. Our understanding of their mechanism of action has greatly advanced over the past 10 years, but many unanswered questions remain. In this review, we present the currently available experimental data that connect PcG protein function with some of the key processes which govern somatic stem cell activity. We also highlight recent studies suggesting that a delicate balance in PcG gene dosage is crucial for proper stem cell homeostasis and prevention of cancer stem cell development. PMID:20804967

  1. The effects of dry-off therapy on milk somatic cell count in Saanen goats

    OpenAIRE

    BAŞTAN, Ayhan; SALAR, SEÇKİN; ACAR, Duygu BAKİ; DEMİREL, MÜRŞİDE AYŞE; CENGİZ, Mehmet; DARBAZ, İSFENDİYAR; BULUT, GAYE

    2015-01-01

    The aim of this study was to determine the effectiveness of dry-off antibiotic therapy and teat sealant on somatic cell count (SCC) in Saanen goats. The goats were randomly divided into 3 groups. In Groups I (n = 50) and II (n = 50), the goats were treated with intramammary antibiotics and a combination of intramammary antibiotics and internal teat sealant at dry-off, respectively. The animals in Group III (n = 50) were designated as the control group. For the SCC analysis and bacteriological...

  2. Effect of weather conditions on somatic cell score in Sicilian Valle del Belice ewes

    Directory of Open Access Journals (Sweden)

    B. Portolano

    2010-04-01

    Full Text Available Mastitis susceptibility of Valle del Belice ewes from the south of Sicily to temperature, humidity, precipitation, solar radiation, sun hours, air pressure, wind-speed and wind-direction measured by a public weather station was investigated using 65,848 test-day somatic cell score (SCS records of 5,237 ewes. All weather parameters had an effect on SCS in a regression approach. Extreme values of maximum and minimum temperaturehumidity indices resulted in increased SCS. Higher precipitation, solar radiation and sun hours resulted in increased SCS, whereas higher air pressure and wind speed resulted in reduced SCS.

  3. Seasonal and Milking-to-Milking Variations in Cow Milk Fat, Protein and Somatic Cell Counts

    OpenAIRE

    Elena Raluca PAVEL; Constantin GAVAN

    2011-01-01

    The first objective of this study was to examine milking-to-milking variations in milk fat, protein and SCC (somatic cell count). The second objective of this study was to examine variations of milk components (fat, protein and SCC) over a period of six months (April-September 2010) at Agricultural Research Development Station Simnic. A total of 128 milk samples (64 morning milking and 64 evening milking ones) from milk bulk tank commingled from 90�4 Holstein cows, were collected and analyzed...

  4. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated.

    Science.gov (United States)

    Harrop, Richard; Ryan, Matthew G; Myers, Kevin A; Redchenko, Irina; Kingsman, Susan M; Carroll, Miles W

    2006-09-01

    5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26-h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26-h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model. PMID:16311730

  5. Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system.

    Science.gov (United States)

    Kothapalli, Nagarama; Fugmann, Sebastian D

    2011-01-01

    The secondary immunoglobulin gene diversification processes, somatic hypermutation (SHM), immunoglobulin gene conversion (GCV), and class switch recombination, are important for efficient humoral immune responses. They require the action of activation-induced cytidine deaminase, an enzyme that deaminates cytosine in the context of single-stranded DNA. The chicken DT40 B-cell line is an important model system for exploring the mechanisms of SHM and GCV, as both processes occur constitutively without the need for stimulation. In addition, standard gene targeting strategies can be used for defined manipulations of the DT40 genome. Thus, these cells represent an excellent model of choice for genetic studies of SHM and GCV. Problems arising from defects in early B-cell development that are of concern when using genetically engineered mice are avoided in this system. Here, we describe how to perform gene targeting in DT40 cells and how to determine the effects of such modifications on SHM and GCV. PMID:21701980

  6. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood.

    Science.gov (United States)

    Shemesh, Netta; Shai, Nadav; Ben-Zvi, Anat

    2013-10-01

    All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC-dependent modulation of proteostasis requires several different signaling pathways, including hsf-1 and daf-16/kri-1/tcer-1, daf-12, daf-9, daf-36, nhr-80, and pha-4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma. PMID:23734734

  7. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models.

    Science.gov (United States)

    Monniaux, Danielle

    2016-07-01

    This review focuses on the role of the dialog between the oocyte and its companion somatic cells in driving folliculogenesis from the primordial to the preovulatory follicle stage. Mouse and sheep genetic models have brought complementary evidence of these cell interactions and their consequences for ovarian function. In mouse, the deletion of genes encoding connexins has shown that functional gap junction channels between oocytes and granulosa cells and between granulosa cells themselves maintain the follicle in a functionally integrated state. Targeted deletions in oocytes or granulosa cells have revealed the cell- and stage-specific role of ubiquist factors belonging to the phosphatidylinositol 3 kinase signaling pathway in primordial follicle activation, oocyte growth and follicle survival. Various models of transgenic mice and sheep carrying natural loss-of-function mutations associated with sterility have established that the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor 9 orchestrate follicle development, support cumulus metabolism and maturation and participate in oocyte meiosis arrest. Unexpectedly in sheep, mutations resulting in the attenuation of BMP signaling lead to enhanced ovulation rate, likely resulting from a lowered follicular atresia rate and the enhancement of FSH-regulated follicular maturation. Both the activation level of BMP signaling and an adequate equilibrium between BMP15 and growth differentiation factor 9 determine follicle survival, maturation, and development toward ovulation. The physiological approaches which were implemented on genetic animal models during the last 20 years have opened up new perspectives for female fertility by identifying the main signaling pathways of the oocyte-somatic cell dialog. PMID:27155734

  8. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  9. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford;

    2010-01-01

    stereological methods were used to estimate gonadal cell numbers in histological sections. Results were also evaluated in the context of previously published data on ovaries from our laboratory. RESULTS: A significant reduction in the number of germ cells by 55% [95% confidence interval (CI) 74-21% reduction, P......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...

  10. The influence of somatic cell count on sheep milk composition and cheese-making properties

    Directory of Open Access Journals (Sweden)

    M. Todaro

    2010-01-01

    Full Text Available Somatic cell count (SCC is an important tool for monitoring intramammary infections in dairy cows. However, systematic generalization of this decision rule is not easy in small ruminants. Determination of SCC in sheep milk is important for the processors of milk (indicator of quality, for breeders (mastitis indicator and could be useful for selection as well. SCC value can be affected by some non-infective factors such as breed, stage of lactation, parity, type of lambing, type of milking, etc. (Bergonier et al., 1994, as well the health status of the udder (Fruganti et al., 1985; Ranucci et al., 1988. In addition, EC Directive 92/46, which regulates the production and commercialisation of milk and dairy products, imposes strict limits on SCC from dairy cattle but it does not dispel the uncertainty over recommended SCC levels in small ruminants.With the aim of knowing more about somatic cells count and their effects on milk quality and cheese-making properties an experimental trial was carried out.

  11. Estimation of (covariance components of nematode parasites resistance and somatic cell count in dairy sheep

    Directory of Open Access Journals (Sweden)

    Sara Casu

    2010-01-01

    Full Text Available Nematode parasites and mastitis are the major animal health constraints in sheep. The aim of this study was estimating the genetic (covariances of nematode parasites resistance and somatic cell count in dairy sheep. From 2000 to 2008, Somatic Cell Score (SCS and Faecal Egg Count (FEC records were available on an experimental population consisting of 949 backcross ewes and 806 their daughters. Data were processed independently for each subpopulation in order to adjust for specific environmental effects and to obtain lactation records for both traits to be used in the genetic analysis. Variance components estimation was performed by using the REML method applied to a bi-trait repeatability animal model. Heritabilities of lactation SCS (LSCS and FEC were 0.19 and 0.16. Genetic correlation was 0.21, whereas phenotypic correlation was 0.01. The estimated heritabilities confirm that both traits could be selected by the classical quantitative approach. The genetic correlation estimate between LSCS and FEC suggests that selection for one of the two traits would not have any detrimental effect on the other one.

  12. Genetic parameters for test day somatic cell score in Brazilian Holstein cattle.

    Science.gov (United States)

    Costa, C N; Santos, G G; Cobuci, J A; Thompson, G; Carvalheira, J G V

    2015-01-01

    Selection for lower somatic cell count has been included in the breeding objectives of several countries in order to increase resistance to mastitis. Genetic parameters of somatic cell scores (SCS) were estimated from the first lactation test day records of Brazilian Holstein cows using random-regression models with Legendre polynomials (LP) of the order 3-5. Data consisted of 87,711 TD produced by 10,084 cows, sired by 619 bulls calved from 1993 to 2007. Heritability estimates varied from 0.06 to 0.14 and decreased from the beginning of the lactation up to 60 days in milk (DIM) and increased thereafter to the end of lactation. Genetic correlations between adjacent DIM were very high (>0.83) but decreased to negative values, obtained with LP of order four, between DIM in the extremes of lactation. Despite the favorable trend, genetic changes in SCS were not significant and did not differ among LP. There was little benefit of fitting an LP of an order >3 to model animal genetic and permanent environment effects for SCS. Estimates of variance components found in this study may be used for breeding value estimation for SCS and selection for mastitis resistance in Holstein cattle in Brazil. PMID:26782564

  13. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  14. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  15. Behavioral observations of adolescent Holstein heifers cloned from adult somatic cells.

    Science.gov (United States)

    Savage, Amy F; Maull, John; Tian, X Cindy; Taneja, Maneesh; Katz, Larry; Darre, Michael; Yang, Xiangzhong

    2003-10-01

    Cloning using somatic cells offers many potential applications in biomedicine and basic research. The objective of this study was to test whether clones from the same genotype can be used as models to study the genetic influences of behavior. Specifically, several aspects of the behavior of four prepubertal heifers cloned from somatic cells of a 13-year-old Holstein cow along with age-matched control heifers were compared to determine whether juvenile clones from an aged adult behave similarly to their age-matched controls, and whether clones with identical genetic makeup exhibit any behavioral trends. Behavioral observations or behavior challenge tests were conducted to compare the following traits: vocalization, play behavior, movement frequencies, grooming, curiosity, and companion preference, as well as dominance and aggressiveness. From play behavior, movements and vocalization, we observed that these four juvenile clones of an aged genetic donor did not show behavioral indications of aging and were similar to their counterparts of comparable chronological age except that they tended to play less than controls. Behavioral trends were also observed in the clones that indicated that they exhibited higher levels of curiosity, more grooming activities and were more aggressive and dominant than controls. Furthermore, these four clones preferred each other or the donor as companions, which may indicate genetic kin recognition. PMID:12935849

  16. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  17. Blood count and number of somatic cells in milk of cows infected with Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Radinović Miodrag

    2011-01-01

    Full Text Available The objective of the work was to examine the intensity of the local immune response of the mammary gland and the changes in the differential blood count of chronically infected cows. An experiment was performed on a group of cows with Q fever serologically proven using the ELISA test (IDEXX. Based on the ELISA test results, an experimental group of ten infected cows was formed. Blood was sampled from the experimental cows, and cumulative milk samples were taken. The number of erythrocytes was determined spectrophotometrically, and the number of leucocytes using the method according to Bürker - Türk. The blood analysis established an increased number of erythrocytes, while the number of leucocytes was within the limits of physiological values. The milk samples were used for the determination of the number of somatic cells using flow cytometric measurements. The processing of the milk samples established an average number of somatic cells of 853.000 /mL milk.

  18. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers.

    Science.gov (United States)

    Bao, Bin; Azmi, Asfar S; Ali, Shadan; Zaiem, Feras; Sarkar, Fazlul H

    2014-06-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  19. EFFECT OF THE COW AGE GROUP AND LACTATION STAGE ON THE COUNT OF SOMATIC CELLS IN COW MILK

    Directory of Open Access Journals (Sweden)

    Beata SITKOWSKA

    2008-07-01

    Full Text Available The aim of the paper was to evaluate the effect of the cow age group and lactation stage on the count of somatic cells in cow milk. The analysis was made based on the breeding documentation of 11359 test yields from cows representing twelve herds in the Kujawy and Pomorze Province. All the animals researched calved for the first time in 2001. The numerical data were verified statistically with the analysis of variance following GLM procedure, considering the effect of the herd, father, sampling month, cow groups (primiparas, multiparas, lactation stage at which the sample was taken. The effect of these factors on basic milking yield and the content of somatic cells were mostly highly significant. It was observed that depending on the milk use length in cows during lactation, the content of somatic cells in milk increased, and the yield of milk, fat and protein decreased.

  20. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  1. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells.

    Science.gov (United States)

    Juliano, Celina E; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A; Wessel, Gary M; Steele, Robert E; Lin, Haifan

    2014-01-01

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095

  2. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  3. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms. PMID:25564763

  4. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  5. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C.

    Science.gov (United States)

    Chen, Huanhuan; Zhang, Lei; Guo, Zekun; Wang, Yongsheng; He, Rongjun; Qin, Yumin; Quan, Fusheng; Zhang, Yong

    2015-11-01

    Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos. PMID:26212732

  6. Microprojectile delivery to DNA to leaf cells in Dactylis glomerata and its expression in somatic embryos

    International Nuclear Information System (INIS)

    Development of techniques for gene transfer by bombardment with DNA coated microprojectiles has greatly expanded the potential for obtaining transgenic plants in cereals and grasses and has been successfully used in several species. The leaf culture system in Dactylis glomerata L. (orchardgrass), in which embryos initiate and develop from single mesophyll cells, is especially attractive for gene transfer experiments. Tillers were selected from greenhouse grown plants of Embryogen-P orchardgrass, and leaf segments were plated on SH medium with 30 μM dicamba (SH30). Tungsten particles were coated with DNA plasmids containing the bar gene that encodes for phosphinotricin resistance (the active ingredient of the herbicides bialaphos and Basta), and the uidA gene that encodes the enzyme β-glucuronidase (GUS). Both genes were under control of either the CaMV35S or the maize ubiquitin Ubi1 promoter. Microprojectile bombardment was conducted with a particle inflow gun. Six of these plants showed no reaction when the leaves were treated with 0.01% Basta, indicating resistance to the herbicide. The leaf tissue from these plants produced somatic embryos when cultured on medium containing 1.5% bialaphos. Somatic embryos from the leaf tissue of the regenerated plans also stained blue when treated with X-gluc. Putative transformations for both genes were confirmed by polymerase chain reaction techniques. 5 refs, 2 figs

  7. Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in Drosophila somatic cells.

    Directory of Open Access Journals (Sweden)

    Andrew T Schuster

    2013-10-01

    Full Text Available Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1 higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2 increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin

  8. Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface

    Science.gov (United States)

    Chueh, Pin-Ju; Kim, Chinpal; Cho, NaMi; Morre, Dorothy M.; Morre, D. James

    2002-01-01

    NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.

  9. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment

    International Nuclear Information System (INIS)

    Chimeric chloramphenicol acetyltransferase and β-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10-3 and 6 x 10-4, respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy

  10. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  11. Relationship between mastitis causative pathogens and somatic cell counts in milk of dairy cows

    Directory of Open Access Journals (Sweden)

    Sharaf Eldeen Idriss

    2013-12-01

    Full Text Available Milk somatic cell count is a key component of national and international regulation for milk quality and an indicator of udder health and of the prevalence of clinical and subclinical mastitis in dairy herds. The objective of this study was to evaluate the presence of mastitis pathogens in milk samples differed by somatic cell count (SCC in microbiologically positive samples. Also frequency of distribution of samples differed by SCC were studied in non infected samples as well. The milk samples were collected from individual quarters from the dairy farms located in Nitra region with problematic udder health of herd for SCC and bacteriological analysis. Totally, 390 milk samples were examined, and 288 (73.85% positive milk samples were detected. Four SCC groups of samples (400×103 /ml were used to identify presence of microorganisms in positive samples. The most frequently isolated pathogens in samples with high SCC >400×103 /ml according to year were Coagulase-negative Staphylococci (29.11 % in 2012, followed by Staphylococcus aureus (28.0% in 2010, yeasts (24.05% in 2012, Escherichia coli (22.78% in 2012, Bacillus sp. (20% in 2010 and Pseudomonas aerugenosa (11.88% in 2011. Coagulase-negative Staphylococci (66.67% were the predominantly identified in the samples with low SCC <100×103 cells/ml, followed by Bacillus spp (50%, Entrococcus spp. (33.33% and Staphylococcus aureus (16.67% and E. coli (16.67%. The results of this study indicated that the SCC of individual milk samples corresponded with the health status of the udder of dairy cows represented by presence of mastitis microorganisms in milk. However, the contamination of milk samples could be also connected with low SCC. On the ohter side the samples with high SCC were found out without presence of microorganism. The further study is needed to identify the reason of high SCC in milk from negative samples.

  12. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. PMID:26604326

  13. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    Directory of Open Access Journals (Sweden)

    Olofsson Ida

    2011-03-01

    Full Text Available Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC by California Mastitis Test (CMT and direct measurement of SCC using a portable deLaval cell counter (DCC are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT corresponded to direct measurement of SCC (DCC. Method Udder half milk samples were collected once from dairy goats (n = 111, in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory. Results Intramammary infection, defined as growth of udder pathogens, was found in 39 (18% of the milk samples. No growth was found in 180 (81% samples while 3 (1% samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS (72% of all isolates, followed by Staphylococcus aureus (23% of all isolates. Somatic cell count measured by DCC was strongly (p = 0.000 associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC. Conclusions According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a

  14. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  15. Relationship of Somatic Cell Count with Milk Yield and Composition in Chinese Holstein Population

    Institute of Scientific and Technical Information of China (English)

    GUO Jia-zhong; LIU Xiao-lin; XU A-juan; XIA Zhi

    2010-01-01

    The objective of this study was to analyze the relationship of somatic cell count(SCC)with milk yield,fat and protein percentage,fat and protein yield using analysis of variance and correlation analysis in Chinese Holstein population.The10 524 test-day records of 568 Chinese Holstein Cattle were obtained from 2 commercial herds in Xi'an region of China during February 2002 to March 2009.Milk yield,fat percentage,fat and protein yield initially increased and then dropped down with parity,whereas protein percentage decreased and SCC increased.Analysis of variance showed highly significant effects of different subclasses SCC on milk yield and composition(P0.05).The results of the present study first time provide the relevant base-line data for assessing milk production at Xi'an region of China.

  16. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans.

    Science.gov (United States)

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W

    2014-12-16

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  17. Herd level approach to high bulk milk somatic cell count problems in dairy cattle.

    Science.gov (United States)

    Barkema, Herman W; De Vliegher, Sarne; Piepers, Sofie; Zadoks, Ruth N

    2013-06-01

    Since the introduction of the standard mastitis prevention program in the late 1960s, enormous progress has been made in decreasing the average bulk milk somatic cell count (BMSCC). In many countries, reduction of BMSCC has been encouraged through premium payments or penalty systems. However, the success of the program depends heavily on consistent implementation of management practices. The approach to problem solving in a herd with high BMSCC must include the following elements: (1) problem definition using primary udder health parameters; (2) detection of cows causing the problem; (3) definition of short- and long-term goals; (4) formulation and implementation of a herd management plan; and (5) evaluation of the results. Findings and plans are recorded for use at follow-up visits. Every high BMSCC problem can be solved if farmers are sufficiently motivated, if farm advisors are sufficiently knowledgeable, and if farmer and advisors work together according to a jointly determined plan. PMID:23706026

  18. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cases...... of mastitis. Here, putative mastitis statuses and breeding values for liability to putative mastitis were inferred solely from SCS observations. In total, there were 395,906 test-day records for SCS from 50,607 Danish Holstein cows. Four different statistical models were fitted: A) a classical...... from IMI- udders relative to SCS from IMI+ udders. Further, the genetic correlation between SCS of IMI- and SCS of IMI+ was 0.61, and heritability for liability to putative mastitis was 0.07. Models B2 and C allocated approximately 30% of SCS records to IMI+, but for model B1 this fraction was only 10...

  19. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  20. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Science.gov (United States)

    Wu, Xiaoyun; Shi, Zhen; Cui, Mingxue; Han, Min; Ruvkun, Gary

    2012-01-01

    The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. PMID:22412383

  1. Reprogramming resistant genes: in-depth comparison of gene expressions among iPS, ES and somatic cells.

    Directory of Open Access Journals (Sweden)

    Natalia ePolouliakh

    2013-01-01

    Full Text Available Transcription factor based reprogramming reverts adult cells to an embryonic state, yielding potential for generating different tissue types. However, recent reports indicated the substantial differences in pattern of gene expression between induced pluripotent stem (iPS cells and embryonic stem (ES cells. In this study we compare gene expression signatures of different iPS and ES cell lines and relate expression profiles of differently expressed genes to their expression status in somatic cells. As a result, we discovered that genes resistant to reprogramming comprise two major clusters, which are reprogramming dependent ‘Induced Genes’ and somatic origin ‘Inherited Genes’, both exhibiting preferences in methylation marks. Closer look into the Induced Genes by means of the transcription regulation analysis predicted several groups of genes with various roles in reprogramming and transgene DNA binding model. We believe that our results are a helpful source for biologists for further improvement of iPS cell technology.

  2. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  3. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells

    Science.gov (United States)

    Williams, Alan M.; Maman, Yaakov; Alinikula, Jukka; Schatz, David G.

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  4. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells.

    Science.gov (United States)

    Williams, Alan M; Maman, Yaakov; Alinikula, Jukka; Schatz, David G

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  5. GeneticParameters for Milk Somatic Cell Score and Relationships with Production Traits in Primparous Dairy Sheep

    NARCIS (Netherlands)

    Riggio, V.; Finocchiaro, R.; Kaam, van J.B.C.H.M.; Portolano, B.; Bovenhuis, H.

    2007-01-01

    A total of 13,066 first-lactation test-day records of 2,277 Valle del Belice ewes from 17 flocks were used to estimate genetic parameters for somatic cell scores (SCS) and milk production traits, using a repeatability test-day animal model. Heritability estimates were low and ranged from 0.09 to 0.1

  6. Effect of somatic cell count level on functional longevity in Valle del Belice dairy sheep assessed using survival analysis

    NARCIS (Netherlands)

    Riggio, V.; Maizon, D.O.; Portolano, B.; Bovenhuis, H.; Arendonk, van J.A.M.

    2009-01-01

    The objectives of this study were to evaluate the effect of somatic cell count (SCC) on functional longevity and to estimate the heritability of functional longevity using survival analysis in Valle del Belice dairy sheep. A total of 4,880 lactations of 2,190 ewes from 11 flocks were used. In this s

  7. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  8. Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in danish holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Guldbrandtsen, Bernt; Thomasen, J.R.;

    2008-01-01

    The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate...

  9. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats

    DEFF Research Database (Denmark)

    Stuhr, T; Aulrich, K; Barth, K;

    2013-01-01

    At present the analysis of somatic cell count (SCC) used for the detection of intramammary infections (IMI) in bovine milk is also recommended for goat milk, but due to the various factors influencing SCC it allows only limited conclusions on the udder health of goats. The research on enzyme...

  10. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would optimal

  11. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner

    International Nuclear Information System (INIS)

    Tumor-associated macrophages (TAMs) are known to promote cancer progression and metastasis through the release of a variety of cytokines. Phosphatase of regenerating liver (PRL-3) has been considered as a marker of colorectal cancer (CRC) liver metastasis. Our previous research suggests that PRL-3 can enhance the metastasis of CRC through the up-regulation of intermediate-conductance Ca2+-activated K+ (KCNN4) channel, which is dependent on the autocrine secretion of tumor necrosis factor-alpha (TNF-α). However, whether TAMs participate in the progression and metastasis of CRC induced by PRL-3 remains unknown. We used flow cytometry, coculture, western blotting, invasion assays, real-time quantitative PCR, chromatin immunoprecipitation, luciferase reporter assays, and immunofluorescence staining to determine the effect of TAMs on the ability of PRL-3 to promote invasiveness of CRC cells. In this study, we found that TAMs facilitated the metastasis of CRC induced by PRL-3. When TAMs were cocultured with CRC cells, the expression of KCNN4 was increased in TAMs and the invasion of CRC cells was enhanced. Furthermore, cytokines that were secreted by TAMs, such as IL-6 and IL-8, were also significantly increased. This response was attenuated by treating TAMs with the KCNN4 channel-specific inhibitor, 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34), which suggested that KCNN4 channels may be involved in inducing the secretion of IL-6 and IL-8 by TAMs and improving CRC cell invasiveness. Moreover, the expression of KCNN4 channels in TAMs was regulated through the NF-κB signal pathway, which is activated by TNF-α from CRC cells. Immunofluorescence analysis of colorectal specimens indicated that IL-6 and IL-8 double positive cells in the stroma showed positive staining for the TAM marker CD68, suggesting that TAMs produce IL-6 and IL-8. Increased numbers of these cells correlated with higher clinical stage. Our findings suggested that TAMs participate in the

  12. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-07-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3/sup -/, CD4/sup +/, CD1/sup +/, CD8/sup +/, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor ..cap alpha.. chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig/sup +/, B1/sup +/, B532/sup +/, EBNA/sup +/, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor ..beta..-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor ..cap alpha..-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression.

