WorldWideScience

Sample records for cell transplantation allohsct

  1. A promising sword of tomorrow: Human γδ T cell strategies reconcile allo-HSCT complications.

    Science.gov (United States)

    Hu, Yongxian; Cui, Qu; Luo, Chao; Luo, Yi; Shi, Jimin; Huang, He

    2016-05-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially a curative therapeutic option for hematological malignancies. In clinical practice, transplantation associated complications greatly affected the final therapeutical outcomes. Currently, primary disease relapse, graft-versus-host disease (GVHD) and infections remain the three leading causes of a high morbidity and mortality in allo-HSCT patients. Various strategies have been investigated in the past several decades including human γδ T cell-based therapeutical regimens. In different microenvironments, human γδ T cells assume features reminiscent of classical Th1, Th2, Th17, NKT and regulatory T cells, showing diverse biological functions. The cytotoxic γδ T cells could be utilized to target relapsed malignancies, and recently regulatory γδ T cells are defined as a novel implement for GVHD management. In addition, human γδ Τ cells facilitate control of post-transplantation infections and participate in tissue regeneration and wound healing processes. These features potentiate γδ T cells a versatile therapeutical agent to target transplantation associated complications. This review focuses on insights of applicable potentials of human γδ T cells reconciling complications associated with allo-HSCT. We believe an improved understanding of pertinent γδ T cell functions would be further exploited in the design of innovative immunotherapeutic approaches in allo-HSCT, to reduce mortality and morbidity, as well as improve quality of life for patients after transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hematopoietic Stem Cell Transplantation Activity and Trends at a Pediatric Transplantation Center in Turkey During 1998-2008

    Directory of Open Access Journals (Sweden)

    Volkan Hazar

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this study was to document hematopoietic stem cell transplantation (HSCT activity and trends at our treatment center. METHODS: Data collected over a 10-year period were retrospectively analyzed, concentrating primarily on types of HSCT, transplant-related mortality (TRM, stem cell sources, indications for HSCT, and causes of death following HSCT. RESULTS: In total, 222 allogeneic (allo-HSCT (87.4% and 32 autologous (auto-HSCT (12.6% procedures were performed between 1998 and 2008. Stem cells obtained from unrelated donors were used in 22.6% (50/222 of the allo- HSCTs. Cord blood was the source of hematopoietic stem cells (HSC in 12.2% of all transplants. The most common indication for allo-HSCT was hemoglobinopathy (43.2%, versus neuroblastoma (53.1% for auto-HSCT. The TRM rate 1 year post transplantation was 18.3% ± 2.5% for all transplants, but differed according to transplantation type (23.5% ± 7.9% for auto-HSCT and 17.5% ± 2.6% for allo-HSCT. The most common cause of death 1 year post HSCT was infection (35.9%. CONCLUSION: The TRM rate in the patients that underwent allo-HSCT was similar to that which has been previously reported; however, the TRM rate in the patients that underwent auto-HSCT was higher than previously reported in developed countries. The selection of these patients to be transplanted must be made attentively.

  3. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies.

    Science.gov (United States)

    Liu, Jun; Zhong, Jiang F; Zhang, Xi; Zhang, Cheng

    2017-01-31

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the cornerstone in treatment of hematological malignancies. However, relapse of the hematological disease after allo-HSCT remains a challenge and is associated with poor long-term survival. Chimeric antigen receptor redirected T cells (CAR-T cells) can lead to disease remission in patients with relapsed/refractory hematological malignancies. However, the therapeutic window for infusion of CAR-T cells post allo-HSCT and its efficacy are debatable. In this review, we first discuss the use of CAR-T cells for relapsed cases after allo-HSCT. We then review the toxicities and the occurrence of graft-versus-host disease in relapsed patients who received CAR-T cells post allo-HSCT. Finally, we review clinical trial registrations and the therapeutic time window for infusion of CAR-T cells post allo-HSCT. The treatment of allogeneic CAR-T cells is beneficial for patients with relapsed B cell malignancies after allo-HSCT with low toxicities and complications. However, multicenter clinical trials with larger sample sizes should be performed to select the optimal therapeutic window and confirm its efficacy.

  4. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT with regard to forensic genetic analysis

    Directory of Open Access Journals (Sweden)

    Renata Jacewicz

    2016-07-01

    Full Text Available The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient’s blood was identical with the donor’s in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient’s profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells – similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases.

  5. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng

    2017-10-01

    Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.

  6. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  7. Second allogeneic stem cell transplant for aplastic anaemia: a retrospective study by the Severe Aplastic Anaemia Working Party of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Cesaro, Simone; Peffault de Latour, Regis; Tridello, Gloria; Pillon, Marta; Carlson, Kristina; Fagioli, Franca; Jouet, Jean-Pierre; Koh, Mickey B C; Panizzolo, Irene Sara; Kyrcz-Krzemien, Slawomira; Maertens, Johan; Rambaldi, Alessandro; Strahm, Brigitte; Blaise, Didier; Maschan, Alexei; Marsh, Judith; Dufour, Carlo

    2015-11-01

    We analysed the outcome of a second allogeneic haematopoietic stem cell transplant (alloHSCT) in 162 patients reported to the European Society for Blood and Marrow Transplantation between 1998 and 2009. Donor origin was a sibling in 110 and an unrelated donor in 52 transplants, respectively. The stem cell source was bone marrow in 31% and peripheral blood in 69% of transplants. The same donor as for the first alloHSCT was used in 81% of transplants whereas a change in the choice of stem cell source was reported in 56% of patients, mainly from bone marrow to peripheral blood. Neutrophil and platelet engraftment occurred in 85% and 72% of patients, after a median time of 15 and 17 days, respectively. Grade II-IV acute graft-versus-host disease (GVHD) and chronic GVHD occurred in 21% and 37% of patients, respectively. Graft failure (GF) occurred in 42 patients (26%). After a median follow-up of 3·5 years, the 5-year overall survival (OS) was 60·7%. In multivariate analysis, the only factor significantly associated with a better outcome was a Karnofsky/Lansky score ≥80 (higher OS). We conclude that a second alloHSCT is feasible rescue option for GF in SAA, with a successful outcome in 60% of cases. © 2015 John Wiley & Sons Ltd.

  8. Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Doki, Noriko; Suyama, Masahiro; Sasajima, Satoshi; Ota, Junko; Igarashi, Aiko; Mimura, Iyo; Morita, Hidetoshi; Fujioka, Yuki; Sugiyama, Daisuke; Nishikawa, Hiroyoshi; Shimazu, Yutaka; Suda, Wataru; Takeshita, Kozue; Atarashi, Koji; Hattori, Masahira; Sato, Eiichi; Watakabe-Inamoto, Kyoko; Yoshioka, Kosuke; Najima, Yuho; Kobayashi, Takeshi; Kakihana, Kazuhiko; Takahashi, Naoto; Sakamaki, Hisashi; Honda, Kenya; Ohashi, Kazuteru

    2017-09-01

    Post-transplant microbial diversity in the gastrointestinal tract is closely associated with clinical outcomes following allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, little is known about the impact of the fecal microbiota before allo-HSCT. We analyzed fecal samples approximately 2 weeks before conditioning among 107 allo-HSCT recipients between 2013 and 2015. Microbial analysis was performed using 16S rRNA gene sequencing. Operational taxonomic unit-based microbial diversity was estimated by calculating the Shannon index. Patients were classified into three groups based on the diversity index: low (3) diversity (18 (16.8%), 48 (44.9%), and 41 (38.3%) patients, respectively). There were no significant differences in the 20-month overall survival, cumulative incidence of relapse, and non-relapse mortality among three groups. The cumulative incidence of grade II to IV acute graft-versus-host disease (aGVHD) was similar among the three groups (low 55.6%; intermediate 35.4%; high 48.8%, p = 0.339, at day 100). Furthermore, we found no differences in the cumulative incidence of grade II to IV acute gastrointestinal GVHD among the three groups (low 38.9%; intermediate 21.3%; high 24.4%, p = 0.778, at day 100). Regarding the composition of microbiota before allo-HSCT, aGVHD patients showed a significantly higher abundance of phylum Firmicutes (p strategy to prevent aGVHD.

  9. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display

    OpenAIRE

    Baskar, Sivasubramanian; Suschak, Jessica M.; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W.; Pavletic, Steven Z.; Bishop, Michael R.; Rader, Christoph

    2009-01-01

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera w...

  10. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  12. Is there a role for B lymphocyte chimerism in the monitoring of B-acute lymphoblastic leukemia patients receiving allogeneic stem cell transplantation?

    Directory of Open Access Journals (Sweden)

    Yi-Ning Yang

    2015-03-01

    Full Text Available Objective: To determine the sensitivity and significance of B-cell chimerism for the detection of early engraftment, transplant rejection, and disease relapse. Methods: The dynamic monitoring of lineage-specific cell subtypes (B, T, and NK cells was made in 20 B-cell acute lymphoblastic leukemia (B-ALL patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT. In the early period after allo-HSCT, the latest establishment of B-cell complete chimerism (CC was observed in a majority of patients. Results: The percentage of donor cells of B-cell lineage was lower than the percent of T-cell lineage in most of the mixed chimerism (MC patients. During graft rejection, the frequency of patients with decreasing MC of B-, T- and NK-cell lineage were 5/5, 2/5, and 2/5. When disease relapsed, five patients showed a faster decrease of the donor percent of B-cells than of T- or NK-cells. Only one patient displayed a more rapid decrease in NK-cells than in T- or B-cells. Conclusion: Monitoring of B-cell chimerism after HSCT seems to be valuable for insuring complete engraftment, anticipating graft rejection, and relapse in B-ALL patients. Keywords: B cell acute lymphoblastic leukemia (B-ALL, B-cell, T-cell, Chimerism, Allogeneic hematopoietic stem cell transplantation (allo-HSCT

  13. Impact of oral gut decontamination on Staphylococcus aureus colonisation in patients undergoing allogeneic haematopoietic stem cell transplantation.

    Science.gov (United States)

    Wilk, C Matthias; Weber, Isabel; Seidl, Kati; Rachmühl, Carole; Holzmann-Bürgel, Anne; Müller, Antonia M S; Kuster, Stefan P; Schanz, Urs; Zinkernagel, Annelies S

    2017-12-01

    Recipients of allogeneic haematopoietic stem cell transplantation (allo-HSCT) are severely immunocompromised and are at increased risk of infection. In this prospective, observational, single-centre study including 110 allo-HSCT recipients, the rate of Staphylococcus aureus colonisation was reduced from 11.8% to 0% (P <0.001) following peritransplant oral gut decontamination. No invasive S. aureus infections were observed. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  14. Where does allogeneic stem cell transplantation fit in the treatment of chronic lymphocytic leukemia?

    Science.gov (United States)

    Dreger, Peter; Montserrat, Emili

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (CLL) (i.e., refractory to purine analogs, short response (CLL treatment armamentarium. These signal transduction inhibitors (STI) will change the algorithms of high-risk CLL (HR-CLL) management. Despite the limited body of evidence, there is sufficient rationale for withholding alloHSCT in patients with 17p-/TP53mut CLL in first remission. In contrast, the perspectives of patients with relapsed 17p-/TP53mut CLL remain uncertain even if responding to STI. The same accounts for patients with HR-CLL progressing under STI. In both scenarios, it is reasonable to consider alloHSCT, ideally after response to alternative STI regimens.

  15. Stem cell Transplantation for Eradication of Minimal PAncreatic Cancer persisting after surgical Excision (STEM PACE Trial, ISRCTN47877138): study protocol for a phase II study

    International Nuclear Information System (INIS)

    Schmitz-Winnenthal, Friedrich H; Schmidt, Thomas; Lehmann, Monika; Beckhove, Philipp; Kieser, Meinhard; Ho, Anthony D; Dreger, Peter; Büchler, Markus W

    2014-01-01

    Pancreatic cancer is the third most common cancer related cause of death. Even in the 15% of patients who are eligible for surgical resection the outlook is dismal with less than 10% of patients surviving after 5 years. Allogeneic hematopoietic (allo-HSCT) stem cell transplantation is an established treatment capable of to providing cure in a variety of hematopoietic malignancies. Best results are achieved when the underlying neoplasm has been turned into a stage of minimal disease by chemotherapy. Allo-HSCT in advanced solid tumors including pancreatic cancer have been of limited success, however studies of allo-HSCT in solid tumors in minimal disease situations have never been performed. The aim of this trial is to provide evidence for the clinical value of allo-HSCT in pancreatic cancer put into a minimal disease status by effective surgical resection and standard adjuvant chemotherapy. The STEM PACE trial is a single center, phase II study to evaluate adjuvant allogeneic hematopoietic stem cell transplantation in pancreatic cancer after surgical resection. The study will evaluate as primary endpoint 2 year progression free survival and will generate first time state-of-the-art scientific clinical evidence if allo-HSCT is feasible and if it can provide long term disease control in patients with effectively resected pancreatic cancer. Screened eligible patients after surgical resection and standard adjuvant chemotherapy with HLA matched related stem cell donor can participate. Patients without a matched donor will be used as a historical control. Study patients will undergo standard conditioning for allo-HSCT followed by transplantation of allogeneic unmanipulated peripheral blood stem cells. The follow up of the patients will continue for 2 years. Secondary endpoints will be evaluated on 7 postintervention visits. The principal question addressed in this trial is whether allo-HSCT can change the unfavourable natural course of this disease. The underlying

  16. State-of-the-art fertility preservation in children and adolescents undergoing haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Dalle, J-H; Lucchini, G; Balduzzi, A

    2017-01-01

    Nowadays, allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a well-established treatment procedure and often the only cure for many patients with malignant and non-malignant diseases. Decrease in short-term complications has substantially contributed to increased survival. Theref...

