WorldWideScience

Sample records for cell transplantation improves

  1. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  2. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  3. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions.

    Gan, Lu; Duan, Hua; Xu, Qian; Tang, Yi-Qun; Li, Jin-Jiao; Sun, Fu-Qing; Wang, Sha

    2017-05-01

    Intrauterine adhesion (IUA) is a common uterine cavity disease characterized by the unsatisfactory regeneration of damaged endometria. Recently, stem cell transplantation has been proposed to promote the recovery process. Here we investigated whether human amniotic mesenchymal stromal cells (hAMSCs), a valuable resource for transplantation therapy, could improve endometrial regeneration in rodent IUA models. Forty female Sprague-Dawley rats were randomly assigned to five groups: normal, sham-operated, mechanical injury, hAMSC transplantation, and negative control group. One week after intervention and transplantation, histological analyses were performed, and immunofluorescent and immunohistochemical expression of cell-specific markers and messenger RNA expression of cytokines were measured. Thicker endometria, increased gland numbers and fewer fibrotic areas were found in the hAMSC transplantation group compared with the mechanical injury group. Engraftment of hAMSCs was detected by the presence of anti-human nuclear antigen-positive cells in the endometrial glands of the transplantation uteri. Transplantation of hAMSCs significantly decreased messenger RNA levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and increased those of anti-inflammatory cytokines (basic fibroblast growth factor, and interleukin-6) compared with the injured uterine horns. Immunohistochemical expression of endometrial epithelial cells was revealed in specimens after hAMSC transplantation, whereas it was absent in the mechanically injured uteri. hAMSC transplantation promotes endometrial regeneration after injury in IUA rat models, possibly due to immunomodulatory properties. These cells provide a more easily accessible source of stem cells for future research into the impact of cell transplantation on damaged endometria. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis.

    Ren, Hongmiao; Chen, Jichuan; Wang, Yinan; Zhang, Shichang; Zhang, Bo

    2013-01-01

    Stem cell-based regenerative therapy is a potential cellular therapeutic strategy for patients with incurable brain diseases. Embryonic neural stem cells (NSCs) represent an attractive cell source in regenerative medicine strategies in the treatment of diseased brains. Here, we assess the capability of intracerebral embryonic NSCs transplantation for C57BL/6J mice with presbycusis in vivo. Morphology analyses revealed that the neuronal rate of apoptosis was lower in the aged group (10 months of age) but not in the young group (2 months of age) after NSCs transplantation, while the electrophysiological data suggest that the Auditory Brain Stem Response (ABR) threshold was significantly decreased in the aged group at 2 weeks and 3 weeks after transplantation. By contrast, there was no difference in the aged group at 4 weeks post-transplantation or in the young group at any time post-transplantation. Furthermore, immunofluorescence experiments showed that NSCs differentiated into neurons that engrafted and migrated to the brain, even to sites of lesions. Together, our results demonstrate that NSCs transplantation improve the auditory of C57BL/6J mice with presbycusis.

  5. Stem Cell Transplant

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  6. Use of Eltrombopag in Improving Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation

    Samip Master

    2018-03-01

    Full Text Available Eltrombopag is a thrombopoietin agonist and has been used in aplastic anemia and post-transplantation thrombocytopenia. The c-MPL receptor is present on hematopoietic stem cells. There are no reports of eltrombopag utilization for improving poor graft function in the post-transplant setting. Here were report a case of a young female with post-transplant poor graft function as evident from the low absolute neutrophil count, anemia, and thrombocytopenia on day 60. Eltrombopag was started on day 72 and resulted in improvement in all 3 cell lines. The counts continued to be stable even after eltrombopag was discontinued. The patient tolerated the drug without significant side effects for 1 year.

  7. Stem Cells as a Tool to Improve Outcomes of Islet Transplantation

    Emily Sims

    2012-01-01

    Full Text Available The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.

  8. Pancreatic Islet Cell Transplantation

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  9. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.

    Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I

    2016-09-28

    Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Improvement of Heart Failure by Human Amniotic Mesenchymal Stromal Cell Transplantation in Rats.

    Razavi Tousi, Seyed Mohammad Taghi; Faghihi, Mahdieh; Nobakht, Maliheh; Molazem, Mohammad; Kalantari, Elham; Darbandi Azar, Amir; Aboutaleb, Nahid

    2016-07-06

    Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs) in rats with heart failure (HF). Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each) as 1- Control 2- Heart Failure (HF) 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT). Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×10 6 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done. Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001). Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001). Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001) compared with the animals in the HF group. Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.

  11. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation.

    Abbuehl, Jean-Paul; Tatarova, Zuzana; Held, Werner; Huelsken, Joerg

    2017-08-03

    Hematopoietic stem cell (HSC) transplantation represents a curative treatment for various hematological disorders. However, delayed reconstitution of innate and adaptive immunity often causes fatal complications. HSC maintenance and lineage differentiation are supported by stromal niches, and we now find that bone marrow stroma cells (BMSCs) are severely and permanently damaged by the pre-conditioning irradiation required for efficient HSC transplantation. Using mouse models, we show that stromal insufficiency limits the number of donor-derived HSCs and B lymphopoiesis. Intra-bone transplantation of primary, but not cultured, BMSCs quantitatively reconstitutes stroma function in vivo, which is mediated by a multipotent NT5E + (CD73) + ENG - (CD105) - LY6A + (SCA1) + BMSC subpopulation. BMSC co-transplantation doubles the number of functional, donor-derived HSCs and significantly reduces clinically relevant side effects associated with HSC transplantation including neutropenia and humoral immunodeficiency. These data demonstrate the potential of stroma recovery to improve HSC transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cell transplantation for Parkinson's disease

    Jia Liu; Hongyun Huang

    2006-01-01

    OBJECTIVE: The motor symptoms of Parkinson's disease (PD) can be improved by cell transplantation,which has caught general attention from the field of the therapy for PD recently. In this paper, we summarize the cell-based therapy for PD.DATA SOURCES: A search for English literature related to the cellular transplantation of PD from January 1979to July 2006 was conducted in Medline with the key words of "Parkinson's disease, cell transplantation,embryonic stem cells, neural stem cells".STUDY SELECTTON: Data were checked in the first trial, and literatures about PD and cell transplantation were selected. Inclusive criteria: ① PD; ② Cell transplantation. Exclusive criteria: repetitive researches.DATA EXTRACTTON: A total of 100 papers related to cellular transplant and PD were collected and 41literatures were in accordance with the inclusive criteria.DATA SYNTHESIS: PD is a neural degeneration disease that threatens the health of the aged people, and most traditional therapeusis cannot delay its pathological proceeding. Cell transplantation is becoming popular as a new therapeutic tool, and the cells used to transplant mainly included dopamine-secreting cells, fetal ventral mesencephalic cells, embryonic stem cells and neural stem cells up to now. Animal experiment and clinical test demonstrate that cell transplantation can relieve the motor symptoms of Parkinson's disease obviously, but there are some problems need to be solved.CONCLUSTON: Cell transplantation has visible therapeutic efficacy on PD. Following the improvement of technique, and we have enough cause to credit that cell therapy may cure PD in the future.

  13. Novel Strategies for the Improvement of Stem Cells' Transplantation in Degenerative Retinal Diseases

    Nicoară, Simona Delia; Șușman, Sergiu; Tudoran, Oana; Bărbos, Otilia; Cherecheș, Gabriela; Aștilean, Simion; Potara, Monica; Sorițău, Olga

    2016-01-01

    Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation. PMID:27293444

  14. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  15. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats.

    Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang

    2017-01-01

    Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.

  16. Ex Vivo Expansion of Hematopoietic Stem Cells to Improve Engraftment in Stem Cell Transplantation.

    Ko, Kap-Hyoun; Nordon, Robert; O'Brien, Tracey A; Symonds, Geoff; Dolnikov, Alla

    2017-01-01

    The efficient use of hematopoietic stem cells (HSC) for transplantation is often limited by the relatively low numbers of HSC collected. The ex vivo expansion of HSC for clinical use is a potentially valuable and safe approach to increase HSC numbers thereby increasing engraftment and reducing the risk of morbidity from infection. Here, we describe a protocol for the robust ex vivo expansion of human CD34(+) HSC isolated from umbilical cord blood. The protocol described can efficiently generate large numbers of HSC. We also describe a flow cytometry-based method using high-resolution division tracking to characterize the kinetics of HSC growth and differentiation. Utilizing the guidelines discussed, it is possible for investigators to use this protocol as presented or to modify it for their specific needs.

  17. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  18. Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees With Cartilage Defects.

    Sekiya, Ichiro; Muneta, Takeshi; Horie, Masafumi; Koga, Hideyuki

    2015-07-01

    Transplantation of mesenchymal stem cells (MSCs) is one possible strategy to achieve articular cartilage repair. We previously reported that synovial MSCs were highly proliferative and able to undergo chondrogenesis. We also found that placing a suspension of synovial MSCs on a cartilage defect for 10 minutes promoted cartilage repair in rabbit and pig models. However, the in vivo efficacy of this approach has not been tested clinically. We asked whether transplantation of synovial MSCs improves (1) MRI features, (2) histologic features, and (3) clinical evaluation scores in patients with cartilage defects in the knee? Patients with a symptomatic single cartilage lesion of the femoral condyle were indicated for inclusion in our study, and between April 2008 and April 2011, 10 patients were enrolled in this study. All patients completed followups of 3 years or more. The average followup period was 52 months (range, 37-80 months). Synovial MSCs were expanded with 10% autologous human serum for 14 days after digestion. For transplantation, the patient was positioned so that the cartilage defect was facing upward, and synovial MSC suspension was placed on the cartilage defect with a syringe under arthroscopic control. The defect with the applied suspension then was held in the upward position for 10 minutes. Five patients underwent concomitant ACL reconstructions, among whom two had meniscus suturing performed simultaneously. For MRI quantification, the cartilage defect was scored from 0 to 5. Second-look arthroscopy was performed for four patients and biopsy specimens were evaluated histologically. Clinical outcome was assessed using the Lysholm score and Tegner Activity Level Scale at final followup. Comparisons of MRI and Lysholm scores before and after treatment for each patient were analyzed using the Wilcoxon signed-rank test. MRI score (median ± 95% CI) was 1.0 ± 0.3 before and 5.0 ± 0.7 after, and increased after treatment in each patient (p = 0.005). Second

  19. Bone Marrow-Derived Stem Cell (BMDSC transplantation improves fertility in a murine model of Asherman's syndrome.

    Feryal Alawadhi

    Full Text Available Asherman's Syndrome is characterized by intrauterine adhesions or fibrosis resulting as a consequence of damage to the basal layer of endometrium and is associated with infertility due to loss of normal endometrium. We have previously shown that bone marrow derived stem cells (BMDSCs engraft the endometrium in mice and humans and Ischemia/reperfusion injury of uterus promoted BMDSCs migration to the endometrium; however, the role of BMDSCs in Asherman's syndrome has not been characterized. Here a murine model of Asherman's syndrome was created by traumatizing the uterus. We evaluate stem cell recruitment and pregnancy after BMDSCs transplantation in a model of Asherman's syndrome. In the Asheman's syndrome model, after BMDSC transplant, the Y chromosome bearing CD45-cells represented less than 0.1% of total endometrial cells. Twice the number of Y+CD45- cells was identified in the damaged uterus compared to the uninjured controls. There was no significant difference between the damaged and undamaged uterine horns in mice that received injury to a single horn. In the BMDSC transplant group, 9 of the 10 mice conceived, while only 3 of 10 in the non-transplanted group conceived (Chi-Square p = 0.0225; all mice in an uninjured control group conceived. The time to conception and mean litter size were not different between groups. Taken together, BMDSCs are recruited to endometrium in response to injury. Fertility improves after BMDSC transplant in Asherman's Syndrome mice, demonstrating a functional role for these cells in uterine repair. BMDSC transplantation is a potential novel treatment for Asherman's Syndrome and may also be useful to prevent Asherman's syndrome after uterine injury.

  20. Stem Cell Transplants (For Teens)

    ... Safe Videos for Educators Search English Español Stem Cell Transplants KidsHealth / For Teens / Stem Cell Transplants What's ... Take to Recover? Coping Print What Are Stem Cells? As you probably remember from biology class, every ...

  1. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation

    Sarrazin, Sandrine; Redelberger, David

    2016-01-01

    Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus. M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation. PMID:27811055

  2. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair.

    Skop, Nolan B; Calderon, Frances; Cho, Cheul H; Gandhi, Chirag D; Levison, Steven W

    2016-10-01

    Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 µm, mean 64 µm) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Cyclosporin A increases recovery after spinal cord injury but does not improve myelination by oligodendrocyte progenitor cell transplantation

    Wang Feng-Chao

    2010-10-01

    Full Text Available Abstract Background Transplantation of oligodendrocyte precursor cells (OPCs is an attractive therapy for demyelinating diseases. Cyclosporin A (CsA is one of the foremost immunosuppressive agents and has widespread use in tissue and cell transplantation. However, whether CsA affects survival and differentiation of engrafted OPCs in vivo is unknown. In this study, the effect of CsA on morphological, functional and immunological aspects, as well as survival and differentiation of engrafted OPCs in injured spinal cord was explored. Results We transplanted green fluorescent protein (GFP expressed OPCs (GFP-OPCs into injured spinal cords of rats treated with or without CsA (10 mg/kg. Two weeks after cell transplantation, more GFP-positive cells were found in CsA-treated rats than that in vehicle-treated ones. However, the engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes in both groups. In the CsA-treated group, a significant decrease in spinal cord lesion volume along with increase in spared myelin and neurons were found compared to the control group. Such histological improvement correlated well with an increase in behavioral recovery. Further study suggested that CsA treatment could inhibit infiltration of T cells and activation of resident microglia and/or macrophages derived from infiltrating monocytes in injured spinal cords, which contributes to the survival of engrafted OPCs and repair of spinal cord injury (SCI. Conclusions These results collectively indicate that CsA can promote the survival of engrafted OPCs in injured spinal cords, but has no effect on their differentiation. The engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes. The beneficial effect of CsA on SCI and the survival of engrafted cells may be attributed to its neuroprotective effect.

  5. Stem Cell Transplants (For Parents)

    ... of Transplants Transplantation Recovery Coping Print en español Trasplantes de células madre Stem cells are cells in ... finding a match is called tissue typing (or HLA [human leukocyte antigen] typing). HLA is a protein ...

  6. Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice.

    Gu, G; Zhang, W; Li, M; Ni, J; Wang, P

    2015-04-16

    The ability to selectively control the differentiation of neural stem cells (NSCs) into cholinergic neurons in vivo would be an important step toward cell replacement therapy. First, green fluorescent protein (GFP)-NSCs were induced to differentiate into cholinergic neuron-like cells (CNLs) with retinoic acid (RA) pre-induction followed by nerve growth factor (NGF) induction. Then, these CNLs were transplanted into bilateral hippocampus of APP/PS1 transgenic mice. Behavioral parameters showed by Morris water maze (MWM) tests and the percentages of GFP-labeled cholinergic neurons of CNL transplanted mice were compared with those of controls. Brain levels of choline acetyltransferase (ChAT) mRNA and proteins were analyzed by quantitative real-time PCR and Western blotting, ChAT activity and acetylcholine (ACh) concentration were also evaluated by ChAT activity and ACh concentration assay kits. Immunofluorescence analysis showed that 80.3±1.5% NSCs differentiated into CNLs after RA pre-induction followed by NGF induction in vitro. Three months after transplantation, 82.4±6.3% CNLs differentiated into cholinergic neurons in vivo. APP/PS1 mice transplanted with CNLs showed a significant improvement in learning and memory ability compared with control groups at different time points. Furthermore, CNLs transplantation dramatically increased in the expressions of ChAT mRNA and protein, as well ChAT activity and ACh concentration in APP/PS1 mice. Our findings support the prospect of using NSC-derived CNLs in developing therapies for Alzheimer's disease (AD). Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. l-asparaginase-based regimens followed by allogeneic hematopoietic stem cell transplantation improve outcomes in aggressive natural killer cell leukemia

    Ki Sun Jung

    2016-04-01

    Full Text Available Abstract Aggressive nature killer cell leukemia (ANKL is a mature NK-T cell lymphoma with worse prognosis, but optimal treatment is unclear. Therefore, we analyzed the efficacy of l-asparaginase-based regimens for ANKL patients. Twenty-one patients who received dexamethasone, methotrexate, ifosfamide, l-asparaginase, and etoposide (SMILE or etoposide, ifosfamide, dexamethasone, and l-asparaginase (VIDL chemotherapy at Samsung Medical Center were selected. The overall response rate for all patients was 33 % (7/21; 38 % (5/13 in SMILE and 40 % (2/5 in VIDL, respectively. The median progression-free survival was 3.9 months (95 % CI 0.0–8.1 months and median overall survival was 7.0 months (95 % CI 2.3–11.7 months. Treatment response (P = 0.001, hematopoietic stem cell transplantation (HSCT (P = 0.007 and negative conversion of Epstein-Barr virus (EBV DNA titer after treatment (P = 0.004 were significantly associated with survival. Thus, l-asparaginase-based regimens followed by allogeneic HSCT seem to improve the outcome for ANKL patients.

  8. No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients

    Thiel, U.; Wawer, A.; Wolf, P.; Badoglio, M.; Santucci, A.; Klingebiel, T.; Basu, O.; Borkhardt, A.; Laws, H.-J; Kodera, Y.; Yoshimi, A.; Peters, C.; Ladenstein, R.; Pession, A.; Prete, A.

    2017-01-01

    Background: Outcomes of Ewing tumor (ET) patients treated with allogeneic stem cell transplantation (allo-SCT) were compared regarding the use of reduced-intensity conditioning (RIC) and high-intensity conditioning (HIC) regimens as well as human leukocyte antigen (HLA)-matched and HLA-mismatched grafts. Patients and methods: We retrospectively analyzed data of 87 ET patients from the European Group for Blood and Marrow Transplantation, Pediatric Registry for Stem Cell Transplantations, Asia ...

  9. In search of an improved injection technique for the clinical application of spermatogonial stem cell transplantation.

    Faes, Katrien; Lahoutte, Tony; Hoorens, Anne; Tournaye, Herman; Goossens, Ellen

    2017-03-01

    When fertility is impaired by anticancer treatment, spermatogonial stem cell transplantation (SSCT) could be used as a fertility restoration technique later on in life. Previously, we have demonstrated that a testicular cell suspension could be injected into a human cadaver testis, however, leakage to the interstitium was observed. In this study, injection of mouse testicular cells at an injection height of 50 cm (hydrostatic pressure) or via an automated injection pump (1400 µl, 2600 µl and 3000 µl) was evaluated. Significant difference in the filled radioactive volume was reached between the group in which 1400 µl was injected with an infusion pump and the groups in which 2600 µl (P = 0.019) or 3000 µl (P = 0.010) was injected. In all experimental groups green fluorescent protein positive (GFP + ) cells were observed in the seminiferous tubules. In conclusion, a lower injection height did not resolve the leakage of the injected cells to the interstitium. Using the infusion pump resulted in more efficient filling of the seminiferous tubules with lower interexperimental variability. Although leakage to the interstitium was still observed, with further optimisation, the use of an infusion pump for clinical application is advantageous. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Hematopoietic Stem Cell Transplantation and History

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  11. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  12. Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation

    Liang, Zhi-Jie; Chen, Hai; Zhu, Mao-Guang; Xu, Fang-Tian; He, Ning; Wei, Xiao-Juan; Li, Hong-Mian

    2017-01-01

    Traditional autologous fat transplantation is a common surgical procedure for treating facial soft tissue depression and skin aging. However, the transplanted fat is easily absorbed, reducing the long-term efficacy of the procedure. Here, we examined the efficacy of nanofat-assisted autologous fat structural transplantation. Nanofat-derived stem cells (NFSCs) were isolated, mechanically emulsified, cultured, and characterized. Platelet-rich fibrin (PRF) enhanced proliferation and adipogenic differentiation of NFSCs in vitro. We then compared 62 test group patients with soft tissue depression or signs of aging who underwent combined nanofat, PRF, and autologous fat structural transplantation to control patients (77 cases) who underwent traditional autologous fat transplantation. Facial soft tissue depression symptoms and skin texture were improved to a greater extent after nanofat transplants than after traditional transplants, and the nanofat group had an overall satisfaction rate above 90%. These data suggest that NFSCs function similarly to mesenchymal stem cells and share many of the biological characteristics of traditional fat stem cell cultures. Transplants that combine newly-isolated nanofat, which has a rich stromal vascular fraction (SVF), with PRF and autologous structural fat granules may therefore be a safe, highly-effective, and long-lasting method for remodeling facial contours and rejuvenating the skin. PMID:28978136

  13. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  14. Stem Cell Transplantation from Bench to Bedside

    Table of contents. Stem Cell Transplantation from Bench to Bedside · Slide 2 · Slide 3 · Slide 4 · Principles of an allogeneic stem cell transplant · Principle of an allogeneic stem cell transplant · Principle of an autologous Stem Cell Transplant · Slide 8 · Conditioning · Slide 10 · Slide 11 · Stem Cell Transplantation · Slide 13.

  15. Megakaryocytopoiesis in Stem Cell Transplantation

    Cohen, IIsaac

    1998-01-01

    Mobilized peripheral blood progenitor cell transplant, used to reconstitute hematopoiesis following high-dose chemotherapy in breast cancer patients, is associated with a requisite period of profound thrombocytopenia...

  16. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  17. Pancreatic Islet Cell Transplantation: A new era in transplantation

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence.

  18. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  19. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  20. Regulatory Myeloid Cells in Transplantation

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  1. A new immuno- dystrophin-deficient model, the NSG-mdx4Cv mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation

    Arpke, Robert W.; Darabi, Radbod; Mader, Tara L.; Zhang, Yu; Toyama, Akira; Lonetree, Cara-lin; Nash, Nardina; Lowe, Dawn A.; Perlingeiro, Rita C.R.; Kyba, Michael

    2013-01-01

    Transplantation of a myogenic cell population into an immunodeficient recipient is an excellent way of assessing the in vivo muscle-generating capacity of that cell population. To facilitate both allogeneic and xenogeneic transplantations of muscle-forming cells in mice we have developed a novel immunodeficient muscular dystrophy model, the NSG-mdx4Cv mouse. The IL2Rg mutation, which is linked to the Dmd gene on the X chromosome, simultaneously depletes NK cells and suppresses thymic lymphomas, issues that limit the utility of the SCID/mdx model. The NSG-mdx4Cv mouse presents a muscular dystrophy of similar severity to the conventional mdx mouse. We show that this animal supports robust engraftment of both pig and dog muscle mononuclear cells. The question of whether satellite cells prospectively isolated by flow cytometry can confer a functional benefit upon transplantation has been controversial. Using allogeneic Pax7-ZsGreen donors and NSG-mdx4Cv recipients, we demonstrate definitively that as few as 900 FACS-isolated satellite cells can provide functional regeneration in vivo, in the form of an increased mean maximal force-generation capacity in cell-transplanted muscles, compared to a sham-injected control group. These studies highlight the potency of satellite cells to improve muscle function, and the utility of the NSG-mdx4Cv model for studies on muscle regeneration and Duchenne muscular dystrophy therapy. PMID:23606600

  2. Improving engraftment and immune reconstitution in umbilical cord blood transplantation

    Robert eDanby

    2014-02-01

    Full Text Available Umbilical cord blood (UCB is an important source of haematopoietic stem cells (HSC for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD are unavailable. Although the overall survival rates of UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cellular immunity within cord blood. Furthermore, the limited number of cells and the non-availability of donor lymphocyte infusions (DLI currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infection, mixed chimerism and disease relapse. Therefore, to further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarises our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides an comprehensive overview of the promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third party donors; isolation and expansion of NK cells, pathogen specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.

  3. T-cell-depleted haploidentical stem cell transplantation results improve with time in adults with acute leukemia: A study from the Acute Leukemia Working Party of the European Society of Blood and Marrow Transplantation (EBMT).

    Sestili, Simona; Labopin, Myriam; Ruggeri, Annalisa; Velardi, Andrea; Ciceri, Fabio; Maertens, Johan; Kanz, Lothar; Aversa, Franco; Lewalle, Philippe; Bunjes, Donald; Mohty, Mohamad; Nagler, Arnon

    2018-05-15

    T-cell-depleted, haploidentical transplantations (haplos) are commonly offered to patients who have high-risk, acute leukemia in the absence of a human leukocyte antigen (HLA) full-matched donor. To determine the effect of transplantation period, the authors divided 308 adults with de novo, acute leukemia who underwent T-cell-depleted haplo from 2005 to 2015 into 2 groups, according the year in which they underwent transplantation (2005-2011 [n = 191] and 2012-2015 [n = 117]). The median age was 41 years in patients who underwent transplantation before 2012 and 46 years in those who underwent transplantation after 2012 (P = .04). Most patients had acute myeloid leukemia (75% vs 69%; P = .26) and were in first complete remission (CR1) (55% vs 64%; P = .12) at the time of transplantation. The cumulative incidence of grade 2, 3, and 4 acute graft-versus-host disease (GvHD) and chronic GvHD were not different between the 2 groups (acute GvHD: 20% vs 22% cumulative incidence in patients who underwent haplo before and after 2012, respectively [P = .67]; chronic GvHD: 19% vs 11% cumulative incidence, respectively; P = .12]. The 2-year relapse incidence was 20%, the nonrelapse mortality (NRM) rate was 48%, and no difference was observed over time (21% vs 19% [P = .72] and 54% vs 38% [P = .11] for patients who underwent haplo before and after 2012, respectively). The main cause of NRM was infection. Haplo after 2012 (hazard ratio [HR], 0.57; P = .01), younger age (HR, 0.82; P = .02), and receipt of a reduced-intensity conditioning (RIC) regimen (HR, 0.53; P = .01) were independently associated with lower NRM. The 2-year overall survival rate was 36% and improved after 2012 (29% vs 47% before 2012; P = .02); and it was higher for patients who underwent transplantation in CR1 (41% vs 29%; P = .01). In multivariate analysis, haplo after 2012 (HR, 0.54; P = .003) and receipt of a RIC regimen (HR, 0.54; P = .005) were independently associated with better overall survival

  4. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting

  5. Improved survival of acute lymphoblastic leukemia patients of HLA-A3/11 absent for donor KIR3DL2 after non-T-cell depleted HLA-identical sibling hematopoietic stem cells transplantation

    farhad shahsavar

    2011-08-01

    Conclusion: These data indicate that the absence of HLA class I ligand in the recipient for donor-inhibitory KIR can be a prognostic factor for transplantation outcomes in non-T-cell depleted HLA-identical sibling hematopoietic stem-cell transplantation and that the lack of HLA-A3/11 for donor KIR3DL2 can contribute to improved survival for patients with ALL.

  6. Marked improvement by high-dose chemotherapy and autologous stem cell transplantation in a case of light chain deposition disease.

    Matsuzaki, Keiichi; Ohsawa, Isao; Nishitani, Tomohito; Takeda, Yukihiko; Inoshita, Hiroyuki; Ishii, Masaya; Takagi, Miyuki; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-01-01

    A 55-year-old woman presented with heavy proteinuria (6.2 g/day) in April 2007. Because monoclonal IgG-k was detected in serum and urine samples, bone marrow aspiration and renal biopsy were performed. She was diagnosed with plasma cell dyscrasia because a bone marrow aspiration specimen showed plasma cells at 6.1%. Renal tissues revealed the formation of nodular glomerulosclerosis which was negative for Congo-red staining. Renal immunohistochemistry showed positive staining for kappa light chains in the nodular lesions, proximal tubules and part of Bowman's capsules. Her renal involvement was diagnosed as light chain deposition disease. Proteinuria disappeared and renal function stabilized after high-dose chemotherapy and autologous stem cell transplantation. It appears that an early initiation of active therapy such as high-dose chemotherapy and autologous stem cell transplantation may be beneficial for patients with light chain deposition disease.

  7. Protein blend ingestion before allogeneic stem cell transplantation improves protein-energy malnutrition in patients with leukemia.

    Ren, Guangxu; Zhang, Jianping; Li, Minghua; Yi, Suqin; Xie, Jin; Zhang, Hongru; Wang, Jing

    2017-10-01

    Severe protein-energy malnutrition (PEM) and skeletal muscle wasting are commonly observed in patients with acute leukemia. Recently, the ingestion of a soy-whey protein blend has been shown to promote muscle protein synthesis (MPS). Thus, we tested the hypothesis that the ingestion of a soy-whey blended protein (BP) may improve the PEM status and muscle mass in acute leukemia patients. In total, 24 patients from the same treatment group were randomly assigned to the natural diet plus soy-whey blended protein (BP) group and the natural diet only (ND) group. Our data showed that protein and energy intake decreased significantly (P protein) were observed in the majority (>50%) of the patients. However, 66% of the patients who ingested the BP before transplantation showed obvious increases in arm muscle area. The gripping power value (△ post-pre or △ post-baseline ) was significantly higher in the BP group than in the ND group (P protein to different extents. Notably, the average time to stem cell engraftment was significantly shorter for patients in the BP group (12.2 ± 2.0 days) than for patients in the ND group (15.1 ± 2.9 days). Collectively, our data supported that soy-whey protein can improve PEM status and muscle mass in leukemia patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Autologous Stem Cell Transplant for AL Amyloidosis

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  9. Hematopoietic stem cell transplantation in multiple sclerosis

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  10. Stem Cell Transplant Patients and Fungal Infections

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  11. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  12. Transplantation of in vitro cultured endothelial progenitor cells repairs the blood-brain barrier and improves cognitive function of APP/PS1 transgenic AD mice.

    Zhang, Shishuang; Zhi, Yongle; Li, Fei; Huang, Shan; Gao, Huabin; Han, Zhaoli; Ge, Xintong; Li, Dai; Chen, Fanglian; Kong, Xiaodong; Lei, Ping

    2018-04-15

    To date, the pathogenesis of Alzheimer's disease (AD) remains unclear. It is well-known that excessive deposition of Aβ in the brain is a crucial part of the pathogenesis of AD. In recent years, the AD neurovascular unit hypothesis has attracted much attention. Impairment of the blood-brain barrier (BBB) leads to abnormal amyloid-β (Aβ) transport, and chronic cerebral hypoperfusion causes Aβ deposition throughout the onset and progression of AD. Endothelial progenitor cells (EPCs) are the universal cells for repairing blood vessels. Our previous studies have shown that a reduced number of EPCs in the peripheral blood results in cerebral vascular repair disorder, cerebral hypoperfusion and neurodegeneration, which might be related to the cognitive dysfunction of AD patients. This study was designed to confirm whether EPCs transplantation could repair the blood-brain barrier, stimulate angiogenesis and reduce Aβ deposition in AD. The expression of ZO-1, Occludin and Claudin-5 was up-regulated in APP/PS1 transgenic mice after hippocampal transplantation of EPCs. Consistent with previous studies, EPC transplants also increased the microvessel density. We observed that Aβ senile plaque deposition was decreased and hippocampal cell apoptosis was reduced after EPCs transplantation. The Morris water maze test showed that spatial learning and memory functions were significantly improved in mice transplanted with EPCs. Consequently, EPCs could up-regulate the expression of tight junction proteins, repair BBB tight junction function, stimulate angiogenesis, promote Aβ clearance, and decrease neuronal loss, ultimately improve cognitive function. Taken together, these data demonstrate EPCs may play an important role in the therapeutic implications for vascular dysfunction in AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats

    Wang Yu

    2012-06-01

    Full Text Available Abstract Introduction Adipose derived mesenchymal stem cells (ADMSCs, carrying the similar characteristics to bone marrow mesenchymal stem cells, only much more abundant and easier to obtain, may be a promising treatment for liver fibrosis. We aim to investigate the therapeutic potential of ADMSCs transplantation in liver fibrosis caused by carbon tetrachloride (CCl4 in rats as well as its underlying mechanism, and to further explore the appropriate infusion pathway. Methods ADMSCs were isolated, cultured and identified. Placebo and ADMSCs were transplanted via portal vein and tail vein respectively into carbon tetrachloride (CCl4-induced liver fibrosis rats. Computed tomography (CT perfusion scan and microvessel counts were performed to measure the alteration of liver microcirculation after therapy. Liver function tests and histological findings were estimated. Results CT perfusion scan shown significant decrease of hepatic arterial perfusion index, significant increased portal vein perfusion, total liver perfusion in rats receiving ADMSCs from portal vein, and Factor VIII (FVIII immunohistochemical staining shown significant decrease of microvessels in rats receiving ADMSCs from portal vein, indicating microcirculation improvement in portal vein group. Vascular endothelial growth Factor (VEGF was significantly up-regulated in fibrosis models, and decreased after ADMSCs intraportal transplantation. A significant improvement of liver functional test and histological findings in portal vein group were observed. No significance was found in rats receiving ADMSCs from tail vein. Conclusions ADMSCs have a therapeutic effect against CCl4-mediated liver fibrosis. ADMSCs may benefit the fibrotic liver through alteration of microcirculation, evidenced by CT perfusion scan and down-regulation of VEGF. Intraportal transplantation is a better pathway than tail vein transplantation.