  13. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3-, CD4+, CD1+, CD8+, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig+, B1+, B532+, EBNA+, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  14. Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice.

    Science.gov (United States)

    Bagri, Preeti; Kumar, Vinod; Sikka, Anil K

    2016-10-01

    Pesticides are being used for plant protection to increase food protection and to reduce insect-borne diseases worldwide. Exposure to the pesticides may cause genotoxic effects on both the target and nontarget organisms, including man. Therefore, the mutagenicity evaluation of such pesticides has become a priority area of research. Imidacloprid (IMI), a neonicotinoid insecticide, is widely used in agriculture either alone or in combination with other insecticides. A combined approach employing micronucleus test (MNT) and chromosomal aberrations assay (CA) was utilized to assess the mutagenicity of imidacloprid in bone marrow of Swiss albino male mice. IMI suspension was prepared in 3% gum acacia and administered at doses of 5.5, 11 and 22 mg/kg body weight for 7, 14 and 28 days to mice. IMI treatment resulted in a dose and time-dependant increase in the frequencies of micronuclei per cell and chromosomal aberrations in bone marrow cells. A statistically significant increase in chromosomal aberrations and micronuclei/cell was found only after daily treatment of IMI at highest selected dose (22 mg/kg body weight) for longest selected time period (28 days) compared to the control group. Thus, daily exposure of imidacloprid at a dose level of 22 mg/kg body weight for 28 days caused mutagenic effects on the somatic cells of Swiss albino male mice. PMID:26823062

  15. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    Full Text Available This work was aimed to investigate relationship between plasma vitamin E concentration and milk somatic cell count in healthy cows in commercial herds. 49 multiparous cows from two commercial dairy herds were monitored from the day of dry off until 90 DIM. BCS was assessed and blood samples were collected at dry off, day 0, 30, 60 and 90 postpartum. Plasma was analyzed for α-tocopherol content. Quantification of NEFA, BOHB, Zn and Se was performed in serum samples. Milk production and composition was obtained from routinely test-day of Italian milk producers association. Somatic Cell Score (SCS was calculated and included in the dataset. Analysis of data was performed using MIXED repeated and CORR procedures of SAS.We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  16. Improved development of somatic cell cloned mouse embryos by vitamin C and latrunculin A.

    Directory of Open Access Journals (Sweden)

    Anna Mallol

    Full Text Available Impaired development of embryos produced by somatic cell nuclear transfer (SCNT is mostly associated with faulty reprogramming of the somatic nucleus to a totipotent state and can be improved by treatment with epigenetic modifiers. Here we report that addition of 100 μM vitamin C (VitC to embryo culture medium for at least 16 h post-activation significantly increases mouse blastocyst formation and, when combined with the use of latrunculin A (LatA during micromanipulation and activation procedures, also development to term. In spite of this, no significant effects on pluripotency (OCT4 and NANOG or nuclear reprogramming markers (H3K14 acetylation, H3K9 methylation and DNA methylation and hydroxymethylation could be detected. The use of LatA alone significantly improved in vitro development, but not full-term development. On the other hand, the simultaneous treatment of cloned embryos with VitC and the histone deacetylase inhibitor psammaplin A (PsA, in combination with the use of LatA, resulted in cloning efficiencies equivalent to those of VitC or PsA treatments alone, and the effects on pluripotency and nuclear reprogramming markers were less evident than when only the PsA treatment was applied. These results suggest that although both epigenetic modifiers improve cloning efficiencies, possibly through different mechanisms, they do not show an additive effect when combined. Improvement of SCNT efficiency is essential for its applications in reproductive and therapeutic cloning, and identification of molecules which increase this efficiency should facilitate studies on the mechanism of nuclear reprogramming and acquisition of totipotency.

  17. The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSan™, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells.

    Science.gov (United States)

    Berven, Lise; Karppinen, Pernille; Hetland, Geir; Samuelsen, Anne Berit C

    2015-04-01

    AndoSan™ is an extract of Agaricus blazei Murill (AbM; 82.4%), Hericium erinaceum (14.7%), and Grifola frondosa (2.9%). The main ingredient of AndoSan, AbM, is rich in different forms of β-glucans. Since these exhibit potent antitumor activity and have immunomodulatory effects, the stimulatory effect of AndoSan on the production of different cytokines, chemokines, and leukocyte growth factors has predominantly been attributed to β-glucans. AndoSan has been claimed to consist of 90% carbohydrate, of which 2.8% is β-glucans, but in this study, we show that the carbohydrate content is only 2% of the dry weight, corresponding to 0.09% β-glucan per mL of AndoSan. Fractionation of AndoSan, followed by carbohydrate analysis and HPLC analysis revealed that most of the glucose was concentrated in the polar high molecular weight fraction of AndoSan (ethanol insoluble water extract [EIWE]-A) and that this extract was able to significantly inhibit the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. Legumain is synthesized as a zymogen and undergoes pH-dependent autoactivation of the proform to reach an enzymatically active form. In this study, we demonstrate that both the polar and nonpolar AndoSan fractions are able to inhibit the autoactivation of prolegumain, and that the polar fractions of AndoSan are the most potent inhibitors of the active form of the enzyme. PMID:25136950

  18. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    Science.gov (United States)

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  19. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    Science.gov (United States)

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  20. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LIU ZhongHua; SUN Shuang; LI YuTian; WANG HongBin; R S PRATHER; SONG Jun; WANG ZhenKun; TIAN JiangTian; KONG QingRan; ZHENG Zhong; YIN Zhi; GAO Li; MA HaiKun

    2008-01-01

    Transgenic somatic cell nuclear transfer is a very promising route for producing transgenic farm ani-mals. Research on GFP transgenic pigs can provide useful information for breeding transgenic pigs, human disease models and human organ xenotransplantation. In this study, a liposomal transfection system was screened and transgenic embryos were reconstructed by nuclear transfer of GFP positive cells into enucleated in vitro matured oocytes. The development of reconstructed embryos both in vitro and in vivo was observed, and GFP expression was determined. The results showed that porcine fe-tal-derived fibroblast cells cultured with 4.0 plJmL liposome and 1.6 pg/mL plasmid DNA for 6 h re-sulted in the highest transfection rate (3.6%). The percentage of GFP reconstructed embryos that de-veloped in vitro to the blastocyst stage was 10%. Of those the GFP positive percentage was 48%. Re-constructed transgenic embryos were transferred to 10 recipients. 5 of them were pregnant, and 3 de-livered 6 cloned piglets in which 4 piglets were transgenic for the GFP as verified by both GFP protein expression and GFP DNA sequence analysis. The percentage of reconstructed embryos that resulted in cloned piglets was 1.0%; while the percentage of piglets that were transgenic was 0.7%. This is the first group of transgenic cloned pigs born in China, marking a great progress in Chinese transgenic cloned pig research.

  1. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    Science.gov (United States)

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  2. Use of domestic detergents in the California mastitis test for high somatic cell counts in milk.

    Science.gov (United States)

    Leach, K A; Green, M J; Breen, J E; Huxley, J N; Macaulay, R; Newton, H T; Bradley, A J

    2008-11-01

    The California mastitis test (CMT) is used on farms to identify subclinical mastitis by an indirect estimation of the somatic cell count (SCC) in milk. Four commercially available detergents were compared with a bespoke cmt fluid for their ability to detect milk samples with a scc above 200,000 cells/ml; differences between the interpretation of the results of the tests by eight operators were also investigated. The sensitivity and specificity of the test were affected by the type of detergent, and by the operators' interpretations. When used by the most sensitive operator, suitably diluted Fairy Liquid performed almost identically to cmt fluid in identifying milk samples with more than 200,000 cells/ml. The average sensitivities achieved by the eight operators for detecting this threshold were 82 per cent for Fairy Liquid and 84 per cent for cmt fluid, and the specificities were 93 and 91 per cent respectively. The other detergents contained less anionic surfactants and were less sensitive but similarly specific. PMID:18997186

  3. Determination of methyl methanesulfonate pretreatment effect in Drosophila melanogaster larvaes upon repair mechanisms in somatic cells

    International Nuclear Information System (INIS)

    To make evident the existence of SOS repair mecanism in somatic cells, larvaes of drosophila melanogaster with MWH markers for females and FLR markers for males were used. This larvaes received a pretreatment with MMS at concentrations of 0.0007% and 0.0014% during 24 hours and latter a treatment with gamma rays at different dosis. SMART program was used to make stastistical evaluations. Small spots were observed which can have two origins. First could be damage in the last part of third stage in which cells are in last divisions and second could be the damage to larvaes in early stages in shich pretreatment with MMS cause lesions which prevent the reproduction of the cells. Also big spots were observed which presence is due to recombination. It was detected than the bigger the concentration of MMS and radiation dose, the bigger the induced damage. In some groups such observation was impossible may be to technical problems as relative humidity, out of phase in the growth of larvaes giving place that treatment were given in three stages. For this reasons it was impossible to discriminate if drosophila melanogaster is wheter or not capable to induce a repair mechanism (Author)

  4. Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Wrana

    2011-01-01

    Full Text Available The dramatic discovery that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs, by the expression of just four factors, has opened new opportunities for regenerative medicine and novel ways of modeling human diseases. Extensive research over the short time since the first iPSCs were generated has yielded the ability to reprogram various cell types using a diverse range of methods. However the duration, efficiency, and safety of induced reprogramming have remained a persistent limitation to achieving a robust experimental and therapeutic system. The field has worked to resolve these issues through technological advances using non-integrative approaches, factor replacement or complementation with microRNA, shRNA and drugs. Despite these advances, the molecular mechanisms underlying the reprogramming process remain poorly understood. Recently, through the use of inducible secondary reprogramming systems, researchers have now accessed more rigorous mechanistic experiments to decipher this complex process. In this review we will discuss some of the major recent findings in reprogramming, pertaining to proliferation and cellular senescence, epigenetic and chromatin remodeling, and other complex cellular processes such as morphological changes and mesenchymal-to-epithelial transition. We will focus on the implications of this work in the construction of a mechanistic understanding of reprogramming and discuss unexplored areas in this rapidly expanding field.

  5. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV), i...

  6. Effects of Histone Deacetylase Inhibitor Oxamflatin on In Vitro Porcine Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Hou, Liming; Ma, Fanhua; Yang, Jinzeng; Riaz, Hasan; Wang, Yongliang; Wu, Wangjun; Xia, Xiaoliang; Ma, Zhiyuan; Zhou, Ying; Zhang, Lin; Ying, Wenqin; Xu, Dequan; Zuo, Bo; Ren, Zhuqing

    2014-01-01

    Abstract Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro. PMID

  7. Outer Hair Cell Somatic Electromotility In Vivo and Power Transfer to the Organ of Corti

    OpenAIRE

    Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2012-01-01

    The active amplification of sound-induced vibrations in the cochlea, known to be crucial for auditory sensitivity and frequency selectivity, is not well understood. The outer hair cell (OHC) somatic electromotility is a potential mechanism for such amplification. Its effectiveness in vivo is putatively limited by the electrical low-pass filtering of the cell's transmembrane potential. However, the transmembrane potential is an incomplete metric. We propose and estimate two metrics to evaluate...

  8. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    OpenAIRE

    Kimiko Inoue; Mami Oikawa; Satoshi Kamimura; Narumi Ogonuki; Toshinobu Nakamura; Toru Nakano; Kuniya Abe; Atsuo Ogura

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor t...

  9. Loss of Wild-Type ATRX Expression in Somatic Cell Hybrids Segregates with Activation of Alternative Lengthening of Telomeres

    OpenAIRE

    Kylie Bower; Napier, Christine E.; Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L; Moy, Elsa L.; Reddel, Roger R

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repr...

  10. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, K P; Lutterodt, M C; Mamsen, L S;

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...... method, also enabling estimation of the fraction of cells in S or S+G(2)+M (SG(2) M) cell-cycle phases as indicators of cell proliferation....

  11. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Tasca Christian

    2011-04-01

    Full Text Available Abstract Background The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. Results The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Conclusions Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility

  12. Rex Rabbit Somatic Cell Nuclear Transfer with In Vitro-Matured Oocytes.

    Science.gov (United States)

    Liu, Yong; Wang, Huili; Lu, Jinhua; Miao, Yiliang; Cao, Xinyan; Zhang, Ling; Wu, Xiaoqing; Wu, Fengrui; Ding, Biao; Wang, Rong; Luo, Mingjiu; Li, Wenyong; Tan, Jinghe

    2016-06-01

    Somatic cell nuclear transfer (SCNT) requires large numbers of matured oocytes. In vitro-matured (IVM) oocytes have been used in SCNT in many animals. We investigated the use of IVM oocytes in Rex rabbit SCNT using Rex rabbit ovaries obtained from a local abattoir. The meiotic ability of oocytes isolated from follicles of different diameters was studied. Rex rabbit SCNT was optimized for denucleation, activation, and donor cell synchronization. Rex rabbit oocytes grew to the largest diameter (110 μm) when the follicle diameter was 1.0 mm. Oocytes isolated from 0.7-mm follicles acquired maturation ability. More than 90% of these oocytes matured after IVC for 18 h. The developmental potential of oocytes isolated from >1-mm follicles was greater than that of oocytes isolated from 0.7- to 1.0-mm follicles. The highest activation rates for IVM Rex rabbit oocytes were seen after treatment with 2.5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) and 5 μg/mL cycloheximide (CHX) for 1 h. Ionomycin induced the chromatin of IVM oocytes to protrude from the oocyte surface, promoting denucleation. Fetal fibroblast cells (FFCs) and cumulus cells (CCs) were more suitable for Rex rabbit SCNT than skin fibroblast cells (SFCs) (blastocyst rate was 35.6 ± 2.2% and 38.0 ± 6.0% vs. 19.7 ± 3.1%). The best fusion condition was a 2DC interval for 1 sec, 1.6 kV/cm voltages, and 40 μsec duration in 0.28 M mannitol. In conclusion, the in vitro maturation of Rex rabbit oocytes and SCNT procedures were studied systematically and optimized in this study. PMID:27159389

  13. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    Science.gov (United States)

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. PMID:15037999

  14. Dairy Herd Mastitis Program in Argentina: Farm Clusters and Effects on Bulk Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    C Vissio1*, SA Dieser2, CG Raspanti2, JA Giraudo1, CI Bogni2, LM Odierno2 and AJ Larriestra1

    2013-01-01

    Full Text Available This research has been conducted to characterize dairy farm clusters according to mastitis control program practiced among small and medium dairy producer from Argentina, and also to evaluate the effect of such farm cluster patterns on bulk milk somatic cell count (BMSCC. Two samples of 51 (cross-sectional and 38 (longitudinal herds were selected to identify farm clusters and study the influence of management on monthly BMSCC, respectively. The cross-sectional sample involved the milking routine and facilities assessment of each herd visited. Hierarchical cluster analysis was used to find the most discriminating farm attributes in the cross sectional sample. Afterward, the herd cluster typologies were identified in the longitudinal sample. Herd monthly BMSCC average was evaluated during 12 months fitting a linear mixed model. Two clusters were identified, the farms in the Cluster I applied a comprehensive mastitis program in opposite to Cluster II. Post-dipping, dry cow therapy and milking machine test were routinely applied in Cluster I. In the longitudinal study, 14 out of 38 dairy herds were labeled as Cluster I and the rest were assigned to Cluster II. Significant difference in BMSCC was found between cluster I and II (60,000 cells/mL. The present study showed the relevance and potential impact of promoting mastitis control practices among small and medium sized dairy producers in Argentina.

  15. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells.

    Science.gov (United States)

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C; Oliver, Rema A; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E; Nunez, Andrea C; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R; Purton, Louise E; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Walsh, William; Pimanda, John E

    2016-04-19

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  16. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus; Pedersen, Anette Møjbæk; Purup, Stig; Vajta, Gabor

    2007-01-01

    significantly improve blastocyst yield compared to the control (46.4 ± 4.6% vs 17.7 ± 4.9% for treated and untreated embryos, respectively; p < 0.05), whereas similar cleavage rate and total cell number per blastocyst were observed. In order to assess if the improvement is cell line specific, three cell lines...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  17. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  18. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    Science.gov (United States)

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease. PMID:26548627

  19. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.

    Science.gov (United States)

    Kroetz, Mary B; Zarkower, David

    2015-12-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  20. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. PMID:22580161

  1. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Science.gov (United States)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  2. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  3. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics.

    Science.gov (United States)

    Yerle, M; Echard, G; Robic, A; Mairal, A; Dubut-Fontana, C; Riquet, J; Pinton, P; Milan, D; Lahbib-Mansais, Y; Gellin, J

    1996-01-01

    A panel of 27 pig x rodent somatic cell hybrids was produced and characterized cytogenetically. The first step of this study consisted of hybridizing a SINE probe to GTG-banded metaphases of each hybrid clone in order to count and identify the normal pig chromosomes and to detect rearranged ones. The second step consisted of using the DNA of each clone as a probe after pIRS-PCR (porcine interspersed repetitive sequence-polymerase chain reaction) amplification to highly enrich it in pig sequences. These probes, hybridized to normal pig metaphase chromosomes, enabled the identification of the complete porcine complement in the hybrid lines. Whole chromosomes and fragments were characterized quickly and precisely, and results were compared. In addition to this cytogenetic characterization, molecular verification was also carried out by using primers specific to six microsatellites and to one gene previously mapped to pig chromosomes. The results obtained allow us to conclude that we have produced a panel that is informative for all porcine chromosomes. This panel constitutes a highly efficient tool to establish not only assignments of genes and markers but also regional localizations on pig chromosomes. PMID:8697807

  4. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  5. Effect of somatic cell count and lactation stage on sheep milk quality

    Directory of Open Access Journals (Sweden)

    Emilia Duranti

    2010-01-01

    Full Text Available In order to evaluate the effects of mammary health status and lactation phase on the qualitative parameters of ovinemilk, 213 individual milk samples were repeatedly collected from 40 primiparous Sarda ewes on a monthly basis. Yield,physico-chemical characteristics, casein fractions quantitative distribution, somatic cell count (SCC, cheese making propertiesand plasmin-plasminogen activity were determined on each sample. Repeated individual milk SCC were used as amarker of udder health status, allowing the definition of three classes: “Healthy” (H, “Infected” (I or “Doubtful” (D.Samples were grouped into 4 classes of days in milk (DIM. To evaluate the influence of mammary health status andphase of lactation, a mixed model was performed using the ewe as random effect. Milk physico-chemical parameters wereinfluenced both by the udder health status and by lactation phase. In particular, the udder health status adversely affectedαs1 and β1-casein fractions (Pand 64.60% in “H”, “D” and “I,” respectively. Lactation phase influenced the overall milk composition and technologicalcharacteristics. Plasmin activity was higher in the “I” group than in the others (16.1 vs 11.8 and 11.2 U/ml; Pit significantly (Pexert a detrimental effect on milk quality since they enhance its endogenous proteolytic activity.

  6. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    International Nuclear Information System (INIS)

    Highlights: ► We success serial SCNT through the third generation using pig fibroblasts. ► Donor-specific mtDNA in the recloned pigs was detected. ► SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A→T), 16062 (T→C), and 16135 (G→A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor’s mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  7. Cloned pigs derived from somatic cell nuclear transfer embryos cultured in vitro at low oxygen tension

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pig cloning has great potential to human xenotransplantation. The present study was designed to establish a more efficient system for producing cloned pigs by somatic cell nuclear transfer (SCNT). Our approach was as follows: SCNT embryos were reconstructed by using fetal fibroblasts of Chinese miniature pig as donors and in vitro matured oocytes of prepubertal gilts as recipients. Reconstructed embryos were induced by electrical fusion/activation and cultured in BSA-containing North Carolina State University 23 medium (NCSU-23) or Porcine Zygote Medium (PZM-3) at the gas condition of 5% CO2, 7% O2, 88% N2. A total of 230 cloned embryos were transferred to three surrogate sows, producing three piglets. One of them is apparently healthy. The clonal provenance of the piglet was indicated by its coat color and confirmed by DNA microsatellite analysis. These results indicate that the use of in vitro matured oocytes from prepubertal gilts as recipient, combined with cloned embryos cultured at low oxygen tension is an effective way to produce cloned pigs.

  8. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  9. Post-milking teat dip use in dairy herds with high or low somatic cell counts.

    Science.gov (United States)

    Erskine, R J; Eberhart, R J

    1991-12-15

    Milk samples for bacteriologic culture were submitted from 71 dairy herds, 24 with low somatic cell count (SCC) and 47 with high SCC and high prevalence of subclinical mastitis. At the time of sample submission to the Mastitis Diagnostic Laboratory of Pennsylvania State University, information regarding the herd mastitis control practices was collected. A combined program of post-milking teat dipping (PMTD) and antibiotic treatment of all cows at the start of the nonlactating period was practiced more frequently for herds with low SCC, (P less than 0.001) than for herds with high SCC. Among all herds for which PMTD was practiced, a higher proportion (P less than 0.001) of those for which chlorhexidine-based products were used had low SCC than high SCC. Conversely, a higher proportion of herds for which a dip with an acrylic latex barrier was used had high SCC rather than low SCC (P = 0.002). For herds with high prevalence of subclinical mastitis, and despite a program of PMTD and treatment of all cows at the start of the nonlactating period, a change to a different germicidal teat dip product may be indicated to help reduce prevalence of infection. PMID:1813466

  10. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina.

    Science.gov (United States)

    Baltian, L R; Ripoli, M V; Sanfilippo, S; Takeshima, S N; Aida, Y; Giovambattista, G

    2012-07-01

    Different studies have proved that the resistance/susceptibility to mastitis is genetically determined. The major histocompatibility complex in cows is known as bovine lymphocyte antigen (BoLA). Genes from the BoLA have been associated with the occurrence of infectious diseases such as mastitis and leukosis, especially the BoLA-DRB gene. The object of the present study was to detect associations between BoLA-DRB3 alleles and somatic cell count (SCC), as an indicator of resistance/susceptibility to mastitis in Holstein cattle (N = 123) from La Pampa, Argentina. Fisher's exact test and Woolf-Haldane odds ratio were applied to study the association between SCC and BoLA-DRB3 allele frequencies. Significant association was noted between BoLA-DRB3.2*23 and *27 alleles (p < 0.05) and protective or susceptibility effects, respectively. In addition, alleles BoLA-DRB3.2*20 and *25 exhibit suggestive association with high SCC (p < 0.1). These results were partially in agreement with data reported from Japanese Holstein cattle, but differed from those published by other authors. A possible explanation for the contrasting results could be that the mastitis is a multifactor disease caused by different pathogens. Moreover, most of the studies were carried out using PCR-RFLP method, which has less resolution than PCR-SBT because PCR-RFLP defined alleles included more than one sequenced alleles. PMID:22531932

  11. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    Science.gov (United States)

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  12. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Park, Min Jee; Lee, Seung Eun; Kim, Eun Young; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2015-06-01

    Bovine somatic cell nuclear transfer (SCNT) using vitrified-thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (pEVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential-related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen-thawed oocytes can be successfully achieved using optimized vitrification and co-culture techniques. PMID:25984830

  13. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  14. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    Science.gov (United States)

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p < 0.05), total cell number (93.0 ± 9.9 vs. 101.0 ± 9.8, p < 0.05), ratio of inner cell mass (ICM) to trophectoderm (TE) (0.29 ± 0.006 vs. 0.39 ± 0.005, p < 0.05), and apoptosis index in day 7 blastocysts (2.5 ± 0.22 vs. 8.7 ± 0.41, p < 0.05) compared to the control group. Although no statistical difference in pregnancy rate and birth rate was observed after embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos. PMID:27135251

  15. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  16. Somatic cell banking - An alternative technology for conservation of endangered sheep breeds

    International Nuclear Information System (INIS)

    cells but these were removed mechanically as well as enzymatically to get pure fibroblasts. Sub-culturing or 'splitting cells' was done periodically removing growth media, washing the plate, dissociating the cells and diluting cell suspension in fresh media. Standard growth curve: Whenever, a new batch of culture media supplement was introduced, it was checked for its efficacy for growth of cells in culture and compared with standard growth curve. Goat skin fibroblasts remained in lag phase for initial two days when they settled on the solid surface of culture vessel and then came to log phase when maximum growth took place spanning from the third to the seventh day. As the confluencey level increased and media supplement was depleted, cells stopped dividing and a plateau was attained from the eighth day onwards and then showed decline due to contact inhibition. Cell proliferation index: Under standard culture conditions, skin fibroblast cells divide once in 24 hours but it is rarely achieved in normal culturing. The population doubling time and cell proliferation rate per day were checked at regular interval for quality assessment. For this, ELISA based MTT assay, incorporation of 5-bromo-de-oxyuridine method, and flow cytometer methods were used. Evaluation of cells for ploidy level: During long-term culturing the cells are likely to develop one or other type of chromosomal abnormalities. It must be ensured that the cells in different passages be checked for normal ploidy so that viable clones can be developed from them. Cultures showing increased frequency of aneuploidy or polyploidy must be terminated from further passaging. DNA from cultured somatic cells can be isolated using available DNA isolation kits and checked for its quality on 2% agarose. Cryo-freezing of cells: Cells are best frozen as cell suspension. Healthy culture were always employed to provide the stock to freeze cells. The cells were frozen at controlled freezing rate. The cells were kept at -80

  17. Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs

    OpenAIRE

    Lee, Joohyeong; Park, Jong-Im; Yun, Jung Im; LEE, YONGJIN; Yong, Hwanyul; Lee, Seung Tae; Park, Choon-Keun; Hyun, Sang-Hwan; Lee, Geun-Shik; Lee, Eunsong

    2015-01-01

    This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blasto...