  17. Clinical Impact of Pretransplant Multidrug-Resistant Gram-Negative Colonization in Autologous and Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Forcina, Alessandra; Lorentino, Francesca; Marasco, Vincenzo; Oltolini, Chiara; Marcatti, Magda; Greco, Raffaella; Lupo-Stanghellini, Maria Teresa; Carrabba, Matteo; Bernardi, Massimo; Peccatori, Jacopo; Corti, Consuelo; Ciceri, Fabio

    2018-03-02

    Multidrug-resistant Gram-negative bacteria (MDR-GNB) are an emerging cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Three-hundred forty-eight consecutive patients transplanted at our hospital from July 2012 to January 2016 were screened for a pretransplant MDR-GNB colonization and evaluated for clinical outcomes. A pretransplant MDR-GNB colonization was found in 16.9% of allo-HSCT and in 9.6% of auto-HSCT recipients. Both in auto- and in allo-HSCT, carriers of a MDR-GNB showed no significant differences in overall survival (OS), transplant-related mortality (TRM), or infection-related mortality (IRM) compared with noncarriers. OS at 2 years for carriers compared with noncarriers was 85% versus 81% (P = .262) in auto-HSCT and 50% versus 43% (P = .091) in allo-HSCT. TRM at 2 years was 14% versus 5% (P = .405) in auto-HSCT and 31% versus 25% (P = .301) in allo-HSCT. IRM at 2 years was 14% versus 2% (P = .142) in auto-HSCT and 23% versus 14% (P = .304) in allo-HSCT. In multivariate analysis, only grade III to IV acute graft-versus-host disease was an independent factor for reduced OS (P < .001) and increased TRM (P < .001) and IRM (P < .001). During the first year after transplant, we collected 73 GNB bloodstream infectious (BSI) episodes in 54 patients, 42.4% of which sustained by a MDR-GNB. Rectal swabs positivity associated with the pathogen causing subsequent MDR-GNB BSI episodes in 13 of 31 (41.9%). Overall, OS at 4 months from MDR-GNB BSI episode onset was of 67.9%, with a 14-day attributed mortality of 12.9%, not being significantly different between carriers and noncarriers (P = .207). We conclude that in this extended single-center experience, a pretransplant MDR-GNB colonization did not significantly influence OS, TRM, and IRM both in auto- and allo-HSCT settings and that MDR-GNB attributed mortality can be controlled in carriers when an early pre-emptive antimicrobial therapy is

  18. Donor-Cell Origin High-Risk Myelodysplastic Syndrome Synchronous with an Intracranial Meningioma-Like Tumor, 8 Years after Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    G. Brás

    2017-01-01

    Full Text Available Secondary neoplasias are well known consequences of radiotherapy or chemotherapy for a primary cancer. In this report, we describe two rare secondary neoplasias occurring in the same patient: a meningioma-like intracranial tumor and high-risk myelodysplastic syndrome (MDS of donor-cells origin, both diagnosed simultaneously, 8 years after an allogeneic hematopoietic stem cell transplantation (allo-HSCT for chronic lymphocytic leukemia (CLL. Due to an engraftment failure during the first allo-HSCT of a matched related donor for CLL treatment, the salvage treatment was a second allo-HSCT. At the moment of meningioma-like tumor diagnosis, the patient was pancytopenic due to high-risk MDS, so it was decided to postpone a surgical intervention until hematological improvement. For the high-risk MDS of donor-cells origin the chosen treatment was induction with intensive chemotherapy. Due to refractory disease, the patient was treated with 5-azacitidine and donor-lymphocytes infusion with no response and, finally, a third allo-HSCT of a matched unrelated donor was performed. The patient died 6 months after the third allo-HSCT, in cytogenetic remission but without hematological recovery, due to an intracranial hemorrhage with origin in the meningioma-like tumor.

  19. Hypothyroidism following allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia.

    Science.gov (United States)

    Medinger, Michael; Zeiter, Deborah; Heim, Dominik; Halter, Jörg; Gerull, Sabine; Tichelli, André; Passweg, Jakob; Nigro, Nicole

    2017-07-01

    Hypothyroidism may complicate allogeneic hematopoietic stem cell transplantation (allo-HSCT); we therefore analyzed risk factors in this study. We studied 229 patients with acute myeloid leukemia (AML) who underwent an allo-HSCT between 2003 and 2013 with different conditioning regimens (myeloablative, reduced-intensity, chemotherapy-based, or total body irradiation-based). Thyroid-stimulating hormone (TSH) and free thyroxine levels (fT4) were available in 104 patients before and after allo-HSCT. The median age at transplantation (n=104) was 47 (IQR 40-59)], 37 (35.6%) patients were female, and the overall mortality was 34.6% (n=36). After a median follow-up period of 47 (IQR 25-84) months, overt hypothyroidism (basal TSH>4.49mIU/l, FT4hypothyroidism (basal TSH>4.49mIU/l, normal fT4) was observed in 20 patients (19.2%). Positive thyroperoxidase (TPO) antibodies were found in 5 (4.8%) patients. A total of 13 patients (12.5%) were treated with thyroid hormone replacement. Acute graft-versus-host disease (aGvHD) ≥grade 2 occurred in 55 (52.9%) and chronic GvHD (cGvHD) in 74 (71.2%) of the patients. The risk of developing hypothyroidism was higher in the patients with repeated allo-HSCTs (P=0.024) and with positive TPO antibodies (P=0.045). Furthermore, the development of overt hypothyroidism was inversely proportional to age (P=0.043). No correlation was found with GvHD, HLA-mismatch, total body irradiation, and gender. After allo-HSCT, a significant number of patients experience thyroid dysfunction, including subclinical and overt hypothyroidism. Long-term and continuous follow-up for thyroid function after HSCT is important to provide timely and appropriate treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Second neoplasms in adult patients submitted to haematopoietic stem cell transplantation.

    Science.gov (United States)

    Torrent, Anna; Ferrá, Christelle; Morgades, Mireia; Jiménez, María-José; Sancho, Juan-Manuel; Vives, Susana; Batlle, Montserrat; Moreno, Miriam; Xicoy, Blanca; Oriol, Albert; Ibarra, Gladys; Ribera, Josep-Maria

    2018-06-08

    Patients submitted to haematopoietic stem cell transplantation (HSCT) are at increased risk of late complications, such as second neoplasm (SN). The incidence and risk factors of SN in patients receiving HSCT at a single centre were analysed. The follow-up of adult patients who received a first HSCT (autologous [auto-HSCT] or allogeneic [allo-HSCT]) between January 2000 and December 2015 was reviewed. We collected their demographic characteristics, the primary disease and type of HSCT, and analysed the cumulative incidence of SN and their risk factors. Of 699 transplanted patients (auto-HSCT, n=451; allo-HSCT, n=248), 42 (6%) developed SN (17 haematological and 25 solid), 31 post-auto-HSCT and 11 post-allo-HSCT. Haematologic SN were more frequent after auto-HSCT than after allo-HSCT. The median time between HSCT and SN was 4.09 years [range 0.07-13.15], with no differences between auto-HSCT and allo-HSCT. The cumulative incidence of SN was 5% (95% CI 3-6) at 5 years, 7% (95% CI 5-10) at 10 years and 11% (95% CI 8-15) at 15 years, without differences according to the type of HSCT. Only the age over 40 years correlated with an increased risk of SN. In this series, the incidence of post-HSCT SN was similar to that previously described. Patients submitted to an auto-HSCT showed a higher frequency of haematologic SN. A higher incidence of SN was detected in patients older than 40 at the time of HSCT. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  1. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Wu, Meiqing; Huang, Fen; Jiang, Xinmiao; Fan, Zhiping; Zhou, Hongsheng; Liu, Can; Jiang, Qianli; Zhang, Yu; Zhao, Ke; Xuan, Li; Zhai, Xiao; Zhang, Fuhua; Yin, Changxin; Sun, Jing; Feng, Ru; Liu, Qifa

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesvirus-DNA and cerebrospinal fluid (CSF) cells were sampled from 58 recipients with herpesvirus-associated diseases or with unexplainable CNS manifestations. Results showed that 23 patients were diagnosed as herpesvirus-associated CNS diseases, including 15 Epstein-Barr virus (EBV)-associated diseases (4 encephalitis and 11 lymphoproliferative diseases), 5 herpes simplex virus type 1 encephalitis, 2 cytomegalovirus encephalitis/myelitis and 1 varicella zoster virus encephalitis. The median time of diseases onset was 65 (range 22-542) days post-transplantation. The 3-year cumulative incidence of herpesvirus-associated encephalitis/myelitis and post-transplant lymphoproliferative disorder (PTLD) was 6.3% ± 1.9% and 4.1% ± 1.2%, respectively. Of the evaluable cases, CSF cells mainly consisted of CD19(+)CD20(+) B cells (7/11) and had clonal rearrangement of immunoglobulin genes (3/11) in patients with CNS-PTLD. On the contrary, in patients with encephalitis/myelitis, CSF cells were comprised of different cell populations and none of the gene rearrangement was detected. Herpesvirus-associated CNS diseases are common in the early stages of allo-HSCT, wherein EBV is the most frequent causative virus. The immunophenotypic and clonal analysis of CSF cells might be helpful in the differential diagnosis between encephalitis and lymphoproliferative diseases.

  2. Mesenchymal Stem Cells May Ameliorate Nephrotic Syndrome Post-Allogeneic Hematopoietic Stem Cell Transplantation-Case Report

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2017-08-01

    Full Text Available IntroductionBecause of their immunomodulatory and anti-inflammatory effects, mesenchymal stem cells (MSCs have been considered as potential therapeutic agents for treating immune-related or autoimmune diseases, such as graft-versus-host disease (GVHD. Nephrotic syndrome (NS after allogeneic hematopoietic stem cell transplantation (allo-HSCT is an uncommon complication with unclear etiology and pathogenesis. It may be an immune disorder involving immune complex deposition, B cells, regulatory T cells (Tregs, and Th1 cytokines and be a manifestation of chronic GVHD. Corticosteroids and calcium antagonists, alone or in combination, are the most common therapeutic agents in this setting. Rituximab is commonly administered as salvage treatment. However, treatment failure and progressive renal function deterioration has been reported to occur in approximately 20% of patients in a particular cohort.Case presentationWe present a patient who developed NS 10 months after allo-HSCT. After treatment failure with cyclosporine A, prednisone, and rituximab, she achieved a complete response with MSC treatment. The clinical improvement of this patient was accompanied by a decreased B cell population together with an increased frequency of regulatory B cells (Bregs and Tregs after MSC treatment.ConclusionMSCs could modulate NS after allo-HSCT by suppressing B cell proliferation, inducing Tregs and Bregs, and inhibiting inflammatory cytokine production by monocytes and NK cells. Among all these, Bregs might play an important role in ameliorating the NS of this patient.

  3. [Reduced intensity conditioning allogeneic hematopoietic stem cell transplantation in chronic lymphocytic leukemia (CLL) patients with the aberration of p53 gene].

    Science.gov (United States)

    Wang, Li; Miao, Kourong; Fan, Lei; Xu, Ji; Wu, Hanxin; Li, Jianyong; Xu, Wei

    2016-04-01

    To investigate the effectiveness and safety of reduced intensity conditioning allogeneic hematopoietic stem cell transplantation (RIC allo-HSCT) in ultra high risk chronic lymphocytic leukemia (CLL) patients with the deletion of p53 to deepen the understanding of allo-HSCT in the treatment of CLL. In this retrospective study, a total of 4 ultra high risk CLL patients with the deletion of p53 in our center between July 2012 and Jan 2014 were enrolled. The RIC regimen was administered and the hematopoietic reconstitution, transplantation related mortality (TRM), overall survival (OS), progress free survival (PFS) were evaluated. We registered 4 patients with the median age of 56 years (49-61 years), including 3 males and 1 female. The median mononuclear cells (MNC) and CD34(+) cells were 6.54 (2.85-14.7) × 10(8)/kg (recipient body weight) and 5.81 (2.85-7.79) × 10(6)/kg (recipient body weight), respectively. The median time of the neutrophil recovery was 11 days (range of 9-12 days), and the median time of the platelet recovery 5.5 days (range of 0-11 days). Three patients (75%) attained a full donor chimerism at day 28 after transplantation and one (25%) got a mixed chimerism of donor and recipient. During the follow-up at a median time of 26.5 months (range of 21-39 months), 2 (50%) patients developed acute graft versus host disease (aGVHD) grade I and 2 (50%) patients got CMV infection. One patient got herpes zoster virus and EB virus infections. No transplantation related mortality was found in the 4 patients. One patient who was in partial response status progressed 5 months after transplantation, and the other 3 patients remained in durable remission after allo-HSCT. These results suggested that RIC allo-HSCT showed durable remission, good tolerance and acceptable toxicity, which could be a better option for the treatment of ultra high risk CLL patients with the deletion of p53 and was worth to be investigated and applied widely in future.

  4. Successful Combination of Sequential Gene Therapy and Rescue Allo-HSCT in Two Children with X-CGD - Importance of Timing.

    Science.gov (United States)

    Siler, Ulrich; Paruzynski, Anna; Holtgreve-Grez, Heidi; Kuzmenko, Elena; Koehl, Ulrike; Renner, Eleonore D; Alhan, Canan; de Loosdrecht, Arjan A van; Schwäble, Joachim; Pfluger, Thomas; Tchinda, Joelle; Schmugge, Markus; Jauch, Anna; Naundorf, Sonja; Kühlcke, Klaus; Notheis, Gundula; Güngor, Tayfun; Kalle, Christof V; Schmidt, Manfred; Grez, Manuel; Seger, Reinhard; Reichenbach, Janine

    2015-01-01

    We report on a series of sequential events leading to long-term survival and cure of pediatric X-linked chronic granulomatous disease (X-CGD) patients after gamma-retroviral gene therapy (GT) and rescue HSCT. Due to therapyrefractory life-threatening infections requiring hematopoietic stem cell transplantation (HSCT) but absence of HLAidentical donors, we treated 2 boys with X-CGD by GT. Following GT both children completely resolved invasive Aspergillus nidulans infections. However, one child developed dual insertional activation of ecotropic viral integration site 1 (EVI1) and signal transducer and activator of transcription 3 (STAT3) genes, leading to myelodysplastic syndrome (MDS) with monosomy 7. Despite resistance to mismatched allo-HSCT with standard myeloablative conditioning, secondary intensified rescue allo-HSCT resulted in 100 % donor chimerism and disappearance of MDS. The other child did not develop MDS despite expansion of a clone with a single insertion in the myelodysplasia syndrome 1 (MDS1) gene and was cured by early standard allo-HSCT. The slowly developing dominance of clones harboring integrations in MDS1-EVI1 may guide clinical intervention strategies, i.e. early rescue allo-HSCT, prior to malignant transformation. GT was essential for both children to survive and to clear therapy-refractory infections, and future GT with safer lentiviral self-inactivated (SIN) vectors may offer a therapeutic alternative for X-CGD patients suffering from life-threatening infections and lacking HLA-identical HSC donors.

  5. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.

    Science.gov (United States)

    Wu, Liangliang; Mo, Wenjian; Zhang, Yuping; Zhou, Ming; Li, Yumiao; Zhou, Ruiqing; Xu, Shiling; Pan, Shiyi; Deng, Hui; Mao, Ping; Wang, Shunqing

    2017-07-01

    Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.

  6. Allogeneic Hematopoietic Stem Cell Transplantation in the Treatment of Human C1q Deficiency: The Karolinska Experience.