  15. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  16. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats.

    Melo, Fernanda Rosene; Bressan, Raul Bardini; Forner, Stefânia; Martini, Alessandra Cadete; Rode, Michele; Delben, Priscilla Barros; Rae, Giles Alexander; Figueiredo, Claudia Pinto; Trentin, Andrea Gonçalves

    2017-07-01

    Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.

  17. Transplantation of N-Acetyl Aspartyl-Glutamate Synthetase-Activated Neural Stem Cells after Experimental Traumatic Brain Injury Significantly Improves Neurological Recovery

    Mingfeng Li

    2013-12-01

    Full Text Available Background/Aims: Neural stem cells (NSCs hold considerable potential as a therapeutic tool for repair of the damaged nervous system. In the current study, we examined whether transplanted N-acetyl aspartyl-glutamate synthetase (NAAGS-activated NSCs (NAAGS/NSCs further improve neurological recovery following traumatic brain injury (TBI in Sprague-Dawley rats. Methods: Animals received TBI and stereotactic injection of NSCs, NAAGS/NSCs or phosphate buffered saline without cells (control into the injured cortex. NAAGS protein expression was detected through western blot analysis. Dialysate NAAG levels were analyzed with radioimmunoassay. Cell apoptosis was detected via TUNEL staining. The expression levels of specific pro-inflammatory cytokines were detected with enzyme-linked immunosorbent assay. Results: Groups with transplanted NSCs and NAAGS/NSCs displayed significant recovery of the motor behavior, compared to the control group. At 14 and 21 days post-transplantation, the motor behavior in NAAGS/NSC group was significantly improved than that in NSC group (pConclusion: Our results collectively demonstrate that NAAGS/NSCs provide a more powerful autoplastic therapy for the injured nervous system.

  18. The journey of islet cell transplantation and future development.

    Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James

    2018-03-04

    Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.

  19. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  20. Limbal stem cell transplantation: current perspectives

    Atallah MR

    2016-04-01

    the severity of the disease. In summary, limbal stem cell transplantation improves both vision and quality-of-life in patients with ocular surface disorders associated with LSCD, and overall, the use of autologous tissue offers the best results. Future studies aim at improving cellular expansion and finding different sources of stem cells. Keywords: limbal stem cell deficiency (LSCD, simple limbal epithelial transplantation (SLET, cultivated limbal epithelial transplantation (CLET, keratolimbal allograft (KLAL

  1. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  2. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach.

    Berndt, Rouven; Hummitzsch, Lars; Heß, Katharina; Albrecht, Martin; Zitta, Karina; Rusch, Rene; Sarras, Beke; Bayer, Andreas; Cremer, Jochen; Faendrich, Fred; Groß, Justus

    2018-04-27

    Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO 2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. In summary, PCMO improve angiogenesis and tissue recovery in chronic

  3. The lived experience of autologous stem cell-transplanted patients: Post-transplantation and before discharge.

    Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab

    2018-04-01

    To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs

  4. Posttransplant Intramuscular Injection of PLX-R18 Mesenchymal-Like Adherent Stromal Cells Improves Human Hematopoietic Engraftment in A Murine Transplant Model

    Leland Metheny

    2018-02-01

    Full Text Available Late-term complications of hematopoietic cell transplantation (HCT are numerous and include incomplete engraftment. One possible mechanism of incomplete engraftment after HCT is cytokine-mediated suppression or dysfunction of the bone marrow microenvironment. Mesenchymal stromal cells (MSCs elaborate cytokines that nurture or stimulate the marrow microenvironment by several mechanisms. We hypothesize that the administration of exogenous MSCs may modulate the bone marrow milieu and improve peripheral blood count recovery in the setting of incomplete engraftment. In the current study, we demonstrated that posttransplant intramuscular administration of human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded (PLX-R18] harvested from a three-dimensional in vitro culture system improved posttransplant engraftment of human immune compartment in an immune-deficient murine transplantation model. As measured by the percentage of CD45+ cell recovery, we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, p < 0.001 and 8 (7.3 vs. 13.1%, p < 0.05 and in the bone marrow at week 8 (28 vs. 40.0%, p < 0.01 in the PLX-R18 cohort. As measured by percentage of CD19+ cell recovery, there was improvement at weeks 6 (12.6 vs. 3.8% and 8 (10.1 vs. 4.1%. These results suggest that PLX-R18 may have a therapeutic role in improving incomplete engraftment after HCT.

  5. Pre- and postmortem imaging of transplanted cells

    Andrzejewska A

    2015-09-01

    Full Text Available Anna Andrzejewska,1 Adam Nowakowski,1 Miroslaw Janowski,1–4 Jeff WM Bulte,3–7 Assaf A Gilad,3,4 Piotr Walczak,3,4,8 Barbara Lukomska11NeuroRepair Department, 2Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; 3Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, 4Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, 5Department of Biomedical Engineering, 6Department of Chemical & Biomolecular Engineering, 7Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 8Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, PolandAbstract: Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.Keywords: stem cells, transplantation, SPECT, MRI, bioluminescence, cell labeling

  6. Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses.

    Jong-Ho Kim

    Full Text Available Adipose-derived stem cells (ADSCs have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERT in vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI

  7. T cell depleted haploidentical transplantation: positive selection

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  8. Anti-thymocyte globulin could improve the outcome of allogeneic hematopoietic stem cell transplantation in patients with highly aggressive T-cell tumors

    Yang, J; Cai, Y; Jiang, J L; Wan, L P; Yan, S K; Wang, C

    2015-01-01

    The early experiment result in our hospital showed that anti-thymocyte globulin (ATG) inhibited the proliferation of lymphoid tumor cells in the T-cell tumors. We used the ATG as the part of the conditioning regimen and to evaluate the long-term anti-leukemia effect, the safety and complication in the patients with highly aggressive T-cell lymphomas. Twenty-three patients were enrolled into this study. At the time of transplant, six patients reached first or subsequent complete response, three patients had a partial remission and 14 patients had relapsed or primary refractory disease. The conditioning regimen consisted of ATG, total body irradiation, toposide and cyclophosphamide. The complete remission rate after transplant was 95.7%. At a median follow-up time of 25 months, 16 (69.6%) patients are alive and free from diseases, including nine patients in refractory and progressive disease. Seven patients died after transplant, five from relapse and two from treatment-related complications. The incidence of grades II–IV acute graft-vs-host disease (GvHD) was 39.1%. The maximum cumulative incidence of chronic GvHD was 30%. The most frequent and severe conditioning-related toxicities observed in 8 out of 23 patients were grades III/IV infections during cytopenia. Thus, ATG-based conditioning is a feasible and effective alternative for patients with highly aggressive T-cell tumors

  9. Quality measurement and improvement in liver transplantation.

    Mathur, Amit K; Talwalkar, Jayant

    2018-06-01

    There is growing interest in the quality of health care delivery in liver transplantation. Multiple stakeholders, including patients, transplant providers and their hospitals, payers, and regulatory bodies have an interest in measuring and monitoring quality in the liver transplant process, and understanding differences in quality across centres. This article aims to provide an overview of quality measurement and regulatory issues in liver transplantation performed within the United States. We review how broader definitions of health care quality should be applied to liver transplant care models. We outline the status quo including the current regulatory agencies, public reporting mechanisms, and requirements around quality assurance and performance improvement (QAPI) activities. Additionally, we further discuss unintended consequences and opportunities for growth in quality measurement. Quality measurement and the integration of quality improvement strategies into liver transplant programmes hold significant promise, but multiple challenges to successful implementation must be addressed to optimise value. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Introduction of a Quality Management System and Outcome After Hematopoietic Stem-Cell Transplantation

    Gratwohl, Alois; Brand, Ronald; Niederwieser, Dietger; Baldomero, Helen; Chabannon, Christian; Cornelissen, Jan; de Witte, Theo; Ljungman, Per; McDonald, Fiona; McGrath, Eoin; Passweg, Jakob; Peters, Christina; Rocha, Vanderson; Slaper-Cortenbach, Ineke; Sureda, Anna; Tichelli, Andre; Apperley, Jane

    2011-01-01

    Purpose A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We

  11. Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model

    Weifeng Lu

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P<0.05. rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P<0.05. RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P<0.05. Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.

  12. Cerebral toxoplasmosis after haematopoietic stem cell transplantation

    Agnieszka Zaucha-Prażmo

    2017-05-01

    Full Text Available Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic haematopoietic stem cell transplantation (HSCT. It frequently involves the central nervous system. The case is presented of cerebral toxoplasmosis in a 17-year-old youth with Fanconi anaemia treated with haematopoietic stem cell transplantation (HSCT

  13. Stem Cell Transplants in Cancer Treatment

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  14. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  15. Improvement of Mouth Functional Disability in Systemic Sclerosis Patients over One Year in a Trial of Fat Transplantation versus Adipose-Derived Stromal Cells

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available Background. Systemic sclerosis (SSc is a multisystem disease characterized by cutaneous and visceral fibrosis. Face and mouth changes include telangiectasia, sicca syndrome, and thinning and reduction of mouth width (microcheilia and opening (microstomia. We applied autologous fat transplantation compared with autologous adipose-derived stromal cells (ADSCs injection to evaluate the clinical improvement of mouth opening. Methods. From February to May 2013 ten consecutive SSc patients were enrolled from the outpatient clinic of Plastic Surgery Department of Sapienza University of Rome. Patients were divided into two groups as follows: 5 patients were treated with fat transplantation and 5 patients received infiltration of ADSCs produced by cell factory of our institution. To value mouth opening, we use the Italian version of Mouth Handicap in Systemic Sclerosis Scale (IvMHISS. Mouth opening was assessed in centimetres (Maximal Mouth Opening, MMO. In order to evaluate compliance and physician and patient satisfaction, we employed a Questionnaire of Satisfaction and the Visual Analogic Scale (VAS performed before starting study and 1 year after the last treatment. Results and Conclusion. We noticed that both procedures obtained significant results but neither one emerged as a first-choice technique. The present clinical experimentation should be regarded as a starting point for further experimental research and clinical trials.

  16. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  17. Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton’s Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats

    Kayvan Yaghoobi

    2016-01-01

    Full Text Available Introduction. The primary trauma of spinal cord injury (SCI results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs, isolated from Wharton’s jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI.

  18. Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton's Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats

    Yaghoobi, Kayvan; Kaka, Gholamreza; Mansouri, Korosh; Davoodi, Shaghayegh; Sadraie, Seyed Homayoon; Hosseini, Seyed Ruhollah

    2016-01-01

    Introduction. The primary trauma of spinal cord injury (SCI) results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs), isolated from Wharton's jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav) on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI. PMID:27057171

  19. Blood-Forming Stem Cell Transplants

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  20. Complications of allogeneic hematopoietic stem cell transplantation.

    Arnaout, Karim; Patel, Nihar; Jain, Maneesh; El-Amm, Joelle; Amro, Farah; Tabbara, Imad A

    2014-08-01

    Infection, graft-versus-host disease (GVHD), and to a lesser extent sinusoidal obstructive syndrome (SOS) represent the major causes of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (AHSCT). During the last decade, progress in prevention and treatment of these complications led to improvement in the outcome of these patients. Despite the fact that nonmyeloablative regimens have been increasingly used in elderly patients and in patients with co-morbidities, the nonrelapse related mortality remains a challenge and long-term follow-up is required. The objective of this manuscript is to provide an updated concise review of the complications of AHSCT and of the available treatment interventions.

  1. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  2. Improved survival after transplantation of more donor plasmacytoid dendritic or naïve T cells from unrelated-donor marrow grafts: results from BMTCTN 0201.

    Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio

    2014-08-01

    To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.

  3. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.

    Jin, Jun; Wang, Jun; Huang, Jian; Huang, Fang; Fu, Jianhong; Yang, Xinjing; Miao, Zongning

    2014-11-01

    The main requirements for successful tissue engineering of the bone are non-immunogenic cells with osteogenic potential and a porous biodegradable scaffold. The purpose of this study is to evaluate the potential of a silk fibroin/hydroxyapatite (SF/HA) porous material as a delivery vehicle for human placenta-derived mesenchymal stem cells (PMSCs) in a rabbit radius defect model. In this study, we randomly assigned 16 healthy adult New Zealand rabbits into two groups, subjected to transplantation with either SF/HA and PMSCs (experimental group) or SF/HA alone (control group). To evaluate fracture healing, we assessed the extent of graft absorption, the quantity of newly formed bone, and re-canalization of the cavitas medullaris using radiographic and histological tools. We performed flow cytometric analysis to characterize PMSCs, and found that while they express CD90, CD105 and CD73, they stain negative for HLA-DR and the hematopoietic cell surface markers CD34 and CD45. When PMSCs were exposed to osteogenic induction medium, they secreted calcium crystals that were identified by von Kossa staining. Furthermore, when seeded on the surface of SF/HA scaffold, they actively secreted extracellular matrix components. Here, we show, through radiographic and histological analyses, that fracture healing in the experimental group is significantly improved over the control group. This strongly suggests that transplantation of human PMSCs grown in an SF/HA scaffold into injured radius segmental bone in rabbits, can markedly enhance tissue repair. Our finding provides evidence supporting the utility of human placenta as a potential source of stem cells for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Imaging in haematopoietic stem cell transplantation

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J.

    2003-01-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants

  5. Imaging in haematopoietic stem cell transplantation

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J

    2003-03-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants.

  6. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview.

    Singh, Anurag K; McGuirk, Joseph P

    2016-11-15

    The field of hematopoietic stem cell transplant (HSCT) has made ground-breaking progress in the treatment of many malignant and nonmalignant conditions. It has also pioneered the concepts of stem cell therapy and immunotherapy as a tool against cancer. The success of transplant for hematologic malignancies derives both from the ability to treat patients with intensive chemoradiotherapy and from potent graft-versus-leukemia (GVL) effects mediated by donor immunity. Additionally, HSCT has been a curative therapy for several nonmalignant hematologic disorders through the provision of donor-derived hematopoiesis and immunity. Preclinical and clinical research in the field has contributed to an advanced understanding of histocompatibility, graft-versus-host disease (GVHD), GVL effect, and immune reconstitution after transplant. Improved donor selection, tailored conditioning regimens, and better supportive care have helped reduce transplant-related morbidity and mortality and expanded access. The development of unrelated donor registries and increased utilization of cord blood and partially matched related donor transplants have ensured a donor for essentially everyone who needs a transplant. However, significant barriers still remain in the form of disease relapse, GVHD infectious complications, and regimen-related toxicities. Recent developments in the field of cellular therapy are expected to further improve the efficacy of transplant. In this review, we discuss the current science of HSCT from a historical perspective, highlighting major discoveries. We also speculate on future directions in this field. Cancer Res; 76(22); 6445-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Advances in Cell Transplantation Therapy for Diseased Myocardium

    Outi M. Villet

    2011-01-01

    Full Text Available The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

  8. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  9. Islet and Stem Cell Encapsulation for Clinical Transplantation

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  10. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2015-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative regimens of a variety of other hematological and non-hematological malignancies. The addition of newer agents to conditioning like bortezomib or lenalidomide for myeloma, or clofarabine for myeloid malignancies, may improve antitumor effects for transplantation, while in combination with alemtuzumab may represent a backbone for future cellular therapy due to reliable engraftment and low toxicity profile. This review summarizes the development and the current use of this remarkable drug in hematopoietic stem-cell transplantation. PMID:22922522

  11. [Hepatic cell transplantation. Technical and methodological aspects].

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  12. Genetic modification of cells for transplantation.

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  13. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience.

    Fernandes, Juliana Folloni; Kerbauy, Fabio Rodrigues; Ribeiro, Andreza Alice Feitosa; Kutner, Jose Mauro; Camargo, Luis Fernando Aranha; Stape, Adalberto; Troster, Eduardo Juan; Zamperlini-Netto, Gabriele; Azambuja, Alessandra Milani Prandini de; Carvalho, Bruna; Dorna, Mayra de Barros; Vilela, Marluce Dos Santos; Jacob, Cristina Miuki Abe; Costa-Carvalho, Beatriz Tavares; Cunha, Jose Marcos; Carneiro-Sampaio, Magda Maria; Hamerschlak, Nelson

    2011-06-01

    To report the experience of a tertiary care hospital with allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies. Seven pediatric patients with primary immunodeficiencies (severe combined immunodeficiency: n = 2; combined immunodeficiency: n = 1; chronic granulomatous disease: n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1) who underwent eight hematopoietic stem cell transplants in a single center, from 2007 to 2010, were studied. Two patients received transplants from HLA-identical siblings; the other six transplants were done with unrelated donors (bone marrow: n = 1; cord blood: n = 5). All patients had pre-existing infections before hematopoietic stem cell transplants. One patient received only anti-thymocyte globulin prior to transplant, three transplants were done with reduced intensity conditioning regimens and four transplants were done after myeloablative therapy. Two patients were not evaluated for engraftment due to early death. Three patients engrafted, two had primary graft failure and one received a second transplant with posterior engraftment. Two patients died of regimen related toxicity (hepatic sinusoidal obstruction syndrome); one patient died of progressive respiratory failure due to Parainfluenza infection present prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Patients' status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  14. Improving the transition of highly complex patients into the community: impact of a pharmacist in an allogeneic stem cell transplant (SCT) outpatient clinic.

    Chieng, Ruth; Coutsouvelis, John; Poole, Susan; Dooley, Michael J; Booth, Diana; Wei, Andrew

    2013-12-01

    Patients having undergone allogeneic stem cell transplantation (SCT) require complex medication regimens. To ensure the safe and effective management of this patient group, specialised care in a centre with a dedicated and experienced healthcare team is essential. The aim of this study was to evaluate the effectiveness of a specialty clinical pharmacist working in an ambulatory SCT clinic. A prospective cohort study was conducted on patients post SCT and discharged to the ambulatory setting. Patients were reviewed by a clinical pharmacist weekly for six visits. At these visits a medication review was undertaken. Interventions from these reviews were recorded. Interventions were then assigned a risk rating by a multidisciplinary panel. Adherence was also assessed by a Morisky questionnaire and review of dose administration aids. Comparison of data over the six-visit period was undertaken. In total 23 patients were enrolled in the study. All six visits were completed in 17 patients and 161 interventions were recorded at an average of 1.4 interventions per patient visit. The panel rated 40 % of interventions as high risk, 46 % as medium risk and 14 % as low risk. At all visit points high- and medium-risk interventions constituted >80 % of the total. Morisky scores improved by an average of 1.53 (p SCT outpatient clinic resulted in regular and effective intervention contributing to improved medication management and adherence.

  15. In vivo stem cell transplantation using reduced cell numbers.

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  16. In Utero Hematopoietic Cell Transplantation for Hemoglobinopathies

    Tippi C. Mackenzie

    2015-01-01

    Full Text Available In utero hematopoietic cell transplantation (IUHCTx is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application.

  17. Genetic modification of stem cells for transplantation.

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  18. Hematopoietic stem cell transplantation for chronic lymphocytic leukemia.

    Gladstone, Douglas E; Fuchs, Ephraim

    2012-03-01

    Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity.

  19. Haematopoietic stem cell transplantation: activities (2014 report) in a ...

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Introduction: Hematopoietic Stem Cell transplantation (HSCT) is the only curative therapy for ... Activities: The stem cell transplant centre at the University of Benin Teaching Hospital Edo ...

  20. Retinal stem cells and potential cell transplantation treatments

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  1. Kidney dysfunction after allogeneic stem cell transplantation

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  2. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  3. Transplantation Tolerance Induction: Cell Therapies and Their Mechanisms

    Scalea, Joseph R.; Tomita, Yusuke; Lindholm, Christopher R.; Burlingham, William

    2016-01-01

    Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as ...

  4. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  5. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  6. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  7. Improvement of Bone Healing by Neutralization of microRNA-335-5p, but not by Neutralization of microRNA-92A in Bone Marrow Mononuclear Cells Transplanted into a Large Femur Defect of the Rat.

    Janko, Maren; Dietz, Konstantin; Rachor, Julia; Sahm, Julian; Schroder, Katrin; Schaible, Alexander; Nau, Christoph; Seebach, Caroline; Marzi, Ingo; Henrich, Dirk

    2018-04-23

    Transplanted bone marrow mononuclear cells (BMC) support the healing of large bone defects. Neutralization of microRNA (MiR) that negatively affects key processes of the reparative response in BMC might help to further improve the beneficial effect of transplanted BMC in bone healing. Hence, the aim of this study was to evaluate if the neutralization of MiR-92A (vascularization) and MiR-335-5p (osteogenic differentiation) in BMC using specific antiMiRs leads to a further improvement of the BMC-supported therapy of large bone defects. BMC transiently transfected with antiMiR- 92A, antiMiR-335, antiMiR-92A, and antiMiR-355 or control antiMiR were seeded on β-TCP (beta-tricalcium phosphate) and placed in a femoral large bone defect (5 mm) in Sprague-Dawley rats. Ultimate load as well as osseous integration of the β-TCP-scaffolds were significantly improved in the antiMiR-335 group compared to the control group after 8 weeks, whereas neutralization of antiMiR-92A lead to an improvement of early vascularization after 1 week, but not to enhanced bone healing after 8 weeks. We demonstrated that the targeted inhibition of MiRs in transplanted BMC is a new approach that enhances BMC-supported bone healing.

  8. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

  9. MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia.

    Aranguren, Xabier L; Pelacho, Beatriz; Peñuelas, Ivan; Abizanda, Gloria; Uriz, Maialen; Ecay, Margarita; Collantaes, María; Araña, Miriam; Beerens, Manu; Coppiello, Giulia; Prieto, Inés; Perez-Ilzarbe, Maitane; Andreu, Enrique J; Luttun, Aernout; Prósper, Felipe

    2011-01-01

    There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement. © 2011 Cognizant Comm. Corp.

  10. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience

    Juliana Folloni Fernandes

    2011-06-01

    Full Text Available Objective: To report the experience of a tertiary care hospital withallogeneic hematopoietic stem cell transplantation in children withprimary immunodeficiencies. Methods: Seven patients with primaryimmunodeficiencies (severe combined immunodeficiency: n = 2;combined immunodeficiency: n = 1; chronic granulomatous disease:n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1who underwent eight hematopoietic stem cell transplants (HSCTin a single center, from 2007 to 2010, were studied. Results: Twopatients received transplants from HLA-identical siblings; the othersix transplants were done with unrelated donors (bone marrow: n= 1; cord blood: n = 5. All patients had pre-existing infectionsbefore hematopoietic stem cell transplants. One patient receivedonly anti-thymocyte globulin prior to transplant, three transplantswere done with reduced intensity conditioning regimens and fourtransplants were done after myeloablative therapy. Two patientswere not evaluable for engraftment due to early death. Three patientsengrafted, two had primary graft failure and one received a secondtransplant with posterior engraftment. Two patients died of regimenrelated toxicity (hepatic sinusoidal obstruction syndrome; one patient died of progressive respiratory failure due to Parainfluenza infection diagnosed prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Conclusion: Patients’ status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  11. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  12. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  13. Rituximab-containing reduced-intensity conditioning improves progression-free survival following allogeneic transplantation in B cell non-Hodgkin lymphoma

    Narendranath Epperla

    2017-06-01

    Full Text Available Abstract Background In B cell non-Hodgkin lymphoma (B-NHL, rituximab-containing reduced-intensity conditioning regimens (R-RIC have been shown to provide favorable outcomes in single-arm studies; however, large multicenter studies comparing R-RIC and non-rituximab-containing reduced-intensity conditioning regimens (nonR-RIC have not been performed. Using the CIBMTR database, we report the outcomes of R-RIC versus nonR-RIC regimens in B-NHL. Methods We evaluated 1401 adult B-NHL patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT who received nonR-RIC (n = 1022 or R-RIC (n = 379 regimens. Graft-versus-host disease (GVHD prophylaxis was limited to calcineurin inhibitor-based approaches. Results Median follow-up of survivors in the R-RIC and nonR-RIC groups was 47 and 37 months, respectively. On multivariate analysis, no difference was seen between the R-RIC and nonR-RIC cohorts in terms of acute GVHD grade II–IV (RR = 1.14, 95%CI = 0.83–1.56, p = 0.43 or grade III–IV (RR = 1.16, 95%CI = 0.72–1.89, p = 0.54, chronic GVHD (RR = 1.15, 95%CI = 0.92–1.46, p = 0.22, non-relapse mortality (RR = 0.90; 95%CI = 0.67–1.22; p = 0.51, relapse/progression (RR = 0.79; 95%CI = 0.63–1.01; p = 0.055, and mortality (RR = 0.84, 95%CI = 0.69–1.02, p = 0.08 risk. However, R-RIC was associated with a significantly improved progression-free survival (RR = 0.76; 95%CI 0.62–0.92; p = 0.006. On subgroup analysis, mortality benefit was noted in the R-RIC group patients not receiving busulfan-based RIC (RR = 0.76; 95%CI = 0.60–0.96; p = 0.02 and with the use of a higher cumulative rituximab dose (RR = 0.43; 95%CI = 0.21–0.90; p = 0.02. Conclusion Our analysis shows that inclusion of rituximab in RIC regimens improves progression-free survival in patients with B cell NHL. These data supports the use of R-RIC in B

  14. Stem-cell-activated organ following ultrasound exposure: better transplant option for organ transplantation.

    Wang, Sen; Li, Yu; Ji, Ying-Chang; Lin, Chang-Min; Man, Cheng; Zheng, Xiao-Xuan

    2010-01-01

    Although doctors try their best to protect transplants during surgery, there remain great challenges for the higher survival rate and less rejection of transplants after organ transplantation. Growing evidence indicates that the stem cells could function after injury rather than aging, implying that suitable injury may activate the stem cells of damaged organs. Furthermore, it has been revealed that stem cells can be used to induce tolerance in transplantation and the ultrasound has great biological effects on organs. Basing on these facts, we hypothesize that the stem cells within the transplants can be activated by ultrasound with high-frequency and medium-intensity. Therefore, the stem-cell-activated organs (SCAO) can be derived, and the SCAO will be better transplant option for organ transplantation. We postulate the ultrasound can change the molecular activity and/or quantity of the stem cells, the membrane permeability, the cell-cell junctions, and their surrounding microenvironments. As a result, the stem cells are activated, and the SCAO will acquire more regenerative capacity and less rejection. In the paper, we also discuss the process, methods and models for verifying the theory, and the consequences. We believe the theory may provide a practical method for the clinical application of the ultrasound and stem cells in organ transplantation.

  15. What Unrelated Hematopoietic Stem Cell Transplantation in Thalassemia Taught us about Transplant Immunogenetics

    La Nasa, Giorgio; Vacca, Adriana; Littera, Roberto; Piras, Eugenia; Orru, Sandro; Greco, Marianna; Carcassi, Carlo; Caocci, Giovanni

    2016-01-01

    Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT) continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cord blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS) and thalassemia-free survival (TFS) rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD) remains the most important complication in unrelated HSCT in thalassemia, leading to significant rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individualize appropriate strategies for its prevention and management. This review provides an overview of recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia. PMID:27872728

  16. WHAT UNRELATED HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THALASSEMIA TAUGHT US ABOUT TRANSPLANT IMMUNOGENETICS.

    Giorgio La Nasa

    2016-10-01

    Full Text Available Abstract Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cordon blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS and thalassemia-free survival (TFS rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD remains the most important complication in unrelated HSCT in thalassemia, leading to considerable rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individuate appropriate strategies for its prevention and management. This review provides an overview on recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia.

  17. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells

    Chizuka Ide

    2016-01-01

    Full Text Available Transplantation of bone marrow stromal cells (BMSCs enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI. BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  18. Endothelial cell chimerism after renal transplantation and vascular rejection.

    Lagaaij, E.L.; Cramer-Knijnenburg, G.F.; Kemenade, F.J. van; Es, L.A. van; Bruijn, J.A.; Krieken, J.H.J.M. van

    2001-01-01

    BACKGROUND: The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ are believed to remain of donor origin after transplantation. We

  19. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells

    Niloufar Safinia

    2018-02-01

    Full Text Available Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5. As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8. However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9. As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.

  20. Surfactant treatment before reperfusion improves the immediate function of lung transplants in rats

    Erasmus, ME; Petersen, AH; Hofstede, G; Haagsman, HP; Oetomo, SB; Prop, J

    An impaired function of alveolar surfactant can cause lung transplant dysfunction early after reperfusion. In this study it was investigated whether treatment with surfactant before reperfusion improves the immediate function of lung transplants and whether an improved transplant function was

  1. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  2. MRI screening before stem cell transplantation - necessary?

    Zimmermann, U.; Mentzel, H.J.; Kaiser, W.A.; Wolf, J.; Fuchs, D.; Gruhn, B.; Zintl, F.

    2008-01-01

    Purpose: in the context of stem cell transplantation (SCT), we often observe neurological complications as a consequence of immune system suppression, conditioning therapy or prophylaxis and treatment of graft-versus-host disease. Furthermore, cerebral lesions in existence prior to transplantation can be found. The aim of this study was to evaluate the benefit of cerebral magnetic resonance imaging (MRI) prior to stem cell transplantation. Patients and method: cerebral MR examinations of 116 children and adolescents were performed before SCT. Patients ranged in age from 1.1 to 21.4 years (mean 12.6 years). All MR images were obtained by a 1.5 T System. The predefined short protocol included an axial T1-weighted SE sequence and a coronary T2-weighted TSE sequence. We evaluated existing cerebral lesions, the diameter of the ventricular system, and the paranasal sinuses. In the case of pathological findings, the short examination protocol was expanded. Results: in 5 of 116 children (4.3%) we observed prior to SCT findings requiring immediate treatment although the patients did not show any clinical symptoms (1 x aspergilloma, 1 x hemorrhage of vascular anomaly). An increased risk of bleeding caused by cavernoma or another vascular anomaly without hemorrhage also had to be taken into account. 32 of 116 patients (37.1%) showed atrophic lesions. In 42 children (36.2%), we observed affections of the paranasal sinuses. (orig.)

  3. The regulatory roles of B cell subsets in transplantation.

    Chu, Zhulang; Zou, Weilong; Xu, Yanan; Sun, Qiquan; Zhao, Yong

    2018-02-01

    B cells mediate allograft rejection through antigen presentation, and production of cytokines and antibodies. More and more immunosuppressive agents specifically targeting B cells and plasma cells have been applied in clinical transplantation. However, recent studies have indicated the regulatory roles of B cells. Therefore, it is vital to clarify the different effects of B cell subsets in organ transplantation so that we can completely understand the diverse functions of B cells in transplantation. Areas covered: This review focuses on the regulatory roles of B cells in transplantation. B cell subsets with immune modulation and factors mediating immunosuppressive functions of regulatory B (Breg) cells were analyzed. Therapies targeting B cells and the application of B cells for transplant tolerance induction were discussed. Expert commentary: Besides involving rejection, B cells could also play regulatory roles in transplantation. Breg cells and the related markers may be used to predict the immune tolerant state in transplant recipients. New therapeutic strategies targeting B cells should be explored to promote tolerance induction with less impact on the host's protective immunity in organ transplanted patients.

  4. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation

    Aurélie Tormo

    2017-06-01

    Full Text Available Abstract Background Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM transplantation (BMT due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. Methods To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. Results Using a major histocompatibility complex (MHC-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin−Sca1+c-kit+ (LSK subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes and non-hematopoietic (stromal cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10 observed in the IL-21, but not PBS, recipient mice. We also tested the

  5. Strength Training Following Hematopoietic Stem Cell Transplantation

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  6. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  7. Cell lineage in vascularized bone transplantation.

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  8. Childhood Hematopoietic Cell Transplantation (PDQ®)—Health Professional Version

    Hematopoietic cell transplantation involves the infusion of blood stem cells (peripheral/umbilical cord blood, bone marrow) into a patient to reconstitute the blood system. Get detailed information about autologous and allogeneic transplant, including cell selection, HLA matching, and preparative regimens, and the acute complications and late effects of treatment in this summary for clinicians.

  9. Stem cell biology and cell transplantation therapy in the retina.

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  10. Haematopoietic stem cell transplantation as first-line treatment in myeloma: a global perspective of current concepts and future possibilities

    Catriona Elizabeth Mactier

    2012-10-01

    Full Text Available Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies.

  11. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants

    Strober, Samuel

    2016-01-01

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism.

  12. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants.

    Strober, Samuel

    2016-03-24

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism. © 2016 by The American Society of Hematology.

  13. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  14. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    Li, Z.; Chen, J. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China); Li, L.; Ran, J.H.; Liu, J. [The First People' s Hospital of Kunming, Kunming, Yunnan, China, The First People’s Hospital of Kunming, Kunming, Yunnan (China); Gao, T.X.; Guo, B.Y. [Dongchangfu Hospital of Women and Child Health Care, Liaocheng, Shandong (China); Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China)

    2013-07-30

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.

  15. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    Li, Z.; Chen, J.; Li, L.; Ran, J.H.; Liu, J.; Gao, T.X.; Guo, B.Y.; Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L.