  18. Efficiency of somatic cell count and california mastitis test in the diagnosis of subclinical mastitis in terrincha ewes

    OpenAIRE

    Mendonça, Álvaro; Machado, M.; Tavares, A.; Quintas, Hélder; Valentim, Ramiro; Maurício, Raimundo; Cardoso, Manuel

    2012-01-01

    This study aimed to compare the efficiency of microbiological test with Californian Mastitis Test and somatic cell count in the diagnosis of Subclinical Mastitis (SM) in Terrincha sheep. Twenty-seven of a flock of about 200 Terrincha ewes (local breed) were studied for a period of 9 weeks (n > 497 samples). Milk samples were aseptically collected from each half udder once a week. At the same time, another sampled was collected from the bulk tank. After being transported to Lab under refrigera...

  19. STUDY REGARDING THE INFLUENCE OF SEASON AND LACTATION ORDER ON MILK YIELD, MAJOR COMPONENTS AND SOMATIC CELL COUNT OF MILK

    OpenAIRE

    S. ACATINCĂI; ADELA MARCU; L.T. CZISZTER; SIMONA BAUL; ANDREEA FERENCZ; D. GĂVOJDEAN

    2013-01-01

    The effects of lactation order and season on the milk production, chemical compositionand somatic cell number during a normal lactation (305 days) were studied. Researcheswere carried out on Romanian Black and White cows from the Didactical StationTimişoara. Cows calved in autumn and finished their lactation by the end of the nextyear. Milk production increased progressively in the second and third lactation, thusfat, protein and lactose yields increased, too. During the warm season (April-Se...

  20. A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis

    Indian Academy of Sciences (India)

    Pankaj Dubey; Prakash Joti; Krishanu Ray

    2016-06-01

    Odorant receptors (OR) heterodimerizes with the OR co-receptor (Orco), forming specific odorant-gated cation channels, which are key to odor reception at the olfactory sensory neurons (OSN). Mammalian ORs are expressed in many other tissues, including testis. However, their biological implications are yet to be fully ascertained. In the mosquito, Orco is localized along the sperm tail and is indicated to maintain fidelity. Here, we show that orco expresses in Drosophila testis. The levels are higher in the somatic cyst cells. The orco-null mutants are perfectly fertile at 25°C. At 28°C, the coiled spermatid bundles are severely disrupted. The loss of Orco also disrupts the actin cap, which forms inside the head cyst cell at the rostral ends of the spermatid nuclei after coiling, and plays a key role in preventing the abnormal release of spermatids from the cyst enclosure. Both the defects are rescued by the somatic cyst cell-specific expression of the UAS-orco transgene. These results highlight a novel role of Orco in the somatic tissue during sperm release.

  1. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments. PMID:21358981

  2. A role for XLF in DNA repair and recombination in human somatic cells.

    Science.gov (United States)

    Fattah, Farjana Jahan; Kweon, Junghun; Wang, Yongbao; Lee, Eu Han; Kan, Yinan; Lichter, Natalie; Weisensel, Natalie; Hendrickson, Eric A

    2014-03-01

    Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor. PMID:24461734

  3. Persistent chromosome aberrations in the somatic cells of A-bomb survivors, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Current status of knowledge on the radiation-induced chromosome aberrations persisting since their induction in 1945 to date in the somatic cells of A-bomb survivors in Hiroshima and Nagasaki is reviewed. Dose-response relationship for chromosome aberration frequencies observed with the use of the old A-bomb dosimetry system (T65D) is also demonstrable based on the new dosimetry system (DS86). Despite the fact that the remarkable decrease in the amount of neutron component relative to the total dose in Hiroshima, there still exist inter-city differences in aberration frequency per unit dose both for kerma and bone marrow dose; the dose-square term is smaller in Hiroshima than in Nagasaki. The differential contribution of neutron radiation may be responsible in some part for the observed difference between Hiroshima and Nagasaki, although proof still remains to be obtained. There is a wide variability of the frequency of cells with chromosome aberrations between survivors within a given dose range. Random errors in the dose estimates assigned to individual survivors seem responsible, to a large extent, for the observed overdispersions in aberration frequencies in both cities. New molecular biology-oriented techniques to differentially stain specific chromosomes using fluorescence in situ hybridization with chromosome-specific composite DNA probes seem extremely promising for future rapid, accurate and extensive screening of reciprocal translocations observed predominantly in A-bomb survivors. Such data may be utilized to establish a better biological dosimetry system, especially for those persons who are irradiated in vivo many years before cytogenetic examinations. (author)

  4. A proteomic perspective on the changes in milk proteins due to high somatic cell count.

    Science.gov (United States)

    Zhang, L; Boeren, S; van Hooijdonk, A C M; Vervoort, J M; Hettinga, K A

    2015-08-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 10(5) to 10(6) cells/mL were analyzed qualitatively and quantitatively using both one-dimension sodium dodecyl sulfate PAGE and filter-aided sample preparation coupled with dimethyl labeling, both followed by liquid chromatography tandem mass spectrometry. Minor differences were found on the qualitative level in the proteome from milk with different SCC levels, whereas the concentration of milk proteins showed remarkable changes. Not only immune-related proteins (cathelicidins, IGK protein, CD59 molecule, complement regulatory protein, lactadherin), but also proteins with other biological functions (e.g., lipid metabolism: platelet glycoprotein 4, butyrophilin subfamily 1 member A1, perilipin-2) were significantly different in milk from cows with high SCC level compared with low SCC level. The increased concentration of protease inhibitors in the milk with higher SCC levels may suggest a protective role in the mammary gland against protease activity. Prostaglandin-H2 D-isomerase showed a linear relation with SCC, which was confirmed with an ELISA. However, the correlation coefficient was lower in individual cows compared with bulk milk. These results indicate that prostaglandin-H2 D-isomerase may be used as an indicator to evaluate bulk milk quality and thereby reduce the economic loss in the dairy industry. The results from this study reflect the biological phenomena occurring during subclinical mastitis and in addition provide a potential indicator for the detection of bulk milk with high SCC. PMID:26094216

  5. Economic consequences of mastitis and withdrawal of milk with high somatic cell count in Swedish dairy herds

    DEFF Research Database (Denmark)

    Nielsen, C; Østergaard, Søren; Emanuelson, U;

    2010-01-01

    The main aim was to assess the impact of mastitis on technical and economic results of a dairy herd under current Swedish farming conditions. The second aim was to investigate the effects obtained by withdrawing milk with high somatic cell count (SCC). A dynamic and stochastic simulation model, Sim...... the predicted bulk tank SCC exceeded 220 000, 200 000 or 180 000 cells/ml, and on cow-level information in three scenarios: withdrawal was initiated when the predicted SCC in an individual cow's milk exceeded 1 000 000, 750 000 or 500 000 cells/ml. The accuracy with which SCC was measured and...

  6. Diethylnitrosamine-induced expression of germline-specific genes and pluripotency factors, including vasa and oct4, in medaka somatic cells.

    Science.gov (United States)

    Shen, Jialing; Yokota, Shinpei; Yokoi, Hayato; Suzuki, Tohru

    2016-09-16

    Various methods have been developed to reprogram mammalian somatic cells into pluripotent cells as well as to directly reprogram somatic cells into other cell lineages. We are interested in applying these methods to fish, and here, we examined whether mRNA expression of germline-specific genes (vasa, nanos2, -3) and pluripotency factors (oct4, sox2, c-myc, nanog) is inducible in somatic cells of Japanese medaka (Oryzias latipes). We found that the expression of vasa is induced in the gut and regenerating fin by exposure to a carcinogen, diethylnitrosamine (DEN). Induction of vasa in the gut started on the 5th day of treatment with >50 ppm DEN. In addition, nanos2, -3, oct4, sox2, klf4, c-myc, and nanog were also expressed simultaneously in some vasa-positive gut and regenerating fin samples. Vasa-positive cells were detected by immunohistochemistry (IHC) in the muscle surrounding the gut and in the wound epidermis, blastema, and fibroblast-like cells in regenerating fin. In vasa:GFP transgenic medaka, green fluorescent protein (GFP) fluorescence appeared in the wound epidermis and fibroblast-like cells in the regenerating fin following DEN exposure, in agreement with the IHC data. Our data show that mRNA expression of genes relevant to germ cell specification and pluripotency can be induced in fish somatic cells by exposure to DEN, suggesting the possibility of efficient and rapid cell reprogramming of fish somatic cells. PMID:27514449

  7. Tumor-associated macrophages: effectors of angiogenesis and tumor progression.

    Science.gov (United States)

    Coffelt, Seth B; Hughes, Russell; Lewis, Claire E

    2009-08-01

    Tumor-associated macrophages (TAMs) are a prominent inflammatory cell population in many tumor types residing in both perivascular and avascular, hypoxic regions of these tissues. Analysis of TAMs in human tumor biopsies has shown that they express a variety of tumor-promoting factors and evidence from transgenic murine tumor models has provided unequivocal evidence for the importance of these cells in driving angiogenesis, lymphangiogenesis, immunosuppression, and metastasis. This review will summarize the mechanisms by which monocytes are recruited into tumors, their myriad, tumor-promoting functions within tumors, and the influence of the tumor microenvironment in driving these activities. We also discuss recent attempts to both target/destroy TAMs and exploit them as delivery vehicles for anti-cancer gene therapy. PMID:19269310

  8. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  9. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling.

    Science.gov (United States)

    Zhou, Xu; Qi, Ying

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, PLGF secreted by LC cells triggered macrophage polarization to a TAM subtype that releases MMP9. Moreover, MMP9 was found to be activated in the PLGF-polarized TAM via transforming growth factor β (TGFβ) receptor signaling activation. Furthermore, PLGF in LC cells induced macrophage polarization in vivo, and significantly promoted the growth of LC. Thus, together with our previous work, our study highlights a pivotal role of cross-talk between TAM and LC in regulating the metastasis of LC. PMID:25961789

  10. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S; Rajpert-De Meyts, E; Veeramachaneni, D N R

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated and characte......Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated and...... characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted in...... canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model for...

  11. Cells with Stem Cell Characteristics in Somatic Compartments of the Ovary

    Directory of Open Access Journals (Sweden)

    Katarzyna Kossowska-Tomaszczuk

    2013-01-01

    Full Text Available Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF, it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology.

  12. A Study of the Somatic Cell Count of Kosovo Bulk Milk Farm Management and Perspective

    Directory of Open Access Journals (Sweden)

    HYSEN BYTYQI

    2014-06-01

    Full Text Available The aim of this study was to determine the effects of the somatic cell count (SCC in bulk milk farm management and its commercial perspective according to the milk quality standards in Kosovo. A 2069 raw bulk milk samples were taken from a milk collection points in four regions of Kosovo, with two months visits throughout a year. All samples were analyzed by using “FossomaticMinor” equipment, while for the results obtained and identification of different variables effect of SCC on raw bulk milk a general linear model was used. The effect of all variables was considered as a fixed. The overall results show that herd, region, and month of the year (P smaller than 0.0001, respectively, had a significant effect on the presence of SCC. Based on the country existing milk standards for raw milk, the results gained show about 29.6 % belong to extra class milk (SCC/mL less than 300.000, followed by milk quality class IIId, Ist and IId, 24.3%, 8.5%, 8.2%. Of concern is the fact that about 29.5% of total bulk milk analyzed tend to be out of milk quality standards, poor quality ((SCC/mL more than 600.000. The overall mean of SCC on milk was high 772.475 per mL milk, indicating negative farm profit correlation, poor animal health and food safety. The result obtained can be used for assessing raw milk quality and controlling herd management programs.

  13. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    Directory of Open Access Journals (Sweden)

    Astruc Jean-Michel

    2001-07-01

    Full Text Available Abstract Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC, were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flocks, using an animal model. In the experimental flock, the frequency of culling due to clinical mastitis (5% was lower than that of subclinical mastitis (10% predicted from SCC. Predicted subclinical mastitis was unfavourably associated with the milk yield level. Such an antagonism was not detected for clinical mastitis, which could result, to some extent, from its low frequency or from the limited amount of data. In practice, however, selection for mastitis resistance could be limited in a first approach to selection against subclinical mastitis using SCC. The heritability estimate of SCC was 0.15 for the lactation mean trait and varied from 0.04 to 0.12 from the first to the fifth test-day. The genetic correlation between lactation SCC and milk yield was slightly positive (0.15 but showed a strong evolution during lactation, i.e. from favourable (-0.48 to antagonistic (0.27. On a lactation basis, our results suggest that selection for mastitis resistance based on SCC is feasible. Patterns for genetic parameters within first lactation, however, require further confirmation and investigation.

  14. Heritability estimates associated with alternative definitions of mastitis and correlations with somatic cell score and yield.

    Science.gov (United States)

    Vallimont, J E; Dechow, C D; Sattler, C G; Clay, J S

    2009-07-01

    The objectives of this study were to compare alternative mastitis definitions and to estimate genetic correlations of producer-recorded mastitis with somatic cell score (SCS) and yield. Cow health events and lactation records from June 2002 through October 2007 were provided by Dairy Records Management Systems (Raleigh, NC). First- through fifth-lactation records from cows calving between 20 and 120 mo of age and that calved in a herd-year with at least 1% of cows with a clinical mastitis event were retained. The edited data contained 118,516 lactation records and 1,072,741 test-day records of 64,893 cows. Mastitis occurrence (1 = at least one mastitis event during lactation or test-day interval, 0 = no mastitis events), number of mastitis events during lactation, SCS, and yield were analyzed with animal models (single trait) or sire-maternal grandsire models (multiple trait) in ASREML. Comparisons were made among models assuming a normal distribution, a binary distribution, or Poisson distribution (for total episodes). The overall incidence of clinical mastitis was 15.4%; and heritability estimates ranged from 0.73% (test-day interval mastitis with a linear model) to 11.07% (number of mastitis episodes with a Poisson model). Increased mastitis incidence was genetically correlated with higher SCS (range 0.66 to 0.88) and was generally correlated with higher yield (range -0.03 to 0.40), particularly during first lactation (0.04 to 0.40). Significant genetic variation exists for clinical mastitis; and health events recorded by producers could be used to generate genetic evaluations for cow health. Sires ranked similarly for daughter mastitis susceptibility regardless of how mastitis was defined; however, test-day interval mastitis and a total count of mastitis episodes per lactation allow a higher proportion of mastitis treatments to be included in the genetic analysis. PMID:19528618

  15. Longitudinal study of reproductive performance of female cattle produced by somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Irina A Polejaeva

    Full Text Available The objective of this study was to determine whether or not reproductive performance in cattle produced by somatic cell nuclear transfer (SCNT is significantly different from that of their genetic donors. To address this question, we directed two longitudinal studies using different embryo production procedures: (1 superovulation followed by artificial insemination (AI and embryo collection and (2 ultrasound-guided ovum pick-up followed by in vitro fertilization (OPU-IVF. Collectively, these two studies represent the largest data set available for any species on the reproductive performance of female clones and their genetic donors as measured by their embryo production outcomes in commercial embryo production program. The large-scale study described herein was conducted over a six-year period of time and provides a unique comparison of 96 clones to the 40 corresponding genetic donors. To our knowledge, this is the first longitudinal study on the reproductive performance of cattle clones using OPU-IVF. With nearly 2,000 reproductive procedures performed and more than 9,200 transferable embryos produced, our observations show that the reproductive performance of cattle produced by SCNT is not different compared to their genetic donors for the production of transferable embryos after either AI followed by embryo collection (P = 0.77 or OPU-IVF (P = 0.97. These data are in agreement with previous reports showing that the reproductive capabilities of cloned cattle are equal to that of conventionally produced cattle. In conclusion, results of this longitudinal study once again demonstrate that cloning technology, in combination with superovulation, AI and embryo collection or OPU-IVF, provides a valuable tool for faster dissemination of superior maternal genetics.

  16. Somatic-cell mutation induced by short exposures to cigarette smoke in urate-null, oxidative stress-sensitive Drosophila.

    Science.gov (United States)

    Uchiyama, Tomoyo; Koike, Ryota; Yuma, Yoko; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Suzuki, Toshinori; Negishi, Tomoe

    2016-01-01

    We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain (y v ma-l; mwh) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l, and they are heterozygous for multiple wing hair (mwh), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25°C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females (ma-l (-/-)), but not in the urate-positive females (ma-l (+/-)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H2DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible

  17. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    Science.gov (United States)

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  18. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer

    Science.gov (United States)

    YOO, Hyunju; KIM, Eunhye; HWANG, Seon-Ung; YOON, Junchul David; JEON, Yubyeol; PARK, Kyu-Mi; KIM, Kyu-Jun; JIN, Minghui; LEE, Chang-Kyu; LEE, Eunsong; KIM, Hyunggee; KIM, Gonhyung; HYUN, Sang-Hwan

    2016-01-01

    The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair. PMID:26821870

  19. Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b

    Directory of Open Access Journals (Sweden)

    Kyung-Rok Yu

    2015-01-01

    Full Text Available A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs through the expression of defined factors. However, successful generation of human iNSCs (hiNSCs has proven challenging to achieve. Here, using microRNA (miRNA expression profile analyses, we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2, a let-7-targeting gene, enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly, HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2, whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together, these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal, providing a strategy for the clinical treatment of neurological diseases.

  20. Live imaging of Drosophila gonad formation reveals roles for Six4 in regulating germline and somatic cell migration

    Directory of Open Access Journals (Sweden)

    Jarman Andrew P

    2007-05-01

    Full Text Available Abstract Background Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs, somatic gonadal precursors (SGPs, and in males, male-specific somatic gonadal precursors (msSGPs. These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells. Results We have used time-lapse fluorescence imaging to characterise gonadal cell behaviour in wild type and mutant embryos. We show that the homeodomain transcription factor Six4 is required for the migration of the PGCs and the msSGPs towards the SGPs. We have identified a likely cause of this in the case of PGCs as we have found that Six4 is required for expression of Hmgcr which codes for HMGCoA reductase and is necessary for attraction of PGCs by SGPs. Six4 affects msSGP migration by a different pathway as these move normally in Hmgcr mutant embryos. Additionally, embryos lacking fully functional Six4 show a novel phenotype in which the SGPs, which originate in distinct clusters, fail to coalesce to form unified gonads. Conclusion Our work establishes the Drosophila gonad as a model system for the analysis of coordinated cell migrations and morphogenesis using live imaging and demonstrates that Six4 is a key regulator of somatic cell function during gonadogenesis. Our data suggest that the initial association of SGP clusters

  1. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying;

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...

  2. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge.

    Science.gov (United States)

    Krishnamurty, Akshay T; Thouvenel, Christopher D; Portugal, Silvia; Keitany, Gladys J; Kim, Karen S; Holder, Anthony; Crompton, Peter D; Rawlings, David J; Pepper, Marion

    2016-08-16

    Humoral immunity consists of pre-existing antibodies expressed by long-lived plasma cells and rapidly reactive memory B cells (MBC). Recent studies of MBC development and function after protein immunization have uncovered significant MBC heterogeneity. To clarify functional roles for distinct MBC subsets during malaria infection, we generated tetramers that identify Plasmodium-specific MBCs in both humans and mice. Long-lived murine Plasmodium-specific MBCs consisted of three populations: somatically hypermutated immunoglobulin M(+) (IgM(+)) and IgG(+) MBC subsets and an unmutated IgD(+) MBC population. Rechallenge experiments revealed that high affinity, somatically hypermutated Plasmodium-specific IgM(+) MBCs proliferated and gave rise to antibody-secreting cells that dominated the early secondary response to parasite rechallenge. IgM(+) MBCs also gave rise to T cell-dependent IgM(+) and IgG(+)B220(+)CD138(+) plasmablasts or T cell-independent B220(-)CD138(+) IgM(+) plasma cells. Thus, even in competition with IgG(+) MBCs, IgM(+) MBCs are rapid, plastic, early responders to a secondary Plasmodium rechallenge and should be targeted by vaccine strategies. PMID:27473412

  3. Whole-exome sequencing identifies a somatic missense mutation of NBN in clear cell sarcoma of the salivary gland.

    Science.gov (United States)

    Zhang, Lei; Jia, Zhen; Mao, Fengbiao; Shi, Yueyi; Bu, Rong Fa; Zhang, Baorong

    2016-06-01

    Clear cell sarcoma (CCS) is a rare, low-grade carcinoma commonly located in the distal extremities of young adults involving tendons and aponeuroses. CCS is characterized by its poor prognosis due to late diagnosis, multiple local recurrence, propensity to late metastases, and a high rate of tumor-related mortality. The genetic cause for CCS is thought to be EWSR1 gene translocation. However, CCS lacking a translocation may have other, as yet uncharacterized, genetic mutations that can cause the same pathological effect. A combination of whole‑exome sequencing and Sanger sequencing of cancer tissue and venous blood from a patient diagnosed with CCS of the salivary gland revealed a somatic missense mutation, c.1061C>T (p.P354L), in exon 9 of the Nibrin gene (NBN). This somatic missense mutation led to the conversion of proline to leucine (p.P354L), resulting in deleterious effects for the NBN protein. Multiple-sequence alignments showed that codon 354, where the mutation (c.1061C>T) occurs, is located within a phylogenetically conserved region. In conclusion, we here report a somatic missense mutation c.1061C>T (p.P354L) in the NBN gene in a patient with CCS lacking an EWSR1-ATF1 fusion. Our findings broaden the genotypic spectrum of CCS and provide new molecular insight that should prove useful in the future clinical genetic diagnosis of CCS. PMID:27109316

  4. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig;

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...... were equal proportions of transcriptionally active and inactive embryos and essentially all embryos that developed to the 16-cell stage (n = 21) and further to the blastocyst stage (n = 19) contained only transcriptionally active cells. In conclusion, porcine embryos produced in vitro had an......-cell stage (n = 45), 38% of the embryos contained 1-3 nuclei with signs of rRNA transcription, indicating an asynchronous transcription initiation. This pattern continued in the following stages, as 78% (n = 47), 47% (n = 42) and 83% (n = 37) of the embryos revealed a mixture of transcriptionally inactive...

  5. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts.

    Science.gov (United States)

    Ganda, E K; Bisinotto, R S; Vasquez, A K; Teixeira, A G V; Machado, V S; Foditsch, C; Bicalho, M; Lima, F S; Stephens, L; Gomes, M S; Dias, J M; Bicalho, R C

    2016-09-01

    Objectives of this clinical trial were to evaluate the effects of injectable trace mineral supplementation (ITMS) on somatic cell count (SCC), linear score (LS), milk yield, milk fat and protein contents, subclinical mastitis cure, and incidence of clinical mastitis in cows with elevated SCC. Holstein cows from a commercial dairy farm in New York were evaluated for subclinical mastitis, defined as SCC ≥200×10(3) cells/mL on the test day preceding enrollment. Cows with a history of treatment for clinical mastitis in the current lactation and those pregnant for more than 150d were not eligible for enrollment. Cows fitting inclusion criteria were randomly allocated to 1 of 2 treatment groups. Cows assigned to ITMS (n=306) received 1 subcutaneous injection containing zinc (300mg), manganese (50mg), selenium (25mg), and copper (75mg) at enrollment (d 0). Control cows (CTRL; n=314) received 1 subcutaneous injection of sterile saline solution. Following treatment, visual assessment of milk was performed daily, and cows with abnormal milk (i.e., presence of flakes, clots, or serous milk) were diagnosed with clinical mastitis (CM). Chronic clinical mastitis was defined as cows with 3 or more cases of CM. Milk yield, milk fat and protein contents, SCC, and LS were evaluated once monthly. Additionally, randomly selected animals were sampled to test serum concentrations of selected minerals on d0 and 30 (n=30 cows/treatment). Treatment did not affect serum concentrations of calcium, magnesium, phosphorus, potassium, copper, iron, manganese, selenium, and zinc on d30. Injectable supplementation with trace minerals did not improve overall cure of subclinical mastitis (CTRL=42.8 vs. ITMS=46.5%), although a tendency was observed in cows with 3 or more lactations (CTRL=27.1 vs. ITMS=40.0%). Supplementation did not reduce treatment incidence of CM (CTRL=48.2 vs. ITMS=41.7%); however, it tended to reduce the proportion of cows diagnosed with chronic CM (CTRL=16.9 vs. ITMS=12

  6. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: baos@ccf.org [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2014-03-26

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  7. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8+ cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4+ T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy

  8. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  9. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells.