    Science.gov (United States)

    Olsson, Richard F; Hagelberg, Stefan; Schiller, Bodil; Ringdén, Olle; Truedsson, Lennart; Åhlin, Anders

    2016-06-01

    Human C1q deficiency is associated with systemic lupus erythematosus (SLE) and increased susceptibility to severe bacterial infections. These patients require extensive medical therapy and some develop treatment-resistant disease. Because C1q is produced by monocytes, it has been speculated that allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cure this disorder. We have so far treated 5 patients with C1q deficiency. In 3 cases, SLE symptoms remained relatively mild after the start of medical therapy, but 2 patients developed treatment-resistant SLE, and we decided to pursue treatment with allo-HSCT. For this purpose, we chose a conditioning regimen composed of treosulfan (14 g/m) and fludarabine (30 mg/m) started on day -6 and given for 3 and 5 consecutive days, respectively. Thymoglobulin was given at a cumulative dose of 8 mg/kg, and graft-versus-host disease prophylaxis was composed of cyclosporine and methotrexate. A 9-year-old boy and a 12-year-old girl with refractory SLE restored C1q production after allo-HSCT. This resulted in normal functional properties of the classical complement pathway followed by reduced severity of SLE symptoms. The boy developed posttransplant lymphoproliferative disease, which resolved after treatment with rituximab and donor lymphocyte infusion. Unfortunately, donor lymphocyte infusion induced severe cortisone-resistant gastrointestinal graft-versus-host disease, and the patient died from multiple organ failure 4 months after transplantation. The girl is doing well 33 months after transplantation, and clinically, all signs of SLE have resolved. Allo-HSCT can cure SLE in human C1q deficiency and should be considered early in subjects resistant to medical therapy.

  7. Long term follow up of patients after allogeneic stem cell transplantation and transfusion of HSV-Tk transduced T-cells.

    Directory of Open Access Journals (Sweden)

    Eva Maria Weissinger

    2015-04-01

    Full Text Available Allogeneic stem cell transplantation (allo-HSCT is one of the curative treatments for hematologic malignancies, but is hampered by severe complications, such as acute or chronic graft-versus-host-disease (aGvHD; cGvHD and infections. CD34-selcetion of stem cells reduces the risk of aGvHD, but also leads to increased infectious complications and relapse. Thus, we studied the efficacy, safety and feasibility of transfer of gene modified donor T-cells shortly after allo-HSCT in two clinical trials between 2002 and 2007 and here we compare the results to unmodified donor leukocyte transfusion (DLI. The aim of these trials was to provide patients with the protection of T-cells after T-cell-depleted allo-HSCT in the matched or mismatched donor setting with an option to delete transduced T-cells, if severe aGvHD occurred within the trial period. Donor-T-cells were transduced with the replication-deficient retrovirus SFCMM-3, expressing HSV-Tk and the truncated LNGFR for selection of transduced cells. Transduced cells were transfused either after day +60 (matched donors or on day +42 (haploidentical donors.Nine patients were included in the first trial (MHH; 2002 until 2007 2 were included in TK007 (2005-2009 and 6 serve as a control group for outcome after haploidentical transplantation without HSV-TK-transduced DLI. Three patients developed acute GvHD, two had grade I of the skin, one had aGvHD on day +131 (post-HSCT; +89 post-HSV-Tk DLI grade II, which was successfully controlled by ganciclovir (GCV. Donor chimerism was stabilized after transfusion of the transduced cells in all patients treated. Functionality of HSV-Tk gene expressing T-cells was shown by loss of bcr-abl gene expression as well as by control of cytomegalovirus-reactivation. To date, 6patients have relapsed and died, 2 after a second HSCT without T-cell depletion or administration of unmodified T-cells. Eleven patients (7 post-HSV-Tk DLI are alive and well to date.

  8. Non-traditional CD4+CD25-CD69+ regulatory T cells are correlated to leukemia relapse after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zhao, Xiao-su; Wang, Xu-hua; Zhao, Xiang-yu; Chang, Ying-jun; Xu, Lan-ping; Zhang, Xiao-hui; Huang, Xiao-jun

    2014-07-01

    Non-traditional CD4+CD25-CD69+ T cells were found to be involved in disease progression in tumor-bearing mouse models and cancer patients recently. We attempted to define whether this subset of T cells were related to leukemia relapse after allogeneic hematopoietic cell transplantation (allo-HSCT). The frequency of CD4+CD25-CD69+ T cells among the CD4+ T cell population from the bone marrow of relapsed patients, patients with positive minimal residual disease (MRD+) and healthy donors was examined by flow cytometry. The CD4+CD25-CD69+ T cells were also stained with the intracellular markers to determine the cytokine (TGF-β, IL-2 and IL-10) secretion. The results showed that the frequency of CD4+CD25-CD69 + T cells was markedly increased in patients in the relapsed group and the MRD + group compared to the healthy donor group. The percentage of this subset of T cells was significantly decreased after effective intervention treatment. We also analyzed the reconstitution of CD4+CD25-CD69+ T cells at various time points after allo-HSCT, and the results showed that this subset of T cells reconstituted rapidly and reached a relatively higher level at +60 d in patients compared to controls. The incidence of either MRD+ or relapse in patients with a high frequency of CD4+CD25-CD69+ T cells (>7%) was significantly higher than that of patients with a low frequency of CD4+CD25-CD69+ T cells at +60 d, +90 d and +270 d after transplant. However, our preliminary data indicated that CD4+CD25-CD69+ T cells may not exert immunoregulatory function via cytokine secretion. This study provides the first clinical evidence of a correlation between non-traditional CD4+CD25-CD69+ Tregs and leukemia relapse after allo-HSCT and suggests that exploration of new methods of adoptive immunotherapy may be beneficial. Further research related to regulatory mechanism behind this phenomenon would be necessary.

  9. A Pediatric Case of Systemic Lupus Erythematosus Developed 10 Years after Cord Blood Transplantation for Juvenile Myelomonocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Masayuki Nagasawa

    2012-01-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (allo-HSCT is a most powerful immunotherapy for hematological malignancies. However, the impact of immunological disturbances as a result of allo-HSCT is not understood well. We experienced an 11-year-old boy who presented with systemic lupus erythemathosus (SLE 10 years after unrelated cord blood transplantation of male origin for juvenile myelomonocytic leukemia (JMML with monosomy 7. Bone marrow examination showed complete remission without monosomy 7. Genetic analysis of peripheral blood revealed mixed chimera with recipient cells consisting of <5% of T cells, 50–60% of B cells, 60–75% of NK cells, 70–80% of macrophages, and 50–60% of granulocytes. Significance of persistent mixed chimera as a cause of SLE is discussed.

  10. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  11. Single-centre experience of allogeneic haemopoietic stem cell ...

    African Journals Online (AJOL)

    Allogeneic haemopoietic stem cell transplant (Allo-HSCT) is used to treat a broad but well-defined range of paediatric conditions, most frequently in paediatric oncology for treatment intensification or salvage therapy for acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Allo-HSCT is also indicated in.

  12. Characteristics and risk of chronic graft-versus-host disease of liver in allogeneic hematopoietic stem cell transplant recipients.

    Directory of Open Access Journals (Sweden)

    Chien-Ting Chen

    Full Text Available Chronic graft-versus-host-disease (cGvHD is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT. Among various organ-specific cGvHD, the cGvHD of liver is less well-characterized. In this study, we applied the National Institutes of Health 2014 scoring criteria of cGvHD to analyze a retrospective cohort of 362 allo-HSCT recipients focusing on cGvHD of liver. The overall incidence of liver cGvHD with a score of 3 by 1.5 years post-transplant was 5.8% (21/362. Poor outcome, in terms of overall survival (OS, were observed in patients with scores of 3 liver cGvHD, comparing to those with scores less than 3 (hazard ratio [HR] 2.037, 95% confidence interval [CI] 1.123-3.696, P = 0.019. In multivariate analysis, male gender (HR 4.004, P = 0.042 and chronic hepatitis C virus (HCV infection status (HR 19.087, P < 0.001 were statistically significant risk factors for scores of 3 liver cGvHD. Our results indicate that liver cGvHD with scores of 3 has a grave prognosis following allo-HSCT, and that HCV carrier status and male are risk factors. Early recognition of this devastating complication might help in prompt immunosuppressive therapy and reducing late poor outcome.

  13. [A comparative study of unrelated donor and matched-sibling donor allogeneic hematopoietic stem cell transplantation in children and adolescents with acquired severe aplastic anemia].

    Science.gov (United States)

    Zhou, J; Fu, Y W; Liang, L J; Wang, Q; Han, L J; Zu, Y L; Zhang, Yanli; Zhu, X H; Yu, F K; Fang, B J; Wei, X D; Song, Y P

    2016-12-01

    Objective: To evaluate the efficacy of unrelated donor allogeneic hematopoietic stem cell transplantation(URD allo-HSCT) for children and adolescents with severe aplastic anemia (SAA). Methods: Clinical data of 34 SAA children and adolescents undergoing allo-HSCT were retrospectively analyzed from October 2001 to October 2015. According to the source of donor, the patients were divided into matched sibling donor allo-HSCT group (MSD group) and unrelated donor group (URD group). The clinical outcome of SAA children and adolescents receiving URD allo-HSCT was assessed, and patients in MSD allo-HSCT group were enrolled as control at the same period. Results: The rate of hematopoietic reconstitution, the time of neutrophil and platelet engraftment, incidence of chimerism and graft rejection between two groups were not statistically different.The incidence of acute graft-versus-host disease (GVHD) in URD group was significantly higher than that in MSD group [42.9%(6/14) vs 10.5%(2/19), P =0.047]. The incidence of grade Ⅱ-Ⅳ acute GVHD and chronic GVHD in URD were higher than those in MSD group [21.4%(3/14) vs 5.3%(1/19), P =0.288; 35.7%(5/14) vs 5.3%(1/19), P =0.062, respectively], yet without significant difference between two groups. Other transplant-related complications including pulmonary complications, hemorrhagic cystitis, incidence of EBV and CMV reactivation and venous occlusive disease were comparable with two regimens. Estimated 5-years overall survival (OS) rate and disease free survival (DFS) rate were not statistically significant between URD group and MSD group [(84.4±6.6)% vs (89.4±7.1)%, (82.5±5.4)% vs (82.1±4.3)%; P =0.766, P =0.884, respectively]. Conclusions: By multivariate analysis, the outcome of URD allo-HSCT in SAA children and adolescent is similar to MSD allo-HSCT. It could be an alternative option as the first-line treatment for SAA children and adolescents without HLA matched sibling donors.

  14. Potential contribution of a novel Tax epitope-specific CD4+ T cells to graft-versus-Tax effect in adult T cell leukemia patients after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari

    2013-04-15

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.

  15. Spectrum of Epstein-Barr virus-associated diseases in recipients of allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Xuan, Li; Jiang, Xinmiao; Sun, Jing; Zhang, Yu; Huang, Fen; Fan, Zhiping; Guo, Xutao; Dai, Min; Liu, Can; Yu, Guopan; Zhang, Xian; Wu, Meiqing; Huang, Xiaojun; Liu, Qifa

    2013-09-01

    Epstein-Barr virus (EBV) infection may result in a spectrum of diseases in recipients of transplant. The aim of this study is to investigate the incidence, clinical characteristics, and prognosis of the spectrum of EBV-associated diseases in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). A total of 263 recipients undergoing allo-HSCT were prospectively enrolled. The blood EBV-DNA loads were regularly monitored by quantitative real-time polymerase chain reaction. The 3-year cumulative incidence of total EBV-associated diseases, posttransplantation lymphoproliferative diseases (PTLD), EBV fever, and EBV end-organ diseases (pneumonia, encephalitis/myelitis, and hepatitis) were 15.6%±2.5%, 9.9%±2.0%, 3.3%±1.3%, and 3.3%±1.2% (2.2%±1.0%, 1.6%±0.8%, and 0.9%±0.6%), respectively. Fever was the most common symptom of EBV-associated diseases. Patients with PTLD had better response rate to rituximab-based treatments compared with those with EBV end-organ diseases (including PTLD accompanied by EBV end-organ diseases) (P=0.014). The 3-year overall survival was 37.3%±13.7%, 100.0%, and 0.0%±0.0% in patients with PTLD, EBV fever, and EBV end-organ diseases (P=0.001). EBV-associated diseases other than PTLD are not rare in the recipients of allo-HSCT. The clinical manifestations of EBV end-organ diseases are similar to PTLD. EBV end-organ diseases had poorer response to rituximab-based therapy compared with PTLD.

  16. A comparison of the effect of xinruibai versus filgrastim on hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ye, Qixiang; Jiang, Hebi; Jiang, Hua

    2018-05-31

    To compare the effect of xinruibai (Pegfilgrastim) and filgrastim injections on white blood cell and platelet (PLT) recovery, adverse events, post-operative complications, and cost effectiveness after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Children who underwent allo-HSCT at our hospital from January 2014 to May 2017 due to thalassemia major, aplastic anemia, leukemia, and mucopolysaccharidosis were included. Among the children, 53 received xinruibai injections and 33 received filgrastim injections. There were no significant differences in the average time to neutrophil and platelet recovery, the incidence of post-operative complications after allo-HSCT, the number of red blood cell and PLT infusions, or the incidence of adverse events related to the injection between two groups (P >  0.05). The pain score was 3.06 (SD 0.41) for the xinruibai group and 25.18 (SD 6.22) for the filgrastim group, indicating significant differences between the two groups (P <  0.001). No difference was found in the hospitalization cost. The cost of the granulocyte-colony stimulating factor (G-CSF) was 257.11 ± 61.87 Euro in the xinruibai group and 214.79 ± 0.00 Euro in the filgrastim group, showing significant difference (P <  0.001). Xinruibai injection was more convenient, simple, effective, and safer than filgrastim.

  17. Identification of Heme Oxygenase-1 as a Novel Predictor of Hematopoietic Stem Cell Transplantation Outcomes in Acute Leukemia

    Directory of Open Access Journals (Sweden)

    Yinghao Lu

    2016-09-01

    Full Text Available Objective: The main aim of this study was to determine the correlation between clinical outcome and heme oxygenase-1 (HO-1 expression before and after hematopoietic stem cell transplantation (HSCT in acute leukemia. Methods: HO-1 mRNA levels in 83 patients were measured using qRT-PCR. In a comparative analysis of HO-1 levels in relation to different post-transplant outcomes, the HO-1 threshold, determined via the receiver operating characteristic (ROC curve, was effectively used to predict clinical relapse and acute graft-versus-host disease (aGVHD. The correlations among clinical relapse, aGVHD and HO-1 expression were analyzed based on this threshold. Results: Leukemia risk stratification and relative expression of HO-1 before pretreatment had significant effects on clinical relapse. Leukemia risk stratification, relative expression of HO-1 after HSCT and the interval from diagnosis to transplantation had a significant influence on aGVHD. Both relapse and aGVHD appeared to be associated with relative HO-1 expression. The relative expression rate of HO-1 was 1.131-1.186 before pretreatment, and strongly associated with post-transplantation relapse. The relative expression rate of HO-1 was 1.102-1.144 after transplantation, and closely related to aGVHD. ROC curve analysis revealed high specificity and sensitivity of HO-1 expression in predicting relapse and aGVHD after allo-HSCT. Conclusions: HO-1 expression can be effectively used as a predictor of relapse as well as a diagnostic factor of aGVHD after transplantation for allo-HSCT patients with acute leukemia.