    2013-01-01

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation

  16. Strange Bedfellows No More: How Integrated Stem-Cell Transplantation and Palliative Care Programs Can Together Improve End-of-Life Care.

    Levine, Deena R; Baker, Justin N; Wolfe, Joanne; Lehmann, Leslie E; Ullrich, Christina

    2017-09-01

    In the intense, cure-oriented setting of hematopoietic stem-cell transplantation (HSCT), delivery of high-quality palliative and end-of-life care is a unique challenge. Although HSCT affords patients a chance for cure, it carries a significant risk of morbidity and mortality. During HSCT, patients usually experience high symptom burden and a significant decrease in quality of life that can persist for long periods. When morbidity is high and the chance of cure remote, the tendency after HSCT is to continue intensive medical interventions with curative intent. The nature of the complications and overall condition of some patients may render survival an unrealistic goal and, as such, continuation of artificial life-sustaining measures in these patients may prolong suffering and preclude patient and family preparation for end of life. Palliative care focuses on the well-being of patients with life-threatening conditions and their families, irrespective of the goals of care or anticipated outcome. Although not inherently at odds with HSCT, palliative care historically has been rarely offered to HSCT recipients. Recent evidence suggests that HSCT recipients would benefit from collaborative efforts between HSCT and palliative care services, particularly when initiated early in the transplantation course. We review palliative and end-of-life care in HSCT and present models for integrating palliative care into HSCT care. With open communication, respect for roles, and a spirit of collaboration, HSCT and palliative care can effectively join forces to provide high-quality, multidisciplinary care for these highly vulnerable patients and their families.

  17. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges

    Bruni A

    2014-06-01

    Full Text Available Anthony Bruni, Boris Gala-Lopez, Andrew R Pepper, Nasser S Abualhassan, AM James Shapiro Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada Abstract: Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. Keywords: islet transplantation, type I diabetes mellitus, Edmonton Protocol, engraftment, immunosuppression

  18. The role of exogenous neural stem cells transplantation in cerebral ischemic stroke.

    Chen, Lukui; Qiu, Rong; Li, Lushen; He, Dan; Lv, Haiqin; Wu, Xiaojing; Gu, Ning

    2014-11-01

    transplantation group. The Nissl dyeing showed that there was a large area of neuronal necrosis and apoptosis in the ischemia and PBS transplantation groups, and damage was mainly focused in the striatum. Degeneration and damage of nerve cells were significantly reduced in the NSCs transplantation group. The Tunel assay showed that the number of apoptosis-positive cells in the NSCs transplantation group was less than that in the PBS transplantation group at each time point. Double immunofluorescent labeling showed that the proliferation of endogenous neural stem cells began at the third day, reaching the peak at the 7th day, and was significantly reduced at the 14th day in the SVZ. The number of BrdU/NeuN increased significantly in the NSCs transplantation group compared to that in the PBS transplantation group (P < 0.05). The number of BrdU/GFAP decreased significantly in the NSCs transplantation group compared to that of PBS transplantation group (P < 0.05). The number of BrdU/GFAP-positive cells in the striatum was observed to be much more in the PBS transplantation group than in the NSCs transplantation group. Both neurological deficits and coordination capacity of rats with cerebral ischemia were significantly improved via transplantation of the neural stem cells. In conclusion, transplantation of neural stem cells can therefore possibly promote the differentiation of endogenous NSCs into neurons and reduce their differentiation towards glial cells. Transplantation of the neural stem cells may also change the ischemic microenvironment of striatum, possibly inhibiting the proliferation of glial cells.

  19. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Haruyuki Tsuchiya

    Full Text Available The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM and growth factors in intramuscular islet transplantation.Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group, islets embedded in ECM with growth factors (Matrigel group, and islets embedded in ECM without growth factors [growth factor-reduced (GFR Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  20. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  1. Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010

    Barton, Franca B.; Rickels, Michael R.; Alejandro, Rodolfo; Hering, Bernhard J.; Wease, Stephen; Naziruddin, Bashoo; Oberholzer, Jose; Odorico, Jon S.; Garfinkel, Marc R.; Levy, Marlon; Pattou, Francois; Berney, Thierry; Secchi, Antonio; Messinger, Shari; Senior, Peter A.; Maffi, Paola; Posselt, Andrew; Stock, Peter G.; Kaufman, Dixon B.; Luo, Xunrong; Kandeel, Fouad; Cagliero, Enrico; Turgeon, Nicole A.; Witkowski, Piotr; Naji, Ali; O’Connell, Philip J.; Greenbaum, Carla; Kudva, Yogish C.; Brayman, Kenneth L.; Aull, Meredith J.; Larsen, Christian; Kay, Tom W.H.; Fernandez, Luis A.; Vantyghem, Marie-Christine; Bellin, Melena; Shapiro, A.M. James

    2012-01-01

    OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P islet graft function (P islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient. PMID:22723582

  2. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  4. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  5. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  6. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  7. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Islet Cell Transplantation: MedlinePlus Health Topic

    ... and Kidney Diseases) Learn More Beta Cell Breakthroughs (American Diabetes Association) Innovative Approaches to Treating Type 1 Diabetes Addressed in Beta-Cell Replacement Presentations (American Diabetes Association) Islet Transplantation (American Diabetes Association) Also in Spanish ...

  9. [Hepatic cell transplantation: a new therapy in liver diseases].

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  10. Earlier defibrotide initiation post-diagnosis of veno-occlusive disease/sinusoidal obstruction syndrome improves Day +100 survival following haematopoietic stem cell transplantation.

    Richardson, Paul G; Smith, Angela R; Triplett, Brandon M; Kernan, Nancy A; Grupp, Stephan A; Antin, Joseph H; Lehmann, Leslie; Miloslavsky, Maja; Hume, Robin; Hannah, Alison L; Nejadnik, Bijan; Soiffer, Robert J

    2017-07-01

    Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a progressive, potentially fatal complication of conditioning for haematopoietic stem cell transplant (HSCT). The VOD/SOS pathophysiological cascade involves endothelial-cell activation and damage, and a prothrombotic-hypofibrinolytic state. Severe VOD/SOS (typically characterized by multi-organ dysfunction) may be associated with >80% mortality. Defibrotide is approved for treating severe hepatic VOD/SOS post-HSCT in the European Union, and for hepatic VOD/SOS with renal or pulmonary dysfunction post-HSCT in the United States. Previously, defibrotide (25 mg/kg/day in 4 divided doses for a recommended ≥21 days) was available through an expanded-access treatment protocol for patients with VOD/SOS. Data from this study were examined post-hoc to determine if the timing of defibrotide initiation post-VOD/SOS diagnosis affected Day +100 survival post-HSCT. Among 573 patients, defibrotide was started on the day of VOD/SOS diagnosis in approximately 30%, and within 7 days in >90%. The relationship between Day +100 survival and treatment initiation before/after specific days post-diagnosis showed superior survival when treatment was initiated closer to VOD/SOS diagnosis with a statistically significant trend over time for better outcomes with earlier treatment initiation (P defibrotide should not be delayed after diagnosis of VOD/SOS. © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  11. Allogeneic stem cell transplantation in acute myeloid leukemia

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  12. Cytomegalovirus (CMV) Infection: A Guide for Patients and Families After Stem Cell Transplant

    ... Infection: A Guide for Patients and Families after Stem Cell Transplant What is cytomegalovirus (CMV)? Cytomegalovirus (CMV), a ... weakened by medicines that you must take after stem cell transplant and by the transplant itself. Your body ...

  13. Islet cell transplant: Update on current clinical trials

    Schuetz, Christian; Markmann, James F.

    2016-01-01

    In the last 15 years clinical islet transplantation has made the leap from experimental procedure to standard of care for a highly selective group of patients. Due to a risk-benefit calculation involving the required systemic immunosuppression the procedure is only considered in patients with type 1 diabetes, complicated by severe hypoglycemia or end stage renal disease. In this review we summarize current outcomes of the procedure and take a look at ongoing and future improvements and refinements of beta cell therapy. PMID:28451515

  14. Improving Viability and Functional Outcome After Whole Eye Transplantation

    2015-10-01

    behavior studies on his animals. Also unknown is how many nerve cells must regenerate so the eyes can see. ’’The brain is exceptionally good at taking...UCSD. Those might include ways to combine regenerative techniques with treat- ments for vision loss like retinal prostheses, gene therapy, or stem ...inability of retinal ganglion cells to regenerate. Whole eye transplantation (WET) gives the opportunity to provide viable retinal ganglion cells and the

  15. Transplantation and differentiation of donor cells in the cloned pigs

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  16. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  17. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.

    Wei, Ling; Wei, Zheng Z; Jiang, Michael Qize; Mohamad, Osama; Yu, Shan Ping

    2017-10-01

    One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Late effects of stem cell transplantation

    Ishiko, Yuka; Ishida, Yuji; Kou, Katsuyoshi; Honda, Koujirou; Kigasawa, Hisato; Ishikawa, Kumiko; Ohnuma, Kei; Toyoda, Yasunori; Nishihira, Hirokazu

    1999-01-01

    We reviewed growth and endocrine functions in 29 patients who underwent stem cell transplantation (SCT) at the Kanagawa Children's Medical Center and survived without disease for more than 1 year after their SCT. In our study, the more severe decrease of height standard deviation score (SDS) was observed in children who had undergone SCT at an earlier age, using total body irradiation (TBI). The risk factor of hypothyroidism after SCT was the cranial irradiation before SCT. Gonadal dysfunction occurred frequently in both boys and girls regardless of preparative regimen before SCT. It is important to observe carefully the effect of SCT on growth and endocrine function, and to consider whether the hormonal therapy is indicated. (author)

  19. Hematopoietic stem cell transplantation for acquired aplastic anemia

    Georges, George E.; Storb, Rainer

    2016-01-01

    Purpose of review There has been steady improvement in outcomes with allogeneic bone marrow transplantation (BMT) for severe aplastic anemia (SAA), due to progress in optimization of the conditioning regimens, donor hematopoietic cell source and supportive care. Here we review recently published data that highlight the improvements and current issues in the treatment of SAA. Recent findings Approximately one-third of AA patients treated with immune suppression therapy (IST) have acquired mutations in myeloid cancer candidate genes. Because of the greater probability for eventual failure of IST, human leukocyte antigen (HLA)-matched sibling donor BMT is the first-line of treatment for SAA. HLA-matched unrelated donor (URD) BMT is generally recommended for patients who have failed IST. However, in younger patients for whom a 10/10-HLA-allele matched URD can be rapidly identified, there is a strong rationale to proceed with URD BMT as first-line therapy. HLA-haploidentical BMT using post-transplant cyclophosphamide (PT-CY) conditioning regimens, is now a reasonable second-line treatment for patients who failed IST. Summary Improved outcomes have led to an increased first-line role of BMT for treatment of SAA. The optimal cell source from an HLA-matched donor is bone marrow. Additional studies are needed to determine the optimal conditioning regimen for HLA-haploidentical donors. PMID:27607445

  20. Critical care of the hematopoietic stem cell transplant recipient.

    Afessa, Bekele; Azoulay, Elie

    2010-01-01

    An estimated 50,000 to 60,000 patients undergo hematopoietic stem cell transplantation (HSCT) worldwide annually, of which 15.7% are admitted to the intensive care unit (ICU). The most common reason for ICU admission is respiratory failure and almost all develop single or multiorgan failure. Most HSCT recipients admitted to ICU receive invasive mechanical ventilation (MV). The overall short-term mortality rate of HSCT recipients admitted to ICU is 65%, and 86.4% for those receiving MV. Patient outcome has improved over time. Poor prognostic indicators include advanced age, poor functional status, active disease at transplant, allogeneic transplant, the severity of acute illness, and the development of multiorgan failure. ICU resource limitations often lead to triage decisions for admission. For HSCT recipients, the authors recommend (1) ICU admission for full support during their pre-engraftment period and when there is no evidence of disease recurrence; (2) no ICU admission for patients who refuse it and those who are bedridden with disease recurrence and without treatment options except palliation; (3) a trial ICU admission for patients with unknown status of disease recurrence with available treatment options.

  1. Immunosuppressive T-cell antibody induction for heart transplant recipients

    Penninga, Luit; Møller, Christian H; Gustafsson, Finn

    2013-01-01

    Heart transplantation has become a valuable and well-accepted treatment option for end-stage heart failure. Rejection of the transplanted heart by the recipient's body is a risk to the success of the procedure, and life-long immunosuppression is necessary to avoid this. Clear evidence is required...... to identify the best, safest and most effective immunosuppressive treatment strategy for heart transplant recipients. To date, there is no consensus on the use of immunosuppressive antibodies against T-cells for induction after heart transplantation....

  2. Imaging of complications from hematopoietic stem cell transplant

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT

  3. Depression and anxiety following hematopoietic stem cell transplantation

    Kuba, K; Esser, P; Mehnert, A

    2017-01-01

    In this prospective multicenter study, we investigated the course of depression and anxiety during hematopoietic stem cell transplantation (HSCT) until 5 years after transplantation adjusting for medical information. Patients were consulted before HSCT (n=239), at 3 months (n=150), 12 months (n=102...

  4. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  5. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy

    Dong, Huajiang; Li, Gang; Shang, Chongzhi; Yin, Huijuan; Luo, Yuechen; Meng, Huipeng; Li, Xiaohong; Wang, Yali; Lin, Ling; Zhao, Mingliang

    2018-01-01

    This study reports a case of a 4-year-old boy patient with abnormalities of muscle tone, movement and motor skills, as well as unstable gait leading to frequent falls. The results of the electroencephalogram (EEG) indicate moderately abnormal EEG, accompanied by irregular seizures. Based on these clinical characteristics, the patient was diagnosed with cerebral palsy (CP) in our hospital. In this study, the patient was treated with umbilical cord mesenchymal stem cell (UC-MSC) transplantation therapy. This patient received UC-MSC transplantation 3 times (5.3*107) in total. After three successive cell transplantations, the patient recovered well and showed obvious improvements in EEG and limb strength, motor function, and language expression. However, the improvement in intelligence quotient (IQ) was less obvious. These results indicate that UC-MSC transplantation is a promising treatment for cerebral palsy. PMID:29636880

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  7. ES-cell derived hematopoietic cells induce transplantation tolerance.

    Sabrina Bonde

    Full Text Available BACKGROUND: Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs. Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we derived CD45(+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts. CONCLUSIONS: Our data show, for the first time, the efficacy of ES-derived CD45(+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.

  8. 76 FR 11491 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    2011-03-02

    ... transplantation, Program priorities, research priorities, and the scope and design of the Stem Cell Therapeutic... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on Blood Stem Cell Transplantation. The Advisory Council on Blood Stem Cell Transplantation was...

  9. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: a retrospective, multicenter study of the EBMT

    Koenecke, C; Hertenstein, B; Schetelig, J

    2010-01-01

    To analyze the outcome of solid organ transplantation (SOT) in patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT), a questionnaire survey was carried out within 107 European Group of Blood and Marrow Transplantation centers. This study covered HSCT between 1984...... for underlying malignant diseases was 4% at 5 years (95% CI, 0% to 12%). In summary, this study shows that selected patients receiving SOT after HSCT have a remarkably good overall and organ survival. These data indicate that SOT should be considered in selected patients with single organ failure after HSCT....

  10. Osteosarcoma target therapy with stem cell transplant: A case review

    Fawzy, A.

    2005-01-01

    Full text: Radioisotopes with medium-energy beta emission and half life of a few days are attractive option for systemic delivery of targeted irradiation. Samarium-153 ethylene diamine tetra-ethylene phosphonale (153Sm-EDTMP), a bone-seeking radiopharmaceutical, provides therapeutic irradiation to osteoblastic osseous lesion. The usual dose of Sm-153 in metastatic disease is 1mCi/Kg (37MBq/Kg) and the dose limiting toxicity is thrombocytopenia. As local radiotherapy has only a limited therapeutic role in the treatment of osteosarcoma, and some types of the tumour portray an unpredictable response to chemotherapy. High dose Sm-153 (30mCi/Kg) was proposed for the target management of recurrent osteosarcoma, this was followed by stem cell transplant (peripheral-blood progenitor, PBPCs). A female child, 10 years old, with polyostotic osteosarcoma with local recurrence in the right hipbone was chosen for therapy. She had left knee prosthesis, right lower limb dis-articulation, and was given chemotherapy in multiple regions. She was subjected to MDP bone scan showing active uptake in an expanding bone lesion in the right hip bone, and was also subjected to MIBI scan, which showed negative uptake. She received 30mCi/Kg Sm-153 (660mCi in total dose), with no major events occurring in the post-injection period. After 10 days the patient went into pancytopenia, which necessitated haematological support. By day 14, there was minimal radiation in the whole body image and the child received her bone marrow transplant. There was marked improvement in the tumour size after 6 weeks of therapy, with improvement in the alkaline phosphatase level (from 1350Iu, before treatment to 350 post treatment). This was confirmed by serial MDP bone scan. High dose Sm-153 with stem cell transplant is considered view a promising method in the management of osteosarcoma. (author)

  11. Transplantation Tolerance Induction: Cell Therapies and their Mechanisms

    Joseph R Scalea

    2016-03-01

    Full Text Available Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as possible routes to tolerance induction, in the absence of donor derived stem cells. Early data with each of these cell types have been encouraging. However, the induction regimen capable of achieving consistent tolerance, whilst avoiding unwanted sided effects, and which is scalable to the human patient, has yet to be identified. Here we present the status of investigations of various tolerogenic cell types and the mechanistic rationale for their use in in tolerance induction protocols.

  12. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  13. Establishing an autologous versus allogeneic hematopoietic cell transplant program in nations with emerging economies.

    Chaudhri, Naeem A; Aljurf, Mahmoud; Almohareb, Fahad I; Alzahrani, Hazzaa A; Bashir, Qaiser; Savani, Bipin; Gupta, Vikas; Hashmi, Shahrukh K

    2017-12-01

    More than 70,000 hematopoietic cell transplants are currently performed each year, and these continue to increase every year. However, there is a significant variation in the number of absolute transplants and transplant rates between centers, countries, and global regions. The prospect for emerging countries to develop a hematopoietic cell transplantation (HCT) program, as well as to decide on whether autologous HCT (auto-HCT) or allogeneic HCT (allo-HCT) should be established to start with, relies heavily on factors that can explain differences between these two procedures. Major factors that will influence a decision about establishing the type of HCT program are macroeconomic factors such as organization of the healthcare network, available resources and infrastructure. Prevalence of specific diseases in the region as well genetic background of donors and recipients will also influence the mandate or priority of the HCT in the national healthcare plan to explain some of the country-specific differences. Furthermore, microeconomic factors play a role, such as center-specific experience in treating various disorders requiring hematopoietic stem cell transplantation, along with accreditation status and patient volume. The objective of the transplant procedure was to improve the survival and quality of life of patients. The regional difference that one notices in emerging countries about the higher number of allo-HCT compared with auto-HCT procedures performed is primarily based on suboptimal healthcare network in treating various malignant disorders that are the primary indication for auto-stem cell transplantation. In this context, nonmalignant disorders such as bone marrow failure syndromes, inherited genetic disorders and hemoglobinopathies have become the major indication for stem cell transplantation. Better understanding of these factors will assist in establishing new transplant centers in the emerging countries to achieve their specific objectives and

  14. Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation.

    Yang Yang

    Full Text Available Bone marrow mesenchymal stem cells (BMMSCs have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control, isogeneically transplanted rats (BN-BN and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg cells were assessed at each time point.Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF-α, and interferon (IFN-γ while upregulating IL-10 and transforming growth factor (TGF-β expression and increasing Treg levels.BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.

  15. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury

    Katja M. Piltti

    2017-06-01

    Full Text Available Multipotent human central nervous system-derived neural stem cells transplanted at doses ranging from 10,000 (low to 500,000 (very high cells differentiated predominantly into the oligodendroglial lineage. However, while the number of engrafted cells increased linearly in relationship to increasing dose, the proportion of oligodendrocytic cells declined. Increasing dose resulted in a plateau of engraftment, enhanced neuronal differentiation, and increased distal migration caudal to the transplantation sites. Dose had no effect on terminal sensory recovery or open-field locomotor scores. However, total human cell number and decreased oligodendroglial proportion were correlated with hindlimb girdle coupling errors. Conversely, greater oligodendroglial proportion was correlated with increased Ab step pattern, decreased swing speed, and increased paw intensity, consistent with improved recovery. These data suggest that transplant dose, and/or target niche parameters can regulate donor cell engraftment, differentiation/maturation, and lineage-specific migration profiles.

  16. Strategies to improve outcome after islet transplantation using the GLP-1 receptor agonist, extendin-4

    Sharma, Amit

    2007-01-01

    Transplantation of pancreatic islets into the liver via the portal vein has emerged as a treatment option for patients with type I diabetes mellitus. However, loss of functional beta cell mass during isolation and following implantation is a major obstacle in obtaining good long-term results. Exendin-4, a glucagonlike peptide-1 (GLP-1) receptor agonist, improves glucose homeostasis in patients with diabetes. It also has anti-apoptotic and beta cell proliferative properties t...

  17. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    Halter, Joerg P.; Schuepbach, W. Michael M.; Mandel, Hanna; Casali, Carlo; Orchard, Kim; Collin, Matthew; Valcarcel, David; Rovelli, Attilio; Filosto, Massimiliano; Dotti, Maria T.; Marotta, Giuseppe; Pintos, Guillem; Barba, Pere; Accarino, Anna; Ferra, Christelle; Illa, Isabel; Beguin, Yves; Bakker, Jaap A.; Boelens, Jaap J.; de Coo, Irenaeus F. M.; Fay, Keith; Sue, Carolyn M.; Nachbaur, David; Zoller, Heinz; Sobreira, Claudia; Simoes, Belinda Pinto; Hammans, Simon R.; Savage, David; Marti, Ramon; Chinnery, Patrick F.; Elhasid, Ronit; Gratwohl, Alois; Hirano, Michio

    2015-01-01

    Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known

  18. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges

    Bruni, Anthony; Gala-Lopez, Boris; Pepper, Andrew R; Abualhassan, Nasser S; Shapiro, AM James

    2014-01-01

    Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. PMID:25018643

  19. Transplantation of bone marrow cells into lethally irradiated mice

    Viktora, L.; Hermanova, E.

    1978-01-01

    Morphological changes were studied of megakaryocytes in the bone marrow and spleen of lethally irradiated mice (0.2 C/kg) after transplantation of living bone marrow cells. It was observed that functional trombopoietic megakaryocytes occur from day 15 after transplantation and that functional active megakaryocytes predominate in bone marrow and spleen from day 20. In addition, other types of cells, primarily granulocytes, were detected in some megakaryocytes. (author)

  20. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation

    Thomson, Angus W.; Zahorchak, Alan F.; Ezzelarab, Mohamed B.; Butterfield, Lisa H.; Lakkis, Fadi G.; Metes, Diana M.

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering...

  1. The role of endothelial cells on islet function and revascularization after islet transplantation.

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-02

    Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.

  2. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation.

    Uhlin, Michael; Wikell, Helena; Sundin, Mikael; Blennow, Ola; Maeurer, Markus; Ringden, Olle; Winiarski, Jacek; Ljungman, Per; Remberger, Mats; Mattsson, Jonas

    2014-02-01

    Allogeneic hematopoietic stem cell transplantation is a successful treatment for hematologic malignancies and a variety of genetic and metabolic disorders. In the period following stem cell transplantation, the immune-compromised milieu allows opportunistic pathogens to thrive. Epstein-Barr virus-associated post-transplant lymphoproliferative disease can be a life-threatening complication for transplanted patients because of suppressed T-cell-mediated immunity. We analyzed possible risk factors associated with post-transplant lymphoproliferative disease in a cohort of over 1,000 patients. The incidence of post-transplant lymphoproliferative disease was 4%. Significant risk factors identified by multivariate analysis were: human leukocyte antigen-mismatch (PEpstein-Barr virus mismatch recipient-/donor+ (Pdisease grade II to IV (P=0.006), pre-transplant splenectomy (P=0.008) and infusion of mesenchymal stromal cells (P=0.015). The risk of post-transplant lymphoproliferative disease has increased in more recent years, from less than 2% before 1998 to more than 6% after 2011. Additionally, we show that long-term survival of patients with post-transplant lymphoproliferative disease is poor despite initial successful treatment. The 3-year survival rate among the 40 patients with post-transplant lymphoproliferative disease was 20% as opposed to 62% among patients without post-transplant lymphoproliferative disease (Pdisease after transplantation in need of pre-emptive measures.

  3. Evaluation of Quality of Life and Care Needs of Turkish Patients Undergoing Hematopoietic Stem Cell Transplantation

    Neslisah Yasar

    2016-01-01

    Full Text Available This descriptive study explored the quality of life and care needs of Turkish patients who underwent hematopoietic stem cell transplantation. The study sample consisted of 100 hematopoietic stem cell transplant patients. Their quality of life was assessed using Functional Assessment of Cancer Therapy-Bone Marrow Transplant Scale. The mean patient age was 44.99 ± 13.92 years. Changes in sexual functions, loss of hair, loss of taste, loss of appetite, and sleep disturbances were the most common symptoms. The quality of life of transplant patients was moderately affected; the functional well-being and social/family well-being subscales were the most adversely and least negatively affected (12.13 ± 6.88 dimensions, respectively. Being female, being between 50 and 59 years of age, being single, having a chronic disease, and having a history of hospitalization were associated with lower quality of life scores. Interventions to improve functional status, physical well-being, and emotional status of patients during the transplantation process may help patients cope with treatment-related impairments more effectively. Frequent screening and management of patient symptoms in order to help patients adapt to life following allogeneic hematopoietic stem cell transplantation are crucial for meeting care needs and developing strategies to improve their quality of life.

  4. Twitter Use in the Hematopoietic Cell Transplantation Community.

    Patel, Sagar S; Majhail, Navneet S

    2018-02-01

    Social media has revolutionized the access and exchange of information in healthcare. The microblogging platform Twitter has been used by blood and marrow transplant physicians over the last several years with increasing enthusiasm. We review the adoption of Twitter in the transplant community and its implications on clinical care, education, and research. Twitter allows instantaneous access to the latest research publications, developments at national and international meetings, networking with colleagues, participation in advocacy, and promoting available clinical trials. Additionally, Twitter serves as a gateway for resources dedicated to education and support for patients undergoing transplantation. We demonstrate the utilization and various applications in using Twitter among hematopoietic cell transplant healthcare professionals, patients, and other affiliated stakeholders. Professionalism concerns with clinician use of such social media platforms, however, also exist. Overall, Twitter has enhanced and increased the opportunities for engagement in the transplant community.

  5. Reduced intensity haplo plus single cord transplant compared to double cord transplant: improved engraftment and graft-versus-host disease-free, relapse-free survival

    van Besien, Koen; Hari, Parameswaran; Zhang, Mei-Jie; Liu, Hong-Tao; Stock, Wendy; Godley, Lucy; Odenike, Olatoyosi; Larson, Richard; Bishop, Michael; Wickrema, Amittha; Gergis, Usama; Mayer, Sebastian; Shore, Tsiporah; Tsai, Stephanie; Rhodes, Joanna; Cushing, Melissa M.; Korman, Sandra; Artz, Andrew

    2016-01-01

    Umbilical cord blood stem cell transplants are commonly used in adults lacking HLA-identical donors. Delays in hematopoietic recovery contribute to mortality and morbidity. To hasten recovery, we used co-infusion of progenitor cells from a partially matched related donor and from an umbilical cord blood graft (haplo-cord transplant). Here we compared the outcomes of haplo-cord and double-cord transplants. A total of 97 adults underwent reduced intensity conditioning followed by haplo-cord transplant and 193 patients received reduced intensity conditioning followed by double umbilical cord blood transplantation. Patients in the haplo-cord group were more often from minority groups and had more advanced malignancy. Haplo-cord recipients received fludarabine-melphalan-anti-thymocyte globulin. Double umbilical cord blood recipients received fludarabine-cyclophosphamide and low-dose total body irradiation. In a multivariate analysis, haplo-cord had faster neutrophil (HR=1.42, P=0.007) and platelet (HR=2.54, Pdisease (HR=0.26, Pdisease (HR=0.06, Pdisease-free, relapse-free survival was superior with haplo-cord (HR 0.63, P=0.002) but not overall survival (HR=0.97, P=0.85). Haplo-cord transplantation using fludarabine-melphalan-thymoglobulin conditioning hastens hematopoietic recovery with a lower risk of relapse relative to double umbilical cord blood transplantation using the commonly used fludarabine-cyclophosphamide-low-dose total body irradiation conditioning. Graft-versus-host disease-free and relapse-free survival is significantly improved. Haplo-cord is a readily available graft source that improves outcomes and access to transplant for those lacking HLA-matched donors. Trials registered at clinicaltrials.gov identifiers 00943800 and 01810588. PMID:26869630

  6. Hematopoietic stem cell transplantation for indolent lymphomas

    Izutsu, Koji

    2008-01-01

    Described are the review of the transplantation in the title (SCT), and the possible impact on its application and outcome of radio-immunotherapy (RIT) by new antibody drugs like ibritumomab tiuxetan (Ibr) and tositumomab (Tos), and of chemotherapy by purine analogs. Various regimens for the combination of auto-SCT, allo-SCT, chemotherapy and total body irradiation (TBI) have been used to treat the recurrent and progressive indolent lymphoma including follicular lymphoma (FL); however, their outcomes are still controversial. Introduction of new drugs like rituximab (Rit), Ibr and Tos has made it possible to extend the options of the regimen. For instance, in auto-SCT in FL, a high dose Rit therapy is used for in vivo purging to reduce tumor cell contamination of the graft instead of the exhausting, high-cost pretreatment for the in vitro purging with cyclophosphamide (CY)/TBI hitherto. In addition, RIT by Tos at the absorbed dose of 20-27 Gy in the critical organs with CY/VP16 combination is reportedly superior to CY/VP16/TBI. In allo-SCT where recurrence frequency is known low despite high mortality due to various complications, many regimens involving fludarabine/TBI have been also reported. Thus there has been neither clear standard for SCT in the lymphoma nor yet its prognosis after the therapy with new drugs described and the accumulation of their findings hereafter is important for future SCT application. (R.T.)

  7. Total body irradiation in hematopoietic stem cell transplantation

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  8. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation

    Andermann, Tessa M.; Rezvani, Andrew; Bhatt, Ami S.

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to under-stand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota’s contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  9. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  10. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  11. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington's animal model.

    Mu, S; Han, L; Zhou, G; Mo, C; Duan, J; He, Z; Wang, Z; Ren, L; Zhang, J

    2016-10-01

    The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD). In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum. At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats. The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD. © 2016 British Neuropathological Society.

  12. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  13. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  15. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. © 2014 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  16. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  17. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  18. Hickman catheter embolism in a child during stem cell transplantation

    Ahmed, P.; Khan, B.; Ullah, K.; Ahmed, W.; Hussain, I.; Khan, A.A.; Anwar, M.

    2003-01-01

    The majority of stem cell recipients rely on indwelling central venous catheters situated in superior vena cava or right atrium. Semi-permanent tunneled silicone rubber Hickman catheters are widely used to provide durable central venous access for patients undergoing stem cell transplantation. A case of 5 years old child with diagnosis of severe aplastic anemia is reported. The patient received peripheral blood stem cells (PBSC) and had successful engraftment with complete hematological recovery. He had Hickman catheter embolism in the pulmonary circulation following unsuccessful attempt to remove the line. The catherter was successfully removed by midsternostomy operation. The child is normal with sustained remission on day +218 post stem cell transplant. (author)

  19. [Role of stem cell transplantation in treatment of primary cutaneous T‑cell lymphoma].

    Stranzenbach, R; Theurich, S; Schlaak, M

    2017-09-01

    Within the heterogeneous group of cutaneous T‑cell lymphomas (CTCL) the therapeutic options for advanced and progressive forms are particularly limited. The therapeutic value of hematopoietic stem cell transplantation in CTCL was analyzed. A literature search using the keywords "hematopoietic stem cell transplantation" and "cutaneous T‑cell lymphoma" was performed in PubMed. Studies between 1990 and 2017 were taken into account. The studies identified were analyzed for relevance and being up to date. After reviewing the currently available literature no prospective randomized studies were found. Wu et al. showed a superiority of allogeneic transplantation in a comparison of autologous and allogeneic stem cell transplantation for cutaneous lymphoma. The graft-versus-lymphoma effect plays a significant role in a prolonged progression-free survival after allogeneic transplantation. By using a non-myeloablative conditioning regimen, stem cell transplantation can also be an option for elderly patients. The most extensive long-term data after allogeneic stem cell transplantation were reported by Duarte et al. in 2014. Autologous stem cell transplantation does not currently represent a therapeutic option, whereas allogeneic stem cell transplantation for advanced cutaneous T‑cell lymphoma, using a non-myeloablative conditioning scheme, does represent a therapeutic option. However, there is no consensus on the appropriate patients and the right timing. Morbidity and mortality of complications should be taken into account. Thus, this procedure is currently subject to an individual case decision.