    Directory of Open Access Journals (Sweden)

    Hongjiang Wei

    Full Text Available Somatic cell nuclear transfer (SCNT is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4% and newborn (76.4% and 21.8% fibroblasts of the Banna miniature inbred pig (P>0.05. However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; P<0.05. The pregnancy rates of the recipients in the fetal and newborn fibroblast groups (60% and 80%, respectively were higher than those in the adult fibroblast group. Eight, three, and one cloned piglet were obtained from reconstructed embryos of the fetal, newborn, and adult fibroblasts, respectively. Microsatellite analyses results indicated that the genotypes of all cloning piglets were identical to their donor cells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.

  10. A protocol for embryonic stem cell derivation by somatic cell nuclear transfer into human oocytes

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Dieter Egli & Gloryn Chia ### Abstract Here we describe detailed methods that allowed us to derive embryonic stem cell lines by nuclear transfer of fibroblasts from a newborn and from a type 1 diabetic adult. The protocol is based on the insight that 1) agents for cell fusion can act as potent mediators of oocyte activation by compromising maintaining plasma membrane integrity; minimizing the concentration at which they are used, and at least transiently remove calcium f...

  11. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  12. Effects of Scriptaid on Cell Cycle and Histone Acetylation of Ovine Nuclear Donor Cumulus Cells and their Ability to Support the Development of Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Hui Cao

    2015-10-01

    Full Text Available Compelling evidence suggests that histone deacetylase inhibitor (HDACi influences the development of somatic cell nuclear transfer (SCNT embryos. The current study was conducted to determine the effect of pretreatment of donor cumulus cells with Scriptaid (a novel HDACi on cell cycle, histone acetylation and cloning embryos development in ovine. First, we optimized the efficiency of Scriptaid in a dose (0, 0.1, 0.2, 0.4 and 0.8 μmol/L and time-dependent (0, 12, 24, 36, and 48 h manner on the developmental capacity of these embryos. Then, we quantitatively assessed the alterations of acetylation levels in histone H3 lysine 9 (acH3K9 and histone H4 lysine 12 (acH4K12 of cumulus cells and SCNT embryos by immunofluorescence staining. Furthermore, we detected the proportion of G0/G1 phase cells in cumulus cells. We found a significantly improved blastocyst development rates of cloning embryos derived from donor cumulus cells pretreated with a mild dose (0.2 μmol/L of Scriptaid for 24 hours (21/86 [24.39%] vs. 11/85 [12.91%]; P<0.05. Meanwhile, the levels of acH3K9 and acH4K12 were also improved significantly in cumulus cells and SCNT embryos (P<0.05. Moreover, more cumulus cells pretreated with Scriptaid were in G0/G1 phase compared with control group (84.22% vs. 75.96%, P<0.05. In conclusion, donor cumulus cells treated with Scriptaid is beneficial to early development of SCNT embryos, ascending acH3K9/ acH4K12 and G0/G1 phase cells proportion of cumulus cell. Scriptaid can be used to improve the efficiency of somatic cell nuclear transfer in ovine.

  13. Isolation of Mouse and Human Tumor-Associated Macrophages.

    Science.gov (United States)

    Cassetta, Luca; Noy, Roy; Swierczak, Agnieszka; Sugano, Gaël; Smith, Harriet; Wiechmann, Lisa; Pollard, Jeffrey W

    2016-01-01

    The tumor microenvironment is a complex network of cells that support tumor progression and malignancy. It has been demonstrated that tumor cells can educate the immune system to promote a tumor-friendly environment. Among all these immune cells, tumor-associated macrophages (TAMs) are well represented and their presence in mouse models has been shown to promote tumor progression and metastasis. These effects are through the stimulation of angiogenesis, enhancement of tumor cell invasion and intravasation, immunosuppression, and at the metastatic site tumor cell extravasation and growth. However, the precise mechanisms are not fully understood. Furthermore there is limited information on TAMs derived from human cancers. For this reason it is important to be able to extract TAMs from tumors in order to compare their phenotypes, functions, and transcriptomes with normal resident tissue macrophages. Isolation of these cells is challenging due to the lack of markers and standardized protocols. Here we show an optimized protocol for the efficient isolation and extraction of resident macrophages and TAMs from human and mouse tissues by using multicolor flow cytometry. These protocols allow for the extraction of thousands of macrophages in less than 5 h from tissues as small as half a gram. The isolated macrophages can then be used for both "omics" and in vitro studies. PMID:27325269

  14. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  15. Retroperitoneal teratoma with somatic malignant transformation: A papillary renal cell carcinoma in a testicular germ cell tumour metastasis following platinum-based chemotherapy

    OpenAIRE

    Zeh Nina; Wild Peter J; Bode Peter K; Kristiansen Glen; Moch Holger; Sulser Tullio; Hermanns Thomas

    2013-01-01

    Abstract Background Malignant transformation describes the phenomenon in which a somatic component of a germ cell teratoma undergoes malignant differentiation. A variety of different types of sarcoma and carcinoma, all non-germ cell, have been described as a result of malignant transformation. Case presentation A 33-year-old man presented with a left testicular mass and elevated tumour markers. Staging investigations revealed retroperitoneal lymphadenopathy with obstruction of the left ureter...

  16. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development

    International Nuclear Information System (INIS)

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr3/TM3, Ser stocks were used. (Author)

  17. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.)

  18. The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat

    OpenAIRE

    Xiang, Fengning; Wang, Junfeng; Xu, Chunhui; Xia, Guangmin

    2010-01-01

    Somatic hybridization seeks to genetically combine phylogenetically distant parents. An effective system has been established in bread wheat (Triticum aestivum L.) involving protoplasts from a non-totipotent cell line adapted to in vitro culture (T1) in combination with totipotent protoplasts harvested from embryogenic calli (T2). Here, we report the karyotype and genotype of T1 and T2. Line T1 carries nine A (A-genome of wheat), seven B (B-genome of wheat) and eight D (D-genome of wheat) gen...

  19. Somatic Cells Count and Its Genetic Association with Milk Yield in Dairy Cattle Raised under Thai Tropical Environmental Conditions

    OpenAIRE

    Jattawa, D.; Koonawootrittriron, S.; Elzo, M. A.; Suwanasopee, T.

    2012-01-01

    Somatic cells count (SCC), milk yield (MY) and pedigree information of 2,791 first lactation cows that calved between 1990 and 2010 on 259 Thai farms were used to estimate genetic parameters and trends for SCC and its genetic association with MY. The SCC were log-transformed (lnSCC) to make them normally distributed. An average information-restricted maximum likelihood procedure was used to estimate variance components. A bivariate animal model that considered herd-yr-season, calving age, and...

  20. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration.

    Science.gov (United States)

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2015-01-01

    The combination of scaffolds and cells can be useful in tissue reconstruction. In this study, nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nanohydroxyapatite (nano-HAp) scaffolds, filled with unrestricted somatic stem cells (USSCs), were used for healing calvarial bone in rat model. The healing effects of these scaffolds, with and without stem cells, in bone regeneration were investigated by computed tomography (CT) analysis and pathology assays after 28 days of grafting. The results of CT analysis showed that bone regeneration on the scaffolds, and the amounts of regenerated new bone for polymer/nano-HAp scaffold with USSC, was significantly greater than the scaffold without cell and untreated control samples. Therefore, the combination of scaffold especially with USSC could be considered as a useful method for bone regeneration. PMID:25710767

  1. Monoclonal antibody against human ovarian tumor-associated antigens

    International Nuclear Information System (INIS)

    Mouse monoclonal antibodies (OV-TL 3) were raised against human ovarian tumor-associated antigens for diagnostic purposes. A cloned hybridoma cell line was obtained by fusion of murine myeloma cells with spleen lymphocytes from BALB/c mice immunized with a tumor cell suspension prepared from an ovarian endometrioid carcinoma. The antibodies were initially screened for their ability to bind on frozen sections of human ovarian carcinoma tissue and a negative reaction on gastric carcinoma tissue by indirect immunofluorescence. The reactivity of the selected OV-TL 3 clone (IgG1 subclass) was studied on normal and neoplastic tissues as well as on a cell line derived from the original tumor cell suspension used for immunization. OV-TL 3 antibodies stained frozen sections of human ovarian carcinomas of the following histological types: serous, mucinous, endometrioid, and clear cell. No reaction was found with breast cancers or other nongynecological tumors. No differences in staining pattern were observed between primary and metastatic ovarian carcinomas. OV-TL 3 antibodies brightly stained ovarian carcinoma cell clusters in ascitic fluids and left unstained mesothelial cells and peripheral blood cells. The OV-TL 3-defined antigen also remained strongly expressed on a cell line derived from the endometrioid ovarian carcinoma originally used for generation of OV-TL 3 clone. Reactivity was weak and irregular in a few ovarian cysts, while traces of fluorescence were sometimes detected in epithelial cells lining the female genital tract. In only 3 specimens of 15 endometrium carcinomas was weak focal reactivity with OV-TL 3 antibodies observed. The results of the immunofluorescence study were confirmed by the more sensitive avidin-biotin method and by 125I-labeled OV-TL 3 antibodies

  2. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders.

    Science.gov (United States)

    Corti, S; Locatelli, F; Strazzer, S; Guglieri, M; Comi, G P

    2003-06-01

    Stem cell transplantation through cell replacement or as vector for gene delivery is a potential strategy for the treatment of neurodegenerative diseases. Several studies have reported the transdifferentiation of different somatic stem cells into neurons in vitro or after transplantation into animal models. This observation has pointed out the perspective of using an ethical and accessible cell source to "replace" damaged neurons or provide support to brain tissue. However, recent findings such as the cell fusion phenomenon have raised some doubts about the real existence of somatic stem cell plasticity. In this review, we will discuss current evidence and controversial issues about the neuroneogenesis from various sources of somatic cells focusing on the techniques of isolation, expansion in vitro as well as the inductive factors that lead to transdifferentiation in order to identify the factors peculiar to this process. The morphological, immunochemical, and physiological criteria to correctly judge whether the neuronal transdifferentation occurred are critically presented. We will also discuss the transplantation experiments that were done in view of a possible clinical therapeutic application. Animal models of stroke, spinal cord and brain trauma have improved with Mesenchymal Stem Cells or Bone Marrow transplantation. This improvement does not seem to depend on the replacement of the lost neurons but may be due to increased expression levels of neurotrophic factors, thus suggesting a beneficial effect of somatic cells regardless of transdifferentiation. Critical understanding of available data on the mechanisms governing the cell fate reprogramming is a necessary achievement toward an effective cell therapy. PMID:12762483

  3. DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors.

    Science.gov (United States)

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E; Hong, Chibo; Hamilton, Emily G; Bell, Robert J A; Smirnov, Ivan V; Reis, Gerald F; Phillips, Joanna J; Barnes, Michael J; Idbaih, Ahmed; Alentorn, Agusti; Kloezeman, Jenneke J; Lamfers, Martine L M; Bollen, Andrew W; Taylor, Barry S; Molinaro, Annette M; Olshen, Adam B; Chang, Susan M; Song, Jun S; Costello, Joseph F

    2015-09-14

    The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution. PMID:26373278

  4. Genotoxic effects of bisphenol A on somatic cells of female mice, alone and in combination with X-rays.

    Science.gov (United States)

    Gajowik, Aneta; Radzikowska, Joanna; Dobrzyńska, Małgorzata M

    2013-10-01

    Bisphenol A (BPA), a monomer used in the manufacture of epoxy, polycarbonate, and polystyrene resins, is a xenoestrogen present in many consumer products. We investigated the effects of 2-week exposure to BPA, either alone or in combination with X-rays, on the induction of DNA damage in somatic cells of female mice in vivo. The micronucleus and alkaline comet assays were used to evaluate genotoxicity. BPA induced DNA strand breaks in lung cells but not in bone marrow lymphocytes, liver, kidney, or spleen cells. Induction of micronuclei was observed only in polychromatic reticulocytes of peripheral blood. Levels of damage following combination exposure to ionizing radiation plus BPA depended on tissue, assay, and time. PMID:23954285

  5. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells.

    Science.gov (United States)

    Sumiyoshi, Tetsutaro; Sato, Kaoru; Yamamoto, Hitomi; Iwasaki, Yuka W; Siomi, Haruhiko; Siomi, Mikiko C

    2016-07-15

    In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila. PMID:27474440

  6. MYCN: From Oncoprotein To Tumor-Associated Antigen

    Directory of Open Access Journals (Sweden)

    Vito ePistoia

    2012-11-01

    Full Text Available MYCN is a well known oncogene overexpressed in different human malignancies including neuroblastoma, rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms’ tumor and small cell lung cancer. In the case of neuroblastoma (NB, MYCN amplification is an established biomarker of poor prognosis. MYCN belongs to a family of transcription factors (the most important of which is CMYC that show a high degree of homology. Downregulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets.Pre-requisites for a candidate tumor-associated antigen (TAA to be targeted by immunotherapeutic approaches are the following, i expression should be tumor-restricted, ii the putative TAA should be up-regulated in cancer cells and iii protein should be processed into immunogenic peptides capable of associating to MHC molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and upregulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or –A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB.Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTL and will be here discussed are the following, i the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA- class I molecules, the lack of costimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and ii the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g. soluble MICA and HLA-G in the case of NB or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the strategy used to generate

  7. Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows

    DEFF Research Database (Denmark)

    Zink, V; Zavadilová, L; Lassen, Jan;

    2014-01-01

    Genetic and phenotypic correlations between production traits, selected linear type traits, and somatic cell score were estimated. The results could be useful for breeding programs involving Czech Holstein dairy cows or other populations. A series of bivariate analyses was applied whereby (co......)variance components were estimated using average information (AI-REML) implemented via the DMU statistical package. Chosen phenotypic data included average somatic cell score per a 305-day standard first lactation as well as the production traits milk yield, fat yield, protein yield, fat percentage, and protein...... and protein yield. In total, 27 098 somatic cell score records were available. The strongest positive genetic correlation between production traits and linear type traits was estimated between udder width and fat yield (0.51 ± 0.04), while the strongest negative correlation estimated was between body...

  8. Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score

    OpenAIRE

    Ponsuksili Siriluck; Kühn Christa; Wellnitz Olga; Griesbeck-Zilch Bettina; Repsilber Dirk; Hartmann Anja; Brand Bodo; Meyer Heinrich HD; Schwerin Manfred

    2011-01-01

    Abstract Background During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility tha...

  9. Transient acid treatment cannot induce neonatal somatic cells to become pluripotent stem cells [v1; ref status: indexed, http://f1000r.es/3dq

    Directory of Open Access Journals (Sweden)

    Mei Kuen Tang

    2014-05-01

    Full Text Available Currently, there are genetic- and chemical-based methods for producing pluripotent stem cells from somatic cells, but all of them are extremely inefficient.  However, a simple and efficient technique has recently been reported by Obokata et al (2014a, b that creates pluripotent stem cells through acid-based treatment of somatic cells.  These cells were named stimulus-triggered acquisition of pluripotency (STAP stem cells. This would be a major game changer in regenerative medicine if the results could be independently replicated. Hence, we isolated CD45+ splenocytes from five-day-old Oct4-GFP mice and treated the cells with acidified (pH 5.7 Hank’s Balanced Salt Solution (HBSS for 25 min, using the methods described by Obokata et al 2014c. However, we found that this method did not induce the splenocytes to express the stem cell marker Oct4-GFP when observed under a confocal microscope three to six days after acid treatment. qPCR analysis also confirmed that acid treatment did not induce the splenocytes to express the stemness markers Oct4, Sox2 and Nanog.  In addition, we obtained similar results from acid-treated Oct4-GFP lung fibroblasts. In summary, we have not been able to produce STAP stem cells from neonatal splenocytes or lung fibroblasts using the acid-based treatment reported by Obokata et al (2014a, b, c.

  10. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  11. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of Alternative Lengthening of Telomeres.

    Directory of Open Access Journals (Sweden)

    Kylie Bower

    Full Text Available Alternative Lengthening of Telomeres (ALT is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.

  12. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    Science.gov (United States)

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  13. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  14. Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genesimplicated in human melanoma%Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genes implicated in human melanoma

    Institute of Scientific and Technical Information of China (English)

    Andrea J. McKinney; Sheri L. Holmen

    2011-01-01

    The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.

  15. Milk Yield Traits, Somatic Cell Score, Milking Time and Age at Calving of Pure Holstein Versus Crossbred Cow

    Directory of Open Access Journals (Sweden)

    Francesca Malchiodi

    2011-09-01

    Full Text Available Pure Holstein (HO, n=430, crosses between Swedish Red and HO (SRxHO, n=41, Montbeliarde and HO (MOxHO, n=18, and MO and SRxHO (MOxSH, n=53 were compared for milk, fat and protein yield, fat and protein percentage, somatic cell count (SCC, milking time (MT, and age at first and second calving. A total of 180,933 test-day information for milk yield and MT, and 5,249 for fat and protein percentage and SCC were recorded on first and second parity cows milked in one herd of Cremona province (northern Italy. Somatic cell count and MT were log-transformed to somatic cells score (SCS and LnMT, respectively, before statistical investigation. Production traits, LnMT and SCS were analyzed through a mixed model that included fixed effects of test-day, parity, days in milk (DIM, genotype and interaction between parity and genotype, and the random effects of cow nested within genotype and residual, whereas the model for age at calving included year and month of calving and genotype as fixed effects, and residual as random. MOxHO and pure HO cows differed only for age at second calving (70 d higher for purebreds; P<0.05. Holsteins produced more milk (+2.86 kg/d; P<0.01 and protein yield (+0.05 kg/d; P<0.05 than SRxHO crossbreds, but lower protein percentage (-0.09%; P<0.01, and age at second calving was 44 d (P<0.01 higher than SRxHO. Also, HO produced more milk and fat than MOxSH cows (+1.61 and +0.08 kg/d, respectively; P<0.05, but lower protein percentage (-0.11%; P<0.001, and calved later, both at first and second calving (+24 and +43 d, respectively; P<0.05. Results indicated that crossbred cows can compete with the cosmopolitan breed for several traits.

  16. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment.

    Science.gov (United States)

    Srirattana, Kanokwan; Imsoonthornruksa, Sumeth; Laowtammathron, Chuti; Sangmalee, Anawat; Tunwattana, Wanchai; Thongprapai, Thamnoon; Chaimongkol, Chockchai; Ketudat-Cairns, Mariena; Parnpai, Rangsun

    2012-06-01

    Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development. PMID:22578161

  17. Development and characterization of monoclonal antibodies to Marek's disease tumor-associated surface antigen.

    OpenAIRE

    Liu, X. F.; Lee, L F

    1983-01-01

    Four monoclonal antibodies, A35, B94, EB29, and G152, against Marek's disease tumor-associated surface antigen have been developed and their specificities studied against a panel of Marek's disease and lymphoid leukosis primary tumors; Marek's disease, and lymphoid leukosis, and reticuloendotheliosis lymphoblastoid cell lines; and normal chicken cells. A35 and G152 are of the immunoglobulin M class, and B94 and EB29 are of the immunoglobulin G1 subclass.

  18. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues

    Science.gov (United States)

    Bhattacharya, Palash; Grigera, Fernando; Rogozin, Igor B.; McCarty, Thomas; Morse, Herbert C.; Kenter, Amy L.

    2016-01-01

    Activation-induced deaminase (AID) is the master regulator of class switch recombination (CSR) and somatic hypermutation (SHM), but the mechanisms regulating AID function are obscure. The differential pattern of switch plasmid activity in three IgM+/AID+ and two IgG+/AID+ B cell lines prompted an analysis of global gene expression to discover the origin of these cells. Gene profiling suggested that the IgG+/AID+ B cell lines derived from germinal center B cells. Analysis of SHM potential demonstrates that the IgVκ domains are inducibly diversified at high rate during in vitro culture. The mutation spectra focused to A:T base pairs, revealing a component of the hypermutation program that occurs preferentially during phase 2 of SHM. The A:T error spectra were analyzed and were not characteristic of polymerase η activity. A differential pattern of three consensus motifs used for A:T base substitutions was observed in WT and Polη-, Msh2- and Msh6-deficient B cells. Strikingly, mutations in our B cell lines recapitulated the mutable motif profile for Polη and Msh2 deficiency, respectively, and suggest that an additional pathway for the generation of A:T mutations in SHM is conserved in mouse and human. PMID:18081040

  19. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  20. Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Caroprese, M; Ruggieri, D; Ciliberti, M; Sevi, A

    2012-07-01

    Immune competence of the ewe mammary gland was investigated by monitoring the leukocyte differential count, cytokine pattern, and endogenous proteolytic enzymes in milk samples with different somatic cell counts (SCC) and pathogenic bacteria. Furthermore, the leukocyte differential count and T-lymphocyte populations were evaluated in ewe blood. A total of 1,500 individual milk samples were randomly selected from the pool of the samples collected during sampling and grouped into 5 classes of 300 samples each, on the basis of SCC. Classes were 2,000,000 cells/mL. Microbiological analyses of ewe milk were conducted to detect mastitis-related pathogens. Sheep whose udders were without clinical abnormalities, and whose milk was apparently normal but with at least 10(3)cfu/mL of the same pathogen were considered to have subclinical mastitis and therefore defined as infected. Polymorphonuclear neutrophilic leukocytes (PMNL) and macrophages increased with SCC, whereas lymphocytes decreased. Milk samples with SCC >1,000,000 cells/mL showed differences in leukocyte populations between uninfected and infected ewes, with higher percentages of PMNL and macrophages and lower percentages of lymphocytes in infected animals. Nonviable PMNL levels were the highest in ewe milk samples with SCC 500,000 cells/mL, nonviable PMNL were higher in uninfected ewes than in infected ones. In infected animals giving milk with SCC >1,000,000 cells/mL, a higher CD4(+)/CD8(+) ratio was observed, suggesting that the presence of pathogens induced an activation of both CD4(+) and CD8(+). The levels of tumor necrosis factor-α and IL-12 were higher in infected than uninfected ewes, irrespective of SCC. Plasmin activity increased along with SCC and was always higher in infected than uninfected animals; cathepsin D increased starting from 1,001,000 cells/mL in milk samples from noninfected ewes and starting from 301,000 cells/mL in milk samples from infected animals. The associations between somatic

  1. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  2. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  3. Genome wide in silico SNP-tumor association analysis

    International Nuclear Information System (INIS)

    Carcinogenesis occurs, at least in part, due to the accumulation of mutations in critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly accessible databases contain millions of expressed sequence tag (EST) and single nucleotide polymorphism (SNP) records, which have the potential to assist in the identification of SNPs overrepresented in tumor tissue. An in silico SNP-tumor association study was performed utilizing tissue library and SNP information available in NCBI's dbEST (release 092002) and dbSNP (build 106). A total of 4865 SNPs were identified which were present at higher allele frequencies in tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the protein coding sequences. This approach identified several SNPs which have been previously associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation This novel in silico approach can assist in prioritization of genes and SNPs in the effort to elucidate the genetic mechanisms underlying the development of cancer

  4. Cytogenetic sequelae in sex and somatic cells at mice subjected to chronic irradiation simulating occupational conditions of radiation effect

    International Nuclear Information System (INIS)

    Cytogenetic effect of chronic irradiation in low doses to study chronic radiation effect upon man under professional conditions has been investigated. The experiments have been carried out on white mice, subjected to chronic effect of 60Co gamma irradiation (during 15 - 19 months in doses of 6, 17 and 50 mrad for 6 - 7 hrs a day). It is shown, that under effect of chronic irradiation, modelling the conditions of professional irradiation effect, in sex and somatic cells of the mice chromosomal aberrations appear, which depend on the age of animals and magnitude of every day dose. However direct dependence of these changes on the magnitude of the total dose has not been established

  5. Genetic Parameters For The Somatic Cells Count In The Milk Of Buffaloes Using Ordinary Test Day Models

    Directory of Open Access Journals (Sweden)

    H. Tonhati

    2010-02-01

    Full Text Available The buffaloes dairy milk production (BDMP has increased in the last 20 years, mainly for the manufacturing of mozzarella cheese, which is recognized by its high nutritional quality. However, this quality can be affected by several factors i. e. high somatic cells count (SCC provokes changes in the milk’s constituents. As in bovine dairy milk, the SCC is used as diagnostic tool for milk quality; because it enables the diagnosis of sub-clinic mastitis and also allows the selection of individuals genetically resistant to that disease. Based on it, we collected information about SCC and BDMP along the lactation in Murrah breed buffaloes, during the period between 1997 and 2005. Curves were designed to estimate genetic parameters. These parameters were estimated by ordinary test-day models. There were observed variations in the estimated heritability for both characteristics .The lowest score for somatic cells count (SSCC was seen at first month (0.01 and the highest at sixth months (0.29 The genetic correlation between these traits varied from -1 at the 1 and 9th months to 0.31 and 0.30 in the2 and 4th month of lactation. Phenotypic correlations were all negative (-0.07 in the second month and up to -0.35 in the eighth month of lactation. These results showed that environmental factors are more important than genetics in explain SCC, for this reason, selection for genetic resistance to mastitis in buffalos based in SCC should not be done. In the other hand, negative phenotypic correlations demonstrated that as the SCC increased, the milk production decreased.