  18. Donor Selection for Allogenic Hemopoietic Stem Cell Transplantation: Clinical and Ethical Considerations

    Directory of Open Access Journals (Sweden)

    Irene Riezzo

    2017-01-01

    Full Text Available Allogenic hematopoietic progenitor cell transplantation (allo-HSCT is an established treatment for many diseases. Stem cells may be obtained from different sources: mobilized peripheral blood stem cells, bone marrow, and umbilical cord blood. The progress in transplantation procedures, the establishment of experienced transplant centres, and the creation of unrelated adult donor registries and cord blood banks gave those without an human leucocyte antigen- (HLA- identical sibling donor the opportunity to find a donor and cord blood units worldwide. HSCT imposes operative cautions so that the entire donation/transplantation procedure is safe for both donors and recipients; it carries with it significant clinical, moral, and ethical concerns, mostly when donors are minors. The following points have been stressed: the donation should be excluded when excessive risks for the donor are reasonable, donors must receive an accurate information regarding eventual adverse events and health burden for the donors themselves, a valid consent is required, and the recipient’s risks must be outweighed by the expected benefits. The issue of conflict of interest, when the same physician has the responsibility for both donor selection and recipient care, is highlighted as well as the need of an adequate insurance protection for all the parties involved.

  19. Allogeneic Transplantation In Chronic Myeloid Leukemia And The Effect Of Tyrosine Kinase Inhibitors On Survival, A Quasi-Experimental Study

    Directory of Open Access Journals (Sweden)

    Mehmet Özen

    2017-03-01

    Full Text Available Objective: Tyrosine kinase inhibitors (TKIs have changed the indications for allogeneic hematopoietic stem cell transplantation (allo-HSCT in chronic myeloid leukemia (CML. Therefore, we aimed to evaluate the effect of TKIs on allo-HSCT in CML. Materials and Methods: In this quasi-experimental study, we compared patient, disease, and transplantation characteristics as well as allo-HSCT outcomes between the pre-TKI era (before 2002 and the post-TKI era (2002 and later in patients with CML. A total of 193 allo- HSCTs were performed between 1989 and 2012. Results: Patients in the post-TKI era had more advanced disease (>chronic phase 1 at the time of transplant and more frequently received reduced-intensity conditioning compared to patients in the pre-TKI era. Relapse/progression occurred more frequently in the year ≥2002 group than in the year <2002 group (48% vs. 32% at 5 years, p=0.01; however, overall survival (OS was similar in these two groups (5-year survival was 50.8% vs. 59.5%, respectively; p=0.3. TKIs (with donor lymphocyte infusions or alone for treatment of relapse after allo-HSCT were available in the post-TKI era and were associated with improved OS. While the rates of hematologic remission at 3 months after allo-HSCT were similar between TKI eras, patients having remission had better disease-free survival (DFS [relative risk (RR: 0.15, confidence interval (CI 95%: 0.09-0.24, p<0.001] and OS (RR: 0.14, CI 95%: 0.09-0.23, p<0.001. Male allo-HSCT recipients had worse DFS (RR: 1.7, CI 95%: 1.2-2.5, p=0.007 and OS (RR: 1.7, CI 95%: 1.1-2.6, p=0.02 than females. Conclusion: TKIs are an effective option for the treatment of relapse after allo-HSCT in CML. Hematologic remission after allo-HSCT is also an important factor for survival in CML patients.

  20. Ocular graft versus host disease in allogenic haematopoetic stem cell transplantation in a tertiary care centre in India

    Directory of Open Access Journals (Sweden)

    Rehan Khan

    2015-01-01

    Full Text Available Background & objectives: This study was aimed to report the occurrence of ocular graft versus host disease (oGVHD in allogeneic haematopoietic stem cell transplantation (allo-HSCT patients in a tertiary care hospital setting. Methods: A cross-sectional study of ocular surface of allo-HSCT patients was done. Slit lamp biomicroscopy, symptom score, tear meniscus height, fluorescein tear break-up time, Schirmer′s test I, ocular surface staining, dry eye severity, ocular surface disease index score were done. Indications for allo-HSCT, human leukocyte antigen (HLA matching, GVHD risk factor, systemic manifestation and treatment were also noted. Results: GVHD occurred in 44.4 per cent of 54 allo-HSCT patients (mean age 26.7 ± 12 yr included in the study. GVHD risk factors identified included female gender, relapse, older age of donor, cytomagelo virus (CMV reactivation, and multiparous female donors. oGVHD was noted in 31.5 per cent with mean time to occurrence being 17.8 ± 21.9 months after the allo-HSCT and was observed in 89.5 per cent of chronic GVHD cases. Acute GVHD (oral and dermatological involvement showed a significant association with GVHD in our patients (P< 0.001, 0R 23.0, CI 6.4-82.1. Chronic GVHD was observed to be associated with the occurrence of oGVHD (dry eye (P<0.001, OR = 24.0, CI 0.02 - 0.29. Of the 34 eyes with oGHVD, dry eye of level 3 severity was seen in 16, level 2 in six, level 1 in 12 eyes. Interpretation & conclusions: GVHD occurred in 44.4 per cent of the patients studied in the present study. Acute and chronic GVHD showed a strong association with oGVHD. Dry eye disease due to chronic oGVHD was observed in 17 (31.5% of 54 allo-HSCT patient with chronic oGVHD occurring in 17 (89.4% of chronic GVHD cases in allo-HSCT patients. Our study on oGVHD in post allo-HSCT patients in tertiary care centre points towards the fact that ocular morbidity due to dry eye disease as a result of oGVHD is a cause for concern in these

  1. [Pretreatment doses of antithymocyte globubin-fresenius for allogeneic hematopoietic stem cell transplantation for beta-thalassemia major].

    Science.gov (United States)

    Li, Chunfu; Wang, Yanhua; Wu, Xuedong; Pei, Fuyu; He, Yuelin; Feng, Xiaoqin; Liu, Huaying

    2012-05-01

    To investigate the effects of different doses of antithymocyte globubin-fresenius (ATG-F) for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with beta-thalassemia Major. Sixty-four children with beta-thalassemia major undergoing allo-HSCT were divided into two equal groups to receive ATG-F pretreatments at high (30 mg/kg) or low (15 mg/kg) doses as part of the conditioning regimen including mainly cyclophosphamide, busulfan, fludarabine, and thiotepa. The outcomes of the patients were compared between the two groups. No obvious difference were noted in the time to leukocyte and platelet engraftment between the two groups. The incidence of grade II-IV acute graft-versus-host disease (aGVHD) appeared to be higher in the low-dose group than in the high-dose group (12.5% vs 9.4%). The incidence of grade III-IV aGVHD was also higher in the low dose group (12.5% vs 6.3%), but the difference was not statistically significant. Application of high-dose ATG-F was associated with a higher rate of probable and possible fungal infection (P<0.05). The two doses of ATG-F is feasible as a part of the conditioning regimen for allo-HSCT in children with beta-thalassemia major.

  2. [Combination of busulfan with increased-dose of fludarabine as conditioning regimen for MDS and MDS-AML patients with allo-HSCT].

    Science.gov (United States)

    Yuan, Jing; Ren, Hanyun; Qiu, Zhixiang; Li, Yuan; Wang, Mangju; Liu, Wei; Xu, Weilin; Sun, Yuhua; Wang, Lihong; Liang, Zeyin; Dong, Yujun; Ou, Jinping; Wang, Wensheng; Yin, Yue; Cen, Xinan; Wang, Qian

    2015-06-01

    To investigate the safety and efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for myelodysplastic syndrome (MDS) and secondary acute myelogenous leukemia (MDS-AML) using conditioning regimen with busulfan (Bu) and increased-dose of fludarabine (ID-Flu). A total of 49 patients with MDS or MDS-AML were treated by allo-HSCT, the clinical data was analyzed retrospectively. All patients achieved hematopoietic reconstitution. Neutrophil engraftment was at 10 - 22 days (median 13 days), and platelet engraftment was at 8 - 66 days (median 16 days). The cumulative incidences of Ⅱ-Ⅳ degree acute graft-versus-host disease (GVHD), hemorrhagic cystitis (HC), and hepatic venous occlusive disease (VOD) were 28.6%, 14.3% and 2.0%, respectively. The transplant-related mortality (TRM) was only 4.1% at 100d and 8.2% at 1-92 months of followed-up (median 14 months) period. Overall survival (OS) and disease free survival (DFS) was 75.5%, 73.5%, respectively. Kaplan-Meier curve showed that 3-year OS and 3-year DFS was (71.1 ± 7.8)%, (66.7 ± 8.3)%, respectively, with a relapse incidence (RI) 16.3%. OS for MDS and MDS-AML was 81.5% and 68.2%, and RI in two settings was 3.7%, 31.8%, respectively. OS for MDS-AML at complete remission (CR) and non-CR subgroup was 83.3% and 50.0%, respectively, while cumulative RR was 16.7% and 50.0%, respectively. OS and RI except for non-CR subgroup were 82.1% and 7.7%. Univariate analysis showed that pre-HSCT disease status had correlation with OS (P=0.031), but age, decitabine in conditioning regimen, stem cell source, HLA matching, patient-donor gender, dose of mononuclear cells and GVHD had no correlation with OS. Bu/ID-Flu conditioning regimen for MDS and MDS-AML has high efficiency, fewer complications, lower toxicity and TRM. The OS and DFS were higher and RI was lower except for refractory MDS-AML patients. The regimen is valuable for clinical application.

  3. HLA-Matched Sibling versus Unrelated versus Haploidentical Related Donor Allogeneic Hematopoietic Stem Cell Transplantation for Patients Aged Over 60 Years with Acute Myeloid Leukemia: A Single-Center Donor Comparison.

    Science.gov (United States)

    Devillier, Raynier; Legrand, Faezeh; Rey, Jérôme; Castagna, Luca; Fürst, Sabine; Granata, Angela; Charbonnier, Aude; Harbi, Samia; d'Incan, Evelyne; Pagliardini, Thomas; Faucher, Catherine; Lemarie, Claude; Saillard, Colombe; Calmels, Boris; Mohty, Bilal; Maisano, Valerio; Weiller, Pierre-Jean; Chabannon, Christian; Vey, Norbert; Blaise, Didier

    2018-02-12

    Haploidentical related donor (HRD) allogeneic hematopoietic stem cell transplantation (allo-HSCT) was developed as a valid option for the treatment of acute myeloid leukemia (AML) in the absence of a matched donor. However, many investigators are reluctant to consider the use of this alternative in elderly patients, anticipating high morbidity. Here, we report a single-center comparison of HRD versus matched sibling donor (MSD) and unrelated donor (UD) allo-HSCT for patients with AML aged ≥60 years. Ninety-four patients (MSD: n = 31; UD: n = 30; HRD: n = 33) were analyzed. The median age was 65 (range, 60 to 73) years. We observed a higher cumulative incidence of grade 3 to 4 acute graft-versus-host disease (GVHD) after UD allo-HSCT (MSD versus UD versus HRD: 3% versus 33% versus 6%, respectively; P = .006). Two-year cumulative incidence of moderate or severe chronic GVHD was 17%, 27%, and 16% in the MSD, UD, and HRD groups, respectively (P = .487). No difference was observed in the 2-year cumulative incidence of relapse or nonrelapse mortality (NRM) (relapse: MSD versus UD versus HRD: 32% versus 25% versus 25%, respectively; P = .411; NRM: MSD versus UD versus HRD: 19% versus 27% versus 24%, respectively; P = .709). At 2 years, progression-free survival, overall survival, and GVHD- and relapse-free survival were 48%, 50%, and 39%, respectively, in the MSD group; 48%, 51%, and 23%, respectively, in the UD group; and 50%, 52%, and 32%, respectively, in the HRD group, without statistically significant differences between the groups. We conclude that HRD allo-HSCT is highly feasible and no less efficient than MSD or UD allo-HSCT in patients with AML aged ≥60 years. Thus, the absence of a HLA-identical donor should not limit the consideration of allo-HSCT for the treatment of AML. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. [Treatment of Gaucher disease with allogeneic hematopoietic stem cell transplantation: report of three cases and review of literatures].

    Science.gov (United States)

    Tang, Xiangfeng; Luan, Zuo; Wu, Nanhai; Zhang, Bo; Jing, Yuanfang; Du, Hong; Lu, Wei; Xu, Shixia

    2015-11-01

    To explore the efficacy of unrelated umbilical cord blood transplantation (UCBT) in the treatment of Gaucher disease. The clinical characteristics of three children with Gaucher disease underwent UCBT in our hospital between April 2013 and September 2014 were retrospectively analyzed. Literature on allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of Gaucher disease was searched at Wanfang and Pubmed databases between 1983 and 2015 and was reviewed and summaried. Three children with Gaucher disease, all were female, received UCBT. These patients' age at receiving transplantation was 3.8 years, 7.1 years and 2.6 years, respectively. The second case received the second transplantation. The first and third case received splenectomy before UCBT. The pretreatment regimen was busulfan (Bu)/fludarabine (Flu)/cyclophosphamide (CTX)/antithymocyte globulin (ATG), and for the patient received the second transplantation melphalan was added to the myeloablative conditioning regimen of Bu/Flu/CTX/ATG. Cyclosporine and mycophenolate mofetil (MMF) wee used for prophylaxis of acute graft versus host disease (aGVHD). The dose of cord blood stem cell nucleated cell counts was 9.7 × 10⁷ /kg,11.9 × 10⁷ /kg and 7.6 × 10⁷/kg respectively. The dose of cord blood stem cell CD34⁺ cell counts was 5.4 × 10⁵/kg , 3.5 × 10⁵/kg and 3.2 × 10⁵/kg respectively. The day of granulocytes exceeding 0.5 × 10⁹/L was day 11, 12 and 19 after transplantation, respectively. The day of platelets exceeding 20 × 10⁹/L was day 14, 33 and 74 after transplantation, respectively. At one month after transplantation the rate of chimerism was over 95% and all patients got donor complete chimerism. The level of β-glucocerebrosidase recovered to normal at one month after transplantation. During transplantation, all patients developed cytomegalovirus (CMV) and Epstein-Barr virus (EBV) viremia. In case 1 immune thrombocytopenia occurred at five month after

  5. Clinical and Microbiological Characteristics of Breakthrough Candidemia in Allogeneic Hematopoietic Stem Cell Transplant Recipients in a Japanese Hospital

    Science.gov (United States)

    Kimura, Muneyoshi; Yamamoto, Hisashi; Asano-Mori, Yuki; Nakamura, Shigeki; Yamagoe, Satoshi; Ohno, Hideaki; Miyazaki, Yoshitsugu; Abe, Masahiro; Yuasa, Mitsuhiro; Kaji, Daisuke; Kageyama, Kosei; Nishida, Aya; Ishiwata, Kazuya; Takagi, Shinsuke; Yamamoto, Go; Uchida, Naoyuki; Izutsu, Koji; Wake, Atsushi; Taniguchi, Shuichi; Yoneyama, Akiko