  20. T cell reconstitution in allogeneic haematopoietic stem cell transplantation

    Kielsen, K; Jordan, K K; Uhlving, H H

    2015-01-01

    Infections and acute graft-versus-host disease (aGVHD) are major causes of treatment-related mortality and morbidity following allogeneic haematopoietic stem cell transplantation (HSCT). Both complications depend on reconstitution of the T-lymphocyte population based on donor T cells. Although...... it is well established that Interleukin-7 (IL-7) is a cytokine essential for de novo T cell development in the thymus and homoeostatic peripheral expansion of T cells, associations between circulating levels of IL-7 and T cell reconstitution following HSCT have not been investigated previously. We...... in patients treated with anti-thymocyte globulin (ATG) compared with those not treated with ATG (P = 0.0079). IL-7 levels at day +7 were negatively associated with T cell counts at day +30 to +60 (at day +60: CD3(+) : β = -10.6 × 10(6) cells/l, P = 0.0030; CD8(+) : β = -8.4 × 10(6) cells/l, P = 0.061; CD4...

  1. Allogeneic stem cell transplantation for thalassemia major in India

    Vikram Mathews

    2017-12-01

    Full Text Available Allogeneic stem cell transplantation (allo-SCT is the only currently available curative treatment for thalassemia major. Since it was first done in 1981, several thousand patients have benefited from it and it is now possible to offer this treatment in different parts of the world with good results. With better risk stratification and supportive care, the results of allo-SCT are now very good even in high risk patients who have significant iron overload related organ dysfunction. The improvements have mainly been in the conditioning strategies with less toxic myeloablation and management of the complications of SCT. However, several challenges remain. Transplant related complications still cause significant morbidity and mortality. There is data to show that the results of transplantation as best if done in well transfused and chelated patients <7 years of age. As only a third of the patients will have a matched related donor, there is need for investigating SCT with alternative donors. Experience with SCT for thalassemia major from matched unrelated donors or haplo-identical donors is still limited but needs further exploration. Adequate management needs to be provided post-SCT for all pre-existing complications particularly iron chelation to prevent further organ dysfunction. Systematic follow-up is needed to measure long term outcomes. The biggest challenges in India are the cost of this treatment and access to centres capable of providing this treatment. With greater support from the government, health insurance and philanthropic programs, there has been a rapid increase in the number of SCTs for thalassemia major in India. The number centres providing this treatment are also increasing making this curative treatment more widely available in India.

  2. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  3. Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration

    Stella M. Matthes

    2013-01-01

    Full Text Available Peripheral nerve injury is a common and devastating complication after trauma and can cause irreversible impairment or even complete functional loss of the affected limb. While peripheral nerve repair results in some axonal regeneration and functional recovery, the clinical outcome is not optimal and research continues to optimize functional recovery after nerve repair. Cell transplantation approaches are being used experimentally to enhance regeneration. Intravenous infusion of mesenchymal stromal cells (MSCs into spinal cord injury and stroke was shown to improve functional outcome. However, the repair potential of intravenously transplanted MSCs in peripheral nerve injury has not been addressed yet. Here we describe the impact of intravenously infused MSCs on functional outcome in a peripheral nerve injury model. Rat sciatic nerves were transected followed, by intravenous MSCs transplantation. Footprint analysis was carried out and 21 days after transplantation, the nerves were removed for histology. Labelled MSCs were found in the sciatic nerve lesion site after intravenous injection and regeneration was improved. Intravenously infused MSCs after acute peripheral nerve target the lesion site and survive within the nerve and the MSC treated group showed greater functional improvement. The results of study suggest that nerve repair with cell transplantation could lead to greater functional outcome.

  4. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  5. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  6. Human umbilical cord blood mononuclear cell transplantation for delayed encephalopathy after carbon monoxide intoxication

    Gong D

    2013-08-01

    Full Text Available Dianrong Gong,1 Haiyan Yu,1 Weihua Wang,2 Haixin Yang,1 Fabin Han1,21Department of Neurology, 2Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital, The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of ChinaAbstract: Stem cell transplantation is one of the potential treatments for neurological disorders. Since human umbilical cord stem cells have been shown to provide neuroprotection and promote neural regeneration, we have attempted to transplant the human umbilical cord blood mononuclear cells (hUCB-MNCs to treat patients with delayed encephalopathy after carbon monoxide intoxication (DEACOI. The hUCB-MNCs were isolated from fresh umbilical cord blood and were given to patients subarachnoidally. Physical examinations, mini-mental state examination scores, and computed tomography scans were used to evaluate the improvement of symptoms, signs, and pathological changes of the patient's brain before and after hUCB-MNC transplantation. A total of 12 patients with DEACOI were treated with hUCB-MNCs in this study. We found that most of the patients have shown significant improvements in movement, behavior, and cognitive function, and improved brain images in 1–4 months from the first transplantation of hUCB-MNCs. None of these patients have been observed to have any severe adverse effects. Our study suggests that the hUCB-MNC transplantation may be a safe and effective treatment for DEACOI. Further studies and clinical trials with more cases, using more systematic scoring methods, are needed to evaluate brain structural and functional improvements in patients with DEACOI after hUCB-MNC therapy.Keywords: human umbilical cord blood mononuclear cells, transplantation, delayed encephalopathy after carbon monoxide intoxication, MMSE

  7. Endovascular transplantation of stem cells to the injured rat CNS

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  8. Endovascular transplantation of stem cells to the injured rat CNS

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  9. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  10. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  11. Facial Reconstruction by Biosurgery: Cell Transplantation Versus Cell Homing

    Stosich, Michael S.; Moioli, Eduardo K.; Lee, Chang Hun; Fu, Susan Y.; Bastian, Barbara; Eisig, Sidney B.; Zemnick, Candice; Ascherman, Jeffrey; Wu, June; Rohde, Christine; Ahn, Jeffrey

    2010-01-01

    The face distinguishes one human being from another. When the face is disfigured because of trauma, tumor removal, congenital anomalies, or chronic diseases, the patient has a strong desire for functional and esthetic restoration. Current practice of facial reconstruction using autologous grafts, synthetic fillers, and prostheses is frequently below the surgeon's and patient's expectations. Facial reconstruction is yet to take advantage of recent advances in seemingly unrelated fields of stem cell biology, chemical engineering, biomaterials, and tissue engineering. “Biosurgery,” a new concept that we propose, will incorporate novel principles and strategies of bioactive cues, biopolymers, and/or cells to restore facial defects. Small facial defects can likely be reconstructed by cell homing and without cell transplantation. A critical advantage of cell homing is that agilely recruited endogenous cells have the potential to harness the host's innate capacity for regeneration, thus accelerating the rate of regulatory and commercialization processes for product development. Large facial defects, however, may not be restorable without cell delivery per our understanding at this time. New breakthrough in biosurgery will likely originate from integrated strategies of cell biology, cytokine biology, chemical engineering, biomaterials, and tissue engineering. Regardless of cell homing or cell delivery approaches, biosurgery not only will minimize surgical trauma and repetitive procedures, but also produce long-lasting results. At the same time, caution must be exercised against the development of products that lack scientific basis or dogmatic combination of cells, biomaterials, and biomolecules. Together, scientifically derived biosurgery will undoubtedly develop into new technologies that offer increasingly natural reconstruction and/or augmentation of the face. PMID:19891541

  12. Improvement of adynamic bone disease after renal transplantation.

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  13. [Improving treatment adherence in kidney transplantation: a major challenge].

    Kessler, Michèle

    2014-06-01

    The kidney transplant recipient is faced not only with the perspective of taking immunosuppressive drugs lifelong, but also the possibility of other long-term treatments prescribed for preexisting conditions, complications, or side effects. Proper management, and most importantly patient adherence, can become a complex challenge. Here we recall current definitions and describe methods for measuring treatment adherence, followed by a discussion on the prevalence of non-adherence in kidney transplant recipients, its effect on graft survival, and factors predictive of non-adherence. Ways of improving adherence are examined, leading to the conviction that helping patients take their medications regularly would probably have a greater impact on graft survival than marketing a new immunosuppressive agent. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  14. Clinical trials for stem cell transplantation: when are they needed?

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  15. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  16. Hematopoietic stem cell transplantation monitoring in childhood. Hematological diseases in Serbia: STR-PCR techniques

    Krstić Aleksandra D.

    2007-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a very successful method of treatment for children with different aquired or inborn diseases. The main goal of post-transplantation chimerism monitoring in HSCT is to predict negative events (such as disease relapse and graft rejection, in order to intervene with appropriate therapy and improve the probability of long-term DFS (disease free survival. In this context, by quantifying the relative amounts of donor and recipient cells present in the peripheral blood sample, it can be determined if engraftment has taken place at all, or if full or mixed chimerism exists. In a group of patients who underwent hematopoietic stem cell transplantation at the Mother and Child Health Care Institute, we decided to use standard human identfication tests based on multiplex PCR analyses of short tandem repeats (STRs, as they are highly informative, sensitive, and fast and therefore represent an optimal methodological approach to engraftment analysis.

  17. The effects of renal transplantation on circulating dendritic cells

    D.A. Hesselink (Dennis); L.M.B. Vaessen (Leonard); W.C.J. Hop (Wim); W. Schoordijk-Verschoor (Wenda); J.N.M. IJzermans (Jan); C.C. Baan (Carla); W. Weimar (Willem)

    2005-01-01

    textabstractThe effects of immunosuppressive agents on T cell function have been well characterized but virtually nothing is known about the effects of renal transplantation on human dendritic cells (DCs). With the use of flow cytometry, we studied the kinetics of myeloid and plasmacytoid DCs in

  18. Transplantation of hematopoietic and lymphoid cells in mice

    Bortin, M.M.; Rimm, A.A.; Rose, W.C.; Truitt, R.L.; Saltzstein, E.C.

    1976-01-01

    CBA mice were exposed to a supralethal dose of whole body x-irradiation and received transplants of graded, small doses of bone marrow, fetal liver, or fetal liver plus fetal thymus cells obtained from H-2 matched C58 or H-2 mismatched A donors. Survival at 20 days was used to evaluate the ability of the transplants to restore hematopoiesis following the acute radiation injury. In the higher dose ranges of 6 x 10 7 and 1.2 x 10 8 cells/kg body weight, the fetal cells were as effective as adult bone marrow in both the matched and mismatched strain combinations. Survival at 100 days was used to evaluate the severity of chronic graft-versus-host disease produced by each of the transplants. In the higher dose ranges, cells from fetal donors promoted higher long-term survival rates than did comparable doses of bone marrow cells in both the matched and mismatched strain combinations. The most important finding was that cells from mismatched unrelated fetal donors (using a cell dose per kilogram body weight comparable to the number of fetal liver and thymus cells which would be obtainable from one human fetus at 14 weeks of embryonation) promoted higher long-term survival rates than did bone marrow transplants from matched unrelated donors

  19. An update on ABO incompatible hematopoietic progenitor cell transplantation.

    Staley, Elizabeth M; Schwartz, Joseph; Pham, Huy P

    2016-06-01

    Hematopoietic progenitor cell (HPC) transplantation has long been established as the optimal treatment for many hematologic malignancies. In the setting of allogenic HLA matched HPC transplantation, greater than 50% of unrelated donors and 30% of related donors demonstrate some degree of ABO incompatibility (ABOi), which is classified in one of three ways: major, minor, or bidirectional. Major ABOi refers to the presence of recipient isoagglutinins against the donor's A and/or B antigen. Minor ABOi occurs when the HPC product contains the isoagglutinins targeting the recipient's A and/or B antigen. Bidirectional refers to the presence of both major and minor ABOi. Major adverse events associated with ABOi HPC transplantation includes acute and delayed hemolysis, pure red cell aplasia, and delayed engraftment. ABOi HPC transplantation poses a unique challenge to the clinical transplantation unit, the HPC processing lab, and the transfusion medicine service. Therefore, it is essential that these services actively communicate with one another to ensure patient safety. This review will attempt to globally address the challenges related to ABOi HPC transplantation, with an increased focus on aspects related to the laboratory and transfusion medicine services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Successful autologous Stem Cell transplantation in a woman with Severe Systemic Sclerosis, refractory to immunosuppressive therapy

    Reyes, Elsa; Arbelaez, Ana M; Avila P, Luz M; Benjamin O, Juan Manuel

    2009-01-01

    The following case presents a 49 year-old patient with diffuse SSc and poor evolution given by rapidly progressive of severe skin and lung involvement, who had undergone autologous stem cell transplantation in December 2008. Sustained improvement of skin thickening and of major organ involvement was achieved at six months.

  1. Orthopaedic management of Hurler's disease after hematopoietic stem cell transplantation : A systematic review

    van der Linden, Marleen H.; Kruyt, Moyo C.; Sakkers, Ralph J. B.; de Koning, Tom J.; Oner, F. Cumhur; Castelein, Rene M.

    The introduction of hematopoietic stem cell transplantation (HSCT) has significantly improved the life-span of Hurler patients (mucopolysaccharidosis type I-H, MPS I-H). Yet, the musculoskeletal manifestations seem largely unresponsive to HSCT. In order to facilitate evidence based management, the

  2. Pericarditis mediated by respiratory syncytial virus in a hematopoietic stem cell transplant patient.

    Rubach, M P; Pavlisko, E N; Perfect, J R

    2013-08-01

    We describe a case of pericarditis and large pericardial effusion in a 63-year-old African-American man undergoing autologous hematopoietic stem cell transplant for multiple myeloma. Pericardial tissue biopsy demonstrated fibrinous pericarditis, and immunohistochemistry stains were positive for respiratory syncytial virus. The patient improved with oral ribavirin and intravenous immune globulin infusions. © 2013 John Wiley & Sons A/S.

  3. Beneficial Effect of the Nutritional Support in Children Who Underwent Hematopoietic Stem Cell Transplant.

    Koç, Nevra; Gündüz, Mehmet; Tavil, Betül; Azik, M Fatih; Coşkun, Zeynep; Yardımcı, Hülya; Uçkan, Duygu; Tunç, Bahattin

    2017-08-01

    The aim of this study was to evaluate nutritional status in children who underwent hematopoietic stem cell transplant compared with a healthy control group. A secondary aim was to utilize mid-upper arm circumference as a measure of nutritional status in these groups of children. Our study group included 40 children (18 girls, 22 boys) with mean age of 9.2 ± 4.6 years (range, 2-17 y) who underwent hematopoietic stem cell transplant. Our control group consisted of 20 healthy children (9 girls, 11 boys). The children were evaluated at admission to the hospital and followed regularly 3, 6, 9, and 12 months after discharge from the hospital. In the study group, 27 of 40 patients (67.5%) received nutritional support during hematopoietic stem cell transplant, with 15 patients (56%) receiving enteral nutrition, 6 (22%) receiving total parenteral nutrition, and 6 (22%) receiving enteral and total parenteral nutrition. Chronic malnutrition rate in the study group was 47.5% on admission to the hospital, with the control group having a rate of 20%. One year after transplant, the rate decreased to 20% in the study group and 5% in the control group. The mid-upper arm circumference was lower in children in the study group versus the control group at the beginning of the study (P groups at follow-up examinations (P > .05). During follow-up, all anthropometric measurements increased significantly in both groups. Monitoring nutritional status and initiating appropriate nutritional support improved the success of hematopoietic stem cell transplant and provided a more comfortable process during the transplant period. Furthermore, mid-upper arm circumference is a more sensitive, useful, and safer parameter that can be used to measure nutritional status of children who undergo hematopoietic stem cell transplant.

  4. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Research Methodology and Study Design Working Group Report.

    Shaw, Bronwen E; Hahn, Theresa; Martin, Paul J; Mitchell, Sandra A; Petersdorf, Effie W; Armstrong, Gregory T; Shelburne, Nonniekaye; Storer, Barry E; Bhatia, Smita

    2017-01-01

    The increasing numbers of hematopoietic cell transplantations (HCTs) performed each year, the changing demographics of HCT recipients, the introduction of new transplantation strategies, incremental improvement in survival, and the growing population of HCT survivors demand a comprehensive approach to examining the health and well-being of patients throughout life after HCT. This report summarizes strategies for the conduct of research on late effects after transplantation, including consideration of the study design and analytic approaches; methodologic challenges in handling complex phenotype data; an appreciation of the changing trends in the practice of transplantation; and the availability of biospecimens to support laboratory-based research. It is hoped that these concepts will promote continued research and facilitate the development of new approaches to address fundamental questions in transplantation outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Novel therapies and their integration into allogeneic stem cell transplant for chronic lymphocytic leukemia.

    Jaglowski, Samantha M; Byrd, John C

    2012-01-01

    Over the past decade, numerous advances have been made in elucidating the biology of and improving treatment for chronic lymphocytic leukemia (CLL). These studies have led to identification of select CLL patient groups that generally have short survival dating from time of treatment or initial disease relapse who benefit from more aggressive therapeutic interventions. Allogeneic transplantation represents the only potentially curative option for CLL, but fully ablative regimens applied in the past have been associated with significant morbidity and mortality. Reduced-intensity preparative regimens has made application of allogeneic transplant to CLL patients much more feasible and increased the number of patients proceeding to this modality. Arising from this has been establishment of guidelines where allogeneic stem cell transplantation should be considered in CLL. Introduction of new targeted therapies with less morbidity, which can produce durable remissions has the potential to redefine where transplantation is initiated in CLL. This review briefly summarizes the field of allogeneic stem cell transplant in CLL and the interface of new therapeutics with this modality. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

    Nijagal, Amar; Wegorzewska, Marta; Jarvis, Erin; Le, Tom; Tang, Qizhi; MacKenzie, Tippi C.

    2011-01-01

    Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we h...

  7. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  8. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.

    Marcos Perez-Basterrechea

    Full Text Available Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.

  9. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.

    Perez-Basterrechea, Marcos; Esteban, Manuel Martinez; Alvarez-Viejo, Maria; Fontanil, Tania; Cal, Santiago; Sanchez Pitiot, Marta; Otero, Jesus; Obaya, Alvaro Jesus

    2017-01-01

    Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.

  10. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety

    Xiao Fan

    2017-01-01

    RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score (odds ratio (OR = 3.43, 95% confidence interval (CI: 0.01 – 6.86, P = 0.05, lower limb pinprick score (OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02, ASI grading rate (relative risk (RR = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003, and notably reduced residual urine volume (OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02. However, stem cell transplantation did not significantly improve motor score (OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08 or activities of daily living score (OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45. Furthermore, stem cell transplantation caused a high rate of mild adverse effects (RR = 14.49, 95%CI: 5.34 – 34.08, P < 0.00001; however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.

  11. Machine perfusion for improving outcomes following renal transplant: current perspectives

    Cannon RM

    2016-03-01

    Full Text Available Robert M Cannon,1 Glen A Franklin1,2 1The Hiram C Polk Jr MD Department of Surgery, University of Louisville, 2Kentucky Organ Donor Affiliates, Louisville, KY, USAAbstract: There is a disparity between the number of kidneys available for transplantation and the number of patients awaiting an organ while on dialysis. The current kidney waiting list in the US contains more than 100,000 patients. This need has led to the inclusion of older donors with worsening renal function, as well as greater utilization of kidneys from non-heartbeating (donation after cardiac death donors. Coinciding with this trend has been a growing interest in technology to improve the function of these more marginal organs, the most important of which currently is machine perfusion (MP of donated kidneys after procurement. While this technology has no standard guidelines currently for comprehensive use, there are many studies that demonstrate higher organ yield and function after a period of MP. Particularly with the older donor and during donation after cardiac death cases, MP may offer some significant benefits. This manuscript reviews all of the current literature regarding MP and its role in renal transplantation. We will discuss both the experience in Europe and the US using machine perfusion for donated kidneys.Keywords: machine perfusion, renal transplantation, kidney pumping, renal failure, organ donation

  12. The role of interventional radiology and imaging in pancreatic islet cell transplantation

    Dixon, S.; Tapping, C.R.; Walker, J.N.; Bratby, M.; Anthony, S.; Boardman, P.; Phillips-Hughes, J.; Uberoi, R.

    2012-01-01

    Pancreatic islet cell transplantation (PICT) is a novel treatment for patients with insulin-dependent diabetes who have inadequate glycaemic control or hypoglycaemic unawareness, and who suffer from the microvascular/macrovascular complications of diabetes despite aggressive medical management. Islet transplantation primarily aims to improve the quality of life for type 1 diabetic patients by achieving insulin independence, preventing hypoglycaemic episodes, and reversing hypoglycaemic unawareness. The islet cells for transplantation are extracted and purified from the pancreas of brain-stem dead, heart-beating donors. They are infused into the recipient's portal vein, where they engraft into the liver to release insulin in order to restore euglycaemia. Initial strategies using surgical access to the portal vein have been superseded by percutaneous access using interventional radiology techniques, which are relatively straightforward to perform. It is important to be vigilant during the procedure in order to prevent major complications, such as haemorrhage, which can be potentially life-threatening. In this article we review the history of islet cell transplantation, present an illustrated review of our experience with islet cell transplantation by describing the role of imaging and interventional radiology, and discuss current research into imaging techniques for monitoring graft function.

  13. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells.

    Ishida, Takashi; Suzuki, Sachie; Lai, Chen-Yi; Yamazaki, Satoshi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Takeuchi, Yasuo; Higashihara, Masaaki; Nakauchi, Hiromitsu; Otsu, Makoto

    2017-04-01

    Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  15. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation.

    Thomson, Angus W; Zahorchak, Alan F; Ezzelarab, Mohamed B; Butterfield, Lisa H; Lakkis, Fadi G; Metes, Diana M

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients' dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.

  16. The anterior lens capsule used as support material in RPE cell-transplantation

    Nicolini, J; Kiilgaard, Jens Folke; Wiencke, A K

    2000-01-01

    To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells.......To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells....

  17. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Volkert A L Huurman

    2008-06-01

    Full Text Available Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular

  18. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  19. Tolerogenic Dendritic Cells in Solid Organ Transplantation: Where Do We Stand?

    Eros Marín

    2018-02-01

    Full Text Available Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs. Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.

  20. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  1. Knock-Out and Transgenic Strategies to Improve Neural Transplantation Therapy for Parkinson's Disease

    Isacson, Ole

    2001-01-01

    .... To enhance axonal growth leading to optimal functional recovery by neuronal transplants, we employed transgenic bcl-2 overexpressing donor cells and similar molecules influencing the growth of axons...

  2. Knock-out and Transgenic Strategies to Improve Neural Transplantation Therapy for Parkinson's Disease

    Isacson, Ole

    2000-01-01

    .... In our second objective of enhancing axonal growth leading to optimal functional recovery by neuronal transplants, we employed transgenic bcl-2 overexpressing donor cells and similar molecules...

  3. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  4. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland

    Nanduri, Lalitha S.Y.; Lombaert, Isabelle M.A.; Zwaag, Marianne van der; Faber, Hette; Brunsting, Jeanette F.; Os, Ronald P. van; Coppes, Robert P.

    2013-01-01

    Introduction: During radiotherapy salivary glands of head and neck cancer patients are unavoidably co-irradiated, potentially resulting in life-long impairment. Recently we showed that transplantation of salisphere-derived c-Kit expressing cells can functionally regenerate irradiated salivary glands. This study aims to select a more potent subpopulation of c-Kit + cells, co-expressing stem cell markers and to investigate whether long-term tissue homeostasis is restored after stem cell transplantation. Methods and results: Salisphere derived c-Kit + cells that co-expressed CD24 and/or CD49f markers, were intra-glandularly injected into 15 Gy irradiated submandibular glands of mice. Particularly, c-Kit + /CD24 + /CD49f + cell transplanted mice improved saliva production (54.59 ± 11.1%) versus the irradiated control group (21.5 ± 8.7%). Increase in expression of cells with differentiated duct cell markers like, cytokeratins (CK8, 18, 7 and 14) indicated functional recovery of this compartment. Moreover, ductal stem cell marker expression like c-Kit, CD133, CD24 and CD49f reappeared after transplantation indicating long-term functional maintenance potential of the gland. Furthermore, a normalization of vascularization as indicated by CD31 expression and reduction of fibrosis was observed, indicative of normalization of the microenvironment. Conclusions: Our results show that stem cell transplantation not only rescues hypo-salivation, but also restores tissue homeostasis of the irradiated gland, necessary for long-term maintenance of adult tissue

  5. Preimplantation HLA typing for stem cell transplantation treatment of hemoglobinopathies

    Anver Kuliev

    2014-09-01

    Full Text Available Preimplantation genetic diagnosis (PGD for HLA typing is steadily becoming an option for at risk couples with thalassemic children, requiring HLA matched bone marrow transplantation treatment. The paper presents the world’s largest PGD experience of 475 cases for over 2 dozens thalassemia mutations, resulting in birth of 132 unaffected children. A total of 146 cases were performed together with preimplantation HLA typing, resulting in detection and transfer of HLA matched unaffected embryos in 83 of them, yielding the birth of 16 HLA matched children, potential donors for their affected siblings. The presented experience of HLA matched stem cell transplantation for thalassemia, following PGD demonstrated a successful hematopoietic reconstitution both for younger and older patients. The data show that PGD is an efficient approach for HLA matched stem cell transplantation treatment for thalassemia.

  6. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in situ targeting of dendritic cells

    Morelli, Adrian E.; Thomson, Angus W.

    2014-01-01

    Purpose of review Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCreg) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCreg (donor or recipient) and their mode of action, in situ targeting of DCreg, and optimal therapeutic regimens to promote DCreg function. Recent findings Recent studies have defined protocols and mechanisms whereby ex vivo-generated DCreg of donor or recipient origin subvert allogeneic T cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen (Ag) is acquired, processed and presented by autologous DCs, on the stability of DCreg, and on in situ targeting of DC to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCreg in a clinically-relevant non-human primate organ transplant model and production of clinical grade DCreg support early evaluation of DCreg therapy in human graft recipients. Summary We discuss strategies currently used to promote DC tolerogenicity, including DCreg therapy and in situ targeting of DC, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application. PMID:24926700

  7. Unique B cell differentiation profile in tolerant kidney transplant patients.

    Chesneau, M; Pallier, A; Braza, F; Lacombe, G; Le Gallou, S; Baron, D; Giral, M; Danger, R; Guerif, P; Aubert-Wastiaux, H; Néel, A; Michel, L; Laplaud, D-A; Degauque, N; Soulillou, J-P; Tarte, K; Brouard, S

    2014-01-01

    Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Germ cell transplantation in an azoospermic Klinefelter bull.

    Joerg, Hannes; Janett, Fredi; Schlatt, Stefan; Mueller, Simone; Graphodatskaya, Daria; Suwattana, Duangsmorn; Asai, Mika; Stranzinger, Gerald

    2003-12-01

    Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.

  9. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  10. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  11. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  12. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  13. Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium

    Yun Wang

    2013-10-01

    Full Text Available AIM: To observe the clinical effectiveness and practicality the autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium.METHODS: Of the 53 recurrent pterygium patients(57 eyes, after all pathological tissues were removed, underwent the autologous conjunctiva transplantation with stem cells on edge of cornea which were locked above conjunctival transplantation of the operated eye.RESULTS: Postopretive follow-up was 1-12 months for all 57 eyes, of which 3 eyes(5%relapsed. The corneoscleral autolysis was occurred in one eye and surgery treatment was conducted. Corneal wounds were healing and transplantations survived well for the remaining 53 patients without obvious surgical marks. Cure rate was 93%.CONCLUSION: Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium can meet the aesthetic requirements of the some patients, with the advantages of obtaining material easily, faster wound healing, lower postoperative recurrence rate, meeting the aesthetic needs of some patients and improving postoperative results. Thus, it is an ideal surgery and is worthy of applying on primary hospital.

  14. Hepatocyte transplantation improves early survival after partial hepatic resection and irradiation

    Guha, C.; Sharma, A.; Alfieri, A.; Guha, U.; Sokhi, R.; Gagandeep, S.; Gupta, S.; Vikram, B.; RoyChowdhury, J.

    1997-01-01

    Purpose: Radiation therapy (RT) is limited in its role as an adjuvant therapy of intrahepatic malignancies because of lower tolerance of human liver to irradiation (TD (5(5)) -TD (50(5)) ∼ 30-40 Gy). Although, surgical resection of primary or metastatic hepatic tumors has been shown to prolong survival, it is often limited by the presence of residual disease. RT could potentially improve survival of patients with positive surgical margins. However, radiation damage to the liver may be enhanced by hepatocellular proliferation induced by partial hepatic (PH) resection. We hypothesize that hepatocyte transplantation would be able to provide metabolic support and modulate the development of radiation-induced liver disease post-resection. The present study was designed to test the potential of hepatocyte transplantation in modifying the outcome of hepatocellular damage induced by PH and RT. Methods: Adult male Fischer 344 rats (Charles River) received hepatic irradiation of 50 Gy in a single fraction, after surgical exposure and shielding of the stomach and intestine, using a 320 MGC Philips orthovoltage unit. Immediately following irradiation, a two-third partial hepatectomy was performed. Four days post-radiation, the treatment group was injected with 5 x 10 6 syngeneic hepatocytes into the splenic pulp after a left subcostal incision, which allows homogeneous liver engraftment of the transplanted hepatocytes. Hematoxylin and eosin stains of liver biopsies, performed at various time points (3 days, 1, 2, 3 weeks or, anytime when animals died) were used for histologic evaluation. Time-adjusted survival was calculated from the date of irradiation by the product-limit Kaplan-Meier method, adjusting the denominator at every time point for the number of rats at risk. Results: Eight weeks after RT, 30% (n = 11) of the control animals (PH + 50 Gy) were alive compared to 100% (n = 9) of the transplant recipients (p <0.05). The median survival of the control group was 15

  15. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  16. Stem cell transplantation for treating Duchenne muscular dystrophy

    Yang, Xiaofeng

    2012-01-01

    OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation

  17. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  18. Pure red cell aplasia in a simultaneous pancreas-kidney transplantation patient: inside the erythroblast

    Francesca Labbadia

    2012-09-01

    Full Text Available A case of pure red cell aplasia in a simultaneous kidney-pancreas transplant recipient on immunosuppressive therapy is reported here. The patient presented with anemia unresponsive to erythropoietin treatment. Bone marrow cytomorphology was highly suggestive of parvovirus pure red cell aplasia, which was confirmed with serology and polymerase chain reaction positive for parvovirus B19 DNA in peripheral blood. After the administration of intravenous immunoglobulin the anemia improved with a rising number of the reticulocytes.

  19. Donor-derived circulating endothelial cells after kidney transplantation

    Popa, ER; Kas-Deelen, AM; Hepkema, BG; van Son, WJ; The, TH; Harmsen, MC

    2002-01-01

    Background. In solid-organ transplantation, the allograft vasculature, in particular the endothelium, is prone to injury inflicted by peritransplantational and posttransplantational factors. Previously, we have shown that circulating endothelial cells (cEC) can be detected in the peripheral blood of

  20. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  1. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    Noerskov, K. H.; Schjødt, I.; Syrjala, K. L.

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  2. Longitudinal Assessment of Hematopoietic Stem Cell Transplantation and Hyposalivation

    Laaksonen, Matti; Ramseier, Adrian; Rovó, Alicia

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study...

  3. Soluble urokinase plasminogen activator receptor during allogeneic stem cell transplantation

    Haastrup, E; Andersen, J; Ostrowski, S R

    2011-01-01

    the course of allogeneic stem cell transplantation (SCT). Twenty SCT patients were included in the study. suPAR was measured by ELISA in daily taken plasma samples during the pretransplant conditioning with chemotherapy and weekly for 1 month after infusion of the graft. suPAR levels before the start...

  4. Lung function after allogeneic hematopoietic stem cell transplantation in children

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF...

  5. Child and parental adaptation to pediatric stem cell transplantation

    Vrijmoet-Wiersma, C. M. Jantien; Kolk, Annemarie M.; Grootenhuis, Martha A.; Spek, Emmelien M.; van Klink, Jeanine M. M.; Egeler, R. Maarten; Bredius, Robbert G. M.; Koopman, Hendrik M.

    2009-01-01

    Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting stress

  6. Child and parental adaptation to pediatric stem cell transplantation

    Vrijmoet-Wiersma, C.M.J.; Kolk, A.M.; Grootenhuis, M.A.; Spek, E.M.; van Klink, J.M.M.; Egeler, R.M.; Bredius, R.G.M.; Koopman, H.M.