  6. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    International Nuclear Information System (INIS)

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs

  7. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  8. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    Science.gov (United States)

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  9. Genotoxic and biochemical effects of Yohimbe after short-term treatment in somatic and germ cells of Swiss Albino Mice

    International Nuclear Information System (INIS)

    Yohimbe was evaluated for its effects on cytological and biochemical toxicity in male Swiss albino mice. Adult male mice were mice were treated with different doses (750, 1500 and 3000 mg yohombe/kg., body weight/day) in form of an aqueous suspension for 7 consecutive days by gavage. The following parameters were evaluated: (i) cytological studies on micronucleus test, (ii) cytological analysis of spermatozoa abnormalities, (iii) Cytogentic analysis of meiotic chromosomes in the tests, (iv) quantification of proteins, ribose nucleic acid (RNA) and deoxyribose nucleic acid (DNA) in hepatic and testicular cells and (v) estimation of malondialdehyde (MDA) and nonprotein sulfhydryl (NP-SH) in hepatic and testicular cells. The treatment caused significant changes in the frequency of micronuclei in the femoral cells and induced spermatozoal abnormalities and testicular chromosomal aberrations. The study on biochemical parameters showed an increase of MDA and depletion of NP-SH, proteins, RNA and DNA in both hepatic and testicular cells. The data elucidated the role of free radical species in cytological and biochemical changes in both somatic and germ cells of Swiss albino mice. The exact mechanism of the genesis of lipid peroxides is not known, however, this might be related to the influence of yohimbine (the principal constituent of yohimbe) to enhance some catecholamines, including norepineprine which possess destructive stimuli on biological systems. It is suggested that, in view of the observed cytological and biochemical effects of yohimbe, it may be subjected to a thorough evaluation of toxicity before making it available for human use. (author)

  10. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection.

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Bishop, S.C.

    2010-01-01

    Background Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on es

  11. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Caracappa, S.; Bishop, S.C.

    2011-01-01

    BACKGROUND: Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on e

  12. Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark

    DEFF Research Database (Denmark)

    Bennedsgaard, Torben W.; Thamsborg, Stig M.; Aarestrup, Frank Møller;

    2006-01-01

    . Risk of infection was estimated based on somatic cell count, milk production, breed, age and lactation stage. Results: The high-risk cows represented about 49% of the cows in the herds. The overall prevalence of SA and SAr among these cows was 29% (95% confidence interval: 24%-34%) and 4% (95...

  13. A precise, low-cost milk sampler to enable the analysis of fat, protein, lactose and somatic cells in milk from individual cows

    NARCIS (Netherlands)

    Clarke, T.; Hannah, M.C.; Wientjes, H.A.

    2007-01-01

    Less than half of Australian dairy farmers undertake production recording that normally requires the collection of milk samples for the measurements of fat, protein and lactose percentages and somatic cell count. Usually the milk samples are collected from individual animals on a `one-day-per-month¿

  14. Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells

    OpenAIRE

    Filby, Caitlin E.; Williamson, Robert; van Kooy, Peter; Pébay, Alice; Dottori, Mirella; Elwood, Ngaire J.; Zaibak, Faten

    2011-01-01

    Introduction Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC. Methods USSC were cultured for (1) three days with ...

  15. Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines.

    Science.gov (United States)

    Jeong, Yeon Woo; Kim, Joung Joo; Hossein, Mohammad Shamim; Hwang, Kyu Chan; Hwang, In-sung; Hyun, Sang Hwan; Kim, Nam-Hyung; Han, Ho Jae; Hwang, Woo Suk

    2014-06-01

    Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype. PMID:24613602

  16. Correlation between somatic cell count and chemical composition of cooled raw milk in properties of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Adriano Henrique do Nascimento Rangel

    2014-06-01

    Full Text Available Due to the damage caused by subclinical mastitis in loss of production and quality of milk, the present study aimed to verify the correlation between somatic cell count (SCC and the chemical composition of cooled raw milk collected in the Agreste region of Rio Grande do Norte, Brazil, in drought and rain seasons. Samples were collected in seven dairy farms during morning time, between January 2010 and March 2012, and sent to the Brazilian et of Milk Quality Laboratory (ESALQ/USP. The contents of protein, fat, lactose, casein, total solids, nonfat dry extract and urea nitrogen, besides of SCC and total bacterial count were performed. Data were submitted to analysis of variance, correlation analysis and comparison of means by Tuckey test , 5%. The average SCC was 604,000 cells/mL and had significant variation in the dry period (558 000 cells/mL and rainy (650 000 cells/mL. The SCC was positively correlated with fat and total solids but negatively with the lactose cow’s milk of bulk tank, regardless of the season in the Agreste of Rio Grande do Norte.

  17. Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming.

    Science.gov (United States)

    Beagan, Jonathan A; Gilgenast, Thomas G; Kim, Jesi; Plona, Zachary; Norton, Heidi K; Hu, Gui; Hsu, Sarah C; Shields, Emily J; Lyu, Xiaowen; Apostolou, Effie; Hochedlinger, Konrad; Corces, Victor G; Dekker, Job; Phillips-Cremins, Jennifer E

    2016-05-01

    Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression. PMID:27152443

  18. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells.

    Science.gov (United States)

    Nguyen, Thuy Vy; Riou, Lydia; Aoufouchi, Saïd; Rosselli, Filippo

    2014-06-01

    Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca(-/-) mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation. PMID:24799500

  19. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  20. Genotoxic damage induced by isopropanol in germinal and somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Palermo, Ana María; Mudry, Marta Dolores

    2011-12-24

    Isopropanol (isopropyl alcohol, 2-propanol, IPA) is a volatile solvent widely used in domestic or industrial environments and reported as innocuous in various test systems. The aim of this work was to search for in vivo genotoxic effects of IPA in Drosophila melanogaster, studying its ability to induce nondisjunction (ND) in females, sex linked recessive lethals (SLRL) in males, and somatic mutation and/or recombination (SMART) in larvae. Treatments were acute (60min) and were administered via inhalation. IPA had low toxicity in adult flies (75% IPA mortality index, MI=12.7% (females) and 2.6% (males)) and larvae (MI=14.3%, 75% IPA). Female fertility was severely affected during the first 24h (brood I, BI) after treatment, but, afterwards, control values were recovered. IPA induced a 50-fold increase of ND (%) in 24h old females, and a six-fold rise in 4-5 d old BI offspring. Nondisjunction frequencies (%) in the offspring of broods II to V (24h in each case) were similar to control values. IPA doses of 25% and 50% (v/v), tested in 24h old females, showed a significant dose-dependent increase of ND(%)in BI only, with control values in subsequent broods. Flies gave normal offspring when kept in regular media for 24h before mating. The eye spot test (SMART) showed a significant increase at 50% IPA (pDNA directly, but perturbations of the nuclear membrane may be responsible for induction of ND. PMID:22001194

  1. Antimutagenic and antirecombinagenic activities of noni fruit juice in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Franchi, Leonardo P; Guimarães, Nilza N; De Andrade, Laise R; De Andrade, Heloísa H R; Lehmann, Maurício; Dihl, Rafael R; Cunha, Kênya S

    2013-01-01

    Noni, a Hawaiian name for the fruit of Morinda citrifolia L., is a traditional medicinal plant from Polynesia widely used for the treatment of many diseases including arthritis, diabetes, asthma, hypertension and cancer. Here, a commercial noni juice (TNJ) was evaluated for its protective activities against the lesions induced by mitomycin C (MMC) and doxorrubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for two genetic markers (mwh and flr3 ), were co-treated with TNJ plus MMC or DXR. We have observed a reduction in genotoxic effects of MMC and DXR caused by the juice. TNJ provoked a marked decrease in all kinds of MMC- and DXR-induced mutant spots, mainly due to its antirecombinagenic activity. The TNJ protective effects were concentration-dependent, indicating a dose-response correlation, that can be attributed to a powerful antioxidant and/or free radical scavenger ability of TNJ. PMID:23828338

  2. Recombinagenic activity of integerrimine, a pyrrolizidine alkaloid from Senecio brasiliensis, in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Campesato, V R; Graf, U; Reguly, M L; de Andrade, H H

    1997-01-01

    Integerrimine (ITR), a pyrrolizidine alkaloid from Senecio brasiliensis, was tested for genotoxicity using the wing somatic mutation and recombination test (SMART) in Drosophila melanogaster. The compound was administered by chronic feeding (48 hours) of 3-day-old larvae. Two different crosses involving the markers flare (flr) and multiple wing hairs (mwh) were used, that is, the standard (ST) cross and the high bioactivation (HB) cross, which has a high cytochrome P450-dependent bioactivation capacity. In both crosses, the wings of two types of progeny were analyzed, that is, inversion-free marker heterozygotes and balancer heterozygotes carrying multiple inversions. ITR was found to be equally potent in inducing spots in a dose-related manner in the marker heterozygotes of both crosses. This indicates that the bioactivation capacity present in larvae of the ST cross is sufficient to reveal the genotoxic activity of ITR. In the balancer heterozygotes of both crosses, where all recombinational events are eliminated due to the inversions, the frequencies of induced spots were considerably reduced which documents the recombinagenic activity of ITR. Linear regression analysis of the dose response relationships for both genotypes shows that 85% to 90% of the wing spots are due to mitotic recombination. PMID:9020312

  3. Functional imaging in tumor-associated lymphatics

    Science.gov (United States)

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2011-03-01

    The lymphatic system plays an important role in cancer cell dissemination; however whether lymphatic drainage pathways and function change during tumor progression and metastasis remains to be elucidated. In this report, we employed a non-invasive, dynamic near-infrared (NIR) fluorescence imaging technique for functional lymphatic imaging. Indocyanine green (ICG) was intradermally injected into tumor-free mice and mice bearing C6/LacZ rat glioma tumors in the tail or hindlimb. Our imaging data showed abnormal lymphatic drainage pathways and reduction/loss of lymphatic contractile function in mice with lymph node (LN) metastasis, indicating that cancer metastasis to the draining LNs is accompanied by transient changes of the lymphatic architectural network and its function. Therefore, functional lymphatic imaging may provide a role in the clinical staging of cancer.

  4. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains.

    Science.gov (United States)

    Ciccarese, Salvatrice; Vaccarelli, Giovanna; Lefranc, Marie-Paule; Tasco, Gianluca; Consiglio, Arianna; Casadio, Rita; Linguiti, Giovanna; Antonacci, Rachele

    2014-10-01

    In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the γδ subunits. PMID:24836674

  5. Targeting of tumor-associated antigens (TAA) in experimental immunotherapy

    International Nuclear Information System (INIS)

    We have previously shown the superiority of tumor-associated antigens (TAA) to function as effective immunogens when administered with bilayer membrane vesicles called liposomes. The ability of liposomes to target TAA to host antigen-presenting cells is analyzed here. 1-Butanol extracted TAA from two syngeneic rat colon cancer tumors (WB 2054 and W 1756) was radioiodinated (131I-TAA). Free 131I and 131I-TAA (2.8 X 10(7) cpm and 75 micrograms TAA per rat) were used as tracers, with or without incorporation into liposomes (composition: sphingomyelin, cholesterol, dicetyl phosphate at 70:24:6 molar ratio). Six groups of male rats (BN X WF for WB2054 and Wistar/Furth for W1756, n = 18 each group) were injected iv with either free tracers or the tracers incorporated into liposomes. Whole blood clearance curve was biphasic (half-life alpha = 5 min; half life beta = 12 hr), suggesting a two-compartmental model of distribution. Seven animals from each group were sacrificed at set times (15 min to 48 hr), organs harvested and cpm/g of tissue estimated. Liposome 131I and liposome 131I-TAA were targeted to and retained preferentially in liver and spleen. Four animals from each group were imaged serially using a gamma camera. Matched pair analysis of regions showed persistently higher activity in liver-spleen area when liposomes were used (P less than 0.001). The uptake of radiolabeled antigens by plastic adherent mononuclear cells in liver and spleen was significantly higher when presented with liposomes (macrophage uptake index: liver = 1.65 vs 0.55; spleen = 5.85 vs 1.15; with and without liposomes, respectively)

  6. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    Science.gov (United States)

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    Background and Aims The thin cell layer (TCL) technique is based on the use of very small explants and has allowed enhanced in vitro morphogenesis in several plant species. The present study evaluated the TCL technique as a procedure for somatic embryo production and plantlet regeneration of peach palm. Methods TCL explants from different positions in the shoot apex and leaf sheath of peach palm were cultivated in MS culture medium supplemented with 0–600 µm Picloram in the presence of activated charcoal. The production of primary calli and embryogenic calli was evaluated in these different conditions. Histological and amplified fragment length polymorphism (AFLP) analyses were conducted to study in vitro morphogenetic responses and genetic stability, respectively, of the regenerated plantlets. Key Results Abundant primary callus induction was observed from TCLs of the shoot meristem in culture media supplemented with 150–600 µm Picloram (83–97 %, respectively). The production of embryogenic calli depends on Picloram concentration and explant position. The best response observed was 43 % embryogenic callus production from shoot meristem TCL on 300 µm Picloram. In maturation conditions, 34 ± 4 somatic embryos per embryogenic callus were obtained, and 45·0 ± 3·4 % of these fully developed somatic embryos were converted, resulting in plantlets ready for acclimatization, of which 80 % survived. Histological studies revealed that the first cellular division events occurred in cells adjacent to vascular tissue, resulting in primary calli, whose growth was ensured by a meristematic zone. A multicellular origin of the resulting somatic embryos arising from the meristematic zone is suggested. During maturation, histological analyses revealed bipolarization of the somatic embryos, as well as the development of new somatic embryos. AFLP analyses revealed that 92 % of the regenerated plantlets were true to type. The use of TCL explants considerably improves the

  7. Human lung tumor-associated antigen identified as an extracellular matrix adhesion molecule

    OpenAIRE

    1991-01-01

    A single chain glycoprotein with an estimated molecular mass of 160 kD (gp160) was previously identified as a human lung tumor-associated antigen. This tumor marker is shown here to be associated noncovalently with a second 130-kD protein. Sequential immunoprecipitation studies of surface iodinated lung tumor cell lysates reveal that this heterodimeric complex is indistinguishable serologically and structurally from the integrin VLA-2, found originally on activated T lymphocytes and platelets...

  8. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.

  9. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells.

    Science.gov (United States)

    Kalchschmidt, Jens S; Bashford-Rogers, Rachael; Paschos, Kostas; Gillman, Adam C T; Styles, Christine T; Kellam, Paul; Allday, Martin J

    2016-05-30

    Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma. PMID:27217538

  10. Relationships of survival time, productivity and cause of death with telomere lengths of cows produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Konishi, Kazuyuki; Yonai, Miharu; Kaneyama, Kanako; Ito, Satoshi; Matsuda, Hideo; Yoshioka, Hajime; Nagai, Takashi; Imai, Kei

    2011-10-01

    The reproductive ability, milk-producing capacity, survival time and relationships of these parameters with telomere length were investigated in 4 groups of cows produced by somatic cell nuclear transfer (SCNT). Each group was produced using the same donor cells (6 Holstein (1H), 3 Holstein (2H), 4 Jersey (1J) and 5 Japanese Black (1B) cows). As controls, 47 Holstein cows produced by artificial insemination were used. The SCNT cows were artificially inseminated, and multiple deliveries were performed after successive rounds of breeding and conception. No correlation was observed between the telomere length and survival time in the SCNT cows. Causes of death of SCNT cows included accidents, accident-associated infections, inappropriate management, acute mastitis and hypocalcemia. The lifetime productivity of SCNT cows was superior to those of the controls and cell donor cows. All SCNT beef cows with a relatively light burden of lactation remained alive and showed significantly prolonged survival time compared with the cows in the SCNT dairy breeds. These results suggest that the lifetime productivity of SCNT cows was favorable, and their survival time was more strongly influenced by environmental burdens, such as pregnancy, delivery, lactation and feeding management, than by the telomere length. PMID:21666348

  11. Effects of different nuclear transfer and activation methods on the development of mouse somatic cell cloned embryos

    Institute of Scientific and Technical Information of China (English)

    Wang ErYao; YU Yang; Li XueMei; JIAO LiHong; Wang Liu

    2007-01-01

    A group of adult somatic cell cloned mice were obtained by using cumulus cells as nuclei donor cells. To study the effect of different nuclear transfer (NT) and activation methods on the development of mouse cloned embryos, embryos were reconstructed using two traditional NT methods (electrofusion and direct injection) and four activation treatments (electric pulse, ethanol, SrCl2 and electric pulse combined with SrCl2). The data showed that the efficiency of reconstruction using the direct injection method is significantly higher (90.7%) than that of the electrofusion method (49.7%). Parthenogenetic embryos can develop to blastocyst stage with three activation conditions, including ethanol, electric pulse and SrCl2; however, the rates of development to blastocyst after ethanol and electric pulse activation (52.4%, 54.2%) are significantly lower than after SrCl2 activation (76.9%). Treatment of embryos for 6 h with 10 mmol/L SrCl2 was found to be the best condition for activation of parthenogenetic as well as reconstructed embryos. By contrast, reconstructed embryos failed to develop to blastocyst stage after being activated by ethanol. The use of either injection or electrofusion for embryo reconstruction affected the pre-implantation development. However, after transfer in pseudopregnant mice, cloned mice were obtained from both methods.

  12. DNA methylation status of H19 and Xist genos in lungs of somatic cell nuclear transfer bovines

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; LI DongJie; LIU YanQin; ZHANG Cui; DAI YunPing; LI ShiJie; LINing

    2008-01-01

    In somatic cell nuclear transfer (SCNT) technologies, the donor cell's nuclei need to be epigenetically reprogrammed for embryonic development. The incomplete reprogramming of donor cell nuclei has been implicated as a primary reason for the low efficiency of SCNT. DNA methylation is a major epige- netic modification of the genome that regulates crucial aspects of genome function, including estab-lishment of genomic imprinting. In order to make sure whether the DNA methylation reprogramming is efficient in SCNT animals, we analyzed the DNA methylation status of two imprinting genes, H19 and Xist, in lungs of deceased SCNT bovines that died within 48 h of birth using bisulfite sequencing analysis. Our findings demonstrated that cloned bovines showed significantly lower DNA methylation of H19 than controls (P<0.05), and three tested CpGs sites (1, 2, 3) exhibited unmethylation in one cloned bovine (9C3); however, Xist showed similar DNA methylation levels between clones and con- trols, and both showed hypermethylation (96.11% and 86.67%).

  13. The effects of storage temperature on goat milk somatic cell count using the DeLaval counter.

    Science.gov (United States)

    Sanchez-Macias, Davinia; Castro, Noemi; Moreno-Indias, Isabel; Morales-delaNuez, Antonio; Briggs, Heather; Capote, Juan; Argüello, Anastasio

    2010-10-01

    This study investigated the influence of storage temperature and storage time on goat milk somatic cell counts (SCCs) determined using the DeLaval cell counter (DCC). SCCs were measured in 40 Majorera goat milk samples using the DCC device. Samples were grouped from high score (>2,750 x 10(3) cells/mL) to low score (milk sample was divided into four aliquots and stored at four different temperatures (4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C). The SCC was recorded every hour for 12 hours. Storage of goat milk with a high SCC for 5, 5, 2 or 1 hour at 4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C, respectively, decreased the SCC value compared to fresh milk. The goat milk SCC was lower after 1 hour of storage than that determined for fresh milk at any tested temperature in low-SCC samples. The data presented herein suggest that regardless of storage temperature, goat milk samples should not be stored for more than 1 hour before measurement of SCC with a DCC device. PMID:20419471

  14. An investigation on somatic cell count in milk samples collected from dairy farms at Tabriz region of Iran

    Directory of Open Access Journals (Sweden)

    Rahim Beheshti,

    2011-08-01

    Full Text Available The aim of present study was somatic cell count in milk samples collected from dairy farms at Tabriz region, Northwest of Iran. Three flocks selected based on high productivity and similar characteristics (use of family labour, Holstein herds and average production between upper than 11 kg/cow/day. Milk samples obtained from three parity classes were collect individually from the cows in the second and fifth month of lactation in two seasons: autumn-winter and spring-summer. Results show higher SCC for dairy cattle with second or upper milking. Cows at fifth or upper lactation period had 1000- 5000 ×103 cells/ml commonly but at first lactation there was no any cow with 1000-2500 ×103 cells/ml. In conclusion, incidence of high SCC rate (1000-5000×103 is considerably high during fifth or upper parity but 250 to 750 ×103 SCC cows are considerably low in number compared with first parity cows. Cows at first lactation commonly had 250-500×103 SCC at Tabriz regional farms.

  15. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    OpenAIRE

    She, Wenjing; Baroux, Célia

    2015-01-01

    Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organ...

  16. Mapping of Microsatellite SW943 to Porcine Chromosome 12p11-(2/3p13) Using Primed in situ Synthesis and Somatic Cell Hybrid Panel

    Institute of Scientific and Technical Information of China (English)

    LIU Bang; WANG Yong-qiang; ZHANG Qing-de; YU Mei; ZHAO Shu-hong; XIONG Tong-an; LI Kui

    2002-01-01

    The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and pig × rodent Somatic Cell Hybrid PaneI(SCHP) which contains 27 cell lines through PCR amplification. Advantages and disadvantages of the two methods for physical mapping of microsatellites were also discussed.

  17. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    International Nuclear Information System (INIS)

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  18. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    OpenAIRE

    Deepa Bhartiya; Kalpana Sriraman; Seema Parte

    2012-01-01

    The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs), and slightly larger...

  19. Somatic cell banking - An alternative technology for the conservation of endangered sheep breeds

    International Nuclear Information System (INIS)

    Skin samples from ear pinna of 10 male and 10 female sheep were collected and cultured in DMEM+Ham's F12 nutrient medium. Cell viability was 95 to 100% in different cultures. Mean cell proliferation rates were 0.94-0.67 and 1.15-0.56 for males and females in different passages, respectively. Cell proliferation rates were highest in first passage and then showed an age-related decline. Average cell doubling time was 30 h in males and 29.6 h in females. Skin fibroblast cell growth curves were in lag phase for the first 2 days, entered log phase (3rd to 7th days) and plateaued on day 8. Diploid chromosomal counts in proliferating cells up to the 5th passage were normal (2N=54), with no gross chromosomal aberrations recorded. Cells frozen from cycling cells at 80-90% confluency showed superior post-thaw growth compared with cells from overconfluent cultures. DMSO at 10% (v/v) in freezing media was optimal. Controlled-rate freezing at -1 deg. C/min showed better post-thaw cell viability and growth potential. Direct plating of thawed cells without removing DMSO and other contents of the freezing medium gave better post-thaw survival and proliferation rates. (author)

  20. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  1. Evaluation of genotoxic potential of Hypericum triquetrifolium extract in somatic and germ cells of male albino mice

    Directory of Open Access Journals (Sweden)

    Bushra M. A. Mohammed,

    2011-04-01

    Full Text Available Hypericum triquetrifolium aqueous extract were studied for the first time for its toxic and the possible clastogenic effects in vivo on the bone marrow and spermatozoa cells of Swiss albino mice. The lethal dose of the aqueous extract was considered to be 10.33 g/kg of the body weight, injected subcutaneously. The doses which were chosen for treatments were 2, 1, and 0.25 g/kg. H. triquetrifolium extract induce statistically significant increases in the average numbers of micronucleus(MN at the dose 2 g/kg and chromosome aberrations at the doses 2 and 1 g/kg ,the majority of aberrations observed were chromatid breaks, centromeric breaks, acentric fragments. The extract was found to inhibit mitotic index (MI in a dose-dependent manner. Moreover the plant extract showed a significant induction of sperm abnormalities in all concentrations used comparing with the untreated animals. The most frequent types of sperm abnormalities of the treated groups were; amorphous, pseudo-droplet defect, bent mid piece defect and corkscrew mid piece defect. However, the lowest dose 0.25 g/kg body weight was the most effective one which markedly increased the corkscrew midpiece defect. The results indicated that the mixture of the compounds found in the aqueous extract caused cytotoxicity and induced different cytogenetic effects in both somatic and germ cells of male albino mice.

  2. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects.