    2017-01-01

    ABSTRACT Few data on breakthrough candidemia (BC), defined as candidemia that develops on administration of antifungal agents (AFAs), in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients are available. The medical and microbiological records of recipients of an allo-HSCT obtained between December 2008 and December 2014 were reviewed. Of 768 allo-HSCT cases, 26 developed BC. Among the 26 causative strains, 22 strains were stored and identified by sequencing. The following species were isolated: Candida parapsilosis (9 strains), C. glabrata (4 strains), C. guilliermondii (3 strains), and other Candida species (6 strains). The AFAs being used when BC developed were micafungin (17 cases), liposomal amphotericin B (5 cases), itraconazole (2 cases), and voriconazole (2 cases). All 17 cases who developed BC during micafungin administration were administered 150 mg/day of micafungin. The susceptibilities of the causative Candida species to the administered AFAs when breakthrough occurred ranged from susceptible to resistant. Especially, 85% of the Candida species that caused BC during micafungin administration were susceptible to micafungin. Additionally, 75% of the strains were wild type for susceptibility to the administered AFAs when breakthrough occurred. Systemic steroid administration and a longer severe neutropenic phase (≥5 days) were independent risk factors for BC (P = 0.016 and P = 0.015, respectively). BC developed in allo-HSCT recipients even when they received a sufficient dose of AFA, including micafungin, to which the causative Candida species were susceptible and/or had wild-type susceptibility in vitro. Systemic steroid administration and a longer severe neutropenic phase were host-based factors associated with BC. PMID:28115352

  6. RANTES polymorphisms and the risk of graft-versus-host disease in human leukocyte antigen-matched sibling allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Shin, Dong-Yeop; Kim, Inho; Kim, Jin Hee; Lee, Yun-Gyoo; Kang, Eun Joo; Cho, Hyeon Jin; Lee, Kyung-Hun; Kim, Hye Jin; Park, Eun-Hee; Lee, Jong-Eun; Bae, Ji-Yeon; See, Cha Ja; Yoon, Sung-Soo; Park, Sung Sup; Han, Kyou-Sup; Park, Myoung Hee; Hong, Yun-Chul; Park, Seonyang; Kim, Byoung Kook

    2013-01-01

    We investigated the association between RANTES (regulated upon activation, normal T cell expressed and secreted) polymorphisms and clinical outcomes in patients treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). Three RANTES gene polymorphisms, i.e., -403G/A (rs2107538), -28C/G (rs2280788) and In1.1T/C (rs2280789), were genotyped, and the effects of the genotypes and haplotypes of RANTES on clinical outcomes were analyzed. The competing risk regression analysis was used to investigate the relationship between the polymorphisms and the cumulative risk of graft-versus-host disease (GVHD). An AGC haplotype in a recessive model showed significant harmful effects on the cumulative risk of acute GVHD and relapse-free survival (adjusted hazard ratios 2.42 and 2.71, 95% confidence intervals 1.29-4.55 and 1.30-5.64; p = 0.018 and 0.024, respectively), whereas a GCT haplotype did not. RANTES polymorphisms were not significantly associated with overall survival and the risk of chronic GVHD. This study suggests that RANTES polymorphisms might be associated with the occurrence of acute GVHD rather than of chronic GVHD and also of relapse-free survival in the patients treated with allo-HSCT. Further larger prospective investigations are needed to establish the role of RANTES polymorphisms in patients treated with allo-HSCT. Copyright © 2012 S. Karger AG, Basel.

  7. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display.

    Science.gov (United States)

    Baskar, Sivasubramanian; Suschak, Jessica M; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W; Pavletic, Steven Z; Bishop, Michael R; Rader, Christoph

    2009-11-12

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.

  8. Allogeneic hematopoietic stem cell transplantation for primary myelodysplastic syndrome Transplante alogênico de células progenitoras hematopoiéticas para síndrome mielodisplásica primária

    Directory of Open Access Journals (Sweden)

    Carlos R. Medeiros

    2004-01-01

    Full Text Available Characteristics and outcomes of 52 patients with myelodysplastic syndrome (MDS who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT were analyzed. Median age was 30 years (range 2-61 years and median time from diagnosis to allo-HSCT was 10 months (range 1-161 months. Thirty-six patients had advanced MDS or acute myeloid leukemia following MDS at transplant. Conditioning with busulfan and cyclophosphamide was administered to 73% of patients, and the median value of graft dose was 2.595 x 10(8 of total nucleated cells/kg. Overall survival and disease free survival at 4 years were 36% and 33%, respectively. Nineteen patients were alive, with a median follow-up of 3.8 years. Twelve patients relapsed and only one is alive, after donor lymphocyte infusion. Interval II occurred in 19 patients. Donor type (identical related versus non-related/partially matched related influenced the incidence of acute GVHD (P = 0.03. Eleven patients developed chronic GVHD and previous acute GVHD was a risk factor (P = 0.03. Thirty-three patients died, 22 (67% secondary to transplant-related complications. Patients with MDS should undergo allo-HSCT earlier, mainly if they have a compatible donor and are young.Características e resultados de 52 pacientes com síndrome mielodisplásica (MDS submetidos a transplante alogênico de células progenitoras hematopoiéticas (TCPH foram analisados. A idade mediana foi de 30 anos (variação de 2-61 anos e o tempo mediano entre o diagnóstico e transplante foi de dez meses (variação de 1-161 meses. Trinta e seis pacientes tinham MDS avançada ou leucemia mielóide aguda secundária a MDS ao transplante. O condicionamento com busulfano e ciclo­fosfamida foi recebido por 73% dos pacientes, e a dose celular mediana do enxerto foi de 2.56 x 10(8 células nucleadas/kg. A sobrevida global e a sobrevida livre de doença aos quatro anos foi de 36% e 33%, respectivamente. Dezenove pacientes estavam vivos, com um

  9. Evaluation of the efficacy and safety of original filgrastim (Neupogen®), biosimilar filgrastim (Leucostim®) and Lenograstim (Granocyte®) in CD34(+) peripheral hematopoietic stem cell mobilization procedures for allogeneic hematopoietic stem cell transplant donors.

    Science.gov (United States)

    Sivgin, Serdar; Karakus, Esen; Keklik, Muzaffer; Zararsiz, Gokmen; Solmaz, Musa; Kaynar, Leylagul; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2016-06-01

    In this study, we aimed to compare the potency of different G-CSF agents including original filgrastim (Neupogen®), biosimilar filgrastim (Leucostim®) and Lenograstim (Granocyte®) on CD34(+) cell mobilization in patients that underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). The data of 243 donors for alloHSCT recipients diagnosed with mostly acute leukemia and myelodsyplastic syndromes (MDS) were analyzed, retrospectively. Data for stem cell mobilization have been recorded from patients' files. Donors who received Filgrastim (Neupogen®, Group I), biosimilar Filgrastim (Leucostim®, Group II) and Lenograstim (Granocyte®, Group III) were analyzed for total CD34(+) cell count at the end of mobilization procedures. A total of 243 donors and patients for alloHSCT were analyzed retrospectively. The diagnosis of the patients were; acute myeloid leukemia (AML) (110 patients, 45.2%), acute lymphoid leukemia (ALL) (61 patients, 25.1%), aplastic anemia (AA) (38 patients, 15.6%), lymphomas (14 patients, 5.7%) and others (20 patients, 8.4%). The median number of total collected PB CD34(+) cells (×10(6)/kg) was 7.12 (min-max: 5.38-7.90) in the Neupogen® group, 7.27 (min-max: 6.79-7.55) in the Leucostim® group and 7.15 (min-max: 5.34-7.58) in the Granocyte® group. There was no statistically significant difference among groups in terms of total collected PB CD34(+) cells (p = 0.919). The median doses of G-CSF agents (µg/kg/day) in PBSC collection in Neupogen® group was; 11.00 (10.00-12.00) in Leucostim® group10.35 (min-max: 10.00-11.10) and in Granocyte® group11.00 (min-max: 10.00-11.00). There was no statistical significance among groups (p = 0.215). Biosimilar filgrastim (Leucostim®) was found comparable to original Filgrastim (Neupogen®) and Lenograstim (Granocyte®) for PBSC mobilization in donors of the patients that underwent alloHSCT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of outcomes in hematological malignancies treated with haploidentical or HLA-identical sibling hematopoietic stem cell transplantation following myeloablative conditioning: A meta-analysis

    Science.gov (United States)

    Guo, Dan; Xu, Peipei; Chen, Bing

    2018-01-01

    Purpose Haploidentical and human leukocyte antigen (HLA)-identical sibling hematopoietic stem transplantation are two main ways used in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, remarkable progress has been made in haploidentical allo-HSCT (HID-SCT), and some institutions found HID-SCT had similar outcomes as HLA-identical sibling allo-HSCT (ISD-SCT). To clarify if HID-SCT has equal effects to ISD-SCT in hematologic malignancies, we performed this meta-analysis. Methods Relevant articles published prior to February 2017 were searched on PubMed. Two reviewers assessed the quality of the included studies and extracted data independently. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated for statistical analysis. Results Seven studies including 1919 patients were included. The rate of platelet engraftment is significantly lower after HID-SCT versus ISD-SCT while there is no difference in neutrophil engraftment (OR = 2.58, 95% CI = 1.70–3.93, P SCT versus ISD-SCT (OR = 1.88, 95% CI = 1.42–2.49, P SCT group (OR = 0.70, 95% CI = 0.55–0.90, P = 0.005). The incidence rates of overall survival (OS) and disease-free-survival/leukemia-free survival/relapse-free survival (DFS/LFS/RFS) after ISD-SCT are all significantly superior to HID-SCT (OR = 1.32, 95% CI = 1.08–1.62, P = 0.006; OR = 1.25, 95% CI = 1.03–1.52, P = 0.02). There is no significant difference in transplantation related mortality (TRM) rate after HID-SCT and ISD-SCT. Conclusion After myeloablative conditioning, patients receiving ISD-SCT have a faster engraftment, lower acute GVHD and longer life expectancy compared to HID-SCT with GVHD prophylaxis (cyclosporine A, methotrexate, mycophenolate mofetil and antithymoglobulin; CsA + MTX + MMF + ATG). Currently, HID-SCT with GVHD prophylaxis (CsA + MTX + MMF + ATG) may not replace ISD-SCT when HLA-identical sibling donor available. PMID:29381772

  11. A single exercise bout augments adenovirus-specific T-cell mobilization and function.

    Science.gov (United States)

    Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J

    2018-04-30

    Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.

  12. ACTIVATION OF T. GONDII INFECTION AFTER ALLOGENEIC TRANSPLANTATION OF HEMATOPOIETIC STEM CELLS: DEPENDENCE ON TIME OF TRANSPLANTATION AND SEROLOGICAL STATUS OF THE PATIENTS

    Directory of Open Access Journals (Sweden)

    A. B. Chukhlovin

    2014-01-01

    Full Text Available The article focuses on aspects of T. gondii reactivation/reinfection in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT. We have observed 297 patients who received conditioning therapy and allogeneic grafts due to different oncohematological or lymphoproliferative diseases (1 to 60 years old, at a mediane of 19 years. Conditioning regimens were either myeloablative (35%, or non-myeloablative (65%. DNA diagnostics of T. gondii was performed on a regular basis at 0 to 6 months post-HSCT. IgG and IgM antibodies against T. gondii were determined in 78 patients before HSCT, as well as in their donors. T. gondii DNA post-transplant proved to be positive in 13% of blood specimens, 9% of cerebrospinal liquor samples, 11% of bronchoalveolar cell lavages, and in 5% of urine sediments. In adolescent patients (10 to 14 years old, an increased prevalence of T. gondii was found in patients who received myeloablative treatment (p = 0.01. When assessing posttransplant dynamics of T. gondii, we have revealed distinct increase in the pathogen excretion within 1st month after HSCT (p = 0.03. Finally, initial presence of IgG antibodies against T. gondii in the patients was associated with lower incidence of the pathogen reactivation post-transplant.

  13. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients

    Science.gov (United States)

    Gama, Bianca E.; Emmel, Vanessa E.; Oliveira-Silva, Michelle; Gutiyama, Luciana M.; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F.; Abdelhay, Eliana; Hassan, Rocio

    2017-01-01

    Background Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Methods With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. Results We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Conclusions Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation. PMID:29184906

  14. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients.

    Science.gov (United States)

    Gama, Bianca E; Emmel, Vanessa E; Oliveira-Silva, Michelle; Gutiyama, Luciana M; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F; Abdelhay, Eliana; Hassan, Rocio

    2017-11-01

    Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation.

  15. An evidence-based stress management intervention for allogeneic hematopoietic stem cell transplant caregivers: development, feasibility and acceptability.

    Science.gov (United States)

    Simoneau, Teresa L; Kilbourn, Kristin; Spradley, Janet; Laudenslager, Mark L

    2017-08-01

    Caregivers of cancer patients face challenges impacting their physical, psychological and social well-being that need attention in the form of well-designed and tested interventions. We created an eight-session individual stress management intervention for caregivers of allogeneic hematopoietic stem cell transplant (Allo-HSCT) recipients. This intervention, tested by randomized control trial, proved effective in decreasing distress. Herein, we describe the intervention including theoretical framework, development, and elements of fidelity. Implementation challenges along with recommendations for refinement in future studies are discussed with the goal of replication and dissemination. Seventy-four of 148 caregivers received stress management training following randomization. The intervention occurred during the 100-day post-transplant period when caregivers are required. The training provided integrated cognitive behavioral strategies, psychoeducation, and problem-solving skills building as well as use of a biofeedback device. Seventy percent of caregivers completed all eight sessions indicating good acceptability for the in-person intervention; however, most caregivers did not reliably use the biofeedback device. The most common reason for drop-out was their patient becoming gravely ill or patient death. Few caregivers dropped out because of study demands. The need for flexibility in providing intervention sessions was key to retention. Our evidence-based stress management intervention for Allo-HSCT caregivers was feasible. Variability in acceptability and challenges in implementation are discussed and suggestions for refinement of the intervention are outlined. Dissemination efforts could improve by using alternative methods for providing caregiver support such as telephone or video chat to accommodate caregivers who are unable to attend in-person sessions.

  16. Impact of Donor Epstein-Barr Virus Serostatus on the Incidence of Graft-Versus-Host Disease in Patients With Acute Leukemia After Hematopoietic Stem-Cell Transplantation: A Study From the Acute Leukemia and Infectious Diseases Working Parties of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Styczynski, Jan; Tridello, Gloria; Gil, Lidia; Ljungman, Per; Hoek, Jennifer; Iacobelli, Simona; Ward, Katherine N; Cordonnier, Catherine; Einsele, Hermann; Socie, Gerard; Milpied, Noel; Veelken, Hendrik; Chevallier, Patrice; Yakoub-Agha, Ibrahim; Maertens, Johan; Blaise, Didier; Cornelissen, Jan; Michallet, Mauricette; Daguindau, Etienne; Petersen, Eefke; Passweg, Jakob; Greinix, Hildegard; Duarte, Rafael F; Kröger, Nicolaus; Dreger, Peter; Mohty, Mohamad; Nagler, Arnon; Cesaro, Simone

    2016-07-01

    We investigated the effect of Epstein-Barr virus (EBV) serostatus on the overall outcome of allogeneic hematopoietic stem-cell transplantation (allo-HSCT). The study included 11,364 patients who underwent allogeneic peripheral-blood or bone marrow transplantation for acute leukemia between 1997 and 2012. We analyzed the impact of donor and recipient EBV serologic status on overall survival, relapse-free survival, relapse incidence, nonrelapse mortality, and incidence of graft-versus-host disease (GVHD) after allo-HSCT. Patients receiving grafts from EBV-seropositive donors had the same overall survival as patients who received grafts from EBV-seronegative donors (hazard ratio [HR], 1.05; 95% CI, 0.97 to 1.12; P = .23). Seropositive donors also had no influence on relapse-free survival (HR, 1.04; 95% CI, 0.97 to 1.11; P = 0.31), relapse incidence (HR, 1.03; 95% CI, 0.94 to 1.12; P = .58), and nonrelapse mortality (HR, 1.05; 95% CI, 0.94 to 1.17; P = .37). However, in univariate analysis, recipients receiving grafts from seropositive donors had a higher risk of chronic GVHD than those with seronegative donors (40.8% v 31.0%, respectively; P donors, the HR for chronic GVHD was 1.30 (95% CI, 1.06 to 1.59; P = .039). In seropositive patients with seropositive donors, the HR was 1.24 (95% CI, 1.07 to 1.45; P = .016) for acute GVHD and 1.43 (95% CI, 1.23 to 1.67; P donors did not have an increased risk of GVHD. Our data suggest that donor EBV status significantly influences development of acute and chronic GVHD after allo-HSCT. © 2016 by American Society of Clinical Oncology.