    2009-01-01

    Goals of work: Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting

  7. Transplants of cells engineered to produce GABA suppress spontaneous seizures

    Thompson, K. W.; Suchomelová, Lucie

    2004-01-01

    Roč. 45, č. 1 (2004), s. 4-12 ISSN 0013-9580 Grant - others:VA Greater Los Angeles Healthcare System Research Service(US) MREP Institutional research plan: CEZ:AV0Z5011922 Keywords : cell transplantation * epilepsy * seizures Subject RIV: FH - Neurology Impact factor: 3.329, year: 2004

  8. Impact of stem cell source on allogeneic stem cell transplantation outcome in hematological malignancies

    Stamatović Dragana

    2011-01-01

    no significant differences in the incidence of aGvHD and cGvHD between the two groups. The patients who underwent PBSCT had more frequently extensive cGvHD in comparison with the BMT group (29.1% vs 11.29%, p < 0.05. SC source (SCS had no significant influence on the TRM (21.62% vs 23.8%, p = 0.64 and the incidence of relapses (21.6% vs 29.7%, p = 0.32. Finally, the patients treated by BMT had a significantly better OS (logrank 2.33, p < 0.05. Conclusion. SCs harvesting from PB resulted in improved cell yield, faster engraftment, as well as in a decrease of immediate transplantation related complications with a reduced treatment cost. Allogeneic PBSCT were associated with more frequent extensive cGvHD, while the influence of SCS in TRM and relapses was not observed. Finally, the longterm OS was better in the patients treated by BMT. To verify impact of SC source on transplantation (PBSCT vs BMT overall efficacy, more larger randomized clinical studies are needed.

  9. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  10. Disappearance of diffuse calcinosis following autologous stem cell transplantation in a child with autoimmune disease.

    Elhasid, R; Rowe, J M; Berkowitz, D; Ben-Arush, M; Bar-Shalom, R; Brik, R

    2004-06-01

    A 12-year-old girl presented with arthritis, myalgia, anemia and positive ANA. Subsequently, she developed recurrent episodes of pulmonary hemorrhage, thrombocytopenia, CNS abnormalities, skin ulcers and diffuse calcinosis. This was followed by secondary antiphospholipid syndrome. Despite vigorous immunosuppression, the patient became bedridden. A peripheral blood stem cell autograft was offered when she developed pulmonary hypertension and digital ischemia at the age of 16 years. The post-transplantation course was uneventful. Liquefaction of calcinosis nodules with improvement of mobility occurred gradually. She is now 24 months post-transplant with no sign of disease activity and total disappearance of calcinosis nodules.

  11. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies.

    Yamasaki, Shinya; Mera, Hisashi; Itokazu, Maki; Hashimoto, Yusuke; Wakitani, Shigeyuki

    2014-10-01

    Clinical trials of various procedures, including bone marrow stimulation, mosaicplasty, and autologous chondrocyte implantation, have been explored to treat articular cartilage defects. However, all of them have some demerits. We focused on autologous culture-expanded bone marrow mesenchymal stem cells (BMSC), which can proliferate without losing their capacity for differentiation. First, we transplanted BMSC into the defective articular cartilage of rabbit and succeeded in regenerating osteochondral tissue. We then applied this transplantation in humans. Our previous reports showed that treatment with BMSC relieves the clinical symptoms of chondral defects in the knee and elbow joint. We investigated the efficacy of BMSC for osteoarthritic knee treated with high tibial osteotomy, by comparing 12 BMSC-transplanted patients with 12 cell-free patients. At 16-month follow-up, although the difference in clinical improvement between both groups was not significant, the arthroscopic and histological grading score was better in the cell-transplanted group. At the over 10-year follow-up, Hospital for Special Surgery knee scores improved to 76 and 73 in the BMSC-transplanted and cell-free groups, respectively, which were better than preoperative scores. Additionally, neither tumors nor infections were observed in all patients, and in the clinical study, we have never observed hypertrophy of repaired tissue, thereby guaranteeing the clinical safety of this therapy. Although we have never observed calcification above the tidemark in rabbit model and human histologically, the repair cartilage was not completely hyaline cartilage. To elucidate the optimum conditions for cell therapy, other stem cells, culture conditions, growth factors, and gene transfection methods should be explored.

  12. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke.

    Peña, Ike dela; Borlongan, Cesar V

    2015-12-01

    Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further

  13. Hemopoietic precursor cell regeneration following irradiation and syngeneic marrow transplantation

    Melchner, H. von

    1983-01-01

    The transplantation of hemopoietic cells into adequately pretreated recipients represents one of the most promising approaches in the treatment of immunohematological disorders such as aplastic anemia, immunodeficiency diseases, leukemias and malignant lymphomas. The basic property of the hemopoietic cells permitting such therapeutic procedure, namely, the capacity of hemopoietic precursors to actively proliferate and differentiate in recipients suffering the consequences of various kinds of hemopoietic failure, represents the subject of the present review. The main cell populations addressed in the subsequent sections are the hemopoietic precursor cells. Mature end cells and in particular lymphocytes did not receive as much attention.

  14. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  15. The hematopoietic stem cell transplantation in Indonesia: an unsolved dilemma.

    Hariman, H

    2008-08-01

    Allogeneic BMT was performed in Indonesia, but had to be stopped prematurely because of the small number of patients. In the beginning, only patients with sufficient financial resources to travel to western countries could undergo transplant procedures. When neighbouring countries (Singapore and Malaysia) began performing transplant, patients were referred to those centres. In both countries, the procedure is more economical and therefore patients come from a broader range of economic classes. The Indonesian hematologist must deal with the post-transplantation side effects, such as GVHD, which are mostly of the chronic type of GVHD. The types of the post-transplant complications do not differ too much from other centres and need the same treatment used in the transplant centres. Hematologists in Indonesia also treat complications of HSCT performed in other countries. When there is no recovery of HSCT development in Indonesia so far, many commercially oriented companies or centres from other countries see Indonesia as a good commercial market and offer services, some of which are not scientifically sound. One of the main problems is umbilical cord blood stem cell banking from foreign countries, which is eagerly offered to parents expecting a baby. Moreover, parents are not fully protected by law. In conclusion, Indonesia needs to revive its own HSCT program to serve and protect its own patients of being used as commercial targets by other countries.

  16. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells

    Dombrowski, Mary A.; Sasaki, Masanori; Lankford, Karen L.; Kocsis, Jeffery D.; Radtke, Christine

    2009-01-01

    Transplantation of olfactory ensheathing cells (OECs) into injured spinal cord results in improved functional outcome. Mechanisms suggested to account for this functional improvement include axonal regeneration, remyelination and neuroprotection. OECs transplanted into transected peripheral nerve have been shown to modify peripheral axonal regeneration and functional outcome. However, little is known of the detailed integration of OECs at the transplantation site in peripheral nerve. To address this issue cells populations enriched in OECs were isolated from the olfactory bulbs of adult green fluorescent protein (GFP)-expressing transgenic rats and transplanted into a sciatic nerve crush lesion which transects all axons. Five weeks to six months after transplantation the nerves were studied histologically. GFP-expressing OECs survived in the lesion and distributed longitudinally across the lesion zone. The internodal regions of individual teased fibers distal to the transection site were characterized by GFP expression in the cytoplasmic and nuclear compartments of cells surrounding the axons. Immuno-electron microscopy for GFP indicated that the transplanted OECs formed peripheral type myelin. Immunostaining for sodium channel and Caspr revealed a high density of Nav1.6 at the newly formed nodes of Ranvier which were flanked by paranodal Caspr staining. These results indicate that transplanted OECs extensively integrate into transected peripheral nerve and form myelin on regenerated peripheral nerve fibers, and that nodes of Ranvier of these axons display proper sodium channel organization. PMID:17112480

  17. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells, ident......, identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin....

  19. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    Zhu Yinghe; Xu Ke; Zhang Xitong; Han Jinling; Ding Guomin; Gao Jue

    2008-01-01

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl 4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  20. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  1. Transplantation of Neural Precursor Cells Attenuates Chronic Immune Environment in Cervical Spinal Cord Injury

    Lennart Riemann

    2018-06-01

    Full Text Available Inflammation after traumatic spinal cord injury (SCI is non-resolving and thus still present in chronic injury stages. It plays a key role in the pathophysiology of SCI and has been associated with further neurodegeneration and development of neuropathic pain. Neural precursor cells (NPCs have been shown to reduce the acute and sub-acute inflammatory response after SCI. In the present study, we examined effects of NPC transplantation on the immune environment in chronic stages of SCI. SCI was induced in rats by clip-compression of the cervical spinal cord at the level C6-C7. NPCs were transplanted 10 days post-injury. The functional outcome was assessed weekly for 8 weeks using the Basso, Beattie, and Bresnahan scale, the CatWalk system, and the grid walk test. Afterwards, the rats were sacrificed, and spinal cord sections were examined for M1/M2 macrophages, T lymphocytes, astrogliosis, and apoptosis using immunofluorescence staining. Rats treated with NPCs had compared to the control group significantly fewer pro-inflammatory M1 macrophages and reduced immunodensity for inducible nitric oxide synthase (iNOS, their marker enzyme. Anti-inflammatory M2 macrophages were rarely present 8 weeks after the SCI. In this model, the sub-acute transplantation of NPCs did not support survival and proliferation of M2 macrophages. Post-traumatic apoptosis, however, was significantly reduced in the NPC group, which might be explained by the altered microenvironment following NPC transplantation. Corresponding to these findings, reactive astrogliosis was significantly reduced in NPC-transplanted animals. Furthermore, we could observe a trend toward smaller cavity sizes and functional improvement following NPC transplantation. Our data suggest that transplantation of NPCs following SCI might attenuate inflammation even in chronic injury stages. This might prevent further neurodegeneration and could also set a stage for improved neuroregeneration after SCI.

  2. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  3. Degenerative changes and cell death in long-living homo- and heterotopic transplants from embryonic germ layers of rat neocortex.

    Petrova, E S; Otellin, V A

    2003-09-01

    Morphological study of allotransplants of rat embryonic neocortex 14-18 months after transplantation into the neocortex, lateral cerebral ventricle, and sciatic nerve of adult animals revealed death of nerve and glial cells in the delayed postoperation period independently on the site of transplantation. After heterotopic transplantation the count of degenerated neurons was 2 times higher that after homotopic transplantation. In heterotopic transplants a considerable number of grafted neurons underwent reversible and irreversible degenerative changes accompanied by their premature aging. Neuronal death is probably determined by insufficiency of trophic influence from afferent structures and target tissues. We hypothesized that antiapoptotic preparations can be used for prevention of transplanted cell death. It was also found that degeneration of neurons was associated with impaired vascularization of transplants and pronounced immune reaction of the recipient in late posttransplantation period. Transplantation of embryonic brain structures can serve as a model system in studies concerning involutive and pathological processes in the central nervous system and in the search for factors improving survival of neurons.

  4. Discarded human fetal tissue and cell cultures for transplantation research

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  5. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    Tan Haibo; Liu Xingdang

    2004-01-01

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  6. Stroke promotes survival of nearby transplanted neural stem cells by decreasing their activation of caspase 3 while not affecting their differentiation.

    Kosi, Nina; Alić, Ivan; Salamon, Iva; Mitrečić, Dinko

    2018-02-14

    Although transplantation of stem cells improves recovery of the nervous tissue, little is known about the influence of different brain regions on transplanted cells. After we confirmed that cells with uniform differentiation potential can be generated in independent experiments, one million of neural stem cells isolated from B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse embryos were transplanted into the brain 24 h after induction of stroke. The lateral ventricles, the corpus callosum and the striatum were tested. Two and four weeks after the transplantation, the cells transplanted in all three regions have been attracted to the ischemic core. The largest number of attracted cells has been observed after transplantation into the striatum. Their differentiation pattern and expression of neuroligin 1, SynCAM 1, postsynaptic density protein 95 and synapsin 1 followed the same pattern observed during in vitro cultivation and it did not differ among the tested regions. Differentiation pattern of the cells transplanted in the stroke-affected and healthy animals was the same. On the other hand, neural stem cells transplanted in the striatum of the animals affected by stroke exhibited significantly increased survival rates reaching 260 ± 19%, when compared to cells transplanted in their wild type controls. Surprisingly, improved survival two and four weeks after transplantation was not due to increased proliferation of the grafted cells and it was accompanied by decreased levels of activity of Casp3 (19.56 ± 3.1% in the stroke-affected vs. 30.14 ± 2.4% in healthy animals after four weeks). We assume that the decreased levels of Casp3 in cells transplanted near the ischemic region was linked to increased vasculogenesis, synaptogenesis, astrocytosis and axonogenesis detected in the host tissue affected by ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Irradiated fetal thymus transplantation in a patient with combined immunodeficiency with predominant T cell defect

    Higuchi, Shigenori; Yanabe, Yasuhide; Tsuchiya, Hiroyuki; Akahoshi, Izumi; Migita, Masahiro; Matsuda, Ichiro; Udaka, Keiji.

    1993-01-01

    A 6 month old boy was diagnosed as a case of combined immunodeficiency (with predominant T cell defect by previous classification). His T cell count was decreased, his B cell count in peripheral blood was increased, his serum IgG level was decreased, his serum IgM level was normal and the thymus was not evident on CT scans and magnetic resonance imaging. Administration of the thymus hormone, thymosin, led to a partial recovery of T cell function without normalization of the T cell count. At age 26 months the patient received an irradiated thymus transplantation from a 16 week old female fetus. After the transplantation, the T cell count (mainly CD4 + cells) increased by 50-70%. A mild graft-versus-host reaction (GVHR) occurred and several immunosuppressants were prescribed. Chromosome analysis showed that the T cells have both 46 XY and 46 XX karyotypes while the B cells have the 46 XY karyotype alone. His cellular immunity (skin tests, DNA synthesis, mixed lymphocyte reaction, cytotoxic activity and natural killer cell function) and his serum IgG level remained low. However, being on regular γ-globulin therapy and oral anti-fungal drugs, he is now living normally with almost no trouble at age 6 years and 3 months. This case showed that irradiated thymus transplantation might be a useful method when an adequate donor for bone marrow transplantation is not available. The unexpected observation that the increased T cells were mainly CD4 may be related to the mild GVHR and the clinical improvement. (author)

  8. Endobronchial Epstein-Barr Virus Associated Post-transplant Lymphoproliferative Disorder in Hematopoietic Stem Cell Transplantation

    S. Feuillet

    2009-01-01

    Full Text Available The Epstein-Barr virus (EBV associated Post-Transplant Lymphoproliferative Disorders (PTLD are increasingly recognized as a fatal complication of hematological stem cell transplantation (HSCT. Thoracic involvement, that may be isolated or part of a disseminated disease, usually encompasses pulmonary nodules or masses and mediastinal lymph node enlargement. The current case study presents 2 patients who underwent HSCT, one allogenic and the other autologous, who developed an exceptional endobronchial EBV related PTLD. The first patient had a fleshy white endobronchial mass resulting in a right upper lobe atelectasis and the second had an extensive necrotising mucosa from trachea to both basal bronchi without any significant change of lung parenchyma on the CT scan. In both cases, the diagnosis was made by bronchial biopsies. Physicians should be aware of an endobronchial pattern of EBV associated PTLD after HSCT to permit quick diagnosis and therapeutic intervention.

  9. A novel shell-structure cell microcarrier (SSCM) for cell transplantation and bone regeneration medicine.

    Su, Kai; Gong, Yihong; Wang, Chunming; Wang, Dong-An

    2011-06-01

    The present study aims to develop a novel open and hollow shell-structure cell microcarrier (SSCM) to improve the anchorage-dependent cell (ADC) loading efficiency, increase the space for cell proliferation and tissue regeneration, and better propel its therapeutic effects. Gelatin particles were prepared with oil/water/oil (o/w/o) technique and modified by an adjustable surface crosslinking technique and subsequent release of uncrosslinked material. Optical microscopy and scanning electron microscopy (SEM) were utilized to observe the morphologies of the microcarriers. Cell loading tests were performed to evaluate the biocompatibilities and effect on osteogenesis of SSCM. SSCMs were successfully fabricated via the surface technique. The shell-structure could allow the cell to attach and grow on both outer and inner surface of sphere and provide adequate space for cell proliferation and extracellular matrix (ECM) secretion. The cell loading rate, proliferation rate and osteogenesis-related gene expressions on the SSCMs were higher than those on the spherical gelatin microcarriers. The outstanding performance of injectable SSCMs endowed with favorable micro-structure, desirable cytocompatibility and enhanced cell affinity makes them as a good choice as cell delivery vehicle for transplanting therapeutic cells towards the scope of tissue regeneration.

  10. Erythropoietin improves the survival of fat tissue after its transplantation in nude mice.

    Saher Hamed

    Full Text Available BACKGROUND: Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. METHODOLOGY/PRINCIPAL FINDINGS: Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF-treated and phosphate-buffered saline (PBS-treated fat grafts. The weight and volume of the EPO-treated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. CONCLUSIONS/SIGNIFICANCE: Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fat transplants following EPO treatment.

  11. Erythropoietin improves the survival of fat tissue after its transplantation in nude mice.

    Hamed, Saher; Egozi, Dana; Kruchevsky, Danny; Teot, Luc; Gilhar, Amos; Ullmann, Yehuda

    2010-11-15

    Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO) has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF)-treated and phosphate-buffered saline (PBS)-treated fat grafts. The weight and volume of the EPO-treated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fat transplants following EPO treatment.

  12. Enhancement of the grafting efficiency of transplanted marrow cells by preincubation with interleukin-3 and granulocyte-macrophage colony-stimulating factor

    Tavassoli, M.; Konno, M.; Shiota, Y.; Omoto, E.; Minguell, J.J.; Zanjani, E.D.

    1991-04-01

    To improve the grafting efficiency of transplanted murine hematopoietic progenitors, we briefly preincubated mouse bone marrow cells with interleukin-3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) ex vivo before their transplantation into irradiated recipients. This treatment was translated into an increase in the seeding efficiency of colony-forming unit-spleen (CFU-S) and CFU-GM after transplantation. Not only was the concentration of CFU-S in the tibia increased 2 and 24 hours after transplantation, but the total cell number and CFU-S and CFU-GM concentrations were persistently higher in IL-3- and GM-CSF-treated groups 1 to 3 weeks after transplantation. In addition, the survival of animals as a function of transplanted cell number was persistently higher in IL-3- and GM-CSF-treated groups compared with controls. The data indicate that the pretreatment of marrow cells with IL-3 and GM-CSF before transplantation increases the seeding efficiency of hematopoietic stem cells and probably other progenitor cells after transplantation. This increased efficiency may be mediated by upward modulation of homing receptors. Therefore, ex vivo preincubation of donor marrow cells with IL-3 and GM-CSF may be a useful tactic in bone marrow transplantation.

  13. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents.

    Melissa L M Khoo

    Full Text Available Bone marrow-derived human mesenchymal stem cells (hMSCs have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF, and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for

  14. Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain.

    Taouki, Ioanna; Tasiudi, Eve; Lalioti, Maria-Eleni; Kyrousi, Christina; Skavatsou, Eleni; Kaplani, Konstantina; Lygerou, Zoi; Kouvelas, Elias D; Mitsacos, Adamantia; Giompres, Panagiotis; Taraviras, Stavros

    2017-08-15

    Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.

  15. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evolving Hematopoietic Stem Cell Transplantation Strategies in Severe Aplastic Anemia

    Dietz, Andrew C.; Lucchini, Giovanna; Samarasinghe, Sujith; Pulsipher, Michael A.

    2016-01-01

    Purpose of Review Significant improvements in unrelated donor hematopoietic stem cell transplantation (HSCT) in recent years has solidified its therapeutic role in severe aplastic anemia (SAA) and led to evolution of treatment algorithms, particularly for children. Recent Findings Advances in understanding genetics of inherited bone marrow failure syndromes (IBMFS) have allowed more confidence in accurately diagnosing SAA and avoiding treatments that could be dangerous and ineffective in individuals with IBMFS, which can be diagnosed in 10–20% of children presenting with a picture of SAA. Additionally long-term survival after matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT now exceed 90% in children. Late effects after HSCT for SAA are minimal with current strategies and compare favorably to late effects after up-front immunosuppressive therapy (IST), except for patients with chronic graft versus host disease (GVHD). Summary 1) Careful assessment for signs or symptoms of IBMFS along with genetic screening for these disorders is of major importance. 2) MSD HSCT is already considered standard of care for up-front therapy and some groups are evaluating MUD HSCT as primary therapy. 3) Ongoing studies will continue to challenge treatment algorithms and may lead to an even more expanded role for HSCT in SAA. PMID:26626557

  17. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.

    Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-09-01

    Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.

  18. Method of cell transplantation promoting the organization of intraarterial thrombus.

    Hirano, Koji; Shimono, Takatsugu; Imanaka-Yoshida, Kyoko; Miyamoto, Keiichi; Fujinaga, Kazuya; Kajimoto, Masaki; Miyake, Yoichiro; Nishikawa, Masakatsu; Yoshida, Toshimichi; Uchida, Atsumasa; Shimpo, Hideto; Yada, Isao; Hirata, Hitoshi

    2005-08-30

    Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms. Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that alpha-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of alpha-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo. Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.

  19. Towards Improving the Transfer of Care of Kidney Transplant Recipients.

    Gill, J S; Wright, A J; Delmonico, F L; Newell, K A

    2017-01-01

    Kidney transplant recipients require specialized medical care and may be at risk for adverse health outcomes when their care is transferred. This document provides opinion-based recommendations to facilitate safe and efficient transfers of care for kidney transplant recipients including minimizing the risk of rejection, avoidance of medication errors, ensuring patient access to immunosuppressant medications, avoidance of lapses in health insurance coverage, and communication of risks of donor disease transmission. The document summarizes information to be included in a medical transfer document and includes suggestions to help the patient establish an optimal therapeutic relationship with their new transplant care team. The document is intended as a starting point towards standardization of transfers of care involving kidney transplant recipients. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Sleep disruption in hematopoietic cell transplantation recipients: prevalence, severity, and clinical management.

    Jim, Heather S L; Evans, Bryan; Jeong, Jiyeon M; Gonzalez, Brian D; Johnston, Laura; Nelson, Ashley M; Kesler, Shelli; Phillips, Kristin M; Barata, Anna; Pidala, Joseph; Palesh, Oxana

    2014-10-01

    Sleep disruption is common among hematopoietic cell transplant (HCT) recipients, with over 50% of recipients experiencing sleep disruption pre-transplant, with up to 82% of patients experiencing moderate to severe sleep disruption during hospitalization for transplant and up to 43% after transplant. These rates of sleep disruption are substantially higher than what we see in the general population. Although sleep disruption can be distressing to patients and contribute to diminished quality of life, it is rarely discussed during clinical visits. The goal of the current review is to draw attention to sleep disruption and disorders (ie, insomnia, obstructive sleep apnea, restless legs syndrome) as a clinical problem in HCT in order to facilitate patient education, intervention, and research. We identified 35 observational studies published in the past decade that examined sleep disruption or disorders in HCT. Most studies utilized a single item measure of sleep, had small sample size, and included heterogeneous samples of patients. Six studies of the effects of psychosocial and exercise interventions on sleep in HCT have reported no significant improvements. These results highlight the need for rigorous observational and interventional studies of sleep disruption and disorders in HCT recipients.. Copyright © 2014 American Society for Blood and Marrow Transplantation. All rights reserved.

  1. Use of the quality management system "JACIE" and outcome after hematopoietic stem cell transplantation.

    Gratwohl, Alois; Brand, Ronald; McGrath, Eoin; van Biezen, Anja; Sureda, Anna; Ljungman, Per; Baldomero, Helen; Chabannon, Christian; Apperley, Jane

    2014-05-01

    Competent authorities, healthcare payers and hospitals devote increasing resources to quality management systems but scientific analyses searching for an impact of these systems on clinical outcome remain scarce. Earlier data indicated a stepwise improvement in outcome after allogeneic hematopoietic stem cell transplantation with each phase of the accreditation process for the quality management system "JACIE". We therefore tested the hypothesis that working towards and achieving "JACIE" accreditation would accelerate improvement in outcome over calendar time. Overall mortality of the entire cohort of 107,904 patients who had a transplant (41,623 allogeneic, 39%; 66,281 autologous, 61%) between 1999 and 2006 decreased over the 14-year observation period by a factor of 0.63 per 10 years (hazard ratio: 0.63; 0.58-0.69). Considering "JACIE"-accredited centers as those with programs having achieved accreditation by November 2012, at the latest, this improvement was significantly faster in "JACIE"-accredited centers than in non-accredited centers (approximately 5.3% per year for 49,459 patients versus approximately 3.5% per year for 58,445 patients, respectively; hazard ratio: 0.83; 0.71-0.97). As a result, relapse-free survival (hazard ratio 0.85; 0.75-0.95) and overall survival (hazard ratio 0.86; 0.76-0.98) were significantly higher at 72 months for those patients transplanted in the 162 "JACIE"-accredited centers. No significant effects were observed after autologous transplants (hazard ratio 1.06; 0.99-1.13). Hence, working towards implementation of a quality management system triggers a dynamic process associated with a steeper reduction in mortality over the years and a significantly improved survival after allogeneic stem cell transplantation. Our data support the use of a quality management system for complex medical procedures.

  2. Transplantation of mononuclear cells from bone marrow in a rat model of Huntington’s disease

    Serrano T

    2016-12-01

    Full Text Available Teresa Serrano,1 Paula Pierozan,2 Esteban Alberti,1 Lisette Blanco,1 Karelys de la Cuétara Bernal,1 María E González,1 Nancy Pavón,1 Lourdes Lorigados,1 María A Robinson-Agramonte,1 Jorge A Bergado1 1International Center for Neurological Restoration (CIREN, La Habana, Cuba; 2Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil Abstract: This article investigates the possible effects of transplantation of mononuclear bone marrow cells (mBMCs to ameliorate or prevent the behavioral impairments and the cellular damage observed in a quinolinic acid (QA model of Huntington’s disease. mBMCs were isolated using a standard procedure and implanted within the QA-lesioned striatum. Behavior was explored using motor (beam test and memory (object recognition and Morris water maze tests. Morphology was evaluated using conventional histology (cresyl violet, bisbenzimide (to evaluate cell vitality, and immunohystochemistry to identify neurons or glia. mBMC-transplanted animals showed improvements in motor coordination (beam test. Regarding memory, object recognition was significantly improved in transplanted animals, while spatial memory (Morris water maze test was not severely affected by QA and, therefore, the results after transplantation were significant only in the probe-trial retention test. In samples taken from the animals that participated in the behavioral tests, a preserved morphology of striatal neurons and a reduced glial reaction indicated a possible neuroprotective effect of the transplanted mBMCs. A parallel study confirmed that the transplanted mBMCs have a long survival period (1 year follow-up. The results presented confirm the possibility that mBMC transplantation may be a viable therapeutic option for Huntington’s disease. Keywords: mononuclear bone marrow cells, Huntington’s disease, quinolinic acid, transplant, Fluoro-Jade C

  3. Transplantation of co-aggregates of Sertoli cells and islet cells into liver without immunosuppression.

    Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo

    2014-02-15

    Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.

  4. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  5. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science.

    Nickerson, Philip E B; Ortin-Martinez, Arturo; Wallace, Valerie A

    2018-01-01

    Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field's use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.

  6. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science

    Philip E. B. Nickerson

    2018-03-01

    Full Text Available Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME. This recent discovery has chaperoned a new era of interpretation when reviewing the field’s use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.

  7. Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

    Dânia Sofia Marques

    2011-01-01

    Full Text Available Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections. This is a major cause of morbidity and mortality. We report a case of a 17-year-old male patient diagnosed with severe idiopathic acquired aplastic anemia who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis, its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies.

  8. Role of HLA in Hematopoietic Stem Cell Transplantation

    Meerim Park

    2012-01-01

    Full Text Available The selection of hematopoietic stem cell transplantation (HSCT donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.

  9. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  10. [Sirolimus associated pneumonitis in a hematopoietic stem cell transplant patient].

    García, Estefanía; Buenasmañanas, Diana; Martín, Carmen; Rojas, Rafael

    2015-07-06

    Sirolimus (SR) is a lipophilic macrocytic lactone with immunosuppressive properties (mTOR inhibitor) commonly used in solid organ transplantation and recently introduced in the prophylaxis and treatment of graft-versus-host disease. Its numerous side effects include: hyperlipidemia, arthralgias, noncardiac peripheral edema, thrombotic microangiopathy and interstitial pneumonitis. SR-associated pneumonitis is a rare but potentially serious complication due to its increasing utilization in transplant patients. We report the case of a patient undergoing hematopoietic stem cell transplantation with severe respiratory distress and SR therapy. Microbiological tests were all negative and other complications related to transplantation were discarded. The chest computed tomography of high-resolution showed pneumonitis. The SR therapy was interrupted and treatment was started with steroids with resolution of symptoms. SR associated pneumonitis is a potentially fatal side effect. In patients treated with SR and respiratory failure, we must suspect this complication because early recognition along with drug discontinuation and steroid treatment is essential to reverse this complication. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  11. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  12. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    B. T. Dzumabaeva; L. S. Birjukova; L. B. Kaplanskaya; D. P. Maksimov

    2011-01-01

    The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19) is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis...

  13. Transplanting Retinal Cells using Bucky Paper for Support

    Loftus, David J.; Cinke, Martin; Meyyappan, Meyya; Fishman, Harvey; Leng, Ted; Huie, Philip; Bilbao, Kalayaan

    2004-01-01

    A novel treatment for retinal degenerative disorders involving transplantation of cells into the eye is currently under development at NASA Ames Research Center and Stanford University School of Medicine. The technique uses bucky paper as a support material for retinal pigment epithelial (RPE) cells, iris pigment epithelial (IPE) cells, and/or stem cells. This technology is envisioned as a treatment for age-related macular degeneration, which is the leading cause of blindness in persons over age 65 in Western nations. Additionally, patients with other retinal degenerative disorders, such as retinitis pigmentosa, may be treated by this strategy. Bucky paper is a mesh of carbon nanotubes (CNTs), as shown in Figure 1, that can be made from any of the commercial sources of CNTs. Bucky paper is biocompatible and capable of supporting the growth of biological cells. Because bucky paper is highly porous, nutrients, oxygen, carbon dioxide, and waste can readily diffuse through it. The thickness, density, and porosity of bucky paper can be tailored in manufacturing. For transplantation of cells into the retina, bucky paper serves simultaneously as a substrate for cell growth and as a barrier for new blood vessel formation, which can be a problem in the exudative type of macular degeneration. Bucky paper is easily handled during surgical implantation into the eye. Through appropriate choice of manufacturing processes, bucky paper can be made relatively rigid yet able to conform to the retina when the bucky paper is implanted. Bucky paper offers a distinct advantage over other materials that have been investigated for retinal cell transplantation - lens capsule and Descemet's membrane - which are difficult to handle during surgery because they are flimsy and do not stay flat.

  14. The use of CRISPR/Cas associated technologies for cell transplant applications.

    Cowan, Peter J

    2016-10-01

    In this review, I will summarize recent developments in the use of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) genome editing system for cell transplant applications, ranging from transplantation of corrected autologous patient stem cells to treat inherited diseases, to the tailoring of donor pigs for cell xenotransplantation. Rational engineering of the Cas9 nuclease to improve its specificity will also be discussed. Over the past year, CRISPR/Cas9 has been used in preclinical studies to correct mutations in a rapidly increasing spectrum of diseases including hematological, neuromuscular, and respiratory disorders. The growing popularity of CRISPR/Cas9 over earlier genome editing platforms is partly due to its ease of use and flexibility, which is evident from the success of complex manipulations such as specific deletion of up to 725 kb in patient-derived stem cells, and simultaneous disruption of up to 62 endogenous retrovirus loci in pig cells. In addition, high-fidelity variants of Cas9 with greatly increased specificity are now available. CRISPR/Cas9 is a fast-evolving technology that is likely to have a significant impact on autologous, allogeneic, and xenogeneic cell transplantation.

  15. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  16. T Cell-Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia.