    Science.gov (United States)

    Bahrami, Hoda; Keshel, Saeed Heidari; Chari, Aliakbar Jafari; Biazar, Esmaeil

    2016-09-01

    Unrestricted somatic stem cells (USSCs) loaded in nanofibrous polycaprolactone (PCL) scaffolds can be used for skin regeneration when grafted onto full-thickness skin defects of rats. Nanofibrous PCL scaffolds were designed by the electrospinning method and crosslinked with laminin protein. Afterwards, the scaffolds were evaluated by scanning electron microscopy, and physical and mechanical assays. In this study, nanofibrous PCL scaffolds loaded with USSCs were grafted onto the skin defects. The wounds were subsequently investigated 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; study samples exhibited the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen at 21 days post-operatively. Histological examinations of healed wounds from all samples showed a thin epidermis plus recovered skin appendages in the dermal layer for samples with cell. Thus, the graft of nanofibrous PCL scaffolds loaded with USSC showed better results during the healing process of skin defects in rat models. PMID:26140614

  3. Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Edson José Fragiorge

    2007-03-01

    Full Text Available In this study two different crosses involving the wing cell markers mwh and flr³ (standard (ST cross and high bioactivation (HB cross, the latter being characterized by a high constitutive level of cytochrome P450 which leads to an increased sensitivity to a number of promutagens and procarcinogens were used to investigate the modulatory effects of ascorbic acid (AA combined with the antitumor agent doxorubicin (DXR in Drosophila melanogaster. We observed that the two different concentrations of AA (50 or 100 mM had no effect on spots frequencies, while DXR treatments (0.2 or 0.4 mM gave positive results for all types of spots, when compared to negative control. For marker-heterozygous (MH flies, a protective effect was observed with the lower concentration of AA (50 mM that was able to statistically decrease the frequency of spots induced by DXR (0.2 mM, while an enhanced frequency of spots induced by DXR was observed with the higher concentration of AA (100 mM, when compared to DXR treatment (p < 0.05. These results suggest that AA may interfere with free radicals generated by DXR and with other possible reactive metabolites. The efficiency of AA in protecting the somatic cells of D. melanogaster against mutation and recombination induced by DXR is dependent on the dose used and the protection is directly related to the activity of cytochrome P450 enzymes.

  4. Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay

    International Nuclear Information System (INIS)

    The reactor accident at Chernobyl in 1986 necessitated a massive environmental cleanup that involved over 600,000 workers from all 15 Republics of the former Soviet Union. To determine whether the whole-body radiation received by workers in the course of these decontamination activities resulted in a detectable biological response, over 1,500 blood samples were obtained from cleanup workers sent from two Baltic countries, Estonia and Latvia. Here we report the results of studies of biodosimetry using the glycophorin A (GPA) locus in vivo somatic cell mutation assay applied to 734 blood samples from these workers, to 51 control samples from unexposed Baltic populations and to 94 samples from historical U.S. controls. The data reveal inconsistent evidence that the protracted radiation exposures received by these workers resulted in a significant dose-associated increase in GPA locus mutations compared with the controls. Taken together, these data suggest that the average radiation exposure to these workers does not greatly exceed 10 cGy, the minimum levels at which radiation effects might be detectable by the assay. Although the protracted nature of the exposure may have reduced the efficiency of induction of GPA locus mutations, it is likely that the estimated physical doses for these cleanup worker populations (median reported dose 9.5 cGy) were too low to result in radiation damage to erythroid stem cells that can be detected reliably by this method. 25 refs., 2 figs., 3 tabs

  5. Cellular heredity in haploid cultures of somatic cells. Progress report, August 1978-September 1979

    International Nuclear Information System (INIS)

    During the past year we have continued our studies of the relation of ultraviolet mutagenesis to DNA repair in cultures of the haploid frog cell line ICR 2A. Our method of irradiation of cells in suspension was improved by construction of an improved detector with major sensitivity to the 254 nm Hg resonance line, to give better estimates of actual exposure of the cells. Using this method, dose-response and dose-fractionation studies on irradiation of ouabain resistance were carried out. The uv induction of this phenotype in the ICR 2A cell line was found to be less than that necessary for adequate analysis of dose-response curves. Cell fusion experiments using frog and mouse cells revealed an enhancement of mutagenesis in the mouse parent that will be explored in further work

  6. Cellular heredity in haploid cultures of somatic cells. Progress report, August 1978-September 1979

    International Nuclear Information System (INIS)

    During the past year, studies were continued on the relation of ultraviolet mutagenesis to DNA repair in cultures of the haploid frog cell line ICR 2A. The method of irradiation of cells in suspension was improved by construction of an improved detector with major sensitivity to the 254 nm Hg resonance line, to give better estimates of actual exposure of the cells. Using this method, dose-response and dose-fractionation studies on irradiation of ouabain resistance were carried out. The uv induction of this phenotype in the ICR 2A cell line was found to be less than that necessary for adequate analysis of dose-response curves. Cell fusion experiments using frog and mouse cells revealed an enhancement of mutagenesis in the mouse parent that will be explored in further work

  7. The Determination of Somatic Cell Count and Some Components of Raw Milk Evaluated By a Private Company in Trakya

    Directory of Open Access Journals (Sweden)

    A. R. Onal

    2007-05-01

    Full Text Available The aim of this study was to determine the amount of bulk tank somatic cell counts. Chemical and microbiological compositions of raw milk produced in Trakya were also reached in order to evaluate the structure of milk production. For this purpose 36 raw milk samples were collected from bulk milk tank within three different location of Trakya (18 samples from Edirne, 10 from Tekirdağ and 8 from Kırklareli. The arithmetic means and standard errors of fat percentages, non-fat dry matter, protein percentages, BTSCC (Bulk Tank Milk Somatic Cell Count and TB (Total Bacteria for Edirne, Tekirdağ and Kırklareli provinces were; 3.70 0.052, 3.60 0.098, 3.76 0.064; 8.34 0.025, 8.50 0.035, 8.39 0.038; 3.05 0.012, 3.09 0.019, 3.05 0.016; 308.555 26.510 SCC/ml (log 5.459 0.04 SCC/ml, 350.200 53.627 SCC/ml (Log 5.500 0.06 SCC/ml, 254.500 37.645 SCC/ml (Log 5.370 0.06 SCC/ml; 479.481 51.777 cfu/ml (Log 5.630 0.05 cfu/ml, 435.716 91.194 cfu/ml (Log 5.5230.12 cfu/ml, 446.958 81.515 cfu/ml (Log 5.602 0.075 cfu/ml respectively. Consequentially, the correlation coefficient for LogBTSCC and fat percentage, non-fat dry matter, protein percentage and LogTB were found to be 0.036, 0.251, 0.421 and 0.219 respectively. A significant (p<0.05 correlation coefficient was obtained between LogBTSCC and protein percentage.

  8. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  9. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  10. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  11. [Prevalence of subclinical udder infections and individual somatic cell counts in three dairy goat herds during a full lactation].

    Science.gov (United States)

    Schaeren, W; Maurer, J

    2006-12-01

    For dairy goats, both the determination of the somatic cell counts (SCC) and the interpretation of these values may be a problem. Several investigations have shown that SCC for goat's milk, even from not infected mammary halves, are often higher than for cows milk. In the three herds examined about 40% of mammary halves and 30% of the goats were infected. However large differences between the three herds could be observed. In most cases, infections were caused by coagulase negative staphylococci (CNS) or corynebacteria. The SCC of individual milk samples from goats without any udder infection hardly differed from those of goats with at least one udder half infected with CNS. In 20% and 30% of the cases the SCC was higher than 750'000 cells/ml, respectively. The relation between California Mastitis Test (CMT) reactions and udder infections was not very close. Over 20% of mammary halves infected with CNS showed negative CMT reactions. On the other hand, 25% of samples from mammary halves without a proven infection reacted positively. The large differences in individual cell counts on herd and animal level indicate that production and breeding systems might be important reasons for the higher SCC. As a consequence, the most common methods for or the control of udder health and udder infections (SCC, California Mastitis Test) are of limited value for goats. Since there was only a weak relation between milk quality properties and SCC, any arguments for the introduction of legal limits below 1 million cells per ml can hardly be found. PMID:17263081

  12. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    BOU; ShorGan

    2009-01-01

    In the present study, cashmere goat fetal fibroblasts were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1 (IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasts cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h. Parthenogenetic ooctyes were used as a model to investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO- Faa and CR1aa; 86.3% vs 83.9%, P>0.05 and 23.1% vs 17.2%,P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05). After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex- pressing red fluorescence. Two of the red fluorescent blastocysts were randomly selected to identify transgene by polymerase chain reaction. Both were positive. These results showed that: (i) RFP and Neor genes were correctly expressed indicating that transgenic somatic cell lines and positive trans- genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and

  13. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GUO XuDong; YANG DongShan; Ao XuDong; WU Xia; LI GuangPeng; WANG LingLing; BAO MingTao; XUE Lian; BOU ShorGan

    2009-01-01

    In the present study, cashmere goat fetal flbroblasta were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1(IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasta cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h.Parthenogenetic ooctyes were used as a model to Investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO-Faa and CR1aa; 86.3% va 83.9%, P>0.05 and 23.1% vs 17.2%, P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05).After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex-pressing red fluorescence. Two of the red fluorescent blastocysta were randomly selected to identify transgene by polymeraee chain reaction. Both were positive. These results showed that: (i) RFP and Neo genes were correctly expressed indicating that transgenlc somatic cell lines and positive trans-genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and

  14. Radiation-induced changes to mammalian cells as a precipitating factor in somatic radiation injuries

    International Nuclear Information System (INIS)

    Radiation-induced inhibitions of proliferation were assessed in cell cultures examined for their colony-forming abilities as well as from changes of growth curves. The results of those measurements, along with simulating calculations, underlined the fact that the colony-forming capacity of a cell can by no means be equated with cell survival, unless due attention is given to the size of the colony formed. It is the size of the colony that provides a measure of the damage done to the irradiated cell. Cells counts are the most reliable method to ascertain the course of proliferation following radiation exposure. The difference between the two methods mentioned became particularly evident in studies with radiation protection substances. Dithiothreitol (DTT) and mercaptopropionyl glycine (MPG) were on the basis of colony formation clearly shown to offer protection against radiation. The growth curves, however, revealed that the proliferation of cells irradiated in the presence of radiation protection substances was even more strongly inhibited than that of cells influenced by irradiation alone. The neutral elution method failed to provide irrefutable evidence that the rate of double strand breaks was reduced by those two substances. Cysteamine and DTT were, however, able to inhibit radiation-induced changes to the proteins of human erythrocyte membranes. (orig./MG)

  15. Processed pseudogenes acquired somatically during cancer development

    OpenAIRE

    Cooke, Susanna L.; Shlien, Adam; Marshall, John; Pipinikas, Christodoulos P; Martincorena, Inigo; Tubio, Jose M. C.; Li, Yilong; Menzies, Andrew; Mudie, Laura; Ramakrishna, Manasa; Yates, Lucy; Davies, Helen; Bolli, Niccolo; Bignell, Graham R; Tarpey, Patrick S.

    2014-01-01

    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotransp...

  16. Effect of Oxytocin Administration before Milking on Milk Production, Somatic Cells Count and fat Contents in Milk of Nili-Ravi Buffaloes

    Directory of Open Access Journals (Sweden)

    Muhammad Saleem Akhtar*, Laeeq Akbar Lodhi1, Abdul Asim Farooq, M. Mazhar Ayaz, Maqbool Hussain, Mushtaq Hussain Lashari and Zafar Iqbal Chaudhary

    2012-06-01

    Full Text Available This study was escorted to know the effect of oxytocin administration before milking on milk production, somatic cells count and fat contents in milk of buffaloes. Twenty lactating Nili-Ravi buffaloes were randomly divided into two groups. Group A (n = 10 buffaloes were treated intramuscularly with 30 IU of oxytocin daily before the start of milking for the period of 7 days, whereas group B (n = 10 buffaloes were given no treatment and served as control. Milk samples were collected from all buffaloes 7 days before (Phase I, during (Phase II and after (Phase III the treatment. There were significantly higher (P<0.05 milk production (liters during phase-II in group A (8.57±0.07 liters buffaloes as compare to group B (8.40±0.04 liters whereas non-significant differences were recorded in the mean milk production between group A and B during phase-I (8.46 vs 8.43 liters and III (8.54 liters. Somatic cells count varied from 72.96 to 97.01 × 103 and 71.86 to 77.14 × 103 cells per ml in group A and B, respectively. Mean somatic cells count were significantly higher (P<0.05 in group A as compared to group B during phases II of study. During phase I, II and III, there were non-significant differences in fat percentage between two groups of buffaloes. It was concluded that milk production and somatic cells count in milk of Nili-Ravi buffalo were affected by oxytocin injection before milking whereas there was no effect of oxytocin on milk fat percentage.

  17. Origin of the somatic cells in the rat gonad: An autoradiographic approach

    International Nuclear Information System (INIS)

    Gonads from rats of 11 and 12 days of gestation that had been given a pulse of 3H-thymidine were studied at different times using autoradiographic techniques. When the animals were labeled before the formation of the gonadal blastema (11 days), the percentage of labeled cells in this structure was greater than in the coelomic epithelium and mesenchyme. However, when 3H-thymidine was injected after the gonadal blastema was already established (12 days), very few of these cells took up the compound; they remained in this conditions until the sexual differentiation of the gonad. From this characteristic, which is an indication of the early differentiation of the blastemal cells, one may conclude that the seminiferous cords arise from this initial cellular line. On the other hand, there appears to be a contribution of coelomic epithelial cells during the formation of the sex cords in the ovary

  18. Comparative pluripotency analysis of mouse embryonic stem cells derived from wild-type and infertile hermaphrodite somatic cell nuclear transfer blastocysts

    Institute of Scientific and Technical Information of China (English)

    FAN Yong; YAO RuQiang; YU Yang; LI ZanDong; WANG Liu; ALICE Jouneau; ZHOU Qi; TONG Man; ZHAO ChunLi; DING ChenHui; HAO Jie; LV Zhuo; DAI XiangPeng; HAI Tang; LI XueMei

    2008-01-01

    Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from patient-specific cloned blastocysts via somatic cell nuclear transfer (SCNT), holds great promise for treating many human diseases using regenerative medicine. Teratoma formation and germline transmission have been used to confirm the pluripotency of mouse stem cells, but human embryonic stem cells (hESCs) have not been proven to be fully pluripotent owing to the ethical impossibility of testing for germ line transmission, which would be the strongest evidence for full pluripotency. Therefore, formation of differentiated cells from the three somatic germ layers within a teratoma is taken as the best indicator of pluripotency in hESC lines. The possibility that these lines lack full multi- or pluripotency has not yet been evaluated.In this study, we established 16 mouse ESC lines, including 3 genetically defective nuclear transfer-ESC (ntESC) lines derived from SCNT blastocysts of infertile hermaphrodite F1 mice and 13 ntESC lines derived from SCNT blastocysts of normal F1 mice. We found that the defective ntESCs expressed all in vitro markers of pluripotency and could form teratomas that included derivatives from all three germ layers, but could not be transmitted via the germ line, in contrast with normal ntESCs. Our results indicate that teratoma formation assays with hESCs might be an insufficient standard to assess full pluripotency, although they do define multipotency to some degree. More rigorous standards are required to assess the safety of hESCs for therapeutic cloning.

  19. Effect of estrone on somatic and female gametophyte cell division and differentiation in Arabidospis thaliana cultured in vitro

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2014-04-01

    Full Text Available The aim of the study was to determine the effect of the mammalian female sex hormone estrone on differentiation of somatic tissues and on induction of autonomous endosperm in culture of female gametophyte cells of Arabidopsis thaliana ecotype Columbia (Col-0. In culture, estrone-stimulated development of autonomous endosperm (AE occurred in 14.7% of unpollinated pistils. The AE represented development stages similar to those of young endosperm after fertilization and AE of fis mutants in vivo. In the majority of ovules the AE was in a few-nucleate young stage. Some ovules showed more advanced stages of AE development, with nuclei and cytoplasm forming characteristic nuclear cytoplasmic domains (NCDs. Sporadically, AE was divided into regions characteristic for Arabidopsis endosperm formed after fertilization. Direct organogenesis (caulogenesis, rhizogenesis, callus proliferation and formation of trichome-like structures were observed during in vitro culture of hypocotyls and cotyledons of 3-day-old seedlings cultured on medium supplemented with estrone for 28 days. Histological analysis showed adventitious root formation and changes in explant anatomy caused by estrone.

  20. Single nucleotide polymorphisms in candidate genes and their relation with somatic cell scores in Argentinean dairy cattle.

    Science.gov (United States)

    Nani, Juan P; Raschia, Maria A; Carignano, Hugo; Poli, Mario A; Calvinho, Luis F; Amadio, Ariel F

    2015-11-01

    The prevention and control of bovine mastitis by enhancing natural defenses in animals is important to improve the quality of dairy products. Mastitis resistance is a complex trait which depends on genetic components, as well as environmental and physiological factors. The limitations of classical control measures have led to the search for alternative approaches to minimize the use of antibiotics by selecting naturally resistant animals. Polymorphisms in genes associated with the innate immune system are strong candidates to be evaluated as genetic markers. In this work, we evaluated a set of single nucleotide polymorphisms (SNPs) in candidate genes for health and production traits, and determined their association with the somatic cell score (SCS) as an indicator of mastitis in Argentinean dairy cattle. We evaluated 941 cows: Holstein (n = 677) and Holstein × Jersey (n = 264) crossbred, daughters from 22 bulls from 14 dairy farms located in the central dairy area of Argentina. Two of the 21 successfully genotyped markers were found to be significantly associated (p < 0.05) with the SCS: GHR_140 and OPN_8514C-T. The heterozygote genotype for GHR_140 showed a favorable effect in reducing the SCS. On the other hand, heterozygote genotypes for OPN8514C-T caused an increase in the SCS; moreover, combined genotypes for OPN SNPs showed an even larger effect. These findings can contribute to the design of effective marker-assisted selection programs. PMID:25783851

  1. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer.

    Science.gov (United States)

    Jeong, Young-Hee; Lu, Hanlin; Park, Chi-Hun; Li, Meiyan; Luo, Huijuan; Kim, Joung Joo; Liu, Siyang; Ko, Kyeong Hee; Huang, Shujia; Hwang, In Sung; Kang, Mi Na; Gong, Desheng; Park, Kang Bae; Choi, Eun Ji; Park, Jung Hyun; Jeong, Yeon Woo; Moon, Changjong; Hyun, Sang-Hwan; Kim, Nam Hyung; Jeung, Eui-Bae; Yang, Huanming; Hwang, Woo Suk; Gao, Fei

    2016-01-01

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development stage at E34 in the XY(DSD) gonad, and high activation of the female specific genes, including FOXL2, RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results demonstrate that incomplete demethylation on the SRY gene is the driving cause of XY(DSD) in these XY DSD dogs, indicating a central role of epigenetic regulation in sex determination. PMID:27501986

  2. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Belice dairy sheep.

    Science.gov (United States)

    Riggio, Valentina; Pesce, Lorenzo L; Morreale, Salvatore; Portolano, Baldassare

    2013-06-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would optimally discriminate between healthy and infected udders. Milk samples (n=1357) were collected from 684 sheep in four flocks. The prevalence of infection, as determined by positive bacterial culture was 0.36, 87.7% of which were minor and 12.3% major pathogens. Of the culture negative samples, 83.7% had an SCCCMT results were evaluated, the estimated area under the ROC curve was greater for glands infected with major compared to minor pathogens (0.88 vs. 0.73), whereas the area under the curve considering all pathogens was similar to the one for minor pathogens (0.75). The estimated optimal thresholds were 3.00 (CMT), 2.81 (SCS for the whole sample), 2.81 (SCS for minor pathogens), and 3.33 (SCS for major pathogens). These correctly classified, respectively, 69.0%, 73.5%, 72.6% and 91.0% of infected udders in the samples. The CMT appeared only to discriminate udders infected with major pathogens. In this population, SCS appeared to be the best indirect test of the bacteriological status of the udder. PMID:23317658

  3. DNA-damaging potency and genotoxicity of aflatoxin M1 in somatic cells in vivo of Drosophila melanogaster.

    Science.gov (United States)

    Shibahara, T; Ogawa, H I; Ryo, H; Fujikawa, K

    1995-05-01

    Aflatoxin M1 (AFM1), a metabolic hydroxylation product of aflatoxin B1 (AFB1), and the parent compound were comparatively assayed for DNA-damaging potency and genotoxicity in vivo in Drosophila melanogaster using, respectively, the mei-9a mei-41D5 DNA repair test and the mwh/flr3 wing spot test. In the repair test, larval stock, consisting of meiotic recombination-deficient double mutant mei-9a mei-41D5 males and repair-proficient females, was exposed to the test agents, and the preferential killing of the mutant larvae was taken as evidence of the DNA-damaging effect. In this test, AFM1 was registered as a DNA-damaging agent with an activity approximately 3-fold lower than that of AFB1. In the wing spot test, where larval flies, trans-heterozygous for the somatic cell markers mwh and flr3, were treated and the wings were inspected at adulthood for spots manifesting the phenotypes of the markers, AFM1 exerted a genotoxic effect compatible to that of AFB1. Based on these results and other data, we predict that AFM1 may be genotoxic in mammalian in-vivo systems as well. PMID:7666765

  4. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer

    Science.gov (United States)

    Jeong, Young-Hee; Lu, Hanlin; Park, Chi-Hun; Li, Meiyan; Luo, Huijuan; Kim, Joung Joo; Liu, Siyang; Ko, Kyeong Hee; Huang, Shujia; Hwang, In Sung; Kang, Mi Na; Gong, Desheng; Park, Kang Bae; Choi, Eun Ji; Park, Jung Hyun; Jeong, Yeon Woo; Moon, Changjong; Hyun, Sang-Hwan; Kim, Nam Hyung; Jeung, Eui-Bae; Yang, Huanming; Hwang, Woo Suk; Gao, Fei

    2016-01-01

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development stage at E34 in the XYDSD gonad, and high activation of the female specific genes, including FOXL2, RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results demonstrate that incomplete demethylation on the SRY gene is the driving cause of XYDSD in these XY DSD dogs, indicating a central role of epigenetic regulation in sex determination. PMID:27501986

  5. Spatial patterns of recorded mastitis incidence and somatic cell counts in Swedish dairy cows: implications for surveillance

    Directory of Open Access Journals (Sweden)

    Cecilia Wolff

    2011-11-01

    Full Text Available Clinical mastitis (CM is the most common veterinary treated disease in Swedish dairy cattle. To investigate if the distribution of veterinary registered cases of CM in Sweden follows that of the spatial distribution of cows with high somatic cell counts (SCCs, the spatial distribution of CM odds was estimated from available records and compared with udder health measures based on measurements of SCC derived from official milk recording. The study revealed areas with significantly lower odds for CM but with a high proportion of cows with a poor udder health score, suggesting an under-reporting of CM. We also found areas of significantly higher odds for CM despite a low proportion of cows with a poor udder health score, suggestive of over-treatment of mastitis. The results should enable targeted studies of reasons for discrepancies, e.g. farmers’ and veterinarians’ attitudes to mastitis treatment and disease recording in areas with a deficit or excess of registered CM cases. High quality disease records for dairy cattle are of interest not only for the dairy management but also for disease surveillance, monitoring of use of antibiotics and food safety purposes.

  6. Changes in Some Biochemical Parameters and Somatic Cell Counts in the Milk of Buffalo and Cattle Suffering from Mastitis

    Directory of Open Access Journals (Sweden)

    Riaz Hussain§, Muhammad Tariq Javed and Ahrar Khan*

    2012-06-01

    Full Text Available The study was conducted on a total of 592 buffaloes and 453 cattle in their different stages of lactation to investigate the biochemical changes occurring in milk due to mastitis. California Mastitis Test (CMT was used to diagnose the mammary gland infection. The results revealed significant (P<0.0001 increase in pH, electrical conductivity, malondialdehyde and total dissolved solids, while decrease in fat, protein, lactose and solids not fat in milk samples of both mastitic buffaloes and cattle. The total somatic cell and neutrophil counts were significantly higher, while the macrophage and lymphocytes were lower in the milk of mastitic animals. The enzymes including lactate dehydrogenase, aspartate aminotransferase and alkaline phosphatase along with sodium were significantly higher in mastitic than healthy buffaloes. It was similar in cattle as well, with the exception of aspartate aminotransferase which was non-significant in cattle. The values of potassium, phosphorous, calcium, magnesium, zinc and iron were significantly higher in the milk of mastitic animals. The copper levels were significantly (P<0.0001 lower in mastitic than in healthy buffaloes, while it showed non-significant difference in cattle. The investigation of enzymes, lipid peroxidation product and milk electrical conductivity in present study appeared suitable diagnostic tools for identification of mastitis.