  17. Epstein-Barr virus (EBV) load in cerebrospinal fluid and peripheral blood of patients with EBV-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Liu, Q-F; Ling, Y-W; Fan, Z-P; Jiang, Q-L; Sun, J; Wu, X-L; Zhao, J; Wei, Q; Zhang, Y; Yu, G-P; Wu, M-Q; Feng, R

    2013-08-01

    To evaluate the diagnostic and prognostic utility of monitoring the Epstein-Barr virus (EBV) load in the cerebrospinal fluid (CSF) and peripheral blood for the patients with EBV-associated central nervous system (CNS) diseases after allogeneic hematopoietic stem cell transplantation (allo-HSCT), 172 patients undergoing allo-HSCT were enrolled in the study. The EBV DNA levels of blood were monitored regularly in recipients of transplants for 3 years post transplantation. The EBV DNA levels of CSF were monitored in patients with EBV-associated CNS diseases before the treatment and at different points following the treatment. Post-transplant EBV-associated diseases developed in 27 patients, including 12 patients with EBV-associated CNS diseases. The 3-year cumulative incidences of EBV-associated diseases and EBV-associated CNS diseases were 19.5 ± 3.5% and 8.6 ± 2.4%, respectively. Patients with EBV-associated diseases showed higher loads of EBV DNA in their blood compared with patients with EBV DNA-emia. No difference was seen between the EBV DNA levels of blood in patients with CNS involvement and patients without CNS involvement. The EBV DNA loads of blood increased 3-14 days before the clinical manifestations of EBV-associated diseases emerged. The EBV DNA loads of CSF were higher than that of blood in patients with EBV-associated CNS diseases. In 12 patients with EBV-associated CNS diseases, EBV DNA levels were declining in both blood and CSF with the control of diseases, and the EBV DNA loads of CSF decreased faster than that of blood in 5 patients who responded to treatment, and the EBV DNA levels of CSF increased in 5 patients who were unresponsive to treatment. On multivariate analysis, the use of anti-thymocyte globulin and intensified conditioning regimens were independent risk factors for EBV-associated diseases and EBV-associated CNS diseases. EBV-associated CNS diseases are not rare after allo-HSCT. The EBV DNA loads of CSF could act as an important

  18. A New Clinicobiological Scoring System for the Prediction of Infection-Related Mortality and Survival after Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Forcina, Alessandra; Rancoita, Paola M V; Marcatti, Magda; Greco, Raffaella; Lupo-Stanghellini, Maria Teresa; Carrabba, Matteo; Marasco, Vincenzo; Di Serio, Clelia; Bernardi, Massimo; Peccatori, Jacopo; Corti, Consuelo; Bondanza, Attilio; Ciceri, Fabio

    2017-12-01

    Infection-related mortality (IRM) is a substantial component of nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). No scores have been developed to predict IRM before transplantation. Pretransplantation clinical and biochemical data were collected from a study cohort of 607 adult patients undergoing allo-HSCT between January 2009 and February 2017. In a training set of 273 patients, multivariate analysis revealed that age >60 years (P = .003), cytomegalovirus host/donor serostatus different from negative/negative (P < .001), pretransplantation IgA level <1.11 g/L (P = .004), and pretransplantation IgM level <.305 g/L (P = .028) were independent predictors of increased IRM. Based on these results, we developed and subsequently validated a 3-tiered weighted prognostic index for IRM in a retrospective set of patients (n = 219) and a prospective set of patients (n = 115). Patients were assigned to 3 different IRM risk classes based on this index score. The score significantly predicted IRM in the training set, retrospective validation set, and prospective validation set (P < .001, .044, and .011, respectively). In the training set, 100-day IRM was 5% for the low-risk group, 11% for the intermediate-riak group, and 16% for the high-risk groups. In the retrospective validation set, the respective 100-day IRM values were 7%, 17%, and 28%, and in the prospective set, they were 0%, 5%, and 7%. This score predicted also overall survival (P < .001 in the training set, P < 041 in the retrospective validation set, and P < .023 in the prospective validation set). Because pretransplantation levels of IgA/IgM can be modulated by the supplementation of enriched immunoglobulins, these results suggest the possibility of prophylactic interventional studies to improve transplantation outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All

  19. Salvaged allogeneic hematopoietic stem cell transplantation for pediatric chemotherapy refractory acute leukemia.

    Science.gov (United States)

    Wang, Jingbo; Yuan, Lei; Cheng, Haoyu; Fei, Xinhong; Yin, Yumin; Gu, Jiangying; Xue, Song; He, Junbao; Yang, Fan; Wang, Xiaocan; Yang, Yixin; Zhang, Weijie

    2018-01-09

    There is an ongoing debate concerning the performance of salvaged allogeneic hematopoietic stem cell transplantation (allo-HSCT) in pediatric patients with acute refractory leukemia, in whom the prognosis is quite dismal. Few studies have ever been conducted on this subject. This may be partly due to missed opportunities by majority of the patients in such situations. To investigate the feasibility, evaluate the efficiency, and identify the prognostic factors of allo-HSCT in this sub-setting, the authors performed a single institution-based retrospective analysis. A total of 44 patients, of whom 28 had acute myeloid leukemia (AML), 13 had acute lymphocytic leukemia (ALL), and 3 had mixed phenotype leukemia (MPL), were enrolled in this study. With a median follow-up of 19 months, the estimated 2-year overall survival (OS) and progression free survival (PFS) were 34.3% (95% CI, 17.9-51.4%) and 33.6% (95% CI, 18.0-50.1%), respectively. The estimated 2-year incidence rates of relapse and non-relapse mortality (NRM) were 43.8% (95% CI 26.4-60.0%) and 19.6% (95% CI 9.1-32.9%), respectively. The estimated 100-day cumulative incidence of acute graft versus host disease (aGvHD) was 43.6% (95% CI 28.7-57.5%), and the 1-year cumulative incidence of chronic GvHD (cGvHD) was 45.5% (95% CI 30.5-59.3%). Compared with the previous studies, the multivariate analysis in this study additionally identified that female donors and cGvHD were associated with lower relapse and better PFS and OS. Male recipients, age younger than 10 years, a diagnosis of ALL, and the intermediate-adverse cytogenetic risk group were associated with increased relapse. On the contrary, extramedullary disease (EMD) and aGvHD were only linked to worse PFS. These data suggested that although only one-third of the patients would obtain PFS over 2 years, salvaged allo-HSCT is still the most reliable and best therapeutic strategy for refractory pediatric acute leukemia. If probable, choosing a female donor, better

  20. Distribution and clonality of the vα and vβ T-cell receptor repertoire of regulatory T cells in leukemia patients with and without graft versus host disease.

    Science.gov (United States)

    Jin, Zhenyi; Wu, Xiuli; Chen, Shaohua; Yang, Lijian; Liu, Qifa; Li, Yangqiu

    2014-03-01

    Graft versus host disease (GVHD) is the main complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent data indicated that regulatory T (Treg) cells might relate to GVHD, and such functions might be mediated by certain T-cell receptor (TCR) subfamily of Treg cells. Thus, we analyzed the distribution and clonality of the TCR Vα and Vβ repertoire of Treg cells from leukemia patients with and without GVHD after allo-HSCT. Numerous TCR Vα subfamilies, including Vα1, Vα9, Vα13, Vα16-19, and Vα24-29, were absent in Treg cells after allo-HSCT. The usage numbers for the TCR Vα and Vβ subfamilies in Treg cells from patients without GVHD appeared more widely. The expression frequencies of Vα10 or Vα20 between both groups were significantly different. Moreover, the expression frequency of TCR Vβ2 subfamily in patients without GVHD was significantly higher than that in patients with GVHD. Oligoclonally expanded TCR Vα and Vβ Treg cells were identified in a few samples in both groups. Restricted utilization of the Vα and Vβ subfamilies and the absence of some important TCR rearrangements in Treg cells may be related to GVHD due to a lower regulating function of Treg subfamilies.

  1. Allogeneic hematopoietic stem cell transplant in adult patients with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes.

    Science.gov (United States)

    Sharma, Prashant; Shinde, Shivani S; Damlaj, Moussab; Hefazi Rorghabeh, Mehrdad; Hashmi, Shahrukh K; Litzow, Mark R; Hogan, William J; Gangat, Naseema; Elliott, Michelle A; Al-Kali, Aref; Tefferi, Ayalew; Patnaik, Mrinal M

    2017-04-01

    MDS/MPN (myelodysplastic syndrome/myeloproliferative neoplasm) overlap syndromes are myeloid malignancies for which allogeneic hematopoietic stem cell transplant (allo-HSCT) is potentially curative. We describe transplant outcomes of 43 patients - 35 with chronic myelomonocytic leukemia, CMML (of which 17 had blast transformation, BT) and eight with MDS/MPN-unclassifiable (MDS/MPN,U). At median follow-up of 21 months, overall survival (OS), cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) were 55%, 29%, and 25% respectively in CMML without BT and 47%, 40%, and 34% respectively in CMML with BT. Higher HSCT-comorbidity index (HSCT-CI >3 versus ≤3; p = 0.015) and splenomegaly (p = 0.006) predicted worse OS in CMML without BT. In CMML with BT, engraftment failure (p = 0.006) and higher HSCT-CI (p = 0.03) were associated with inferior OS, while HSCT within 1-year of diagnosis was associated with improved OS (p = 0.045). In MDS/MPN,U, at median follow-up of 15 months, OS, CIR, and NRM were 62%, 30%, and 14%, respectively.

  2. CD20 positivity and white blood cell count predict treatment outcomes in Philadelphia chromosome-negative acute lymphoblastic leukemia patients ineligible for pediatric-inspired chemotherapy.

    Science.gov (United States)

    Isshiki, Yusuke; Ohwada, Chikako; Sakaida, Emiko; Onoda, Masahiro; Aotsuka, Nobuyuki; Tanaka, Hiroaki; Fukazawa, Motoharu; Cho, Ryuko; Sugawara, Takeaki; Kawaguchi, Takeharu; Hara, Satoru; Yokota, Akira

    2017-11-01

    The efficacy of conventional chemotherapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been controversial as post-remission therapies for adult Philadelphia chromosome-negative acute lymphoblastic leukemia patients. We retrospectively analyzed 96 adolescent and adult cases of Philadelphia chromosome-negative acute lymphoblastic leukemia to evaluate whether allo-HSCT should be performed after first complete remission (1CR). In total, 34 patients received chemotherapy followed by allo-HSCT (HSCT group) and 62 received chemotherapy alone (chemotherapy group). No significant differences in the event-free survival (EFS) or overall survival were observed between the two groups. In the chemotherapy group, use of pediatric regimens was significantly associated with favorable EFS, while high white blood cell (WBC) count and CD20 positivity were associated with poor outcome. In patients who received pediatric regimens, subsequent allo-HSCT did not influence EFS. In patients who received conventional chemotherapy (adult regimen), subsequent allo-HSCT did not improve EFS. High WBC count and CD20 positivity were also significantly associated with poor EFS in patients who received adult regimens. Patients with low WBC count and absence of CD20 who received adult regimens did not benefit from allo-HSCT. Allo-HSCT may not be required in the pediatric regimen-eligible patients; however, pediatric regimen-ineligible patients with either CD20 positivity or high WBC count should receive allo-HSCT after achieving 1CR. This study was registered at http://www.umin.ac.jp/ctr/ as #C000016287. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. A survey of fertility and sexual health following allogeneic haematopoietic stem cell transplantation in New South Wales, Australia.

    Science.gov (United States)

    Dyer, Gemma; Gilroy, Nicole; Bradford, Jennifer; Brice, Lisa; Kabir, Masura; Greenwood, Matt; Larsen, Stephen R; Moore, John; Hertzberg, Mark; Kwan, John; Brown, Louisa; Hogg, Megan; Huang, Gillian; Tan, Jeff; Ward, Christopher; Kerridge, Ian

    2016-02-01

    Four hundred and twenty-one adult allogeneic haematopoietic stem cell transplant (HSCT) survivors participated in a cross-sectional study to assess sexual dysfunction and infertility post-transplant. Survey instruments included the Sydney Post-Blood and Marrow Transplant (BMT) Survey, Functional Assessment of Cancer Treatment (FACT) - BMT, the Depression, Anxiety, Stress Scales (DASS 21), the Chronic Graft-versus-Host Disease (cGVHD) Activity Assessment- Patient Self Report (Form B), the Lee cGVHD Symptom Scale and The Post-Traumatic Growth Inventory. Most HSCT survivors reported sexual difficulties (51% of males; 66% of females). Men reported erectile dysfunction (79%) and decreased libido (61·6%) and women reported loss of libido (83%), painful intercourse (73%) and less enjoyment of sex (68%). Women also commonly reported vaginal dryness (73%), vaginal narrowing (34%) and vaginal irritation (26%). Woman had much higher rates of genital cGvHD than men (22% vs. 5%). Age and cGVHD were significantly associated with sexual dysfunction. Few survivors had children following transplant (3·3%). However, for those of reproductive age at HSCT, 22% reported trying to conceive, with 10·3% reporting success. This study is the largest to date exploring sexual function in survivors of allo-HSCT. This data provides the basis for health service reform to better meet the needs of HSCT survivors, including evidence to support counselling and education both pre- and post-transplant. © 2015 John Wiley & Sons Ltd.