    How, Joan; Slade, Michael; Vu, Khoan; DiPersio, John F; Westervelt, Peter; Uy, Geoffrey L; Abboud, Camille N; Vij, Ravi; Schroeder, Mark A; Fehniger, Todd A; Romee, Rizwan

    2017-04-01

    Outcomes for patients with acute myeloid leukemia (AML) who fail to achieve complete remission remain poor. Hematopoietic cell transplantation (HCT) has been shown to induce long-term survival in AML patients with active disease. HCT is largely performed with HLA-matched unrelated or HLA-matched related donors. Recently, HCT with HLA-haploidentical related donors has been identified as a feasible option when HLA-matched donors are not immediately available. However, there are little data comparing outcomes for AML patients with active disease who receive haploidentical versus traditionally matched HCT. We retrospectively analyzed data from 99 AML patients with active disease undergoing allogeneic HCT at a single institution. Forty-three patients received unrelated donor HCT, 32 patients received matched related donor HCT, and 24 patients received peripheral blood haploidentical HCT with post-transplantation cyclophosphamide. We found no significant differences between treatment groups in terms of overall survival (OS), event-free survival, transplantation-related mortality, cumulative incidence of relapse, and cumulative incidence of acute and chronic graft-versus-host disease (GVHD). We performed univariate regression analysis of variables that modified OS in all patients and found only younger age at transplantation and development of chronic GVHD significantly improved outcome. Although limited by our relatively small sample size, these results indicate that haploidentical HCT in active AML patients have comparable outcomes to HCT with traditionally matched donors. Haploidentical HCT can be considered in this population of high-risk patients when matched donors are unavailable or when wait times for transplantation are unacceptably long. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    2017-07-24

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  18. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  19. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  20. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  1. Outcomes following autologous hematopoietic stem cell transplant for patients with relapsed Wilms’ Tumor: A CIBMTR retrospective analysis

    Malogolowkin, Marcio H.; Hemmer, Michael T.; Le-Rademacher, Jennifer; Hale, Gregory A; Metha, Parinda A.; Smith, Angela R.; Kitko, Carrie; Abraham, Allistair; Abdel-Azim, Hisham; Dandoy, Christopher; Diaz, Miguel Angel; Gale, Robert Peter; Guilcher, Greg; Hayashi, Robert; Jodele, Sonata; Kasow, Kimberly A.; MacMillian, Margaret L.; Thakar, Monica; Wirk, Baldeep M.; Woolfrey, Ann; Thiel, E L

    2017-01-01

    Despite the dramatic improvement in the overall survival for patients diagnosed with Wilms’ tumor (WT), the outcomes for those that experience relapse have remained disappointing. We describe the outcomes of 253 patients with relapsed WT who received high-dose chemotherapy (HDT) followed by autologous hematopoietic stem cell transplant (HCT) between 1990 and 2013, and reported to the Center for International Blood and Marrow Transplantation Research (CIBMTR). The 5-year estimates for event free survival (EFS) and overall survival (OS) were 36% (95% CI; 29 – 43%) and 45% (95% CI; 38 – 51%) respectively. Relapse of primary disease was the cause of death in 81% of the population. EFS, OS, relapse and transplant-related mortality (TRM) showed no significant differences when broken down by disease status at transplant, time from diagnosis to transplant, year of transplant or conditioning regimen. Our data suggest that HDT followed by autologous HCT for relapsed WT is well tolerated and outcomes are similar to those reported in the literature. Since attempts to conduct a randomized trial comparing maintenance chemotherapy with consolidation versus high-dose chemotherapy followed by stem cell transplant have failed, one should balance the potential benefits with the yet unknown long-term risks. Since disease recurrence continues to be the most common cause of death, future research should focus on the development of consolidation therapies for those patients achieving complete response to therapy. PMID:28869618

  2. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i

  3. Unrelated allogeneic stem-cell transplantation in adult patients – 10-year experience

    Jožef Pretnar

    2012-12-01

    Conclusion: Unrelated allogeneic stem-cell transplantation is suitable for acute myeloblastic leukemias with unfavorable risk factors. However, results in acute lymphoblastic leukemia are worse. Unrelated transplantation is not efficient as salvage treatment for patients with recurrent disease after autologous transplantation or chemotherapy- resistant relapse.

  4. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    Beksac, Meral

    2015-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow-mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.

  5. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization.

    Bhang, Suk Ho; Lee, Seahyoung; Shin, Jung-Youn; Lee, Tae-Jin; Kim, Byung-Soo

    2012-10-01

    Despite promising results from the therapeutic use of stem cells for treating ischemic diseases, the poor survival of cells transplanted into ischemic regions is one of the major problems that undermine the efficacy of stem cell therapy. Cord blood mononuclear cells (CBMNCs) are an alternative source of mesenchymal stem cells (MSCs) without disadvantages, such as the painful and invasive harvesting procedure, of MSCs derived from bone marrow or adipose tissue. In the present study, we investigated whether the angiogenic efficacy of cord blood mesenchymal stem cells (CBMSCs) can be enhanced by grafting as spheroids in a mouse hindlimb ischemia model. Human CBMSC (hCBMSC) spheroids were prepared by using the hanging-drop method. Mouse hindlimb ischemia was induced by excising the femoral artery and its branches. After surgery, the animals were divided into no-treatment, dissociated hCBMSC, and spheroid hCBMSC groups (n=8 per group) and received corresponding hCBMSC treatments. After surgery, the ischemic hindlimbs were monitored for 4 weeks, and then, the ischemic hindlimb muscles were harvested for histological analysis. Apoptotic signaling, angiogenesis-related signal pathways, and blood vessel formation were investigated in vitro and/or in vivo. The transplantation of hCBMSCs as spheroids into mouse ischemic hindlimbs significantly improved the survival of the transplanted cells by suppressing apoptotic signaling while activating antiapoptotic signaling. Furthermore, the transplantation of hCBMSCs as spheroids significantly increased the number of microvessels and smooth muscle α-actin-positive vessels in the ischemic limbs of mice, and attenuated limb loss and necrosis. Human CBMNC can be considered an alternative source of MSC, and spheroid-based hCBMSC delivery can be considered a simple and effective strategy for enhancing the therapeutic efficacy of hCBMSCs.

  6. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  7. STEM CELL TRANSPLANTATION AS A POSSIBLE STRATEGY FOR TREATING STANDARD THERAPY-RESISTANT ANKYLOSING SPONDYLITIS

    I. Z. Gaidukova

    2016-01-01

    Full Text Available The authors have analyzed the literature dealing with studies of the efficiency and safety of stem cell transplantation (SCT in patients with ankylosing spondylitis (AS through the electronic resources Pubmed and Medline by using the keywords «bone marrow transplantation», «hematopoietic stem cell transplantation», «ankylosing spondylitis», «autoimmune diseases», and «sacroiliac joint biopsy». The paper describes four cases of SCT in AS patients, including transplantation that was carried out in one patient with lymphoma concurrent with AS, in two AS patients without blood cancers, and in one patient with AS concurrent with myeloid leukemia. Drug-free remission was achieved in 3 cases: lymphoma concurrent with AS (n=1, AS concurrent with myeloid leukemia (n=1, and AS without comorbidities (n=1. In addition to an improvement in the course of AS, there were also two cases with clinical presentations of AS after SCT. The given cases show that SCT can be basically used to induce drug-free remission in patients with severe forms of standard therapy-resistant AS. However, the introduction of SCT in clinical practice needs to adjust the technique to the specific features of AS patients. 

  8. Fishing Fish Stem Cells and Nuclear Transplants

    Hong, Yunhan

    2011-01-01

    Fish has been the subject of various research fields, ranging from ecology, evolution, physiology and toxicology to aquaculture. In the past decades fish has attracted considerable attention for functional genomics, cancer biology and developmental genetics, in particular nuclear transfer for understanding of cytoplasmic-nuclear relationship. This special issue reports on recent progress made in fish stem cells and nuclear transfer.

  9. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  10. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  11. Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats.

    Pan, Xiaoming; Xue, Wujun; Li, Yang; Feng, Xinshun; Tian, Xiaohui; Ding, Chenguang

    2011-12-15

    Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (Ptransplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (Pislet group (P=0.04). Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.

  12. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  13. Improvement in renal function after everolimus introduction and calcineurin inhibitor reduction in maintenance thoracic transplant recipients

    Arora, Satish; Gude, Einar; Sigurdardottir, Vilborg

    2012-01-01

    The NOCTET (NOrdic Certican Trial in HEart and lung Transplantation) trial demonstrated that everolimus improves renal function in maintenance thoracic transplant (TTx) recipients. Nevertheless, introduction of everolimus is not recommended for patients with advanced renal failure. We evaluated...... NOCTET data to assess everolimus introduction amongst TTx recipients with advanced renal failure....

  14. Improvement in kidney transplantation in the Balkans after the Istanbul Declaration: where do we stand today?

    Spasovski, Goce; Busic, Mirela; Delmonico, Francis

    2016-02-01

    Due to the limited access to kidney transplantation (KTx) in developing countries, desperate patients have engaged in the purchase and sale of kidneys. In 2004, the World Health Assembly urged member states to protect the poor and vulnerable from being exploited through practices of illegal organ trafficking that had become widespread throughout the world. In 2008, the international transplant community convened a summit of transplant professionals, legal experts and ethicists to combat organ trafficking, transplant tourism and transplant commercialism that resulted in the Declaration of Istanbul (DOI). The South-Eastern Europe Health Network (SEEHN) represents a nine country multigovernmental collaboration on health systems. The Regional Health Development Centre on Organ Donation and Transplant Medicine (RHDC) was established in 2011 in Croatia to facilitate cooperation among south-eastern European countries to improve organ transplantation within the Balkan region. Since 2011, a collaboration between the RHDC, the Custodian Group of the DOI (DICG) and SEEHN professionals has enhanced strategic planning and definition of country-specific action plan priorities on organ donation and transplantation. Data of kidney transplantation provided in this report show a significant increase in transplantation activities in a 4-year period in Macedonia, Moldova, Bosnia and Hercegovina, Romania and Montenegro. The success of the donation and transplantation programmes was influenced by the engagement of key professionals and the establishment of organizational infrastructure with the implementation of an appropriate funding model. In conclusion, the DOI has provided an ethical framework for engagement of health professionals from south-eastern European countries. The newly established SEEHN RHDC as a technical coordinating body greatly contributed in building institutional capacity and strengthening regional collaboration between health authorities and professionals within

  15. TRANSPLANTATION

    stage ... renal artery thrombosis, renal vein thrombosis, ureteric leak or stenosis ... alternative organ source for patients with end-stage renal disease. Kidney ... status.27,28 Post-transplant acute tubular necrosis is caused by ischaemic injury to the ...

  16. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    Lewis, Michael T

    2006-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  17. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    Lewis, Michael T

    2007-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  18. Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell-Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide.

    Bashey, Asad; Zhang, Mei-Jie; McCurdy, Shannon R; St Martin, Andrew; Argall, Trevor; Anasetti, Claudio; Ciurea, Stefan O; Fasan, Omotayo; Gaballa, Sameh; Hamadani, Mehdi; Munshi, Pashna; Al Malki, Monzr M; Nakamura, Ryotaro; O'Donnell, Paul V; Perales, Miguel-Angel; Raj, Kavita; Romee, Rizwan; Rowley, Scott; Rocha, Vanderson; Salit, Rachel B; Solh, Melhem; Soiffer, Robert J; Fuchs, Ephraim Joseph; Eapen, Mary

    2017-09-10

    Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up.

  19. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  20. Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody Mediated Rejection After Vascularized Composite Allotransplantation

    2017-10-01

    Award Number: W81XWH-16-1-0664 TITLE: Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody-Mediated Rejection after...Annual 3. DATES COVERED 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Autologous Hematopoietic Stem Cell Transplantation to...sensitization, autologous hematopoietic stem cell transplantation, antibody mediated rejection, donor specific antibodies 16. SECURITY CLASSIFICATION OF

  1. Immunological characteristics of human umbilical cord mesenchymal stem cells and the therapeutic effects of their transplantion on hyperglycemia in diabetic rats

    WANG, HONGWU; QIU, XIAOYAN; NI, PING; QIU, XUERONG; LIN, XIAOBO; WU, WEIZHAO; XIE, LICHUN; LIN, LIMIN; MIN, JUAN; LAI, XIULAN; CHEN, YUNBIN; HO, GUYU; MA, LIAN

    2014-01-01

    Islet transplantation involves the transplantation of pancreatic islets from the pancreas of a donor to another individual. It has proven to be an effective method for the treatment of type 1 diabetes. However, islet transplantation is hampered by immune rejection, as well as the shortage of donor islets. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (HUMSCs) are an ideal cell source for use in transplantation due to their biological characteristics and their use does not provoke any ethical issues. In this study, we investigated the immunological characteristics of HUMSCs and their effects on lymphocyte proliferation and the secretion of interferon (IFN)-γ, and explored whether direct cell-to-cell interactions and soluble factors, such as IFN-γ were important for balancing HUMSC-mediated immune regulation. We transplanted HUMSCs into diabetic rats to investigate whether these cells can colonize in vivo and differentiate into pancreatic β-cells, and whether the hyperglycemia of diabetic rats can be improved by transplantation. Our results revealed that HUMSCs did not stimulate the proliferation of lymphocytes and did not induce allogeneic or xenogeneic immune cell responses. qRT-PCR demonstrated that the HUMSCs produced an immunosuppressive isoform of human leukocyte antigen (HLA-I) and did not express HLA-DR. Flow cytometry revealed that the HUMSCs did not express immune response-related surface antigens such as, CD40, CD40L, CD80 and CD86. IFN-γ secretion by human peripheral blood lymphocytes was reduced when the cells were co-cultured with HUMSCs. These results suggest that HUMSCs are tolerated by the host in an allogeneic transplant. We transplanted HUMSCs into diabetic rats, and the cells survived in the liver and pancreas. Hyperglycemia of the diabetic rats was improved and the destruction of pancreatic cells was partly repaired by HUMSC transplantation. Hyperglycemic improvement may be related to the immunomodulatory effects of

  2. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations.

    Ebens, Christen L; MacMillan, Margaret L; Wagner, John E

    2017-01-01

    Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to 40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.

  3. Factors controlling the engraftment of transplanted dog bone marrow cells

    Vriesendorp, H.M.; Klapwyk, W.M.; Heidt, P.J.; Hogeweg, B.; Zurcher, C.; Bekkum, D.W. van

    1982-01-01

    The LD50 of total body irradiation (TBI) for the bone marrow (BM) syndrome and the gastrointestinal (GI) syndrme was determined in dogs as 3.7 Gy, and 8.5 Gy respectively. Five Gy TBI was adequate conditioning for BM cells of littermate donors identical for the major histocompatibility comples (MHC). The maximum tolerated TBI (about 7.5 Gy) caused more side effects than 5.0 Gy TBI and was insufficient for engraftment of realistic numbers of BM cells of MHC mismatched donors. In autologous and MHC matched transplants, the rateof hemopoietic recovery correlated with the number of BM cells given. Approximtely 2 x 10 7 autologous and 1 x 10 8 MHC identical BM cells.kg -1 were needed for radiation protection. Platelet recovery was significantly more rapid in allogeneic combinations in comparison to autologous transplants. Low numbers of autologous cryopreserved bone marrow cells were as effective as fresh bone marrow cells in rescuing animals after lethal TBI. Other factors that influence BM cell engraftment were confirmed (prior sensitization of the recipient, donor selection) or identified (purification of BM cells on density gradient and selective gastrointestinal decontamination of the recipient). Consistent engraftment of gradient separated, MHC identical, BM cells was found after conditioning with two fractions of 6.0 Gy TBI, separated by 72 h. One MHC haplotype mismatched marrow did engraft after two TBI fractions of 6.0 Gy. Engraftment no longer occurred with gradient purified bone marrow cells from this type of donor. Late effects of TBI were early greying in all animals, and secondary uterine inertia in female dogs after 7.5 GY TBI. Fertility in males or females was not changed by radiation. An increase of pancreas fibrosis was noted in dogs receiving fractions of 6.0 Gy TBI. (author)

  4. Successful orthotopic liver transplantation in an adult patient with sickle cell disease and review of the literature

    Morey Blinder

    2013-05-01

    Full Text Available Sickle cell disease can lead to hepatic complications ranging from acute hepatic crises to chronic liver disease including intrahepatic cholestasis, and iron overload. Although uncommon, intrahepatic cholestasis may be severe and medical treatment of this complication is often ineffective. We report a case of a 37 year-old male patient with sickle cell anemia, who developed liver failure and underwent successful orthotopic liver transplantation. Both pre and post-operatively, he was maintained on red cell transfusions. He remains stable with improved liver function 42 months post transplant. The role for orthotopic liver transplantation is not well defined in patients with sickle cell disease, and the experience remains limited. Although considerable challenges of post-transplant graft complications remain, orthotopic liver transplantation should be considered as a treatment option for sickle cell disease patients with end-stage liver disease who have progressed despite conventional medical therapy. An extended period of red cell transfusion support may lessen the post-operative complications.

  5. Epstein-Barr virus lymphoproliferative disease after hematopoietic stem cell transplant.

    Rouce, Rayne H; Louis, Chrystal U; Heslop, Helen E

    2014-11-01

    Epstein-Barr virus (EBV) reactivation can cause significant morbidity and mortality after allogeneic hematopoietic stem cell transplant. Delays in reconstitution of EBV-specific T lymphocyte activity can lead to life-threatening EBV lymphoproliferative disease (EBV-PTLD). This review highlights recent advances in the understanding of pathophysiology, risk factors, diagnosis, and management of EBV viremia and PTLD. During the past decade, early detection strategies, such as serial measurement of EBV-DNA load, have helped identify high-risk patients and diagnose early lymphoproliferation. The most significant advances have come in the form of innovative treatment options, including manipulation of the balance between outgrowing EBV-infected B cells and the EBV cytotoxic T lymphocyte response, and targeting infected B cells with monoclonal antibodies, chemotherapy, unmanipulated donor lymphocytes, and donor or more recently third-party EBV cytotoxic T lymphocytes. Defining criteria for preemptive therapy remains a challenge. EBV reactivation is a significant complication after stem cell transplant. Continued improvements in risk stratification and treatment options are required to improve the morbidity and mortality caused by EBV-associated diseases. Current approaches use rituximab to deplete B cells or adoptive transfer of EBV cytotoxic T lymphocyte to reconstitute immunity. The availability of rapid EBV-specific T cell products offers the possibility of improved outcomes.

  6. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties

    Hua Jin

    2015-01-01

    Full Text Available The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C 6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C 6 brachial plexus injury site (1 × 10 6 cells/mL, 3 μL/injection, 25 injections immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C 6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  7. Challenges and opportunities for international cooperative studies in pediatric hematopoeitic cell transplantation: priorities of the Westhafen Intercontinental Group.

    Schultz, Rudolph Kirk R; Baker, Kevin Scott; Boelens, Jaap J; Bollard, Catherine M; Egeler, R Maarten; Cowan, Mort; Ladenstein, Ruth; Lankester, Arjan; Locatelli, Franco; Lawitschka, Anita; Levine, John E; Loh, Mignon; Nemecek, Eneida; Niemeyer, Charlotte; Prasad, Vinod K; Rocha, Vanderson; Shenoy, Shalini; Strahm, Brigitte; Veys, Paul; Wall, Donna; Bader, Peter; Grupp, Stephan A; Pulsipher, Michael A; Peters, Christina

    2013-09-01

    More than 20% of allogeneic hematopoietic cell transplantations (HCTs) are performed in children and adolescents at a large number of relatively small centers. Unlike adults, at least one-third of HCTs in children are performed for rare, nonmalignant indications. Clinical trials to improve HCT outcomes in children have been limited by small numbers and these pediatric-specific features. The need for a larger number of pediatric HCT centers to participate in trials has led to the involvement of international collaborative groups. Representatives of the Pediatric Blood and Marrow Transplant Consortium, European Group for Blood and Marrow Transplantation's Pediatric Working Group, International Berlin-Frankfurt-Munster (iBFm) Stem Cell Transplantation Committee, and Children's Oncology Group's Hematopoietic Stem Cell Transplantation Discipline Committee met on October 3, 2012, in Frankfurt, Germany to develop a consensus on the highest priorities in pediatric HCT. In addition, it explored the creation of an international consortium to develop studies focused on HCT in children and adolescents. This meeting led to the creation of an international HCT network, dubbed the Westhafen Intercontinental Group, to develop worldwide priorities and strategies to address pediatric HCT issues. This review outlines the priorities of need as identified by this consensus group. Copyright © 2013 American Society for Blood and Marrow Transplantation. All rights reserved.

  8. [Defibrotide therapy for patients with sinusoidal obstruction syndrome after hematopoietic stem cell transplantation].

    Yakushijin, Kimikazu; Okamura, Atsuo; Ono, Kanako; Kawano, Yuko; Kawano, Hiroki; Funakoshi, Yohei; Kawamori, Yuriko; Nishikawa, Shinichiro; Minagawa, Kentaro; Sada, Akiko; Shimoyama, Manabu; Yamamoto, Katsuya; Katayama, Yoshio; Matsui, Toshimitsu

    2009-01-01

    Sinusoidal obstruction syndrome (SOS) is one of the life-threatening complications caused by endothelial damage to the hepatic sinusoids after hematopoietic stem cell transplantation. However, a satisfactory treatment for SOS has not yet been established. Defibrotide has anti-thrombotic, anti-ischemic, anti-inflammatory, and thrombolytic properties without systemic anticoagulant effects. We treated eight post-transplant SOS patients with defibrotide. Three patients responded to the therapy and the initial response was observed within a week. In addition to the improvement of liver function, rapid recovery of response to diuretic drugs followed by the improvement of renal function was observed. All of the five patients with respiratory dysfunction died despite administration of defibrotide, suggesting that early treatment might lead to better outcomes. There were no severe adverse effects directly due to defibrotide administration. Defibrotide seems to be a promising treatment for SOS, and the initiation of a clinical study in Japan would be important.

  9. Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site

    Andrew R. Pepper

    2017-06-01

    Full Text Available Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of “healthy” human donor pancreata restricts the broader application of this effective curative therapy. “β-Like” cells derived from human embryonic stem cells (hESC, with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells.

  10. Haematopoietic transplants combining a single unrelated cord blood unit and mobilized haematopoietic stem cells from an adult HLA-mismatched third party donor. Comparable results to transplants from HLA-identical related donors in adults with acute leukaemia and myelodysplastic syndromes.

    Sebrango, Ana; Vicuña, Isabel; de Laiglesia, Almudena; Millán, Isabel; Bautista, Guiomar; Martín-Donaire, Trinidad; Regidor, Carmen; Cabrera, Rafael; Fernandez, Manuel N

    2010-06-01

    We describe results of the strategy, developed by our group, of co-infusion of mobilized haematopoietic stem cells as a support for single-unit unrelated cord blood transplant (dual CB/TPD-MHSC transplants) for treatment of haematological malignancies in adults, and a comparative analysis of results obtained using this strategy and transplants performed with mobilized haematopoietic stem cells from related HLA-identical donors (RTD) for treatment of adults with acute leukaemia and myelodysplastic syndromes. Our data show that the dual CB/TPD-MHSC transplant strategy results in periods of post-transplant neutropenia, final rates of full donor chimerism and transplant-related mortality rates comparable to those of the RTD. Final survival outcomes are comparable in adults transplanted because of acute leukaemia, with different incidences of the complications that most influence these: a higher incidence of infections related to late recovery of protective immunity dependent on T cell functions, and a lower incidence of serious acute graft-versus-host disease and relapses. Recent advances in cord blood transplant techniques allow allogeneic haematopoietic stem cell transplantation (HSCT) to be a viable option for almost every patient who may benefit from this therapeutic approach. Development of innovative strategies to improve the post-transplant recovery of T cells function is currently the main challenge to further improving the possibilities of unrelated cord blood transplantation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. 78 FR 54257 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    2013-09-03

    ...; Program priorities; research priorities; and the scope and design of the Stem Cell Therapeutic Outcomes... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on the Advisory Council on Blood Stem Cell Transplantation (ACBSCT). The ACBSCT was established...

  12. Sleep disruption among cancer patients following autologous hematopoietic cell transplantation.

    Nelson, Ashley M; Jim, Heather S L; Small, Brent J; Nishihori, Taiga; Gonzalez, Brian D; Cessna, Julie M; Hyland, Kelly A; Rumble, Meredith E; Jacobsen, Paul B

    2018-03-01

    Despite a high prevalence of sleep disruption among hematopoietic cell transplant (HCT) recipients, relatively little research has investigated its relationships with modifiable cognitive or behavioral factors or used actigraphy to characterize sleep disruption in this population. Autologous HCT recipients who were 6-18 months post transplant completed self-report measures of cancer-related distress, fear of cancer recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors upon enrollment. Patients then wore an actigraph for 7 days and completed a self-report measure of sleep disruption on day 7 of the study. Among the 84 participants (age M = 60, 45% female), 41% reported clinically relevant sleep disruption. Examination of actigraph data confirmed that, on average, sleep was disrupted (wake after sleep onset M = 66 min) and sleep efficiency was less than recommended (sleep efficiency M = 78%). Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors were related to self-reported sleep disruption (p valuesdisruption after transplant. Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and maladaptive sleep behaviors are related to self-reported sleep disruption and should be considered targets for cognitive behavioral intervention in this population.

  13. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-01-01

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period

  14. Health-related quality of life of hematopoietic stem cell transplant childhood survivors: state of the science.

    Tanzi, Elizabeth M

    2011-01-01

    The notion of health-related quality of life (HRQoL) holds unique significance in the treatment of patients who have undergone hematopoietic stem cell transplantation (HSCT). Not only is transplant procedure inevitably associated with immediate and late medical effects along with high mortality and morbidity rates, but it can also significantly affect the HRQoL for the patient and family. This review of literature will assist advanced practice nurses and pediatric oncology nurses in distinguishing and targeting interventions for patients and families who are at high risk of encountering distress during and following HSCT. It provides information on the assessment of pre-HSCT variables to identify patient subgroups in need of more aggressive supportive care to improve HRQoL during transplant. Furthermore, it serves as a guideline for developing interventional strategies and the role of the advanced practice nurse and pediatric oncology nurse caring for the patient throughout and following transplant.

  15. Concerns of stem cell transplant patients during routine ambulatory assessment

    Klein C

    2013-01-01

    Full Text Available Lisa Kennedy Sheldon,1 Maryum Kazmi,1 Cynthia Klein,2 Donna L Berry31University of Massachusetts Boston, Boston, MA, 2Seattle Cancer Care Alliance, Seattle, WA, 3Phyllis Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USABackground: Stem cell transplant (SCT is a treatment choice for many hematological malignancies. There is currently a lack of evidence regarding the self-reported concerns of SCT patients before and after SCT.Aim and design: This exploratory study performed a secondary analysis of self-reported, written concerns of SCT patients before and after transplant to determine patients' concerns.Methods: Content analysis of text box entries of SCT patients collected between 2005 and 2007 at the Seattle Cancer Care Alliance. Text box entries were collected as part of symptom assessment using the Electronic Self-Report Assessment – Cancer instrument. The assessment was presented to 137 patients undergoing SCT at two time points: prior to ambulatory visits before any therapy had begun (T1 and at the first visit after hospital discharge following SCT (T2.Results: Text box entries were made before (n = 52 and after (n = 87 the transplant, resulting in 139 text box entries made by 137 patients representing 133 concerns. Using content analysis, the entries were categorized and ranked according to frequency. After symptom concerns, patients ranked work and financial issues the most frequent concerns prior to SCT. After SCT, symptoms remained the most frequently entered area of concern, followed by survival.Conclusion: Oncology providers need to assess SCT patients for work and financial concerns before and after transplant. Appropriate and timely referrals may ease the burden of these concerns for patients. Thus, assessment of financial and work concerns by the oncology team should be an integral part of quality health care for patients undergoing SCT.Keywords: self-report, electronic

  16. Comparative Peripheral Blood T Cells Analysis Between Adult Deceased Donor Liver Transplantation (DDLT) and Living Donor Liver Transplantation (LDLT).

    Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Gyu-Seong; Kang, Eun-Suk; Lee, Suk-Koo

    2017-08-08

    BACKGROUND T lymphocytes are an essential component of allograft rejection and tolerance. The aim of the present study was to analyze and compare the characteristics of T cell subsets in patients who underwent deceased donor liver transplantation (DDLT) versus living donor liver transplantation (LDLT). MATERIAL AND METHODS Between April 2013 and June 2014, 64 patients underwent adult liver transplantation. The distribution of peripheral blood T lymphocyte subsets before transplantation and at 4, 8, 12, and 24 weeks post-transplantation were monitored serially. RESULTS In the serial peripheral blood samples, the absolute CD3+ T cell counts in the LDLT group were higher than those in the DDLT group (p=0.037). The CD4+, CD8+, CD4/CD8, Vδ1, Vδ2, and γδ T cell counts did not change significantly over time in either group. The Vδ1/Vδ2 ratio was higher in patients with cytomegalovirus (CMV) infection than in patients without CMV infection (0.12 versus 0.26; p=0.033). The median absolute CD3+ and CD8+ T cell counts in patients with biopsy-proven acute rejection (BPAR) were 884 (range, 305-1,320) and 316 (range, 271-1,077), respectively, whereas they were 320 (range, 8-1,167) and 257 (range, 58-1,472) in patients without BPAR. The absolute CD3+ and CD8 T cell counts were higher in patients with BPAR than in patients without BPAR (p=0.007 and p=0.039, respectively). CONCLUSIONS With the exception of CD3+ T cells, T cell populations did not differ significantly between patients who received DDLT versus LDLT. In liver transplantation patients, CMV infection and BPAR were closely associated with T cell population changes.

  17. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury

    Ji Cheol Shin

    2015-01-01

    Full Text Available In a phase I/IIa open-label and nonrandomized controlled clinical trial, we sought to assess the safety and neurological effects of human neural stem/progenitor cells (hNSPCs transplanted into the injured cord after traumatic cervical spinal cord injury (SCI. Of 19 treated subjects, 17 were sensorimotor complete and 2 were motor complete and sensory incomplete. hNSPCs derived from the fetal telencephalon were grown as neurospheres and transplanted into the cord. In the control group, who did not receive cell implantation but were otherwise closely matched with the transplantation group, 15 patients with traumatic cervical SCI were included. At 1 year after cell transplantation, there was no evidence of cord damage, syrinx or tumor formation, neurological deterioration, and exacerbating neuropathic pain or spasticity. The American Spinal Injury Association Impairment Scale (AIS grade improved in 5 of 19 transplanted patients, 2 (A → C, 1 (A → B, and 2 (B → D, whereas only one patient in the control group showed improvement (A → B. Improvements included increased motor scores, recovery of motor levels, and responses to electrophysiological studies in the transplantation group. Therefore, the transplantation of hNSPCs into cervical SCI is safe and well-tolerated and is of modest neurological benefit up to 1 year after transplants. This trial is registered with Clinical Research Information Service (CRIS, Registration Number: KCT0000879.

  18. GVHD (Graft-Versus-Host Disease): A Guide for Patients and Families After Stem Cell Transplant

    ... Disease): A guide for patients and families after stem cell transplant The immune system is the body's tool ... and attacking them. When you receive a donor's stem cells (the “graft”), the stem cells recreate the donor's ...

  19. Evaluation of Hematopoietic Stem Cell Mobilization Rates with Early Plerixafor Administration for Adult Stem Cell Transplantation.

    Stover, Jessica T; Shaw, J Ryan; Kuchibhatla, Maragatha; Horwitz, Mitchell E; Engemann, Ashley M

    2017-08-01

    The addition of plerixafor to high-dose colony-stimulating growth factor has been shown to improve stem cell mobilization rates in autologous transplant patients with multiple myeloma and non-Hodgkin lymphoma. This study evaluates the change in administration time of plerixafor to determine if cell mobilization rates are similar between the US Food and Drug Administration-approved administration time of 11 hours before apheresis and an earlier administration time of 16 hours before apheresis. Medical records of patients age ≥ 18 years undergoing autologous stem cell transplantation requiring the use of plerixafor after at least 4 days of granulocyte colony-stimulating factor therapy to complete stem cell mobilization from January 1, 2010 through September 30, 2014 were retrospectively reviewed. The primary outcome was CD34 + cell mobilization success rates when plerixafor was administered 11 ± 2 hours (standard administration group) compared with 16 ± 2 hours before cell apheresis (early administration group), as defined as collection of  ≥2 × 10 6 CD34 + cells/kg. Secondary outcomes included the number of plerixafor therapy days required to collect a total of ≥2 × 10 6 CD34 + cells/kg, the number of apheresis cycles required to achieve ≥2 × 10 6 CD34 + cells/kg, the median CD34 + cells/kg collected in each apheresis session, and the rates of reported adverse events that occurred in the standard administration time group compared with the early administration time group. Of the 197 patients included, 114 patients received plerixafor 11 ± 2 hours before apheresis and 83 patients received plerixafor 16 hours ± 2 hours before apheresis. Ninety-four percent of patients in the early administration group achieved successful stem cell mobilization compared with 81.6% in the standard administration group (P = .0111). The median number of plerixafor days to reach the collection goal of  ≥2 × 10 6 CD34 + cells/kg was 1 day for

  20. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  1. Relapsed Diffuse Large B-Cell Lymphoma Treated by Reduced-Intensity Allogeneic Stem Cell Transplantation with Donor Lymphocyte Infusion

    Chudhry, Q.N.; Ahmed, P.; Ullah, K.; Satti, T.M.; Raza, S.; Mehmood, S.K.; Akram, M.; Ahmed, S.

    2010-01-01

    A 42 years old male with relapsed diffuse large B-cell lymphoma was given second-line chemotherapy followed by reduced intensity allogeneic stem cell transplantation from HLA matched brother. Twelve weeks post transplant, his disease relapsed evidenced by the appearance of lymphoma cells in the peripheral blood and declining donor chimerism. Donor lymphocyte infusion was given that induced complete lymphoma remission. The patient is well 3 years post transplant with his disease in complete remission. (author)

  2. Hematopoietic Stem Cell Transplantation in India-2017 Annual Update.

    Naithani, Rahul

    2018-01-01

    There has been a steady rise in number of transplant centers in India over last few years. This year many papers related to bone marrow transplants were presented in annual conference of Indian society of Hematology and Transfusion Medicine. All oral and poster presentations which were published were reviewed. There were many publications on autologous transplant, allogeneic transplant and lab aspects of transplant. Centers shared their data on autologous transplants in newly set-up units with resource constraints with good outcomes. Encouraging data from across India is likely to boost more centers to set up transplant centers.