  7. Spindle formation and microtubule organization during first division in reconstructed rat embryos produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Tomioka, Ikuo; Mizutani, Eiji; Yoshida, Tomoyuki; Sugawara, Atsushi; Inai, Kentaro; Sasada, Hiroshi; Sato, Eimei

    2007-08-01

    The present study was conducted to demonstrate the spindle formation and behavior of chromosomes and microtubules during first division in reconstructed rat embryos produced by somatic cell nuclear transfer (SCNT) with cumulus cell nuclei. To demonstrate the effect of oocyte aging after ovulation on the cleavage of SCNT embryos, micromanipulation was carried out 11, 15 and 18 h after injection of hCG. SCNT oocytes were activated by incubation in culture medium supplemented with 5 microM ionomycin for 5 min followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) in mR1ECM for 2-3 h. For immunocytochemical observation, the SCNT embryos were incubated with monoclonal anti-alpha-tubulin antibody and then fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG. Cleavage rates were significantly higher for oocytes collected after 15 and 18 h rather than for those collected 11 h after injection of hCG (56 and 53%, respectively vs. 28%; P<0.05). Premature chromosome condensation occurred before activation of the SCNT oocytes, but adequate spindle formation was only rarely observed. The distribution of microtubules in SCNT embryos after activation was different from those of fertilized and parthenogenic oocytes, i.e., a dense microtubule organization shaped like a ring was observed. Eighteen to 20 h post-activation, most SCNT embryos were in the 2-cell stage, but no nucleoli were clearly visible, which was quite different from the fertilized oocytes. In addition, first division with and without small cellular bodies containing DNA was observed in the rat SCNT embryos in some cases. The present study suggests that reorganization of transferred nuclei in rat SCNT embryos may be inadequate in terms of formation of the mitotic assembly and nucleolar reorganization. PMID:17446658

  8. In Vitro Developmental Potential of Cloned Embryos Derived from Bovine Somatic Cells and Rabbits Oocyte

    Institute of Scientific and Technical Information of China (English)

    LIU Ya; LI Bin; ZHAO Huan; CHENG Li-zi; ZHANG Xiao-rong; CHEN Da-yuan; ZHANG Yun-hai; ZHANG Zhi-guo; JING Ren-tao; WANG Cun-li; ZHANG Mei-lin; LI Dong-wei

    2003-01-01

    180 reconstituted embryos were produced by nuclear transplantation using bovine ear fibroblasts at G0 or non-G0 stage as donor nuclei and oocytes collected from superovulated multiparous or young rabbits as recipients. After cultivation in two kinds of medium M199+ 10%FBS or RD+ 10%FBS, 112 of them developed to 2-cell stage (62.2%) and 26 to morula stage (14.4%) and 20 of them eventually developed to blastocyst stage (11. 1% ). There is no significant difference for the cleavage rates in two groups of reconstituted embryos derived from G0-stage and non-G0 stage donor cells respectively. However, G0-stage donor cells could result in higher rate of 8-cell - 16-cell stage embryos significantly (P<0.05), as well as higher rate of blastocysts (P<0.01). It seems that using two different culture systems had no significant effects on the cleavage rate, morula rate or blastocyst rate (P>0.05).

  9. Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells

    Science.gov (United States)

    Butenko, R. G.; Dmitriyeva, N. N.; Ongko, V.; Basyrova, L. V.

    1977-01-01

    A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures.

  10. Cellular heredity in haploid cultures of somatic cells. Comprehensive report, April 1975--June 1977

    International Nuclear Information System (INIS)

    This report reviews genetic studies carried out since 1975 on a haploid cultured cell line from frog embryos (ICR 2A). Although a single chromosome set would be expected to facilitate recovery of recessive mutants, experiments suggested that cell culture variants might arise through processes more complex than the selection of simple mutational changes. Therefore, the objectives of the work reported here have been to throw light on just how cell culture variants arise in this system. First, we have continued to characterize the ICR 2A line, with emphasis on stability of karyotype and DNA content. Second, we have studied in detail the origin of two classes of drug-resistant variants. Bromodeoxyuridine resistance of the thymidine deficiency type has been shown to arise through sequential loss of two forms of thymidine-phosphorylating enzyme; loss of the second form of enzyme is complex, suggesting that changes more complex than simple recessive mutations may be involved. Another form of resistance, in which tolerance of high levels of bromodeoxyuridine is found in cells that continue to express thymidine kinase, remains under study. Variants resistant to microtubule inhibitors were isolated. It was found that these haploid strains have properties distinguishing them from analogous resistant strains isolated from diploid mammalian cell cultures in other laboratories. In order to understand better how mutagens are involved in the origin of cell culture variants, we have examined the effect of different forms of DNA repair on the frequency of drug-resistant colonies induced by ultraviolet radiation. Preliminary experiments suggest that the frequency of such colonies is greater when repair takes place through (presumably error-prone) dark repair than when (error-free) photoreversal is allowed to occur. Such experiments can determine whether new phenotypes arise from alterations in DNA, and thus whether, in a broad sense, they are likely to be mutational in nature

  11. Cellular heredity in haploid cultures of somatic cells. Comprehensive report, April 1975--June 1977. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, J.J.

    1977-07-01

    This report reviews genetic studies carried out since 1975 on a haploid cultured cell line from frog embryos (ICR 2A). Although a single chromosome set would be expected to facilitate recovery of recessive mutants, experiments suggested that cell culture variants might arise through processes more complex than the selection of simple mutational changes. Therefore, the objectives of the work reported here have been to throw light on just how cell culture variants arise in this system. First, we have continued to characterize the ICR 2A line, with emphasis on stability of karyotype and DNA content. Second, we have studied in detail the origin of two classes of drug-resistant variants. Bromodeoxyuridine resistance of the thymidine deficiency type has been shown to arise through sequential loss of two forms of thymidine-phosphorylating enzyme; loss of the second form of enzyme is complex, suggesting that changes more complex than simple recessive mutations may be involved. Another form of resistance, in which tolerance of high levels of bromodeoxyuridine is found in cells that continue to express thymidine kinase, remains under study. Variants resistant to microtubule inhibitors were isolated. It was found that these haploid strains have properties distinguishing them from analogous resistant strains isolated from diploid mammalian cell cultures in other laboratories. In order to understand better how mutagens are involved in the origin of cell culture variants, we have examined the effect of different forms of DNA repair on the frequency of drug-resistant colonies induced by ultraviolet radiation. Preliminary experiments suggest that the frequency of such colonies is greater when repair takes place through (presumably error-prone) dark repair than when (error-free) photoreversal is allowed to occur. Such experiments can determine whether new phenotypes arise from alterations in DNA, and thus whether, in a broad sense, they are likely to be mutational in nature.

  12. Investigation of risk factors of bovine mastitis in Ethiopia; Isolation of mastitis causing agents and determination of the content of somatic cells in milk

    OpenAIRE

    Frese, Mathias Lutz

    2010-01-01

    In this thesis, the risk factors of bovine mastitis in different milk production systems in Ethiopia were investigated. Furthermore, mastitis causing agents were isolated after California Mastitis Test (CMT) was used as the field test. Somatic cells were counted and compared with the CMT. Low milk production and low quality of milk are apparently related to a lack of proper hygienic measures throughout the farm clusters.

  13. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows

    OpenAIRE

    KAŞIKÇI, Güven; ÇETİN, Ömer; BİNGÖL, Enver Barış; GÜNDÜZ, Mehmet Can

    2012-01-01

    This study was conducted to determine the effectiveness of the electrical conductivity (EC) method on the diagnosis of subclinical mastitis in dairy cows comparing with somatic cell count (SCC) and California mastitis test (CMT), and also to investigate the effect of these values on the amount of total viable bacteria, density, freezing point, and mineral substances. A total of 386 milk samples collected from quarters of 188 cows at 10 different farms were used as materials. Of the samples, 2...

  14. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga;

    2015-01-01

    heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for...

  15. Radiogenotoxicological effect of signal nuclide 134Cs on somatic and germ cells

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; XiaFen; 等

    1997-01-01

    Chromosome at aberation rates in bone marrow cells and micronucleus formation in bone marrow polychromatic erythrocytes both rise with increase in radioactivities of 134Cs,and can be fitted to power functions of radioactivities of 134Cs.In spermatogonia 134Cs mainly induced chromatid breakage,and abnormalities in sperm can also be experessed as power functions of radioactivities of 134 Cs.

  16. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analys

  17. Differences during the first lactation between cows cloned by somatic cell nuclear transfer and noncloned cows.

    Science.gov (United States)

    Montazer-Torbati, F; Boutinaud, M; Brun, N; Richard, C; Neveu, A; Jaffrézic, F; Laloë, D; LeBourhis, D; Nguyen, M; Chadi, S; Jammes, H; Renard, J-P; Chat, S; Boukadiri, A; Devinoy, E

    2016-06-01

    Lactation performance is dependent on both the genetic characteristics and the environmental conditions surrounding lactating cows. However, individual variations can still be observed within a given breed under similar environmental conditions. The role of the environment between birth and lactation could be better appreciated in cloned cows, which are presumed to be genetically identical, but differences in lactation performance between cloned and noncloned cows first need to be clearly evaluated. Conflicting results have been described in the literature, so our aim was to clarify this situation. Nine cloned Prim' Holstein cows were produced by the transfer of nuclei from a single fibroblast cell line after cell fusion with enucleated oocytes. The cloned cows and 9 noncloned counterparts were raised under similar conditions. Milk production and composition were recorded monthly from calving until 200d in milk. At 67d in milk, biopsies were sampled from the rear quarter of the udder, their mammary epithelial cell content was evaluated, and mammary cell renewal, RNA, and DNA were then analyzed in relevant samples. The results showed that milk production did not differ significantly between cloned and noncloned cows, but milk protein and fat contents were less variable in cloned cows. Furthermore, milk fat yield and contents were lower in cloned cows during early lactation. At around 67 DIM, milk fat and protein yields, as well as milk fat, protein, and lactose contents, were also lower in cloned cows. These lower yields could be linked to the higher apoptotic rate observed in cloned cows. Apoptosis is triggered by insulin-like factor growth binding protein 5 (IGFBP5) and plasminogen activator inhibitor (PAI), which both interact with CSN1S2. During our experiments, CSN1S2 transcript levels were lower in the mammary gland of cloned cows. The mammary cell apoptotic rate observed in cloned cows may have been related to the higher levels of DNA (cytosine-5

  18. Prediction of the herd somatic cell count of the following month using a linear mixed effect model.

    Science.gov (United States)

    Lievaart, J J; Barkema, H W; van den Broek, J; Heesterbeek, J A P; Kremer, W D J

    2010-01-01

    An accurate prediction of the average somatic cell count (SCC) for the next month would be a valuable tool to support udder health management decisions. A linear mixed effect (LME) model was used to predict the average herd SCC (HSCC) for the following month. The LME model included data on SCC, herd characteristics, season, and management practices determined in a previous study that quantified the contribution of each factor for the HSCC. The LME model was tested on a new data set of 101 farms and included data from 3 consecutive years. The farms were split randomly in 2 groups of 50 and 51 farms. The first group of 50 farms was used to check for systematic errors in predicting monthly HSCC. An initial model was based on older data from a different part of the Netherlands and systematically overestimated HSCC in most months. Therefore, the model was adjusted for the difference in average HSCC between the 2 sets of farms (from the previous and current study) using the data from the first group of 50 farms. Subsequently, the data from the second group of 51 farms were used to independently assess this final model. A null model (no explanatory variables included) predicted 48 and 59% of the HSCC within the predetermined range of 20,000 and 30,000 cells/mL, respectively. The final LME model predicted 72 and 81% of the HSCC of the next month correctly within these 2 ranges. These outcomes indicate that the final LME model was a valid additional tool for farmers that could be useful in their short-term decisions regarding udder health management and could be included in dairy herd health programs. PMID:20059921

  19. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.

    Science.gov (United States)

    Li, R; Wu, H; Zhuo, W W; Mao, Q F; Lan, H; Zhang, Y; Hua, S

    2015-10-01

    Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus-oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation. PMID:26280670

  20. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhinav; Mandiyan, Valsan; Suzuki, Yoshihisa; Zhang, Chao; Rice, Julie; Tsai, James; Artis, Dean R.; Ibrahim, Prabha; Bremer, Ryan (Plexxikon); (Plexxikon)

    2010-07-19

    Pim1, a serine/threonine kinase, is involved in several biological functions including cell survival, proliferation, and differentiation. While pim1 has been shown to be involved in several hematopoietic cancers, it was also recently identified as a target of aberrant somatic hypermutation in diffuse large cell lymphoma (DLCL), the most common form of non-Hodgkin's lymphoma. The crystal structures of Pim1 in apo form and bound with AMPPNP have been solved and several unique features of Pim1 were identified, including the presence of an extra {beta}-hairpin in the N-terminal lobe and an unusual conformation of the hinge connecting the two lobes of the enzyme. While the apo Pim1 structure is nearly identical with that reported recently, the structure of AMPPNP bound to Pim1 is significantly different. Pim1 is unique among protein kinases due to the presence of a proline residue at position 123 that precludes the formation of the canonical second hydrogen bond between the hinge backbone and the adenine moiety of ATP. One crystal structure reported here shows that changing P123 to methionine, a common residue that offers the backbone hydrogen bond to ATP, does not restore the ATP binding pocket of Pim1 to that of a typical kinase. These unique structural features in Pim1 result in novel binding modes of AMP and a known kinase inhibitor scaffold, as shown by co-crystallography. In addition, the kinase activities of five Pim1 mutants identified in DLCL patients have been determined. In each case, the observed effects on kinase activity are consistent with the predicted consequences of the mutation on the Pim1 structure. Finally, 70 co-crystal structures of low molecular mass, low-affinity compounds with Pim1 have been solved in order to identify novel chemical classes as potential Pim1 inhibitors. Based on the structural information, opportunities for optimization of one specific example are discussed.

  1. Somatic cell chromosome changes in a population exposed to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    The analysis of chromosomes from the cells of 897 plutonium workers is reported. Within three years, the number of controls alone analyzed for this study approximated the largest plutonium cytogenetic studies today including workers plus controls (81 compared to 84 in a 1979 French study and 94 in a 1982 British report). The number of subjects analyzed in the first three years were: new employees - 245; new employees assigned to plutonium work areas - 7; workers with less than 3% of maximum permissible systemic burden (MPSB) - 35; workers with less than 50% MPSB - 274; workers with greater than 50% of MPSB - 65; follow-up familial congenital cytogenetics at worker request (through Medical) - 6; polymorphic/variant chromosome constitutions - 242; re-sampling of workers with elevated aberration yields - 26; cell sample study - 28; sister-chromatid-exchange (SCE) study - 23; beryllium workers at Rocky Flats - 10; Hanford worker analyses - 5). 20 refs., 3 figs., 5 tabs

  2. B cell-autonomous somatic mutation deficit following bone marrow transplant

    OpenAIRE

    Glas, A M

    2000-01-01

    The bone marrow is the major haematopoietic organ and is critically involved in the production of all formed blood elements in postnatal life. The bone marrow contains rapidly dividing cells and therefore is sensitive to DNA damaging agents. In certain types of cancers where a high dose of radiation and chemotherapeutic agents are needed, a bone marrow transplant is necessary to "rescue" the patient from the lethal side effects of radiation and chemotherapy. However, the immune system of tran...

  3. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  4. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling

    OpenAIRE

    Xu Zhou(Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China); Ying Qi

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, P...

  5. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    OpenAIRE

    Sharma Shikhar; Gerke Daniel S; Han Han F; Jeong Shinwu; Stallcup Michael R; Jones Peter A; Liang Gangning

    2012-01-01

    Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a...

  6. DNA methylation in porcine preimplantation embryos developed in vivo or produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  7. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  8. Radiation induced chromosome aberrations in somatic and germ cells of the male marmoset

    International Nuclear Information System (INIS)

    The induction of chromosome aberrations by low LET radiations was studied in peripheral lymphocytes and spermatogonial stem cells of the male marmoset. The data showed that there was no significant difference in the sensitivity of the lymphocytes whether they were irradiated in vitro or in vivo, but the frequency of heritable translocations recovered in the primary spermatocytes was considerably lower than that calculated to occur in the lymphocytes. The data are used to make estimates of human genetic risk from radiation based on limited interspecific comparisons

  9. Regularities of the formation of comutagenesis in irradiated human somatic cells

    International Nuclear Information System (INIS)

    The pattern (regularity) of co-mutagenic effects formation in healthy individuals' irradiated cells (T-lymphocytes) under verapamil and ascorbic acid treatment is studied. It is determined that the additional action of the investigated drugs in concentrations greater than the therapeutic one potentiate the effects of low doses of ionizing radiation by 1.5 times. Ascorbic acid and verapamil show co-mutagenic effects under high-dose irradiation (2.0 Gy), increasing the chromosomal aberration level by 1.4 times, regardless of the concentration of drugs.

  10. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-09-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  11. The influence of selenium and zinc addition in food on concentration of these elements in blood and milk, on somatic cells number and histological characteristics of cows udders

    Directory of Open Access Journals (Sweden)

    Davidov Ivana

    2014-01-01

    Full Text Available The experiment included 30 cows of Holstein-Friesian breed, out of which 15 were receiving selenium and zinc in optimal doses before calving, while the others had never been supplemented with these micronutrients. There was analysed the concentration of selenium and zinc in blood and milk serum as well as the average number of somatic cells in corresponding lactation. After the cows exclusion from production, histological characteristics of cows udders were examined. The results of the investigation have shown that addition of selenium and zinc before calving has a positive effect on the values of these microelements in the blood and milk during the period of early lactation, that is, the concentration of these elements was significantly higher in the blood and milk of the cows that obtained selenium and zinc supplements. Also, in these cows there was significantly lower number of somatic cells during the following lacation period. In the parenchyma of the udder there was found less pronounced infiltration of leukocytes, notably thicker keratin layer of ductus papillaris and less expressed repairing processes that indicate a chronic inflammation of the udder in the samples after exclusion of the cows from production. There was a significant positive correlation between selenium in blood and milk, while there was not observed such a correlation for zinc. On the other hand, there was a significant negative correlation between the concentration of selenium in the blood and milk with the average number of somatic cells and the degree of infiltration of leukocytes, while its influence on the keratin layer of ductus papillarus was not shown. Zinc from blood and udder had a negative correlation with the number of somatic cells, had a positive correlation with the thickness of ductus papillaris keratin layer and had no influence on the level of leukocyte infiltration of udder parenchyma. Zinc demonstrates a positive influence on the formation of ductus

  12. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma.

    Science.gov (United States)

    Camus, Vincent; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Mareschal, Sylvain; Bertrand, Philippe; Viailly, Pierre-Julien; Ruminy, Philippe; Maingonnat, Catherine; Lemasle, Emilie; Stamatoullas, Aspasia; Picquenot, Jean-Michel; Cornic, Marie; Beaussire, Ludivine; Bastard, Christian; Frebourg, Thierry; Tilly, Hervé; Jardin, Fabrice

    2016-09-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy harboring frequent targetable activating somatic mutations. Emerging evidence suggests that circulating cell-free DNA (cfDNA) can be used to detect somatic variants in DLBCL using Next-Generation Sequencing (NGS) experiments. In this proof-of-concept study, we chose to develop simple and valuable digital PCR (dPCR) assays for the detection of recurrent exportin-1 (XPO1) E571K, EZH2 Y641N, and MYD88 L265P mutations in DLBCL patients, thereby identifying patients most likely to potentially benefit from targeted therapies. We demonstrated that our dPCR assays were sufficiently sensitive to detect rare XPO1, EZH2, and MYD88 mutations in plasma cfDNA, with a sensitivity of 0.05%. cfDNA somatic mutation detection by dPCR seems to be a promising technique in the management of DLBCL, in addition to NGS experiments. PMID:26883583

  13. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    Science.gov (United States)

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes. PMID:24804775

  14. Effects of milk somatic cell counts on some physicochemical and functional characteristics of skim and whole milk powders.

    Science.gov (United States)

    Sert, Durmuş; Mercan, Emin; Aydemir, Serdar; Civelek, Mustafa

    2016-07-01

    The aim of this work was to study the influence of milk somatic cell count (SCC) levels on spray-dried milk powders. For this reason, 3 cow milks with different SCC (700,000 SCC/mL) were processed into skim (SMP) and whole milk powder (WMP). The effect of SCC on the physicochemical and functional characteristics of the milk powders and textural properties of set-type yogurts produced from reconstituted milk powders with different SCC was evaluated. A crucial difference was noted between milk powders depending on different SCC. Protein values and ash content of powder samples decreased correlatively with increasing SCC. The hydroxymethylfurfural content of SMP was higher than WMP. We noted an increase in hydroxymethylfurfural content of both SMP and WMP depending on elevated SCC. Solubility index of SMP and WMP was 1.280 to 1.632 and 0.940 to 1.208mL, respectively; with increasing SCC, solubility index was affected adversely. The highest foam stability was determined in SMP containing >700,000 SCC. Bulk density of SMP and WMP was between 0.682 and 0.708 and 0.660 to 0.685g/cm(3), respectively. An increase was observed in scorched particle of both SMP and WMP depending on increasing SCC. We found significant differences in particle size distribution of milk powders produced from milk with SCC at different levels. Although WMP had more uniform and big particle structure, SMP had more specific area. A negative correlation was noted between yogurt texture and SCC. Results indicate that milk SCC has negative influences on milk powder quality. PMID:27179852

  15. Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh.

    Science.gov (United States)

    Hoque, Md Nazmul; Das, Ziban Chandra; Talukder, Anup Kumar; Alam, Mohammad Shah; Rahman, Abu Nasar Md Aminoor

    2015-01-01

    Identification of cows with subclinical mastitis (SCM) is an important tool for sustainable dairying and implementing effective mastitis control strategies. A total of 892 quarters milk samples from 228 lactating cows were screened by California mastitis test (CMT), White side test (WST), Surf field mastitis test (SFMT), and somatic cell count (SCC) to study the prevalence of bovine SCM in some selected areas of Bangladesh. Out of 228 cows, 148 (64.9%), 138 (60.5%), 132 (57.9%), and 164 (71.9%) were found positive for SCM by CMT, WST, SFMT, and SCC, respectively. The prevalence of bovine SCM was diagnosed 45.7, 40.2, 36.6, and 29.6% in Chittagong, Sirajgonj, Mymensingh, and Gazipur districts, respectively, based on a combination of all tests. The overall quarter-wise prevalence of SCM was 45.7, 43.5, 41.2, and 55.0% for CMT, WST, SFMT, and SCC. Single quarters and left front quarters were more prone to SCM (P CMT, WST, SFMT, and SCC was 65.8, 57.9, 51.0, and 82.5%; specificity 76.2, 72.4, 69.5, and 89.4%; percentage accuracy 70.0, 64.8, 59.9, and 85.2%; positive predictive value 75.2, 69.8, 64.9, and 92.7%, respectively. The categories of CMT reactions were strongly correlated with SCC (P tests (SCC>CMT>WST>SFMT). Thus, CMT was concluded to be the most accurate (r = 0.782) field diagnostic test after laboratory test like SCC (r = 0.924). However, the use of any single test may not be reliable in diagnosing SCM, while the result of CMT supported by SCC might be used effectively to pinpoint diagnosis of SCM in dairy animals than alone. PMID:25326717

  16. Short communication: Genetic correlation of bovine leukosis incidence with somatic cell score and milk yield in a US Holstein population.

    Science.gov (United States)

    Abdalla, E A; Weigel, K A; Byrem, T M; Rosa, G J M

    2016-03-01

    Bovine leukosis (BL) is a retroviral disease caused by the bovine leukosis virus (BLV), which affects only cattle. Dairy cows positive for BL produce less milk and have more days open than cows negative for BL. In addition, the virus also affects the immune system and causes weaker response to vaccines. Heritability estimates of BL incidence have been reported for Jersey and Holstein populations at about 0.08, indicating an important genetic component that can potentially be exploited to reduce the prevalence of the disease. However, before BL is used in selection programs, it is important to study its genetic associations with other economically important traits such that correlated responses to selection can be predicted. Hence, this study aimed to estimate the genetic correlations of BL with milk yield (MY) and with somatic cell score (SCS). Data of a commercial assay (ELISA) used to detect BLV antibodies in milk samples were obtained from Antel BioSystems (Lansing, MI). The data included continuous milk ELISA scores and binary milk ELISA results for 11,554 cows from 112 dairy herds across 16 US states. Continuous and binary milk ELISA were analyzed with linear and threshold models, respectively, together with MY and SCS using multitrait animal models. Genetic correlations (posterior means ± standard deviations) between BL incidence and MY were 0.17±0.077 and 0.14±0.076 using ELISA scores and results, respectively; with SCS, such estimates were 0.20±0.081 and 0.17±0.079, respectively. In summary, the results indicate that selection for higher MY may lead to increased BLV prevalence in dairy herds, but that the inclusion of BL (or SCS as an indicator trait) in selection indexes may help attenuate this problem. PMID:26778307

  17. EFFECT OF SEVERITY OF SUB-CLINICAL MASTITIS ON SOMATIC CELL COUNT AND LACTOSE CONTENTS OF BUFFALO MILK

    Directory of Open Access Journals (Sweden)

    A. SHARIF, T. AHMAD, M. Q. BILAL1, A. YOUSAF AND G. MUHAMMAD

    2007-07-01

    Full Text Available This study was conducted to determine the effect of severity of sub-clinical mastitis on somatic cell count (SCC and lactose contents of milk in 100 apparently healthy dairy buffaloes. Surf Field Mastitis Test (SFMT was used to determine the severity of sub-clinical mastitis which was graded as Negative (N, Traces (T, mild clumping (P1, moderate clumping (P2 and heavy clumping (P3. Mean milk SCC (x 105 at SFMT scores N, T, P1, P2 and P3 were 2.06 + 1.09, 3.73 + 0.96, 9.69 + 4.05, 31.97 + 10.26 and 121.01 + 23.71 per ml, respectively. Using the same scoring, mean values of milk lactose were 5.10 + 0.09, 4.81 + 0.10, 4.66 + 0.08, 3.92 + 0.05 and 2.66 + 0.37 percent, respectively. Percent increases of mean SCC in T, P1, P2 and P3 groups with respect to N (control were 81.47, 370.51, 1451.71 and 5773.41, respectively. Percent decreases of mean lactose in T, P1, P2 and P3 groups with respect to N (control were 5.54, 8.52, 22.98 and 47.81, respectively. Statistical analysis indicated non-significant difference of mean SCC in N and T groups, while there was highly significant (P<0.01 difference in mean SCC among P1, P2 and P3 groups and also with respect to N. Similarly, there was a significant (P<0.05 difference of mean lactose among T, P1, P2 and P3 groups and also with respect to control/ negative group.