  4. Virus reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay.

    Science.gov (United States)

    Inazawa, Natsuko; Hori, Tsukasa; Nojima, Masanori; Saito, Makoto; Igarashi, Keita; Yamamoto, Masaki; Shimizu, Norio; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-02-01

    Several studies have indicated that viral reactivations following allogeneic hematopoietic stem cell transplantation (allo-HSCT) are frequent, but viral reactivations after autologous HSCT (auto-HSCT) have not been investigated in detail. We performed multiplex polymerase chain reaction (PCR) assay to examine multiple viral reactivations simultaneously in 24 patients undergoing auto-HSCT between September 2010 and December 2012. Weekly whole blood samples were collected from pre- to 42 days post-HSCT, and tested for the following 13 viruses; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, adeno virus (ADV), BK virus (BKV), JC virus (JCV), parvovirus B19 (B19V), and hepatitis B virus (HBV).  Fifteen (63%) patients had at least one type of viral reactivation. HHV6 (n = 10; 41.7%) was most frequently detected followed by EBV (n = 7; 29.2%). HHV-6 peaked on day 21 after HSCT and promptly declined. In addition, HBV, CMV, HHV7, and B19V were each detected in one patient. HHV6 reactivation was detected in almost half the auto-HSCT patients, which was similar to the incidence in allo-HSCT patients. The incidence of EBV was unexpectedly high. Viral infections in patients undergoing auto-HSCT were higher than previously reported in other studies. Although there were no particular complications of viral infection, we should pay attention to possible viral reactivations in auto-HSCT patients. J. Med. Virol. 89:358-362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. COMPARISON OF THREE DISTINCT PROPHYLACTIC AGENTS AGAINST INVASIVE FUNGAL INFECTIONS IN PATIENTS UNDERGOING HAPLO-IDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION AND POST-TRANSPLANT CYCLOPHOSPHAMIDE

    Directory of Open Access Journals (Sweden)

    Jean Elcheikh

    2015-08-01

    Full Text Available Over the past decade, invasive fungal infections (IFI have remained an important problem in patients undergoing allogeneic haematopoietic stem cell transplantation (Allo-HSCT. The optimal approach for prophylactic antifungal therapy has yet to be determined. We conducted a retrospective, bi-institutional comparative clinical study, and compared the efficacy and safety of micafungin 50mg/day (iv with those of fluconazole (400mg/day or itraconazole 200mg/day (iv as prophylaxis for adult patients with various haematological diseases receiving haplo-identical allogeneic stem cell transplantation (haplo. Overall, 99 patients were identified; 30 patients received micafungin, and 69 patients received fluconazole or itraconazole. After a median follow-up of 13 months (range: 5-23, Proven or probable IFIs were reported in 3 patients (10% in the micafungin group and 8 patients (12% in the fluconazole or itraconazole group. Fewer patients in the micafungin group had invasive aspergillosis (1 [3%] vs. 5 [7%], P=0.6. A total of 4 (13% patients in the micafungin group and 23 (33% patients in the fluconazole or itraconazole group received empirical antifungal therapy (P = 0.14. No serious adverse events related to treatment were reported by patients and there was no treatment discontinuation because of drug-related adverse events in both groups. Despite the retrospective design of the study and limited sample, it contributes reassuring data to confirm results from randomised clinical trials, and to define a place for micafungin in prophylaxis after haplo.

  6. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  7. Rapid Recovery of CD3+CD8+ T Cells on Day 90 Predicts Superior Survival after Unmanipulated Haploidentical Blood and Marrow Transplantation.

    Directory of Open Access Journals (Sweden)

    Deng-Mei Tian

    Full Text Available Rapid immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT is significantly associated with lower infection, relapse and possibly secondary malignancy rates. The aim of this study was to investigate the role of peripheral lymphocyte subsets, especially CD3+CD8+ cytotoxic T cell recovery, in predicting transplant outcomes, including the overall survival (OS and non-relapse mortality (NRM rates after unmanipulated haploidentical blood and marrow transplantation (HBMT.Peripheral blood samples were obtained from 214 HBMT recipients with hematological malignancies. The peripheral lymphocyte subsets (CD3+ T cells, CD3+CD4+ helper T cells, CD3+CD8+ cytotoxic T cells, and CD19+ B cells were analyzed by flow cytometry at days 30, 60, 90, 180, 270 and 360 after HBMT.The CD3+CD8+ cytotoxic T cell recovery at day 90 (CD3+CD8+-90 was correlated with bacterial infection (P = 0.001, NRM (P = 0.001, leukemia-free survival (LFS, P = 0.005, and OS (P = 0.001 at a cutoff value of 375 cells/μL CD3+CD8+ T cells. The incidence of bacterial infection in patients with the CD3+CD8+-90 at ≥375 cells/μL was significantly lower than that of cases with the CD3+CD8+-90 at <375 cells/μL after HBMT (14.6% versus 41.6%, P<0.001. Multivariate analysis showed the rapid recovery of CD3+CD8+ T cells at day 90 after HBMT was strongly associated with a lower incidence of NRM (HR = 0.30; 95% CI: 0.15-0.60; P = 0.000 and superior LFS (HR = 0.51; 95% CI: 0.32-0.82; P = 0.005 and OS (HR = 0.38; 95% CI: 0.23-0.63; P = 0.000.The results suggest that the rapid recovery of CD3+CD8+ cytotoxic T cells at day 90 following HBMT could predict superior transplant outcomes.

  8. Comparable results of autologous and allogeneic haematopoietic stem cell transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia in first complete molecular remission: An analysis by the Acute Leukemia Working Party of the EBMT.

    Science.gov (United States)

    Giebel, Sebastian; Labopin, Myriam; Potter, Michael; Poiré, Xavier; Sengeloev, Henrik; Socié, Gerard; Huynh, Anne; Afanasyev, Boris V; Schanz, Urs; Ringden, Olle; Kalhs, Peter; Beelen, Dietrich W; Campos, Antonio M; Masszi, Tamás; Canaani, Jonathan; Mohty, Mohamad; Nagler, Arnon

    2018-06-01

    Allogeneic haematopoietic stem cell transplantation (alloHSCT) is considered a standard treatment for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia (Ph+ ALL) achieving complete remission after induction containing tyrosine kinase inhibitors (TKIs). We retrospectively compared results of myeloablative alloHSCT from either matched sibling donor (MSD) or unrelated donor (URD) with autologous (auto) HSCT for adults with Ph+ ALL in molecular remission, treated between 2007 and 2014. In univariate analysis, the incidence of relapse at 2 years was 47% after autoHSCT, 28% after MSD-HSCT and 19% after URD-HSCT (P = 0.0002). Respective rates of non-relapse mortality were 2%, 18%, and 22% (P = 0.001). The probabilities of leukaemia-free survival were 52%, 55% and 60% (P = 0.69), while overall survival rates were 70%, 70% and 69% (P = 0.58), respectively. In multivariate analysis, there was a trend towards increased risk of overall mortality after MSD-HSCT (hazard ratio [HR], 1.5, P = 0.12) and URD-HSCT (HR, 1.6, P = 0.08) when referred to autoHSCT. The use of total body irradiation (TBI)-based regimens was associated with reduced risk of relapse (HR, 0.65, P = 0.02) and overall mortality (HR, 0.67, P = 0.01). In the era of TKIs, outcomes of myeloablative autoHSCT and alloHSCT for patients with Ph+ ALL in first molecular remission are comparable. Therefore, autoHSCT appears to be an attractive treatment option potentially allowing for circumvention of alloHSCT sequelae. Irrespective of the type of donor, TBI-based regimens should be considered the preferable type of conditioning for Ph+ ALL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cell transplantation for Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Hongyun Huang

    2006-01-01

    OBJECTIVE: The motor symptoms of Parkinson's disease (PD) can be improved by cell transplantation,which has caught general attention from the field of the therapy for PD recently. In this paper, we summarize the cell-based therapy for PD.DATA SOURCES: A search for English literature related to the cellular transplantation of PD from January 1979to July 2006 was conducted in Medline with the key words of "Parkinson's disease, cell transplantation,embryonic stem cells, neural stem cells".STUDY SELECTTON: Data were checked in the first trial, and literatures about PD and cell transplantation were selected. Inclusive criteria: ① PD; ② Cell transplantation. Exclusive criteria: repetitive researches.DATA EXTRACTTON: A total of 100 papers related to cellular transplant and PD were collected and 41literatures were in accordance with the inclusive criteria.DATA SYNTHESIS: PD is a neural degeneration disease that threatens the health of the aged people, and most traditional therapeusis cannot delay its pathological proceeding. Cell transplantation is becoming popular as a new therapeutic tool, and the cells used to transplant mainly included dopamine-secreting cells, fetal ventral mesencephalic cells, embryonic stem cells and neural stem cells up to now. Animal experiment and clinical test demonstrate that cell transplantation can relieve the motor symptoms of Parkinson's disease obviously, but there are some problems need to be solved.CONCLUSTON: Cell transplantation has visible therapeutic efficacy on PD. Following the improvement of technique, and we have enough cause to credit that cell therapy may cure PD in the future.

  10. Early Pathologic Findings of Bronchiolitis Obliterans after Allogeneic Hematopoietic Stem Cell Transplantation: A Proposal from a Case

    Directory of Open Access Journals (Sweden)

    Rie Nakamoto-Matsubara

    2012-01-01

    Full Text Available Bronchiolitis obliterans (BO is one of the serious, noninfectious pulmonary complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT. Early diagnosis of BO is usually difficult because patients are often asymptomatic at an initial stage of the disease and pathologic findings are available mostly at the late stages. Therefore, the diagnosis of the disease is based on the pulmonary function test using the National Institute of Health consensus criteria. Here, we report a case of slowly progressive BO. A biopsy specimen at an early stage demonstrated alveolar destruction with lymphocyte infiltration in bronchial walls and mild narrowing of bronchioles without fibrosis, those were strongly indicative of initial pathologic changes of BO. Definitive BO followed, which was proven by both clinical course and autopsy. While alloreactive lymphocytes associated with chronic graft-versus-host disease are believed to initiate BO, we present a rare case that directly implies such a scenario.

  11. Pancreatic Islet Cell Transplantation

    Science.gov (United States)

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  12. Pancreatic Islet Cell Transplantation: A new era in transplantation

    OpenAIRE

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence.

  13. [Skin biopsy in diagnosis of chronic graft-versus-host disease in patients after allogeneic haematopoietic stem cell transplantation: pathologist's point of view on quantitative scoring system].

    Science.gov (United States)

    Grzanka, Dariusz; Styczyński, Jan; Debski, Robert; Krenska, Anna; Pacholska, Małgorzata; Prokurat, Andrzej I; Wysocki, Mariusz; Marszałek, Andrzej

    2008-01-01

    Pathology diagnosis of chronic graft-versus-host-disease (GVHD) after allogeneic haematopoietic stem cell transplantation (allo-HSCT) is an important issue in clinical follow-up, in spite of frequent difficulties in interpretation., related to dynamic changes occurring in the skin during the disease, as well as to sequelae of basic disease and immunosuppressive therapy. Recently presented Consensus NIH (National Health Institute, Bethesda, USA) of histopathologic (HP) analysis is still complex and intrinsically divergent, thus clinically difficult to implement. Analysis of clinical value of histological evaluation results of skin biopsy in children after allo-HSCT and its correlation with clinical status. Ten skin biopsies were taken from 7 patients (4 boys, 3 girls, age 3-15 years) after allo-HSCT (6 MFD, 1 MMUD) and analyzed after hematoxylin/eosine and immunohistochemical (CD3, CD45T, CD20) staining. Pathology analysis was based on commonly accepted criteria enabling simple and unambiguous interpretation. Results were compared with clinical data and indications for immunosuppressive therapy. It was found that reliable and coherent interpretation can be made when following parameters were taken into account: 1. in epithelium: the presence of apoptosis, archetypical changes and vacuolar degeneration in the basilar layer, presence of CD3/CD45 in the epidermis; 2. in the dermis: the extent of collagenization, presence of melanophages and lymphocyte infiltrations; 3. in the eccrine glands epithelium: eccrine glands atrophy and presence of lymphocytes. A new scoring system of skin biopsy analysis in patients with chronic GVHD based on the modified NIH Consensus was proposed. The preliminary clinical value of histological results was assessed. Skin biopsy evaluation based on limited qualitative and quantitative analysis of lymphocyte infiltrates together with studies on intensity of apoptosis, collagenization and archetypical changes is a valuable diagnostic method

  14. Refractory Graft-Versus-Host Disease-Free, Relapse-Free Survival as an Accurate and Easy-to-Calculate Endpoint to Assess the Long-Term Transplant Success.

    Science.gov (United States)

    Kawamura, Koji; Nakasone, Hideki; Kurosawa, Saiko; Yoshimura, Kazuki; Misaki, Yukiko; Gomyo, Ayumi; Hayakawa, Jin; Tamaki, Masaharu; Akahoshi, Yu; Kusuda, Machiko; Kameda, Kazuaki; Wada, Hidenori; Ishihara, Yuko; Sato, Miki; Terasako-Saito, Kiriko; Kikuchi, Misato; Kimura, Shun-Ichi; Tanihara, Aki; Kako, Shinichi; Kanamori, Heiwa; Mori, Takehiko; Takahashi, Satoshi; Taniguchi, Shuichi; Atsuta, Yoshiko; Kanda, Yoshinobu

    2018-02-21

    The aim of this study was to develop a new composite endpoint that accurately reflects the long-term success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), as the conventional graft-versus-host disease (GVHD)-free, relapse-free survival (GRFS) overestimates the impact of GVHD. First, we validated current GRFS (cGRFS), which recently was proposed as a more accurate endpoint of long-term transplant success. cGRFS was defined as survival without disease relapse/progression or active chronic GVHD at a given time after allo-HSCT, calculated using 2 distinct methods: a linear combination of a Kaplan-Meier estimates approach and a multistate modelling approach. Next, we developed a new composite endpoint, refractory GRFS (rGRFS). rGRFS was calculated similarly to conventional GRFS treating grade III to IV acute GVHD, chronic GVHD requiring systemic treatment, and disease relapse/progression as events, except that GVHD that resolved and did not require systemic treatment at the last evaluation was excluded as an event in rGRFS. The 2 cGRFS curves obtained using 2 different approaches were superimposed and both were superior to that of conventional GRFS, reflecting the proportion of patients with resolved chronic GVHD. Finally, the curves of cGRFS and rGRFS overlapped after the first 2 years of post-transplant follow-up. These results suggest that cGRFS and rGRFS more accurately reflect transplant success than conventional GRFS. Especially, rGRFS can be more easily calculated than cGRFS and analyzed with widely used statistical approaches, whereas cGRFS more accurately represents the burden of GVHD-related morbidity in the first 2 years after transplantation. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Sequential Kinase Inhibition (Idelalisib/Ibrutinib Induces Clinical Remission in B-Cell Prolymphocytic Leukemia Harboring a 17p Deletion

    Directory of Open Access Journals (Sweden)

    H. Coelho

    2017-01-01

    Full Text Available B-cell prolymphocytic leukemia (B-PLL is a rare lymphoid neoplasm with an aggressive clinical course. Treatment strategies for B-PLL remain to be established, and, until recently, alemtuzumab was the only effective therapeutic option in patients harboring 17p deletions. Herein, we describe, for the first time, a case of B-cell prolymphocytic leukemia harboring a 17p deletion in a 48-year-old man that was successfully treated sequentially with idelalisib-rituximab/ibrutinib followed by allogeneic hematopoietic stem cell transplant (allo-HSCT. After 5 months of therapy with idelalisib-rituximab, clinical remission was achieved, but the development of severe diarrhea led to its discontinuation. Subsequently, the patient was treated for 2 months with ibrutinib and the quality of the response was maintained with no severe adverse effects reported. A reduced-intensity conditioning allo-HSCT from a HLA-matched unrelated donor was performed, and, thereafter, the patient has been in complete remission for 10 months now. In conclusion, given the poor prognosis of B-PLL and the lack of effective treatment modalities, the findings here suggest that both ibrutinib and idelalisib should be considered as upfront therapy of B-PLL and as a bridge to allo-HSCT.