  3. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  4. Hematopoietic Stem Cell Transplantation Activity and Trends at a Pediatric Transplantation Center in Turkey During 1998-2008

    Volkan Hazar

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this study was to document hematopoietic stem cell transplantation (HSCT activity and trends at our treatment center. METHODS: Data collected over a 10-year period were retrospectively analyzed, concentrating primarily on types of HSCT, transplant-related mortality (TRM, stem cell sources, indications for HSCT, and causes of death following HSCT. RESULTS: In total, 222 allogeneic (allo-HSCT (87.4% and 32 autologous (auto-HSCT (12.6% procedures were performed between 1998 and 2008. Stem cells obtained from unrelated donors were used in 22.6% (50/222 of the allo- HSCTs. Cord blood was the source of hematopoietic stem cells (HSC in 12.2% of all transplants. The most common indication for allo-HSCT was hemoglobinopathy (43.2%, versus neuroblastoma (53.1% for auto-HSCT. The TRM rate 1 year post transplantation was 18.3% ± 2.5% for all transplants, but differed according to transplantation type (23.5% ± 7.9% for auto-HSCT and 17.5% ± 2.6% for allo-HSCT. The most common cause of death 1 year post HSCT was infection (35.9%. CONCLUSION: The TRM rate in the patients that underwent allo-HSCT was similar to that which has been previously reported; however, the TRM rate in the patients that underwent auto-HSCT was higher than previously reported in developed countries. The selection of these patients to be transplanted must be made attentively.

  5. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  6. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival.

    Mao, Duo; Zhu, Meifeng; Zhang, Xiuyuan; Ma, Rong; Yang, Xiaoqing; Ke, Tingyu; Wang, Lianyong; Li, Zongjin; Kong, Deling; Li, Chen

    2017-09-01

    Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical islet transplantation is limited by long-term graft dysfunction and attrition. We have investigated the therapeutic potential of a silk fibroin macroporous (SF) scaffold for syngeneic islet transplantation in diabetic mice. The SF scaffold was prepared via lyophilisation, which enables incorporation of active compounds including cytokines, peptide and growth factors without compromising their biological activity. For the present study, a heparin-releasing SF scaffold (H-SF) in order to evaluate the versatility of the SF scaffold for biological functionalisation. Islets were then co-transplanted with H-SF or SF scaffolds in the epididymal fat pad of diabetic mice. Mice from both H-SF and SF groups achieved 100% euglycaemia, which was maintained for 1year. More importantly, the H-SF-islets co-transplantation led to more rapid reversal of hyperglycaemia, complete normalisation of glucose responsiveness and lower long-term blood glucose levels. This superior transplantation outcome is attributable to H-SF-facilitated islet revascularisation and cell proliferation since significant increase of islet endocrine and endothelial cells proliferation was shown in grafts retrieved from H-SF-islets co-transplanted mice. Better intra-islet vascular reformation was also evident, accompanied by VEGF upregulation. In addition, when H-SF was co-transplanted with islets extracted from vegfr2-luc transgenic mice in vivo, sustained elevation of bioluminescent signal that corresponds to vegfr2 expression was collected, implicating a role of heparin-dependent activation of endogenous VEGF/VEGFR2 pathway in promoting islet revascularisation and proliferation. In summary, the SF scaffolds provide an open platform as scaffold development for islet transplantation. Furthermore, given the pro-angiogenic, pro-survival and minimal post-transplantation

  7. Oral complaints and dental care of haematopoietic stem cell transplant patients: a qualitative survey of patients and their dentists

    Bos-den Braber, J.; Potting, C.M.J.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.; Blijlevens, N.M.A.

    2015-01-01

    PURPOSE: Little is known about the understanding of the oral and dental needs of haematopoietic stem cell transplant (HSCT) patients or about dentists' views and experiences regarding this patient group. This information is essential if we want to improve the standard of peri-HSCT dental care. The

  8. Endothelial cell chimerism associated with graft rejection after human lung transplantation.

    Ratajczak , Philippe; Murata , Hideyuki; Meignin , Véronique; Groussard , Odile; Fournier , Michel; Socié , Gérard; Mal , Hervé; Janin , Anne

    2008-01-01

    International audience; Endotheliitis is a major sign of graft rejection. Recipient-derived endothelial cells found in two series of liver and kidney transplants were related to graft rejection. Here, we assessed the presence and the number of chimeric endothelial cells in lung transplants, and their relation with graft rejection. In six males grafted with female lungs out of 193 lung transplantations, endothelial chimerism was studied by combined XY-fluorescent in situ hybridization with CD3...

  9. Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism.

    Perets, Nisim; Segal-Gavish, Hadar; Gothelf, Yael; Barzilay, Ran; Barhum, Yael; Abramov, Natalie; Hertz, Stav; Morozov, Darya; London, Michael; Offen, Daniel

    2017-07-28

    Autism spectrum disorders (ASD) are neurodevelopmental disabilities characterized by severe impairment in social communication skills and restricted, repetitive behaviors. We have previously shown that a single transplantation of mesenchymal stem cells (MSC) into the cerebral lateral ventricles of BTBR autistic-like mice resulted in an improvement across all diagnostic criteria of ASD. We suggested that brain-derived neurotrophic factor (BDNF), a protein which supports the survival and regeneration of neurons secreted by MSC, largely contributed to the beneficial behavioral effect. In this study, we investigated the behavioral effects of transplanted MSC induced to secrete higher amounts of neurotrophic factors (NurOwn ® ), on various ASD-related behavioral domains using the BTBR mouse model of ASD. We demonstrate that NurOwn ® transplantation had significant advantages over MSC transplantation in terms of improving communication skills, one and six months following treatment, as compared to sham-treated BTBR mice. Furthermore, NurOwn ® transplantation resulted in reduced stereotypic behavior for as long as six months post treatment, compared to the one month improvement observed in the MSC treated mice. Notably, NurOwn ® treatment resulted in improved cognitive flexibility, an improvement that was not observed by MSC treatment. Both MSC and NurOwn ® transplantation induced an improvement in social behavior that lasted for six months. In conclusion, the present study demonstrates that a single transplantation of MSC or NurOwn ® have long-lasting benefits, while NurOwn ® may be superior to MSC treatment. Copyright © 2017. Published by Elsevier B.V.

  10. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  11. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  12. Unrelated haematopoietic stem cell transplantation in Taiwan and beyond.

    Yang, K L; Chang, C Y; Lin, S; Shyr, M H; Lin, P Y

    2009-06-01

    Since its inception in October 1993, the world-renowned Buddhist Tzu Chi Marrow Donor Registry has facilitated more than 1800 cases of stem cell donations for patients in 27 countries to date. Under the auspices of the Buddhist Tzu Chi Stem Cells Center (BTCSCC), the Registry (> 310,000 donors) offers, on average, one case of stem cell donation every day to national or international transplantation community. The accomplishment of the Registry stems from the philosophy and spirit of giving without reward that was inspired by its founder Dharma Master Cheng Yen, the Samaritan devotions of selfless voluntary stem cell donors and the efforts from a dedicated network of volunteer workers. Demographically speaking, slightly less than one third of the donations are provided to domestic patients and the rest to mainland China and countries in Asia, North America, Europe, Middle East, Oceania, and South Africa. While most of the patients belong to the Oriental ethnic group, a few of the patients are non-Oriental. In addition to the Registry, a non-profit umbilical cord blood (UCB) bank is operating since 2002 to provide a complimentary role for patients unable to identify appropriate bone marrow stem cell donors in the Registry in time. To date, with an inventory of over 12,000 units of UCB cryopreserved in the Tzu Chi Cord Blood Bank, 47 units have been employed in 37 cases of transplantation for both paediatric and adult patients domestically and internationally. The fact that Buddhist Tzu Chi Marrow Donor Registry and Cord Blood Bank are established and operating without governmental financial support is unique and special. To facilitate haematopoietic stem cells to its domestic patients experiencing financial burdens, the BTCSCC offers financial aids to the underprivileged for their medical relief. This humanitarian approach and compassion is definitely a role model for many countries in the world.

  13. The effects of compound danshen dripping pills and human umbilical cord blood mononuclear cell transplant after acute myocardial infarction.

    Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu

    2014-04-01

    The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.

  14. Ocular findings after allogeneic hematopoietic stem cell transplantation.

    Tabbara, Khalid F; Al-Ghamdi, Ahmad; Al-Mohareb, Fahad; Ayas, Mouhab; Chaudhri, Naeem; Al-Sharif, Fahad; Al-Zahrani, Hazzaa; Mohammed, Said Y; Nassar, Amr; Aljurf, Mahmoud

    2009-09-01

    To study the incidence, causes, and outcome of major ocular complications in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Retrospective, noncomparative, observational clinical study. The study included a total of 620 patients who underwent allogeneic HSCT in the period from 1997 to 2007 at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. Allogeneic HSCT. Patients with ocular complications were referred to the ophthalmology division for complete ophthalmologic examination, including visual acuity, tonometry, Schirmer test, biomicroscopy, and dilated ophthalmoscopy. Laboratory investigations were performed whenever indicated. The incidence and causes of major ocular complications after allogeneic HSCT were determined. Visual acuity at 1 year after allogeneic HSCT was recorded. Major ocular complications occurred in 80 (13%) of 620 patients who underwent allogeneic HSCT. There were 36 male patients (45%) and 44 female patients (55%) with a mean age of 29 years and an age range of 9 to 65 years. Prophylaxis for graft-versus-host disease (GVHD) consisted of cyclosporine and methotrexate in 69 patients, and cyclosporine, methotrexate and corticosteroids, or mycophenolate mofetil in 11 patients. The most frequently encountered ocular complications were chronic GVHD, dry eye syndrome without GVHD, corneal ulcers, cataract, glaucoma, cytomegalovirus retinitis, fungal endophthalmitis, and acquisition of allergic conjunctivitis from atopic donors. There was no correlation between the pattern of ocular complications and the transplanted stem cell source. Best-corrected visual acuity (BCVA) at 1 year after transplantation was less than 20/200 in 13 patients (16%), less than 20/50 in 17 patients (21%), and better than 20/50 in 50 patients (63%). Ocular complications are common in patients undergoing allogeneic HSCT. Early recognition and prompt treatment are important. The author(s) have no proprietary or commercial

  15. The myocardial perfusion imaging of bone marrow mesenchymal stem cell transplantation treated acute myocardial infarction in pig

    He Miao; Hou Xiancun; Li Yaomei; Zhou Peng; Qi Chunmei; Wu Weihuan; Li Li

    2006-01-01

    Objective: To evaluate the clinical value of bone marrow mesenchymal stem cell transplantation on acute myocardial infarction in pig with myocardial perfusion imaging. Methods: Acute myocardial infarction models were established by 21 minitype Chinese pigs and were divided into two groups. After 10 days, experimental group (n=11) was transplanted with bone marrow mesenchymal stem cell at the infarct areas, and the control group (n=10) with incubation solution. Before and eight weeks after transplantation, both groups were examined by 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging and with semi-quantitative analysis. Besides, echocardiogram and immunohistochemistry were also performed. Results: There was significant difference of total myocardial perfusion abnormal segments (46 vs 26), infarct areas [(34±12)% vs (21±10)%] and myocardial ischemia score [(20.0±4.3) vs (12.1±3.6)] between two groups (P<0.05). Also, there were accordant results with echocardiogram and immunohistochemistry findings. Conclusions: Bone marrow mesenchymal stem cell transplantation may improve blood perfusion and viability of the ischemic areas: Myocardial perfusion imaging can accurately observe the survival of bone marrow mesenchymal stem cell transplanted at the infarct areas. (authors)

  16. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  17. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  18. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  19. Thrombotic Microangiopathy in Haematopoietic Cell Transplantation: an Update

    Stavrou, Evi; Lazarus, Hillard M.

    2010-01-01

    Allogeneic hematopoietic cell transplantation (HCT) represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA). In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases), patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD) disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents. Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended. PMID:21776339

  20. THROMBOTIC MICROANGIOPATHY IN HAEMATOPOIETIC CELL TRANSPLANTATION:AN UPDATE

    Evi Stavrou

    2010-10-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA. In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases, patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents.  Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended.

  1. [Results of hematopoietic stem cell transplantation in hemoglobinopathies: thalassemia major and sickle cell disease].

    Hladun, R; Elorza, I; Olivé, T; Dapena, J L; Llort, A; Sánchez de Toledo, J; Díaz de Heredia, C

    2013-08-01

    The prevalence of hemoglobinopathies in Spain is increasing as a result of immigration. Thalassemia major presents with chronic hemolytic anemia that requires regular red blood cell transfusions within the first year of life. Patients with sickle cell disease suffer from chronic anemia, vasculopathy and progressive damage in almost any organ. There is decreased life expectancy in both conditions. Allogeneic hematopoietic stem cell transplantation represents the only potentially curative option. Seventeen patients (fourteen thalassemia major, and three sickle cell disease) underwent allogeneic hematopoietic stem cell transplantations. In the thalassemia group, nine donors were HLA-geno-identical siblings, two were partially matched related donors (one HLA allele mismatch), and three unrelated donors. All three patients with sickle cell disease were transplanted from HLA-geno-identical siblings. The source of stem cells was bone marrow in sixteen cases. Median patient age at transplant was six years (range: 1-16) in the thalassemia group, and twelve years (range: 8-15) in the sickle cell disease group. The graft was successful in all patients. Secondary graft rejection was observed in two thalassemia patients rendering them dependent on blood transfusions. Complete chimerism was observed in thirteen patients and, although mixed chimerism occurred in two, with all of them showing normal hemoglobin levels after transplantation and not requiring further transfusion support. Patients affected by sickle cell disease did not present with new vaso-occlusive crises, and stabilization of pulmonary and neurological function was observed. Chronic graft-versus-host disease was detected in three patients affected by thalassemia, and hypogonadotrophic hypogonadism in five patients. We conclude that for thalassemia major and sickle cell disease, allogenic hematopoietic stem cell transplantation from HLA-geno-identical siblings offers a high probability of complication-free survival

  2. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation

    Canninga-van Dijk, MR; Sanders, CJ; Verdonck, LF; Fijnheer, R; van den Tweel, JG

    Allogeneic haematopoietic stem cell transplantation (i.e. bone marrow or peripheral blood stem cell transplantation) is a common procedure in the treatment of various haematological disorders such as aplastic anaemia, (pre)leukaemias, some malignant lymphomas, multiple myeloma and immunodeficiency

  3. Relapsing tumefactive lesion in an adult with medulloblastoma previously treated with chemoradiotherapy and stem cell transplant.

    Mahta, Ali; Qu, Yan; Nastic, Denis; Sundstrom, Maria; Kim, Ryan Y; Saria, Marlon; Santagata, Sandro; Kesari, Santosh

    2012-04-01

    Herein, we present an adult case of medulloblastoma who received chemotherapy, radiation therapy and stem cell transplantation, and underwent multiple surgical resections for what were thought to be recurrences; however pathology confirmed a diagnosis of relapsing tumefactive lesions. This phenomenon seems to be a consequence of stem cell transplantation rather than a simple radiation treatment effect.

  4. Characterization of Regulatory Dendritic Cells That Mitigate Acute Graft-versus-Host Disease in Older Mice Following Allogeneic Bone Marrow Transplantation

    Scroggins, Sabrina M.; Olivier, Alicia K.; Meyerholz, David K.; Schlueter, Annette J.

    2013-01-01

    Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate thi...

  5. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  6. Recent advances in post autologous transplantation maintenance therapies in B-cell non-Hodgkin lymphomas

    Epperla, Narendranath; Fenske, Timothy S; Hari, Parameswaran N; Hamadani, Mehdi

    2015-01-01

    Lymphomas constitute the second most common indication for high dose therapy (HDT) followed by autologous hematopoietic cell transplantation (auto-HCT). The intent of administering HDT in these heterogeneous disorders varies from cure (e.g., in relapsed aggressive lymphomas) to disease control (e.g., most indolent lymphomas). Regardless of the underlying histology or remission status at transplantation, disease relapse remains the number one cause of post auto-HCT therapy failure and mortality. The last decade has seen a proliferation of clinical studies looking at prevention of post auto-HCT therapy failure with various maintenance strategies. The benefit of such therapies is in turn dependent on disease histology and timing of transplantation. In relapsed, chemosensitive diffuse large B-cell lymphoma (DLBCL), although post auto-HCT maintenance rituximab seems to be safe and feasible, it does not provide improved survival outcomes and is not recommended. The preliminary results with anti- programmed death -1 (PD-1) antibody therapy as post auto-HCT maintenance in DLBCL is promising but requires randomized validation. Similarly in follicular lymphoma, maintenance therapies including rituximab following auto-HCT should be considered investigational and offered only on a clinical trial. Rituximab maintenance results in improved progression-free survival but has not yet shown to improve overall survival in mantle cell lymphoma (MCL), but given the poor prognosis with post auto-HCT failure in MCL, maintenance rituximab can be considered on a case-by-case basis. Ongoing trials evaluating the efficacy of post auto-HCT maintenance with novel compounds (e.g., immunomodulators, PD-1 inhibitors, proteasome inhibitors and bruton’s tyrosine kinase inhibitors) will likely change the practice landscape in the near future for B cell non-Hodgkin lymphomas patients following HDT and auto-HCT. PMID:26421260

  7. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  8. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells

    Naoaki Sakata

    2018-05-01

    Full Text Available This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  9. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells.

    Sakata, Naoaki; Yoshimatsu, Gumpei; Kodama, Shohta

    2018-05-07

    This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  10. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  11. Experience of families of children and adolescents submitted to Hematopoietic Stem Cell Transplantation

    Verônica de Azevedo Mazza

    2016-12-01

    Full Text Available A descriptive study with a qualitative approach to describe how families of children and adolescents submitted to Hematopoietic Stem Cell Transplantation went through this experience. We conducted semi-structured interviews with 16 relatives of children and adolescents submitted to transplantation between December of 2014 to March of 2015 at the bone marrow transplantation service at a university hospital located at the South of Brazil. We analyzed the data with steps described by Creswell, with the support of the software IRAMUTEQ. From this analysis, the emerging categories were: the mother as an active subject in the transplantation process; family experience with the transplantation; transplantation impact for the child and/or adolescent; and, transplantation: from fear to hope. Considering our results, it is possible to ponderate about the care provided by the nursing team, becoming indispensable for these professionals to plan assistance focused not only on the patient but the whole family nucleus.

  12. Perceived Workforce Challenges among Clinical Social Workers in Hematopoietic Cell Transplantation Programs.

    Stickney Ferguson, Stacy; Randall, Jill; Dabney, Jane; Kalbacker, Marion E; Boyle, Nancy; Thao, Viengneesee; Murphy, Elizabeth A; Denzen, Ellen M

    2018-05-01

    Clinical social workers are psychosocial care experts who provide interventions that aim to address the emotional, relational, financial, and logistical challenges that arise throughout the hematopoietic cell transplantation (HCT) treatment and recovery process. Interventions that contribute to better patient outcomes can include cognitive behavioral therapy and counseling for adaptation to illness, family planning for 24/7 caregiver availability and strategies to support patient activities of daily living, instruction on guided imagery and relaxation techniques for symptom management and to decrease anxiety, psychoeducation on the treatment trajectory, and linkage with financial resources. A Social Work Workforce Group (SWG) was established through the System Capacity Initiative, led by the National Marrow Donor Program/Be The Match, to characterize the current social work workforce capacity and challenges. The SWG conducted a web-based survey of HCT clinical social workers in the United States. The response rate was 57% (n = 90), representing 76 transplant centers. Survey results indicated that the clinical social worker role and scope of practice varies significantly between centers; less than half of respondents reported that their clinical social work expertise was used to its fullest potential. With an estimated 3-fold increase in HCT patient volume by 2020, the need for specialized psychosocial health services will increase. The SWG makes recommendations to build capacity for the psychosocial care of HCT patients and to more fully integrate the social worker as a core member of the HCT team. The SWG created a Blood and Marrow Transplant (BMT) Clinical Social Worker role description that can be used by transplant centers to educate healthcare professionals, benchmark utilization of clinical social workers, and improve comprehensive psychosocial health programs. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by

  13. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction.

    Kirsi Alestalo

    Full Text Available Acute myocardial infarction (AMI launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI.Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection.Twenty-six patients (control group, n = 12; BMMNC group, n = 14 from the previously reported FINCELL study (n = 80 were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall's tau, control 0.6; BMMNC 0.7. At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall's tau, control 0.3; BMMNC 0.7.BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI.

  14. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  15. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  16. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  17. Peripheral Blood stem cell transplantation in children with Beta-thalassemia major

    Farzana, T.; Shamsi, T.S.; Irfan, M.; Ansari, S.H.; Baig, M.I.; Shakoor, N.

    2003-01-01

    Objective: To share the preliminary data on stem cell transplantation in Pakistan. Results: Engraftment was achieved in all patients except one who required a second dose of bone marrow graft on day +21. Median time to achieve absolute neutrophil count of > 0.5 x 10/sup 9/ /l was 9.0 days (range 8 - 31 days) and platelet count of > 20 x 10/sup 9/ /l was 14 days (12 - 35 days). Acute GVHD was seen in 3 patients, one patient had grade IV gut GVHD; another patient had grade III gut GVHD while third patient had grade II skin GVHD. Median hospital stay was 29 days. Six patients were well and transfusion independent 3 to 36 months post transplant. One episode of primary graft failure required a second dose of bone marrow harvest. Another episode of graft rejection received two doses of donor lymphocytes infusion. There were 4 deaths due to grade IV gut GVHD because of uncontrolled systemic Candida infection and one due to hepatic veno-occlusive (VOD) disease. Conclusion: Allogeneic peripheral blood stem cell transplantation can be safely and economically carried out in Pakistan. Although there had been 4 deaths during 36 months follow-up, with increasing understanding and experience the outcome is expected to improve. (author)

  18. Having a sibling as donor: patients' experiences immediately before allogeneic hematopoietic stem cell transplantation.

    Kisch, Annika; Bolmsjö, Ingrid; Lenhoff, Stig; Bengtsson, Mariette

    2014-08-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) offers a potential cure for a variety of diseases but is also associated with significant risks. With HSCT the donor is either a relative, most often a sibling, or an unrelated registry donor. The aim was to explore patients' experiences, immediately before transplantation, regarding having a sibling as donor. Ten adult patients with sibling donors were interviewed before admission for HSCT. The interviews were digitally recorded, transcribed verbatim and subjected to qualitative content analysis. The main theme Being in no man's land is a metaphor for the patients' complex situation with its mixture of emotions and thoughts prior to transplantation. The three subthemes Trust in the sibling donor, Concern about others and Loss of control cover the various experiences. The patient's experiences are influenced by their personal situation and the quality of the relationship with the sibling donor. While patients feel secure in having a sibling donor, they are dependent for their survival on the cell donation and feel responsible for the donor's safety during donation. These emotions intensify the patients' sense of dependency and loss of control. In caring for HSCT patients the nurses should be aware of the complexity of the patients' situation and keep in mind that having a sibling donor might imply extra pressure, including a sense of responsibility. Caring for both patients and sibling donors optimally is a challenge, which needs further improvement and exploration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. BACTERIAL INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS

    Elisa Balletto

    2015-07-01

    Full Text Available Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT. They consist mainly of bloodstream infections (BSI, followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of an increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, thorough evaluation of local epidemiology is mandatory in order to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended is resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogens. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place in order to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres.

  20. Remission induction using alemtuzumab can permit chemotherapy-refractory chronic lymphocytic leukemia (CLL) patients to undergo allogeneic stem cell transplantation.

    Knauf, Wolfgang; Rieger, Kathrin; Blau, Wolfgang; Hegenbart, Ute; Von Gruenhagen, Ulrich; Niederwieser, Dietger; Thiel, Eckhard

    2004-12-01

    The outcome of allogeneic stem cell transplantation depends upon the disease status before transplantation. Patients with refractory disease are at high risk for relapse. To improve the curative potential of the transplant procedure, we treated 3 chemotherapy-refractory CLL patients with alemtuzumab before allogeneic stem cell transplantation. Prior to therapy, all patients suffered from B-symptoms, and had massive adenopathy, splenomegaly, thrombocytopenia, and anemia; two patients had hepatomegaly. Alemtuzumab greatly reduced tumor mass in blood and bone marrow, B-symptoms resolved, and organomegaly improved. Two patients became blood product independent. All patients proceeded to transplantation after conditioning with TBI 2 Gy (n=1) or Treosulfan (n=2) in combination with Fludarabine either from an HLA-matched sibling (n=2) or from an HLA-matched unrelated donor (n=1). All patients engrafted, and are alive and well. Two patients reached complete remission (CR); one patient attained stable partial remission (PR). These heavily pre-treated refractory patients gained substantial clinical benefit from alemtuzumab, and received successful allografts.

  1. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy.

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Park, Won Soon

    2018-05-16

    Recently, we have demonstrated that concurrent hypothermia and mesenchymal stem cells (MSCs) transplantation synergistically improved severe neonatal hypoxic ischemic encephalopathy (HIE). The current study was designed to determine whether hypothermia could extend the therapeutic time window of MSC transplantation for severe neonatal HIE. To induce HIE, newborn rat pups were exposed to 8% oxygen for 2 h following unilateral carotid artery ligation on postnatal day (P) 7. After approving severe HIE involving >50% of the ipsilateral hemisphere volume, hypothermia (32 °C) for 2 days was started. MSCs were transplanted 2 days after HIE modeling. Follow-up brain MRI, sensorimotor function tests, assessment of inflammatory cytokines in the cerebrospinal fluid (CSF), and histological evaluation of peri-infarction area were performed. HIE induced progressively increasing brain infarction area over time, increased cell death, reactive gliosis and brain inflammation, and impaired sensorimotor function. All these damages observed in severe HIE showed better, robust improvement with a combination treatment of hypothermia and delayed MSC transplantation than with either stand-alone therapy. Hypothermia itself did not significantly reduce brain injury, but broadened the therapeutic time window of MSC transplantation for severe newborn HIE.

  2. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  3. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  4. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  5. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases.

    Snowden, John A; Badoglio, Manuela; Labopin, Myriam; Giebel, Sebastian; McGrath, Eoin; Marjanovic, Zora; Burman, Joachim; Moore, John; Rovira, Montserrat; Wulffraat, Nico M; Kazmi, Majid; Greco, Raffaella; Snarski, Emilian; Kozak, Tomas; Kirgizov, Kirill; Alexander, Tobias; Bader, Peter; Saccardi, Riccardo; Farge, Dominique

    2017-12-26

    Hematopoietic stem cell transplantation (HSCT) has evolved for >20 years as a specific treatment of patients with autoimmune disease (AD). Using European Society for Blood and Marrow Transplantation registry data, we summarized trends and identified factors influencing activity and outcomes in patients with AD undergoing first autologous HSCT (n = 1951; median age, 37 years [3-76]) and allogeneic HSCT (n = 105; median age, 12 years [<1-62]) in 247 centers in 40 countries from 1994 to 2015. Predominant countries of activity were Italy, Germany, Sweden, the United Kingdom, The Netherlands, Spain, France, and Australia. National activity correlated with the Human Development Index ( P = .006). For autologous HSCT, outcomes varied significantly between diseases. There was chronological improvement in progression-free survival (PFS, P < 10 -5 ), relapse/progression ( P < 10 -5 ), and nonrelapse mortality ( P = .01). Health care expenditure was associated with improved outcomes in systemic sclerosis and multiple sclerosis (MS). On multivariate analysis selecting adults for MS, systemic sclerosis, and Crohn disease, better PFS was associated with experience (≥23 transplants for AD, P = .001), learning (time from first HSCT for AD ≥6 years, P = .01), and Joint Accreditation Committee of the International Society for Cellular Therapy and European Society for Blood and Marrow Transplantation accreditation status ( P = .02). Despite improved survival over time ( P = .02), allogeneic HSCT use remained low and largely restricted to pediatric practice. Autologous HSCT has evolved into a treatment modality to be considered alongside other modern therapies in severe AD. Center experience, accreditation, interspecialty networking, and national socioeconomic factors are relevant for health service delivery of HSCT in AD.

  6. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation

    Jahansouz, Cyrus; Jahansouz, Cameron; Kumer, Sean C.; Brayman, Kenneth L.

    2011-01-01

    Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored. PMID:22013505

  7. EPSTEIN-BARR VIRUS RELATED LYMPHOPROLIFERATIONS AFTER STEM CELL TRANSPLANTATION

    Patrizia Chiusolo

    2009-11-01

    Full Text Available

    Epstein-Barr virus related lymphoproliferative  disorders are a rare but potentially fatal complication of allogeneic stem cell transplantation with an incidence of 1-3% and  occurring within 6 months after transplantation.  The most relevant risk factors include the use of in vivo T-cell depletion with antithymocyte globulin, HLA disparities between donor and recipient, donor type,  splenectomy etc. The higher the numbers of risk factors the higher the risk of developing Epstein-Barr virus related lymphoproliferative  disorders. Monitoring EBV viremia after transplantation is of value and it should be applied to high risk patients since it allows pre-emptive therapy initiation  at specified threshold values   and early treatment. This strategy  might reduce mortality which was >80% prior to the implementation of anti-EBV therapy . Treatment of EBV-LPD after allogeneic SCT may consist of anti-B-cell therapy (rituximab, adoptive T-cell immunotherapy or both. Rituximab treatment should be considered the first treatment option, preferably guided by intensive monitoring of EBV DNA while reduction of immunosuppression should be carefully evaluated for the risk of graft versus host disease.

  8. Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells.

    Ema, Hideo; Uchinomiya, Kouki; Morita, Yohei; Suda, Toshio; Iwasa, Yoh

    2016-04-07

    The transplantation of blood tissues from bone marrow into a lethally irradiated animal is an experimental procedure that is used to study how the blood system is reconstituted by haematopoietic stem cells (HSC). In a competitive repopulation experiment, a lethally irradiated mouse was transplanted with a single HSC as a test cell together with a number of bone marrow cells as competitor cells, and the fraction of the test cell progeny (percentage of chimerism) was traced over time. In this paper, we studied the stem cell kinetics in this experimental procedure. The balance between symmetric self-renewal and differentiation divisions in HSC determined the number of cells which HSC produce and the length of time for which HSC live after transplantation. The percentage of chimerism depended on the type of test cell (long-, intermediate-, or short-term HSC), as well as the type and number of HSC included in competitor cells. We next examined two alternative HSC differentiation models, one-step and multi-step differentiation models. Although these models differed in blood cell production, the percentage of chimerism appeared very similar. We also estimated the numbers of different types of HSC in competitor cells. Based on these results, we concluded that the experimental results inevitably include stochasticity with regard to the number and the type of HSC in competitor cells, and that, in order to detect different types of HSC, an appropriate number of competitor cells needs to be used in transplantation experiments. Copyright © 2016. Published by Elsevier Ltd.

  9. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  10. Post-Transplant Cyclophosphamide and Tacrolimus-Mycophenolate Mofetil Combination Prevents Graft-versus-Host Disease in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors.

    Carnevale-Schianca, Fabrizio; Caravelli, Daniela; Gallo, Susanna; Coha, Valentina; D'Ambrosio, Lorenzo; Vassallo, Elena; Fizzotti, Marco; Nesi, Francesca; Gioeni, Luisa; Berger, Massimo; Polo, Alessandra; Gammaitoni, Loretta; Becco, Paolo; Giraudo, Lidia; Mangioni, Monica; Sangiolo, Dario; Grignani, Giovanni; Rota-Scalabrini, Delia; Sottile, Antonino; Fagioli, Franca; Aglietta, Massimo

    2017-03-01

    Allogeneic hematopoietic cell transplant (HCT) remains the only curative therapy for many hematologic malignancies but it is limited by high nonrelapse mortality (NRM), primarily from unpredictable control of graft-versus-host disease (GVHD). Recently, post-transplant cyclophosphamide demonstrated improved GVHD control in allogeneic bone marrow HCT. Here we explore cyclophosphamide in allogeneic peripheral blood stem cell transplantation (alloPBSCT). Patients with high-risk hematologic malignancies received alloPBSCT from HLA-matched unrelated/related donors. GVHD prophylaxis included combination post-HCT cyclophosphamide 50 mg/kg (days +3 and +4) and tacrolimus/mofetil mycophenolate (T/MMF) (day +5 forward). The primary objective was the cumulative incidence of acute and chronic GVHD. Between March 2011 and May 2015, 35 consecutive patients received the proposed regimen. MMF was stopped in all patients at day +28; the median discontinuation of tacrolimus was day +113. Acute and chronic GVHD cumulative incidences were 17% and 7%, respectively, with no grade IV GVHD events, only 2 patients requiring chronic GVHD immunosuppression control, and no deaths from GVHD. Two-year NRM, overall survival, event-free survival, and chronic GVHD event-free survival rates were 3%, 77%, 54%, and 49%, respectively. The graft-versus-tumor effect was maintained as 5 of 15 patients (33%) who received HCT with evidence of disease experienced further disease response. A post-transplant cyclophosphamide + T/MMF combination strategy effectively prevented acute and chronic GVHD after alloPBSCT from HLA-matched donors and achieved an unprecedented low NRM without losing efficacy in disease control or impaired development of the graft-versus-tumor effect. This trial is registered at clinicaltrials.gov as NCT02300571. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  12. Is there any reason to prefer cord blood instead of adult donors for hematopoietic stem cell transplants?