  18. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors.

    Science.gov (United States)

    Martínez-Cruz, Ana Belén; Santos, Mirentxu; Lara, M Fernanda; Segrelles, Carmen; Ruiz, Sergio; Moral, Marta; Lorz, Corina; García-Escudero, Ramón; Paramio, Jesús M

    2008-02-01

    Squamous cell carcinomas (SCC) represent the most aggressive type of nonmelanoma skin cancer. Although little is known about the causal alterations of SCCs, in organ-transplanted patients the E7 and E6 oncogenes of human papillomavirus, targeting the p53- and pRb-dependent pathways, have been widely involved. Here, we report the functional consequences of the simultaneous elimination of Trp53 and retinoblastoma (Rb) genes in epidermis using Cre-loxP system. Loss of p53, but not pRb, produces spontaneous tumor development, indicating that p53 is the predominant tumor suppressor acting in mouse epidermis. Although the simultaneous inactivation of pRb and p53 does not aggravate the phenotype observed in Rb-deficient epidermis in terms of proliferation and/or differentiation, spontaneous SCC development is severely accelerated in doubly deficient mice. The tumors are aggressive and undifferentiated and display a hair follicle origin. Detailed analysis indicates that the acceleration is mediated by premature activation of the epidermal growth factor receptor/Akt pathway, resulting in increased proliferation in normal and dysplastic hair follicles and augmented tumor angiogenesis. The molecular characteristics of this model provide valuable tools to understand epidermal tumor formation and may ultimately contribute to the development of therapies for the treatment of aggressive squamous cancer. PMID:18245467

  19. Integrative genome analyses identify key somatic driver mutations of small cell lung cancer

    Science.gov (United States)

    Peifer, Martin; Fernández-Cuesta, Lynnette; Sos, Martin L; George, Julie; Seidel, Danila; Kasper, Lawryn H; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Müller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmüller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Böhm, Diana; Ansén, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M; Lu, Xin; Carter, Scott L; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Grütter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A; Fazio, Vito M; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Daniëlle AM; Snijders, Peter JF; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Sänger, Jörg; Clement, Joachim H; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Büttner, Reinhard; Wolf, Jürgen; Nürnberg, Peter; Perner, Sven; Heukamp, Lukas C; Brindle, Paul K; Haas, Stefan; Thomas, Roman K

    2016-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor survival1–3. We sequenced 29 SCLC exomes, two genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million basepairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in histone-modifying genes, CREBBP, EP300, and MLL. Furthermore, we observed mutations in PTEN, in SLIT2, and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from p53/Rb1-deficient mice4. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genome alterations, and provides a generalizable framework for identification of biologically relevant genes in the context of high mutational background. PMID:22941188

  20. Herd management and social variables associated with bulk tank somatic cell count in dairy herds in the eastern United States.

    Science.gov (United States)

    Schewe, R L; Kayitsinga, J; Contreras, G A; Odom, C; Coats, W A; Durst, P; Hovingh, E P; Martinez, R O; Mobley, R; Moore, S; Erskine, R J

    2015-11-01

    The ability to reduce somatic cell counts (SCC) and improve milk quality depends on the effective and consistent application of established mastitis control practices. The US dairy industry continues to rely more on nonfamily labor to perform critical tasks to maintain milk quality. Thus, it is important to understand dairy producer attitudes and beliefs relative to management practices, as well as employee performance, to advance milk quality within the changing structure of the dairy industry. To assess the adoption rate of mastitis control practices in United States dairy herds, as well as assess social variables, including attitudes toward employees relative to mastitis control, a survey was sent to 1,700 dairy farms in Michigan, Pennsylvania, and Florida in January and February of 2013. The survey included questions related to 7 major areas: sociodemographics and farm characteristics, milking proficiency, milking systems, cow environment, infected cow monitoring and treatment, farm labor, and attitudes toward mastitis and related antimicrobial use. The overall response rate was 41% (21% in Florida, 39% in Michigan, and 45% in Pennsylvania). Herd size ranged from 9 to 5,800 cows. Self-reported 3-mo geometric mean bulk tank SCC (BTSCC) for all states was 194,000 cells/mL. Multivariate analysis determined that proven mastitis control practices such as the use of internal teat sealants and blanket dry cow therapy, and not using water during udder preparation before milking, were associated with lower BTSCC. Additionally, farmer and manager beliefs and attitudes, including the perception of mastitis problems and the threshold of concern if BTSCC is above 300,000 cells/mL, were associated with BTSCC. Ensuring strict compliance with milking protocols, giving employees a financial or other penalty if BTSCC increased, and a perceived importance of reducing labor costs were negatively associated with BTSCC in farms with nonfamily employees. These findings highlight the

  1. Composition, functional properties and sensory characteristics of Mozzarella cheese manufactured from different somatic cell counts in milk

    Directory of Open Access Journals (Sweden)

    Evelise Andreatta

    2009-10-01

    Full Text Available In the present study, composition, functional properties and sensory characteristics of Mozzarella cheese produced from milk with somatic cell counts (SCC at low (800,000 cells/mL levels were investigated. Three batches of cheese were produced for each SCC category. The cheeses were vacuum packed in plastic bags and analysed after 2, 9, 16, 23 and 30 days of storage at 4ºC. SCC level did not affect the moisture, fat, total protein and ash content, mesophilic and psychrotrophic bacteria, and sensory parameters of Mozzarella cheese. However, meltability increased in cheese manufactured from high SCC milk. Results indicated that raw milk used to produce Mozzarella cheese should not contain high SCC (>800,000 cells/mL in order to avoid changes in the functional properties of the Mozzarella cheese.No presente estudo foram investigadas a composição, as propriedades funcionais e as características sensoriais do queijo Mussarela produzido a partir de leite com contagens de células somáticas (CCS em níveis baixos (800.000 CS/mL. Foram produzidos 3 lotes de queijo para cada CCS. Os queijos foram embalados a vácuo e analisados após 2, 9, 16, 23 e 30 dias de armazenamento a 4ºC. O nível de CS não afetou a umidade, os teores de gordura, proteína total e cinzas, os níveis de bactérias mesófilas e psicrotróficas, e os parâmetros sensoriais do queijo Mussarela. Entretanto, houve aumento da capacidade de derretimento no queijo fabricado com leite de alta CCS. Os resultados indicam que o leite cru utilizado para a produção de queijo Mussarela não deve conter níveis de CS acima de 800.000/mL, para evitar alterações nas propriedades funcionais do queijo Mussarela.

  2. Classical Mus musculus Igκ Enhancers Support Transcription but not High Level Somatic Hypermutation from a V-Lambda Promoter in Chicken DT40 Cells

    OpenAIRE

    Kothapalli, Naga Rama; Norton, Darrell D.; Fugmann, Sebastian D.

    2011-01-01

    Somatic hypermutation (SHM) of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID) in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR) and the 3′ enhancer (3′E), and multiple studies using transgenic and knock-out approaches in mice and cell lines have reported s...

  3. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    OpenAIRE

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence di...

  4. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  5. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  6. 鼻咽NK/T细胞淋巴瘤肿瘤相关巨噬细胞与其增殖活性的关系%The relation between tumor associated macrophages and the proliferative activity of tumor cells in nasopharyngeal NK/T cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    刘一雄; 王映梅; 李培峰; 范林妮; 朱瑾; 王璐; 张微晨; 张月华; 黄高昇

    2012-01-01

    目的:研究鼻咽NK/T细胞淋巴瘤中肿瘤相关巨噬细胞(TAMs)数量与肿瘤增殖指数,以及2种巨噬细胞标志物(CD68与CD163)间的关系.方法:采用免疫组织化学染色法检测31例鼻咽NK/T细胞淋巴瘤和12例炎性反应病例的Ki67,CD68以及CD163.并对染色结果进行Pearson相关分析和t检验.结果:鼻咽NK/T细胞淋巴瘤中的TAMs数与肿瘤的增殖活性具有非常显著的正相关性(P=0.024),同时,CD163与CD68阳性细胞数密切相关(P =0.009),CD68的阳性率略高于CD163,但无统计学意义.鼻咽NK/T细胞淋巴瘤中TAMs的数量,与反应性病变相比具有明显差异(P<0.05).结论:鼻咽NK/T细胞淋巴瘤中的TAMs与肿瘤细胞增殖活性密切相关,表明TAMs可促进NK/T细胞淋巴瘤细胞的增殖.并且2种标志物(CD68及CD163)均可识别TAMs.而CD163为TAMs的标志物似乎更加准确.%Objective; To explore the relationship between the number of tumor - associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T - cell lymphoma and detect the numbers of TAMs and the ki - 67 label index of the tumor cells in all 31 patients. In addition, 12 cases of inflammatory cases were collected as controls, for which the immunostaining of CD68 and CD163 were done as well. Results;The number of TAMs was positively correlated with tumor proliferative activity( P =0.024) in nasopharyngeal NK/T cell lymphoma. The expression of CD68 and CD163 were closely related (P = 0.009), and the positive rate of CD68 was generally higher than CD163,however there was no statistical significance. Conclusion:The increase in numbers of TAMs in nasopharyngeal NK/T cell lymphoma often relates with higher proliferative index,indicating the TAMs play an important role in tumor proliferation. Meanwhile both CD68 and CD

  7. Development of porcine embryos reconstituted with somatic cells and enucleated metaphase I and II oocytes matured in a protein-free medium

    Directory of Open Access Journals (Sweden)

    Gibbons John R

    2001-07-01

    Full Text Available Abstract Background Many cloned animals have been created by transfer of differentiated cells at G0/G1 or M phase of the cell cycle into enucleated M II oocytes having high maturation/meiosis/mitosis-promoting factor activity. Because maturation/meiosis/mitosis-promoting factor activity during oocyte maturation is maximal at both M I and M II, M I oocytes may reprogram differentiated cell nuclei as well. The present study was conducted to examine the developmental ability in vitro of porcine embryos reconstructed by transferring somatic cells (ear fibroblasts into enucleated M I or M II oocytes. Results Analysis of the cell cycle stages revealed that 91.2 ± 0.2% of confluent cells were at the G0/G1 phase and 54.1 ± 4.4% of nocodazole-treated cells were at the G2/M phase, respectively. At 6 h after activation, nuclear swelling was observed in 50.0-88.9% and 34.4-39.5% of embryos reconstituted with confluent cells and nocodazole-treated cells regardless of the recipient oocytes, respectively. The incidence of both a swollen nucleus and polar body was low (6.3-10.5% for all nocodazole-treated donor cell regardless of the recipient oocyte. When embryos reconstituted with confluent cells and M I oocytes were cultured, 2 (1.5% blastocysts were obtained and this was significantly (P Conclusions Porcine M I oocytes have a potential to develop into blastocysts after nuclear transfer of somatic cells.

  8. Identification of tumor-associated antigens as diagnostic and predictive biomarkers in cancer.

    Science.gov (United States)

    Zhang, Jian-Ying; Looi, Kok Sun; Tan, Eng M

    2009-01-01

    Many studies demonstrated that cancer sera contain antibodies which react with autologous cellular antigens generally known as tumor-associated antigens (TAAs). In our laboratories, the approach used in the identification of TAAs has involved initially examining the sera of cancer patients using extracts of tissue culture cells as source of antigens in Western blotting and by indirect immunofluorescence on whole cells. With these two techniques, we identify sera which have high-titer fluorescent staining or strong signals to cell extracts on Western blotting and subsequently use these sera as probes in immunoscreening cDNA expression libraries, and also in proteomic approaches to isolate and identify targeted antigens which might potentially be involved in malignant transformation. In this manner, several novel TAAs including HCC1, p62, p90, and others have been identified. In extension of these studies, we evaluate the sensitivity and specificity of different antigen-antibody systems as markers in cancer in order to develop "tumor-associated antigen array" systems for cancer diagnosis, cancer prediction, and for following the response of patients to treatment. PMID:19381943

  9. Next generation sequencing of patients with mut methylmalonic aciduria: Validation of somatic cell studies and identification of 16 novel mutations.

    Science.gov (United States)

    Chu, Jordan; Pupavac, Mihaela; Watkins, David; Tian, Xia; Feng, Yanming; Chen, Stella; Fenter, Remington; Zhang, Victor W; Wang, Jing; Wong, Lee-Jun; Rosenblatt, David S

    2016-08-01

    Mutations in the MUT gene, which encodes the mitochondrial enzyme methylmalonyl-CoA mutase, are responsible for the mut form of methylmalonic aciduria (MMA). In this study, a next generation sequencing (NGS) based gene panel was used to analyze 53 patients that had been diagnosed with mut MMA by somatic cell complementation analysis. A total of 54 different mutations in MUT were identified in 48 patients; 16 novel mutations were identified, including 1 initiation site mutation (c.2T>C [p.M1?]), 1 missense mutation (c.566A>T [p.N189I]), 2 nonsense mutations (c.129G>A [p.W43*] and c.1975C>T [p.Q659*]), 2 mutations affecting splice sites (c.753+3A>G and c.754-2A>G), 8 small insertions, deletions, and duplications (c.29dupT [p.L10Ffs*39], c.55dupG [p.V19Gfs*30], c.631_633delGAG [p.E211del], c.795_796insT [p.M266Yfs*7], c.1061delCinsGGA [p.S354Wfs*20], c.1065_1068dupATGG [p.S357Mfs*5], c.1181dupT [p.L394Ffs*30], c.1240delG [p.E414Kfs*17]), a large insertion (c.146_147ins279), and a large deletion involving exon 13. Phenotypic rescue and cDNA analysis were used to confirm that the c.146_147ins279 and c.631_633delGAG mutations were associated with the decreased methylmalonyl-CoA mutase function observed in the patient fibroblasts. In five patients, the NGS panel did not confirm the diagnosis made by complementation analysis. One of these patients was found to carry 2 novel mutations (c.433G > A [p.E145K] and c.511A>C [p.N171H]) in the SUCLG1 gene. PMID:27233228

  10. Exploring the characteristics and dynamics of Ontario dairy herds experiencing increases in bulk milk somatic cell count during the summer.

    Science.gov (United States)

    Shock, D A; LeBlanc, S J; Leslie, K E; Hand, K; Godkin, M A; Coe, J B; Kelton, D F

    2015-06-01

    Regionally aggregated bulk milk somatic cell count (BMSCC) data from around the world shows a repeatable cyclicity, with the highest levels experienced during warm, humid seasons. No studies have evaluated this seasonal phenomenon at the herd level. The objectives of this study were to define summer seasonality in BMSCC on an individual herd basis, and subsequently to describe the characteristics and dynamics of herds with increased BMSCC in the summer. The data used for this analysis were from all dairy farms in Ontario, Canada, between January 2000 and December 2011 (n≈4,000 to 6,000 herds/yr). Bulk milk data were obtained from the milk marketing board and consisted of bulk milk production, components (fat, protein, lactose, other solids), and quality (BMSCC, bacterial count, inhibitor presence, freezing point), total milk quota of the farm, and milk quota and incentive fill percentage. A time-series linear mixed model, with random slopes and intercepts, was constructed using sine and cosine terms as predictors to describe seasonality, with herd as a random effect. For each herd, seasonality was described with reference to 1 cosine function of variable amplitude and phase shift. The predicted months of maximal and minimal BMSCC were then calculated. Herds were assigned as low, medium, and high summer increase (LSI, MSI, and HSI, respectively) based on percentiles of amplitude in BMSCC change for each of the 4 seasons. Using these seasonality classifications, 2 transitional repeated measures logistic regression models were built to assess the characteristics of MSI and HSI herds, using LSI herds as controls. Based on the analyses performed, a history of summer BMSCC increases increased the odds of experiencing a subsequent increase. As herd size decreased, the odds of experiencing HSI to MSI in BMSCC increased. Herds with more variability in daily BMSCC were at higher odds of experiencing MSI and HSI in BMSCC, as were herds with lower annual mean BMSCC. Finally

  11. The number of oogonia and somatic cells in the human female embryo and fetus in relation to whether or not exposed to maternal cigarette smoking

    DEFF Research Database (Denmark)

    Lutterodt, M C; Sørensen, K P; Larsen, K B;

    2009-01-01

    utero exposure to cigarette smoking. METHODS: Twenty-nine human first-trimester ovaries from legal abortions [aged 38-64 days post-conception (p.c.)] were collected. Mothers filled out a questionnaire about their smoking habits and delivered a urine sample for cotinine analysis. The ovarian cell numbers...... were estimated using stereological methods. RESULTS: A non-linear correlation between the numbers of oogonia and somatic cells in relation to age of the embryo/fetus was shown in 28 ovaries, including the first estimates performed in ovaries younger than 47 days p.c. Prenatal exposure to smoke showed a...... significant decrease in the number of somatic cells (P < or = 0.01). The number of oogonia was not significantly associated with prenatal exposure to maternal smoking (P < or = 0.09). The ratio between the two cell types decreased considerably from 1:45 to 1:23 from 38 to 46 days p.c. and was not affected by...

  12. Locus BoLA-DRB3 is just an ordinary site of the polygene when explaining genetic variance of somatic cell count and milk yield.

    Science.gov (United States)

    Oprzadek, Jolanta; Sender, Grazyna; Pawlik, Adrianna; Lukaszewicz, Marek

    2015-11-01

    The study aimed at clarifying the problem of the hitherto contradictory results regarding usefulness of BoLA-DRB3 locus as a marker in selection against mastitis and for milk yield. Treating the BoLA-DRB3 locus effect as random was proposed in place of considering it fixed. Somatic cell counts and milk yields recorded monthly on a test day (22,424) of 619 Polish Holstein cows genotyped for BoLA-DRB3 were analysed with an animal model including a random effect for genotype at this locus. The BoLA-DRB3 alleles were defined as restriction patterns obtained with three endonucleases. Two alternative BoLA-DRB3 additive genotype (co)variance structures were constructed for 161 genotypes recorded. One was based on the allelic similarity of the genotypes resulting in element values of 0 (no common allele), 0.5 (one allele in common), and 1 (diagonal). The other considered restriction site similarity (up to 3 in 1 allele) giving element values of 0 (no common restriction sites) and then increasingly in steps of 1/6 up to 6/6 (diagonal), where the numerator represents the number of common sites between genotypes. The DRB3 variance component for the natural logarithm of somatic cell count did not exceed 0.006 of the polygenic additive component or 0.003 for milk yield. Hence, unless we fail to detect the causative site or to properly define traits being the projection of a site, the effect of the genotype at the BoLA-DRB3 locus does not explain variation in somatic cell count and milk yield at a degree expected of a genetic marker. PMID:26333653

  13. Determination of the Effects of Some Environmental Factors on Raw Milk Somatic Cell Count of Brown Swiss Cows Raised in Farmer Condition

    OpenAIRE

    Aziz Şahin; Muzaffer Kaşıkcı

    2015-01-01

    In the current research, it was aimed to determine Somatic Cell Count (SCC) and the factors effecting on SCC in milk samples of Brown Swiss cattle raised at different farm conditions in Yıldızeli district of Sivas province in Turkey. Raw milk samples were collected at morning milking in months of May and November in year 2012. In total, 244 milk samples from 122 Brown Swiss cattle were analyzed. The effects of calving age, farm and test month on SCC were statistically significant. In the pres...

  14. A comparative study on the frequencies of radiation-induced chromosome aberrations in the somatic and germ cells in mouse and monkey

    International Nuclear Information System (INIS)

    Two systems were mainly used for studying the relationship between radiation induced chromosome aberration frequencies in somatic and germ cells. The first consists of reciprocal translocation induced in bone-marrow cells of mice compared to reciprocal translocation induced spermatogonia (scored in descending spermatocytes) of the same mice. Dose-response curves for induced aberrations in both cell types (0-100-200-300-400-500 and 600 R X-rays) and dose rate effects indicated that (130-1.92-0.0287 R/min) of a 400 R γ-ray exposure of the two cell types mitotically dividing germ cells respond to radiation similarly to mitotic dividing germ cells. Clonal proliferation or selective elimination of aberration-carrying cells, and other post-irradiation factors can, however, cause great differences in absolute aberration frequencies. A similar study was attempted, using the rhesus monkey as a second system. Its bone-marrow cells were proved unsuitable for induced reciprocal translocations. Stimulated peripheral blood lymphocytes were studied instead. Following 100, 200 and 300 R of X-rays, the frequencies of induced dicentric chromosomes were compared to those of induced reciprocal translocations in spermatogonia. Human peripheral blood was studied similarly. It was concluded that: (a) The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey are low compared to most other mammalian species. (b) The ratio between dicentric frequencies and reciprocal translocation frequencies at 100 R and 200 R differed significantly from 4:1 reported for mouse and Chinese hamster and 2:1 for marmoset and man. (c) Although the numbers of 'effective chromosome arms' in man and rhesus monkey are similar (81 vs 83), the rhesus monkey showed at all doses a lower rate of induction of dicentrics in blood lymphocytes than man, reaching statistical significance at the 300 R level

  15. Ophiobolin A from Bipolaris oryzae perturbs motility and membrane integrities of porcine sperm and induces cell death on mammalian somatic cell lines.

    Science.gov (United States)

    Bencsik, Ottó; Papp, Tamás; Berta, Máté; Zana, Annamária; Forgó, Péter; Dombi, György; Andersson, Maria A; Salkinoja-Salonen, Mirja; Vágvölgyi, Csaba; Szekeres, András

    2014-09-01

    Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1-2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration. PMID:25251540

  16. Ophiobolin A from Bipolaris oryzae Perturbs Motility and Membrane Integrities of Porcine Sperm and Induces Cell Death on Mammalian Somatic Cell Lines

    Directory of Open Access Journals (Sweden)

    Ottó Bencsik

    2014-09-01

    Full Text Available Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.

  17. Papillary renal cell carcinoma with a somatic mutation in MET in a patient with autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Zhang, Wanying; Tan, Adrian Y; Blumenfeld, Jon; Liu, Genyan; Michaeel, Alber; Zhang, Tuo; Robinson, Brian D; Salvatore, Steven P; Kapur, Sandip; Donahue, Stephanie; Bobb, Warren O; Rennert, Hanna

    2016-01-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 and is characterized by proliferation of renal tubular epithelium and progressive chronic kidney disease. Derangements in similar cellular signaling pathways occur in ADPKD and renal malignancies, although an association of these disorders has not been established. Herein, we present a case of papillary RCC (pRCC) incidentally discovered in a patient with ADPKD following bilateral native nephrectomy during renal transplantation. Whole exome sequencing of the pRCC found a somatic missense mutation in MET proto-oncogene, p.Val1110Ile, not present in kidney cyst epithelium or non-cystic tissue. RNA sequencing demonstrated increased mRNA expression of MET and pathway-related genes, but no significant copy number variation of MET was detected. Genetic analysis of PKD genes from peripheral blood lymphocytes and renal cyst epithelium identified a constitutional PKD1 germline mutation, p.Trp1582Ser, predicted to be pathogenic. Unique somatic mutations in PKD1 were also detected in 80% of the renal cysts analyzed, but not in the pRCC. These results suggest that, in this patient, the pRCC utilized a signaling pathway involving MET that was distinct from the pathogenesis of ADPKD. This is the first report of PKD1 mutations and a somatic mutation of the MET oncogene in a pRCC in ADPKD. PMID:26718059

  18. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  19. Nanog1 in NTERA-2 and recombinant NanogP8 from somatic cancer cells adopt multiple protein conformations and migrate at multiple M.W species.

    Directory of Open Access Journals (Sweden)

    Bigang Liu

    Full Text Available Human Nanog1 is a 305-amino acid (aa homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES and embryonal carcinoma (EC cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ~99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB, at apparent molecular masses of 29-80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ~22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8 proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ~28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.

  20. Conditions Favorable for the Somatic Embryogenesis in Carrot Cell Culture Enhance Expression of the roIC Promoter-GUS Fusion Gene 1

    Science.gov (United States)

    Fujii, Nobuharu; Uchimiya, Hirofumi

    1991-01-01

    We obtained carrot (Daucus carota) cells possessing the 5′-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial β-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in β-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of β-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of β-glucuronidase activities, in concord with embryogenesis, were also noted. Images Figure 2 PMID:16667958