    Meral eBeksac

    2016-01-01

    Full Text Available As cord blood (CB enables rapid access and tolerance to HLA mismatches, number of unrelated cord blood transplants have reached 30 000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified CBUs reaching more than 600 000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, Prostaglandin E2 derivative, complement, CD26 inhibitors or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore introduction of reduced intensity conditioning protocols, better HLA matching and recognition of the importance of HLA-C have improved CBT success by decreasing Transplant Related Mortality (TRM. Cord blood progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to BM-MSC and less oncogenic potential than Induced Progenitor Stem Cells. This chapter summarizes the advantage and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.

  13. Risk Factors and Options to Improve Engraftment in Unrelated Cord Blood Transplantation

    Anna D. Petropoulou

    2011-01-01

    Full Text Available Use of umbilical unrelated cord-blood (UCB cells as an alternative source of hematopoietic cell transplantation has been widely used mainly for patients lacking an HLA-matched donor. UCB present many advantages over bone marrow or mobilized peripheral blood from volunteer donors, such as rapid availability, absence of risk for the donor, and decreased incidence of acute graft-versus-host disease. However, a significant clinical problem is delayed engraftment that is directly correlated with the number of hematopoietic stem cells in a cord-blood unit. The identification of prognostic factors associated with engraftment that can be easily modified (e.g., strategies for donor choice and the development of new approaches including use of multiple donors, intrabone injection of UCB, ex vivo expansion, and cotransplantation with accessory cells are of crucial importance in order to circumvent the problem of delayed engraftment after UCB transplantation. Those approaches may increase the quality and availability of UCB for transplantation.

  14. High-dose melphalan and autologous stem cell transplantation for AL amyloidosis: recent trends in treatment-related mortality and 1-year survival at a single institution

    Seldin, D. C.; Andrea, N.; Berenbaum, I.; Berk, J. L.; Connors, L.; Dember, L. M.; Doros, G.; Fennessey, S.; Finn, K.; Girnius, S.; Lerner, A.; Libbey, C.; Meier-Ewert, H. K.; O’Connell, R.; O’Hara, C.; Quillen, K.; Ruberg, F. L.; Sam, F.; Segal, A.; Shelton, A.; Skinner, M.; Sloan, J. M.; Wiesman, J. F.; Sanchorawala, V.

    2017-01-01

    Treatment with high-dose melphalan chemotherapy supported by hematopoietic rescue with autologous stem cells produces high rates of hematologic responses and improvement in survival and organ function for patients with AL amyloidosis. Ongoing clinical trials explore pre-transplant induction regimens, post-transplant consolidation or maintenance approaches, and compare transplant to non-transplant regimens. To put these studies into context, we reviewed our recent experience with transplant for AL amyloidosis in the Amyloid Treatment and Research Program at Boston Medical Center and Boston University School of Medicine. Over the past 10 years, there was a steady reduction in rates of treatment-related mortality and improvement in 1-year survival, now approximately 5% and 90%, respectively, based upon an intention-to-treat analysis. Median overall survival of patients treated with this approach at our center exceeds 7.5 years. PMID:21838459

  15. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans

    Choi, S.W.; Gatza, E.; Hou, G.; Sun, Y; Whitfield, J.; Song, Y.; Oravecz-Wilson, K.; Tawara, I.; Dinarello, C.A.; Reddy, P.

    2015-01-01

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from

  16. A transplant recipient with a mixed germ-cell ovarian tumor

    Ketata Hafed

    2008-01-01

    Full Text Available Immunosuppressed renal transplant recipients seem to be at significantly increased risk of developing neoplasms comparatively to nonimmunosuppressed individuals. A history of malignancy exposes the patient to a high risk for relapse after transplantation. We present a trans-plant recipient with a history of an ovarian mixed germ-cell tumor, with choriocarcinoma com-ponent, which was treated seven years prior to transplantation. After three years of follow-up, there was no evidence of tumor relapse. To our knowledge, there is no report of such case in the English literature. Regarding our case report and patients with a history of ovarian germ-cell neoplasm, waiting time before transplantation must take into consideration the stage of the tumor, its prognosis, the proportion of different tumor components, and the overall prognosis of the patient if transplantation is withheld.

  17. EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial protocol

    Chamorro-Viña Carolina

    2012-09-01

    Full Text Available Abstract Background Hematopoietic stem cell transplantation is an intensive therapy used to improve survivorship and cure various oncologic diseases. However, this therapy is associated with high mortality rates and numerous negative side-effects. The recovery of the immune system is a special concern and plays a key role in the success of this treatment. In healthy populations it is known that exercise plays an important role in immune system regulation, but little is known about the role of exercise in the hematological and immunological recovery of children undergoing hematopoietic stem cell transplant. The primary objective of this randomized-controlled trial (RCT is to study the effect of an exercise program (in- and outpatient on immune cell recovery in patients undergoing an autologous stem cell transplantation. The secondary objective is to determine if an exercise intervention diminishes the usual deterioration in quality of life, physical fitness, and the acquisition of a sedentary lifestyle. Methods This RCT has received approval from The Conjoint Health Research Ethics Board (CHREB of the University of Calgary (Ethics ID # E-24476. Twenty-four participants treated for a malignancy with autologous stem cell transplant (5 to 18 years in the Alberta Children’s Hospital will be randomly assigned to an exercise or control group. The exercise group will participate in a two-phase exercise intervention (in- and outpatient from hospitalization until 10 weeks after discharge. The exercise program includes strength, flexibility and aerobic exercise. During the inpatient phase this program will be performed 5 times/week and will be supervised. The outpatient phase will combine a supervised session with two home-based exercise sessions with the use of the Wii device. The control group will follow the standard protocol without any specific exercise program. A range of outcomes, including quantitative and functional recovery of immune system

  18. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy.

    Parikumar, Periasamy; Haraguchi, Kazutoshi; Senthilkumar, Rajappa; Abraham, Samuel Jk

    2018-01-01

    Transplantation of in vitro expanded human corneal endothelial precursors (HCEP) cells using a nanocomposite (D25-NC) gel sheet as supporting material in bovine's cornea has been earlier reported. Herein we report the transplantation of HCEP cells derived from a cadaver donor cornea to three patients using the NC gel sheet. In three patients with bullous keratopathy, one after cataract surgery, one after trauma and another in the corneal graft, earlier performed for congenital corneal dystrophy, not amenable to medical management HCEP cells isolated from a human cadaver donor cornea in vitro expanded using a thermoreversible gelation polymer (TGP) for 26 days were divided into three equal portions and 1.6 × 10 5 HCEP cells were injected on to the endothelium of the affected eye in each patient using the D25-NC gel sheet as a supporting material. The sheets were removed after three days. The bullae in the cornea disappeared by the 3 rd -11 th post-operative day in all the three patients. Visual acuity improved from Perception of light (PL)+/Projection of rays (PR)+ to Hand movements (HM)+ in one of the patients by post-operative day 3 which was maintained at 18 months follow-up. At 18 months follow-up, in another patient the visual acuity had improved from HM+ to 6/60 while in the third patient, visual acuity remained HM+ as it was prior to HCEP transplantation. There were no adverse effects during the follow-up in any of the patients.

  19. Scheduled transplantation of bone marrow cells preincubated with acidic fibroblast growth factor (aFGF)

    Xiang Yingsong; Yang Rujun; Cai Jianming; Li Bailong

    1999-01-01

    Objective: To develop a new method of bone marrow scheduled transplantation (BMST) by making use of the effects of acidic fibroblast growth factor (aFGF) on improving hematopoiesis. Methods: The scheduled transplantation of bone marrow cells preincubated with aFGF (aFGF-BMST) was carried out to study the effects of aFGF on hematopoietic reconstitution and reducing acute graft versus host disease (GVHD) in acute radiation disease model of Kunming mice. Results: The survival rate of the group of aFGF-BMST mice with 4 x 10 6 BMXs was 40%, which was higher than the survival of the group of BMT with 1 x 10 7 BMCs alone (30%), but was lower than the survival of the group of BMST with 4 x 10 6 BMCs. On the other hand, the recovery rates in numbers of leucocytes, nucleated cells and CFU-E, CFU-GM, CFU-S were faster than those in the group of BMT with 1 x 10 7 BMCs alone and in the group of BMST with 4 x 10 6 BMCs. In addition, the severity of GVHD in the group of aFGF-BMST mice with 4 x 10 6 BMCs was lower than that in the group of BMT with 1 x 10 7 BMCs alone but was higher than that in the group of BMST with 4 x 10 6 BMCs. Conclusion: Although aFGF can activate heterogeneous T cells to cause GVHD, there is prospect of making full use of the effects of aFGF on improving hematopoiesis and reducing the side effects of aFGF leading to GVHD through scheduled transplantation of bone marrow cells preincubated with aFGF

  20. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  1. Gauchers disease--a reappraisal of hematopoietic stem cell transplantation.

    Ito, Sawa; Barrett, A John

    2013-03-01

    Hematopoietic stem cell transplantation (HSCT), first performed in 1984, was the first treatment approach for Gaucher's disease (GD) which had curative intent. The early successes in HSCT were soon eclipsed by the introduction of a highly effective enzyme replacement therapy (ERT), which has remained the single most widely used treatment. Experience with HSCT is limited to about 50 reported cases, mainly performed in the last century, with an overall survival around 85%. HSCT typically achieves complete correction of visceral and bony changes and can fully stabilize neurological features in otherwise progressive type II and III GD. ERT, in contrast, is completely safe and effective, but is limited by cost, incomplete resolution of visceral, hematological, and bony features in some patients, and lack of neurological correction in type II and III disease. In this review, we summarize and compare HSCT and ERT. With 20 years of experience of ERT, its limitations as well as its advantages are now well delineated. Meanwhile progress in HSCT over the last decade suggests that transplantation would today represent a very safe curative approach for GD offering one time complete correction of the disease, contrasting with the lifelong need for ERT with its associated expense and dependence on sophisticated drug manufacture. Additionally, unlike ERT, HSCT can be beneficial for neurological forms of GD. We conclude that the time has come to re-evaluate HSCT in selected patients with GD where ERT is less likely to fully eradicate symptoms of the disease.

  2. Fertility preservation issues in pediatric hematopoietic stem cell transplantation

    Balduzzi, A; Dalle, J-H; Jahnukainen, K

    2017-01-01

    Fertility preservation is an urgent challenge in the transplant setting. A panel of transplanters and fertility specialists within the Pediatric Diseases Working Party of the European Society for Blood and Marrow Transplantation (EBMT) and the International BFM Study Group provides specific guide...

  3. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus.

    Unsal, Ilknur Ozturk; Ginis, Zeynep; Pinarli, Ferda Alparslan; Albayrak, Aynur; Cakal, Erman; Sahin, Mustafa; Delibasi, Tuncay

    2015-06-01

    Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p islet cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p Transplantation of islet cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.

  4. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    Zurab Kakabadze

    2016-01-01

    Full Text Available Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50% cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA scale, 7 (78% out of the 9 patients observed an improvement by one grade, while two cases (22% saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury.

  5. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in

  6. Impact of HLA Diversity on Donor Selection in Organ and Stem Cell Transplantation

    Tiercy Jean-Marie; Claas Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation pre transplant anti HLA antibodies nee...

  7. Improving Yield of Transplanted Aman and Boro Rice Through Tegra Package of Cultivation

    MA Kader, MSR Mia, MA Kafi, MS Hossain, N Islam

    2015-12-01

    Full Text Available The study investigated the yield performance of transplant aman rice cv. BRRI dhan49 and boro rice cv. BRRI dhan29 under improved package of cultivation (TEGRA as compared to farmers’ practice. TEGRA is a rice farming practice which includes use of quality seeds and healthy seedlings, transplanting with rice transplanter, use of herbicide, use of balanced fertilization and micronutrients, and preventive plant protection measures. The study during transplant aman season included two treatments on rice cultivation method viz. TEGRA package and farmers’ practice while in boro rice four treatments viz. TEGRA package, farmers’ practice with high inputs, farmers’ practice with medium inputs and farmers’ practice with low inputs. The yield and plant characters of both transplant aman and boro rice were significantly influenced by the TEGRA package of cultivation as compared to farmers’ practice. TEGRA package of cultivation as compared to farmers’ practice increased the grain yield by 18.3% in transplant aman rice and by 80% in boro rice with less cost of production as compared to farmers’ practice, which eventually resulted 23% increase in gross return and 400% in net return. As a result, the benefit cost ratio of TEGRA package was much higher (1.35 and 2.20 during transplant aman rice and boro rice, respectively compared to that of farmers’ practice (1.07 and 1.30.

  8. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  9. Reconstitution of Th17, Tc17 and Treg cells after paediatric haematopoietic stem cell transplantation

    Kielsen, Katrine; Ryder, Lars P; Lennox-Hvenekilde, David

    2018-01-01

    behind these associations have not been investigated previously. We hypothesized that increased levels of IL-7 post-transplant alters the balance between immune-regulatory T cell subsets during the post-transplant lymphocyte recovery towards a more pro-inflammatory profile. We quantified Th17 cells, Tc17.......025). The plasma level of IL-7 at day +90 correlated inversely with Th17 cell counts (rs=-0.65, P=0.0002) and the proportion of Tc17 cells (rs=0.64, P=0.0005) at day +90, but not with Tregs. Furthermore, high IL-7 levels at day +7 were predictive of a less naïve T-cell phenotype at day +90. These findings add...

  10. Patient housing barriers to hematopoietic cell transplantation: results from a mixed-methods study of transplant center social workers.

    Preussler, Jaime M; Mau, Lih-Wen; Majhail, Navneet S; Bevans, Margaret; Clancy, Emilie; Messner, Carolyn; Parran, Leslie; Pederson, Kate A; Ferguson, Stacy Stickney; Walters, Kent; Murphy, Elizabeth A; Denzen, Ellen M

    2016-03-01

    Hematopoietic cell transplantation (HCT) is performed in select centers in the United States (U.S.), and patients are often required to temporarily relocate to receive care. The purpose of this study was to identify housing barriers impacting access to HCT and potential solutions. A mixed-methods primary study of HCT social workers was conducted to learn about patient housing challenges and solutions in place that help address those barriers. Three telephone focus groups were conducted with adult and pediatric transplant social workers (n = 15). Focus group results informed the design of a national survey. The online survey was e-mailed to a primary social worker contact at 133 adult and pediatric transplant centers in the U.S. Transplant centers were classified based on the patient population cared for by the social worker. The survey response rate was 49%. Among adult programs (n = 45), 93% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. The most common type of housing option offered was discounted hotel rates. Among pediatric programs (n = 20), 90% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. Ronald McDonald House was the most common option available. This study is the first to explore housing challenges faced by patients undergoing HCT in the U.S. from the perspective of social workers and to highlight solutions that centers use. Transplant centers will benefit from this knowledge by learning about options for addressing housing barriers for their patients.

  11. Improving recovery time following heart transplantation: the role of the multidisciplinary health care team

    Roussel MG

    2013-08-01

    Full Text Available Maureen G Roussel,1 Noreen Gorham,2 Lynn Wilson,2 Abeel A Mangi2 1Heart and Vascular Center, Yale-New Haven Hospital, New Haven, CT, USA; 2Center for Advanced Heart Failure, Mechanical Circulatory Support and Cardiac Transplantation, Yale New Haven Heart and Vascular Institute, Yale-New Haven Hospital, New Haven, CT, USA Background: The care of cardiac transplant patients is complex requiring a finely orchestrated endeavor to save a patient’s life. Given the chronic and complex nature of these patients, multiple disciplines are involved in their care. Recognizing difficulties with communication among team members and striving for improved efficiencies in our pretransplant listing process and in our inpatient care, our team was prompted to change the existing approach to patient care related to heart transplantation. Methods: Daily multidisciplinary rounds were instituted and the format of the weekly Multidisciplinary Review Committee (MDRC meetings was modified with the list of attendees broadened to include a larger interdisciplinary team. Additionally, the approach to patient care was analyzed for process improvement. Results: The quality improvements are improved communication and throughput, quantified in an 85% decrease in time to complete transplant evaluation, a 37% decrease in median length of stay posttransplantation, and a 33% reduction in the 30 day readmission rate. In addition, pre- and posttransplant caregivers now participate in MDRC in person or via an electronic meeting platform to support the continuum of care. Quality metrics were chosen and tracked via a transparent electronic platform allowing all involved to assess progress toward agreed upon goals. These were achieved in an 18 month time period following the recruitment of new leadership and invested team members working together as a multidisciplinary team to improve the quality of cardiac transplant care. Discussion: Implementation of daily multidisciplinary rounds and

  12. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation.

    Sackett, S D; Brown, M E; Tremmel, D M; Ellis, T; Burlingham, W J; Odorico, J S

    2016-04-01

    Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs. autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Regulatory B cells: an exciting target for future therapeutics in transplantation

    Alexandre eNouël

    2014-01-01

    Full Text Available Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrates on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting Ab, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg cells -or B10 cells- has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.

  14. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation

    Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048

  15. In vivo transformation of neural stem cells following transplantation in the injured nervous system.

    Radtke, Christine; Redeker, Joern; Jokuszies, Andreas; Vogt, Peter M

    2010-04-01

    Johnson et al report tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model, emphasizing the importance of full in vitro characterization of cells prior to transplantation. Cell lines can change during expansion and subclones which may become tumerogenic may be selected in the process of expansion. Cell transplantation studies with committed cells that have been minimally manipulated and expanded in culture such as olfactory ensheathing cells and Schwann cells may pose less risk of tumerogenicity, but have the disadvantage of limited cell harvest yields. The balance between in vitro transformation of expanded cell lines and the limitation of cell harvest yields from preparation of more stable committed cells must be considered in selection of cells for therapeutic intervention for nerve repair. Copyright Thieme Medical Publishers.

  16. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    Bhatia M

    2015-07-01

    Full Text Available Monica Bhatia,1 Sujit Sheth21Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, 2Division of Pediatric Hematology and Oncology, Weill Cornell Medical College, New York, NY, USAAbstract: Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD. The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to

  17. Skin Cancer Risk in Hematopoietic Stem-Cell Transplant Recipients Compared With Background Population and Renal Transplant Recipients

    Omland, Silje Haukali; Gniadecki, Robert; Hædersdal, Merete

    2016-01-01

    IMPORTANCE: While a high risk of nonmelanoma skin cancer is well recognized in solid-organ transplant recipients, the risk of skin cancer in hematopoietic stem-cell transplant (HSCT) recipients has not been extensively studied. OBJECTIVE: To determine the risk of cutaneous cancer in HSCT recipients...... autologous) from 1999 through 2014, 4789 RTRs from 1976 through 2014, and 10 age- and sex-matched nontransplanted individuals for each of the groups from the background population. Person-years at risk were calculated from the time of study inclusion until first cutaneous cancer. To compare the risk of skin...... cancer between transplant recipients and background population, we used a stratified proportional hazard regression model for hazard ratio (HR) estimations. By use of the cumulative incidence, we estimated 5- and 10-year risks of skin cancers. All RTR and HSCT recipients were treated and followed up...

  18. Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death

    Stefano Toldo

    2016-06-01

    Full Text Available Heart transplantation (HTx is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.

  19. Intestinal Adenovirus Shedding Before Allogeneic Stem Cell Transplantation Is a Risk Factor for Invasive Infection Post-transplant

    Karin Kosulin

    2018-02-01

    Full Text Available Human adenoviruses (HAdV are a major cause of morbidity and mortality in pediatric human stem cell transplant (HSCT recipients. Our previous studies identified the gastrointestinal tract as a site of HAdV persistence, but the role of intestinal virus shedding pre-transplant for the risk of ensuing invasive infection has not been entirely elucidated. Molecular HAdV monitoring of serial stool samples using RQ-PCR was performed in 304 children undergoing allogeneic HSCT. Analysis of stool and peripheral blood specimens was performed pre-transplant and at short intervals until day 100 post-HSCT. The virus was detected in the stool of 129 patients (42%, and 42 tested positive already before HSCT. The patients displaying HAdV shedding pre-transplant showed a significantly earlier increase of intestinal HAdV levels above the critical threshold associated with high risk of invasive infection (p < 0.01. In this subset of patients, the occurrence of invasive infection characterized by viremia was significantly higher than in patients without HAdV shedding before HSCT (33% vs 7%; p < 0.0001. The data demonstrate that intestinal HAdV shedding before HSCT confers a greatly increased risk for invasive infection and disseminated disease post-transplant, and highlights the need for timely HAdV monitoring and pre-emptive therapeutic considerations in HSCT recipients.

  20. B Cell Depletion: Rituximab in Glomerular Disease and Transplantation

    S. Marinaki

    2013-12-01

    Full Text Available B cells play a central role in the pathogenesis of many autoimmune diseases. Selective targeting can be achieved with the use of the monoclonal antibody rituximab. In addition to being a drug for non-Hodgkin's lymphoma, rituximab is also an FDA-approved treatment for refractory rheumatoid arthritis and, since recently, ANCA vasculitis. It has shown efficacy in many autoimmune diseases. This review will discuss current evidence and the rationale of the use of rituximab in glomerular diseases, including randomized controlled trials. The focus will be on the use of rituximab in idiopathic membranous nephropathy, systemic lupus erythematosus and ANCA-associated vasculitis. The emerging role of rituximab in renal transplantation, where it seems to be important for the desensitization protocols for highly sensitized patients as well as for the preconditioning of ABO-incompatible recipients and the treatment of antibody-mediated rejection, will also be addressed.

  1. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  2. [Gene therapy and cell transplantation for Parkinson's disease].

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  3. Immunoglobulin therapy in hematologic neoplasms and after hematopoietic cell transplantation.

    Ueda, Masumi; Berger, Melvin; Gale, Robert Peter; Lazarus, Hillard M

    2018-03-01

    Immunoglobulins are used to prevent or reduce infection risk in primary immune deficiencies and in settings which exploit its anti-inflammatory and immune-modulatory effects. Rigorous proof of immunoglobulin efficacy in persons with lympho-proliferative neoplasms, plasma cell myeloma, and persons receiving hematopoietic cell transplants is lacking despite many clinical trials. Further, there are few consensus guidelines or algorithms for use in these conditions. Rapid development of new therapies targeting B-cell signaling and survival pathways and increased use of chimeric antigen receptor T-cell (CAR-T) therapy will likely result in more acquired deficiencies of humoral immunity and infections in persons with cancer. We review immunoglobulin formulations and discuss efficacy and potential adverse effects in the context of preventing infections and in graft-versus-host disease. We suggest an algorithm for evaluating acquired deficiencies of humoral immunity in persons with hematologic neoplasms and recommend appropriate use of immunoglobulin therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Intraspinal Stem Cell Transplantation for Amyotrophic Lateral Sclerosis

    Chen, Kevin S.; Sakowski, Stacey A.; Feldman, Eva L.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only FDA approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS since they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. While various stem cell types are being evaluated in preclinical and early clinical applications, here we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of the Phase I and IIa clinical trials involving direct intraspinal transplantation in humans. PMID:26696091

  5. Transplante de células-tronco hematopoéticas (TCTH em doenças falciformes Hematopoietic stem cell transplantation in sickle cell anemia

    Fabiano Pieroni

    2007-09-01

    Full Text Available O único tratamento curativo para pacientes com doença falciforme é o transplante de células tronco hematopoéticas (TCTH. Neste artigo sumarizamos os resultados do TCTH em pacientes falciformes publicados na literatura e a experiência brasileira. As indicações atuais para o TCTH nestes pacientes serão discutidas.The only curative treatment approach for patients with sickle cell anemia is allogeneic stem cell transplantation. In this article we will review the published data about stem cell transplantation in patients with sickle cell disease and the small Brazilian experience in this field. The possible indications for stem cell patients will be discussed.

  6. The Fourth Nagoya International Blood and Marrow Transplantation Symposium: new horizons in allogeneic hematopoietic cell transplantation--2001 revolution.

    Sao, Hiroshi; Morishita, Yoshihisa

    2002-02-01

    In this symposium, we saw new horizons in allogeneic transplantation. Are these truly revolutionary? We do not yet know the answer. However, there is no question about the importance of allogeneic T cells. T cells are much more powerful than any pharmacological drug man has ever generated. The question is, how do we take the most advantage of their potential. Every participant was encouraged to search for good answers to this question until the next meeting.

  7. THROMBOTIC MICROANGIOPATHY IN HAEMATOPOIETIC CELL TRANSPLANTATION:AN UPDATE

    Hillard Michael Lazarus

    2010-08-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA. In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases, patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents.  Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended.

  8. Imaging and 1-day kinetics of intracoronary stem cell transplantation in patients with idiopathic dilated cardiomyopathy

    Lezaic, Luka; Socan, Aljaz; Peitl, Petra Kolenc; Poglajen, Gregor; Sever, Matjaz; Cukjati, Marko; Cernelc, Peter; Vrtovec, Bojan

    2016-01-01

    Background: Stem cell transplantation is an emerging method of treatment for patients with cardiovascular disease. There are few studies completed or ongoing on stem cell therapy in patients with idiopathic dilated cardiomyopathy (IDCM). Information on stem cell homing and distribution in the myocardium after transplantation might provide important insight into effectiveness of transplantation procedure. Aim: To assess early engraftment, retention and migration of intracoronarily transplanted stem cells in the myocardium of patients with advanced dilated cardiomyopathy of non-ischaemic origin using stem cell labeling with 99m Tc-exametazime (HMPAO). Materials, methods: Thirty-five patients with IDCM and advanced heart failure were included in the study. Autologous hematopoietic (CD34 +) stem cells were harvested by peripheral blood apheresis after bone marrow stimulation, labeled with 99m Tc-HMPAO, tested for viability and injected into coronary vessel supplying areas of myocardium selected by myocardial perfusion scintigraphy as dysfunctional yet viable. Imaging was performed 1 h and 18 h after transplantation. Results: Myocardial stem cell retention ranged from 0 to 1.44% on early and 0–0.97% on delayed imaging. Significant efflux of stem cells occurred from site of delivery in this time period (p < 0.001). Stem cell viability was not affected by labeling. Conclusion: Stem cell labeling with 99m Tc-HMPAO is a feasible method for stem cell tracking after transplantation in patients with IDCM.

  9. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  10. Awareness, Knowledge, and Acceptance of Haematopoietic Stem Cell Transplantation for Sickle Cell Anaemia in Nigeria

    Adewumi Adediran

    2016-01-01

    Full Text Available Background. Sickle cell anaemia (SCA is an inherited condition whose clinical manifestations arise from the tendency of haemoglobin to polymerize and deform red blood cells into characteristic sickle shape. Allogeneic bone marrow transplantation offers a cure. The aim of this study was to determine the level of awareness, knowledge, and acceptance of this beneficial procedure in Nigeria. Materials and Methods. This multicentre cross-sectional study was conducted in 7 tertiary hospitals in Nigeria in 2015. Approval was obtained from each institution’s research and ethics committee. A pretested structured questionnaire was administered to respondents aged 18 years and above and to the parents or guardians of those below 18 years of age. Results. There were 265 respondents comprising 120 males and 145 females. One hundred and seventy-one (64.5% respondents were aware of BMT for the treatment of SCA. About 67.8% (116 of 171 of those who were aware believed SCA can be cured with BMT (p=0.001 and 49.7% (85 of 171 of the respondents accepted BMT (p=0.001. Conclusion. Awareness of BMT in Nigeria is low when compared with reports from developed countries. The knowledge is poor and acceptance is low. With adequate information, improved education, and psychological support, more Nigerians will embrace BMT.

  11. Human dental pulp cell culture and cell transplantation with an alginate scaffold.

    Kumabe, Shunji; Nakatsuka, Michiko; Kim, Gi-Seup; Jue, Seong-Suk; Aikawa, Fumiko; Shin, Je-Won; Iwai, Yasutomo

    2006-02-01

    Many studies on tissue stem cells have been conducted in the field of regenerative medicine, and some studies have indicated that cultured dental pulp mesenchymal cells secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured human dental pulp cells subcutaneously into the backs of nude mice. We found that when beta-glycerophosphate was added to the culture medium, dentin sialophosphoprotein mRNA coding dentin sialoprotein (DSP) was expressed. An increase in alkaline phosphatase, which is an early marker for odontoblast differentiation, was also demonstrated. At 6 weeks after implantation the subcutaneous formation of radio-opaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants. Isolated odontoblast-like cells initiated dentin-like hard tissue formation and scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured dental pulp cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  12. THE ROLE OF AUTOLOGOUS AND ALLOGENEIC STEM CELL TRANSPLANTATION IN FOLLICULAR LYMPHOMA IN THE NEW DRUGS ERA.

    Francesco Maura

    2016-09-01

    Full Text Available Follicular lymphoma (FL is the second most common histotype of non-Hodgkin’s lymphoma and it is generally characterized by a heterogeneous clinical course. Despite recent therapeutic and diagnostic improvements, a significant fraction of FL patients still relapsed. In younger and/or fit FL relapsed patients bone marrow transplant (BMT has represented the main salvage therapy for many years. Thanks to the ability of high dose chemotherapy to overcome the lymphoma resistance and refractoriness, autologous stem cell transplantation (ASCT is able to achieve a high complete remission rate (CR and favourable outcome in terms of progression free survival (PFS and overall survival (OS. Allogeneic stem cell transplantation (alloSCT combines the high dose chemotherapy effect together with the immune reaction of the donor immune system against lymphoma, the so called ‘graft versus lymphoma’ (GVL effect. Considering the generally higher transplant related mortality (TRM, alloSCT is mostly indicated for FL relapsed after ASCT. During the last years there has been a great spread of novel effective and feasible drugs Although these and future novel drugs will probably change our current approach to FL, the OS post-BMT (ASCT and alloSCT has never been reproduced by any novel combination. In this scenario, it is important to correctly evaluate the disease status, the relapse risk and the comorbidity profile of the relapsed FL patients in order to provide the best salvage therapy and eventually transplant consolidation.

  13. Blood and Bone Marrow Transplant?

    ... Topics / Blood and Bone Marrow Transplant Blood and Bone Marrow Transplant Also known as Hematopoietic Stem Cell Transplant , Hematopoietic ... person, called a donor, it is an allogeneic transplant. Blood or bone marrow transplants most commonly are used to treat ...

  14. Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature

    Fauzi AA

    2016-11-01

    Full Text Available Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs in haemorrhagic stroke patients. Case Presentations: Two patients, aged 51 and 52, bearing sequels of haemorrhagic stroke were managed by intraventricular transplantation of BM-MSCs obtained from their own bone marrow. Before the procedure, both patients were bedridden, tracheostomised, on nasogastric (NG tube feeding and in hemiparesis. The cells were transplanted intraventricularly (20 x 106 cells/2.5 ml using an Ommaya reservoir, and then repeated transplantations were done after 1 and 2 months consecutively. The safety and efficacy of the procedures were evaluated 3, 6 and 12 months after treatment. The National Institute of Health Stroke Scale (NIHSS was used to evaluate the patients' neurological status before and after treatment. No adverse events derived from the procedures or transplants were observed in the one-year follow-up period, and the neurological status of both patients improved after treatment. Conclusions: Our report demonstrates that the intraventricular transplantation of BM-MSCs via an Ommaya reservoir is safe and it improves the neurological status of post-haemorrhagic stroke patients. The repeated transplantation procedure is easier and safer to perform via a subcutaneously implanted Ommaya reservoir.

  15. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey

    Alişan Yıldıran

    2017-12-01

    Full Text Available Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11, Chediak-Higashi syndrome (n=2, leukocyte adhesion deficiency (n=2, MHC class 2 deficiency (n=2, chronic granulomatous syndrome (n=2, hemophagocytic lymphohistiocytosis (n=1, Wiskott-Aldrich syndrome (n=1, and Omenn syndrome (n=1. Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  16. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey.

    Yıldıran, Alişan; Çeliksoy, Mehmet Halil; Borte, Stephan; Güner, Şükrü Nail; Elli, Murat; Fışgın, Tunç; Özyürek, Emel; Sancak, Recep; Oğur, Gönül

    2017-12-01

    Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years) with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11), Chediak-Higashi syndrome (n=2), leukocyte adhesion deficiency (n=2), MHC class 2 deficiency (n=2), chronic granulomatous syndrome (n=2), hemophagocytic lymphohistiocytosis (n=1), Wiskott-Aldrich syndrome (n=1), and Omenn syndrome (n=1). Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  17. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  18. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent.

    Papeta, Natalia; Chen, Tao; Vianello, Fabrizio; Gererty, Lyle; Malik, Ashish; Mok, Ying-Ting; Tharp, William G; Bagley, Jessamyn; Zhao, Guiling; Stevceva, Liljana; Yoon, Victor; Sykes, Megan; Sachs, David; Iacomini, John; Poznansky, Mark C

    2007-01-27

    Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transp