  16. Impact of HSCT conditioning and glucocorticoid dose on exercise adherence and response

    OpenAIRE

    Wiskemann, Joachim; Herzog, Benedikt; Kuehl, Rea; Schmidt, Martina E.; Steindorf, Karen; Schwerdtfeger, Rainer; Dreger, Peter; Bohus, Martin

    2017-01-01

    Abstract: Purpose: Evidence from randomized controlled trials (RCT) that exercise interventions have beneficial effects in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) is growing. However, intensive chemotherapy conditioning and glucocorticoid (GC) treatment is always part of an allo-HSCT and possibly affect exercise adherence and training response. Therefore, we aimed to examine whether various conditioning protocols or different doses of GC treatment af...

  17. Stem Cell Transplantation from Bench to Bedside

    Indian Academy of Sciences (India)

    Table of contents. Stem Cell Transplantation from Bench to Bedside · Slide 2 · Slide 3 · Slide 4 · Principles of an allogeneic stem cell transplant · Principle of an allogeneic stem cell transplant · Principle of an autologous Stem Cell Transplant · Slide 8 · Conditioning · Slide 10 · Slide 11 · Stem Cell Transplantation · Slide 13.

  18. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  19. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Stem Cell Transplants KidsHealth / For Teens / Stem Cell Transplants What's ... Take to Recover? Coping Print What Are Stem Cells? As you probably remember from biology class, every ...

  20. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    Science.gov (United States)

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  1. Stem-cell-activated organ following ultrasound exposure: better transplant option for organ transplantation.

    Science.gov (United States)

    Wang, Sen; Li, Yu; Ji, Ying-Chang; Lin, Chang-Min; Man, Cheng; Zheng, Xiao-Xuan

    2010-01-01

    Although doctors try their best to protect transplants during surgery, there remain great challenges for the higher survival rate and less rejection of transplants after organ transplantation. Growing evidence indicates that the stem cells could function after injury rather than aging, implying that suitable injury may activate the stem cells of damaged organs. Furthermore, it has been revealed that stem cells can be used to induce tolerance in transplantation and the ultrasound has great biological effects on organs. Basing on these facts, we hypothesize that the stem cells within the transplants can be activated by ultrasound with high-frequency and medium-intensity. Therefore, the stem-cell-activated organs (SCAO) can be derived, and the SCAO will be better transplant option for organ transplantation. We postulate the ultrasound can change the molecular activity and/or quantity of the stem cells, the membrane permeability, the cell-cell junctions, and their surrounding microenvironments. As a result, the stem cells are activated, and the SCAO will acquire more regenerative capacity and less rejection. In the paper, we also discuss the process, methods and models for verifying the theory, and the consequences. We believe the theory may provide a practical method for the clinical application of the ultrasound and stem cells in organ transplantation.

  2. SEVERE (GRADE III-IV ACUTE GRAFT VERSUS HOST DISEASE AFTER ALLOGENEIC HAEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Irena Preložnik-Zupan

    2002-09-01

    Full Text Available Background. Beside greater susceptibility to infections, acute graft host disease is a consequence of the activation of donor T-cells against host antigens. Most common target organs are skin, liver and intestinal mucosis.Methods. In the 6-year period between January 1995 and December 2000, 49 patients were treated with allogeneic haematopoietic stem cell transplantation (allo-HSCT in Transplant unit, Department of Hematology, Clinical Centre Ljubljana. The standard GVHD prophylaxis regimen consisted of cyclosporine and short-course methotrexate. Severe, grade III-IV aGVHD with skin and/or gastrointestinal and/or liver involvement appeared in 16 (32% of the 49 patients.Results. Among the 16 patients with severe aGVHD, 14 had liver involvement, ten gastrointestinal and eight skin involvement. One patient had skin involvement only, the rest of them had combined involvement of two or three organ systems. Routine first-line treatment for aGVHD, given to all 16 pts with severe forms of the disease, was methylprednisolone (MP 2mg/ kg. Six patients with predominant skin involvement responded to MP. Other ten patients with mainly liver and gastrointestinal involvement needed second or even third line aGVHD treatment. These were anti-thymocyte globulin (ATG and/or monoclonal antibodies (OKT3 and/or mycophenolate mofetil (MMF and/or FK506 (tacrolimus. Seven patients died of advanced aGVHD and treatment related infection.Conclusions. Based on our experiences, we conclude that in critically ill patients with severe aGVHD, neutropenia and high risk for opportunistic infection, each day of ineffective MP therapy may have fatal consequences. Simultaneous institution of a combination of corticosteroids and a second-line drug might prove more appropriate for patients with a severe form of aGVHD.

  3. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  4. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... of Transplants Transplantation Recovery Coping Print en español Trasplantes de células madre Stem cells are cells in ... finding a match is called tissue typing (or HLA [human leukocyte antigen] typing). HLA is a protein ...

  5. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  6. The regulatory roles of B cell subsets in transplantation.

    Science.gov (United States)

    Chu, Zhulang; Zou, Weilong; Xu, Yanan; Sun, Qiquan; Zhao, Yong

    2018-02-01

    B cells mediate allograft rejection through antigen presentation, and production of cytokines and antibodies. More and more immunosuppressive agents specifically targeting B cells and plasma cells have been applied in clinical transplantation. However, recent studies have indicated the regulatory roles of B cells. Therefore, it is vital to clarify the different effects of B cell subsets in organ transplantation so that we can completely understand the diverse functions of B cells in transplantation. Areas covered: This review focuses on the regulatory roles of B cells in transplantation. B cell subsets with immune modulation and factors mediating immunosuppressive functions of regulatory B (Breg) cells were analyzed. Therapies targeting B cells and the application of B cells for transplant tolerance induction were discussed. Expert commentary: Besides involving rejection, B cells could also play regulatory roles in transplantation. Breg cells and the related markers may be used to predict the immune tolerant state in transplant recipients. New therapeutic strategies targeting B cells should be explored to promote tolerance induction with less impact on the host's protective immunity in organ transplanted patients.

  7. The lived experience of autologous stem cell-transplanted patients: Post-transplantation and before discharge.

    Science.gov (United States)

    Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab

    2018-04-01

    To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs

  8. [Hepatic cell transplantation. Technical and methodological aspects].

    Science.gov (United States)

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  9. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    Science.gov (United States)

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  10. Comparison of survival outcome between donor types or stem cell sources for childhood acute myeloid leukemia after allogenic hematopoietic stem cell transplantation: A multicenter retrospective study of Study Alliance of Yeungnam Pediatric Hematology-oncology.

    Science.gov (United States)

    Shim, Ye Jee; Lee, Jae Min; Kim, Heung Sik; Jung, Nani; Lim, Young Tak; Yang, Eu Jeen; Hah, Jeong Ok; Lee, Young-Ho; Chueh, Hee Won; Lim, Jae Young; Park, Eun Sil; Park, Jeong A; Park, Ji Kyoung; Park, Sang Kyu

    2018-06-19

    We compared transplant outcomes between donor types and stem cell sources for childhood acute myeloid leukemia (AML). The medical records of children with AML in the Yeungnam region of Korea from January 2000 to June 2017 were reviewed. In all, 76 children with AML (male-to-female ratio = 46:30) received allogenic hematopoietic stem cell transplantation (allo-HSCT). In total, 29 patients received HSCT from either a matched-related donor or a mismatched-related donor, 32 patients received an unrelated donor, and 15 patients received umbilical cord blood. In term of stem cell sources, bone marrow was used in 15 patients and peripheral blood in 46 patients. For all HSCT cases, the 5-year overall survival (OS) was 73.1% (95% CI: 62.7-83.5) and the 5-year event-free survival (EFS) was 66.1% (95% CI: 54.5-77.7). There was no statistical difference in 5-year OS according to the donor types or stem cell sources (P = .869 and P = .911). There was no statistical difference in 5-year EFS between donor types or stem cell sources (P = .526 and P = .478). For all HSCT cases, the 5-year relapse rate was 16.1% (95% CI: 7.3-24.9) and the 5-year non-relapse mortality (NRM) was 13.3% (95% CI: 5.1-21.5). There was no statistical difference in the 5-year relapse rate according to the donor types or stem cell sources (P = .971 and P = .965). There was no statistical difference in the 5-year NRM between donor types or stem cell sources (P = .461 and P = .470). © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Molecular diagnosis of toxoplasmosis in immunocompromised patients: a 3-year multicenter retrospective study.

    Science.gov (United States)

    Robert-Gangneux, Florence; Sterkers, Yvon; Yera, Hélène; Accoceberry, Isabelle; Menotti, Jean; Cassaing, Sophie; Brenier-Pinchart, Marie-Pierre; Hennequin, Christophe; Delhaes, Laurence; Bonhomme, Julie; Villena, Isabelle; Scherer, Emeline; Dalle, Frédéric; Touafek, Feriel; Filisetti, Denis; Varlet-Marie, Emmanuelle; Pelloux, Hervé; Bastien, Patrick

    2015-05-01

    Toxoplasmosis is a life-threatening infection in immunocompromised patients (ICPs). The definitive diagnosis relies on parasite DNA detection, but little is known about the incidence and burden of disease in HIV-negative patients. A 3-year retrospective study was conducted in 15 reference laboratories from the network of the French National Reference Center for Toxoplasmosis, in order to record the frequency of Toxoplasma gondii DNA detection in ICPs and to review the molecular methods used for diagnosis and the prevention measures implemented in transplant patients. During the study period, of 31,640 PCRs performed on samples from ICPs, 610 were positive (323 patients). Blood (n = 337 samples), cerebrospinal fluid (n = 101 samples), and aqueous humor (n = 100 samples) were more frequently positive. Chemoprophylaxis schemes in transplant patients differed between centers. PCR follow-up of allogeneic hematopoietic stem cell transplant (allo-HSCT) patients was implemented in 8/15 centers. Data from 180 patients (13 centers) were further analyzed regarding clinical setting and outcome. Only 68/180 (38%) patients were HIV(+); the remaining 62% consisted of 72 HSCT, 14 solid organ transplant, and 26 miscellaneous immunodeficiency patients. Cerebral toxoplasmosis and disseminated toxoplasmosis were most frequently observed in HIV and transplant patients, respectively. Of 72 allo-HSCT patients with a positive PCR result, 23 were asymptomatic; all were diagnosed in centers performing systematic blood PCR follow-up, and they received specific treatment. Overall survival of allo-HSCT patients at 2 months was better in centers with PCR follow-up than in other centers (P toxoplasmosis in HIV-negative ICPs and suggests that regular PCR follow-up of allo-HSCT patients could guide preemptive treatment and improve outcome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The Green Tea Catechin Epigallocatechin Gallate Ameliorates Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sabine Westphal

    Full Text Available Allogeneic hematopoetic stem cell transplantation (allo-HSCT is a standard treatment for leukemia and other hematologic malignancies. The major complication of allo-HSCT is graft-versus-host-disease (GVHD, a progressive inflammatory illness characterized by donor immune cells attacking the organs of the recipient. Current GVHD prevention and treatment strategies use immune suppressive drugs and/or anti-T cell reagents these can lead to increased risk of infections and tumor relapse. Recent research demonstrated that epigallocatechin gallate (EGCG, a component found in green tea leaves at a level of 25-35% at dry weight, may be useful in the inhibition of GVHD due to its immune modulatory, anti-oxidative and anti-angiogenic capacities. In murine allo-HSCT recipients treated with EGCG, we found significantly reduced GVHD scores, reduced target organ GVHD and improved survival. EGCG treated allo-HSCT recipients had significantly higher numbers of regulatory T cells in GVHD target organs and in the blood. Furthermore, EGCG treatment resulted in diminished oxidative stress indicated by significant changes of glutathione blood levels as well as glutathione peroxidase in the colon. In summary, our study provides novel evidence demonstrating that EGCG ameliorates lethal GVHD and reduces GVHD-related target organ damage. Possible mechanisms are increased regulatory T cell numbers and reduced oxidative stress.

  13. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  14. In vivo stem cell transplantation using reduced cell numbers.

    Science.gov (United States)

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  15. Transplantation Tolerance Induction: Cell Therapies and Their Mechanisms

    OpenAIRE

    Scalea, Joseph R.; Tomita, Yusuke; Lindholm, Christopher R.; Burlingham, William

    2016-01-01

    Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as ...

  16. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  17. Pilot study of a multimodal intervention

    DEFF Research Database (Denmark)

    Jarden, Mary Ellen; Hovgaard, Doris; Boesen, Ellen

    2007-01-01

    Substantial physical and functional deconditioning and diminished psychological wellbeing are all potential adverse effects of allogeneic stem cell transplantation (allo-HSCT). The aim of this study was to evaluate the feasibility, safety and benefits (physical and functional capacity) of a 4-6 w...

  18. A randomized trial on the effect of a multimodal intervention on physical capacity, functional performance and quality of life in adult patients undergoing allogeneic SCT

    DEFF Research Database (Denmark)

    Jarden, M; Baadsgaard, M T; Hovgaard, D J

    2009-01-01

    The aim of this randomized controlled trial was to investigate the effect of a 4- to 6-week multimodal program of exercise, relaxation and psychoeducation on physical capacity, functional performance and quality of life (QOL) in allogeneic hematopoietic cell transplantation (allo-HSCT) adult...

  19. [Role of stem cell transplantation in treatment of primary cutaneous T‑cell lymphoma].

    Science.gov (United States)

    Stranzenbach, R; Theurich, S; Schlaak, M

    2017-09-01

    Within the heterogeneous group of cutaneous T‑cell lymphomas (CTCL) the therapeutic options for advanced and progressive forms are particularly limited. The therapeutic value of hematopoietic stem cell transplantation in CTCL was analyzed. A literature search using the keywords "hematopoietic stem cell transplantation" and "cutaneous T‑cell lymphoma" was performed in PubMed. Studies between 1990 and 2017 were taken into account. The studies identified were analyzed for relevance and being up to date. After reviewing the currently available literature no prospective randomized studies were found. Wu et al. showed a superiority of allogeneic transplantation in a comparison of autologous and allogeneic stem cell transplantation for cutaneous lymphoma. The graft-versus-lymphoma effect plays a significant role in a prolonged progression-free survival after allogeneic transplantation. By using a non-myeloablative conditioning regimen, stem cell transplantation can also be an option for elderly patients. The most extensive long-term data after allogeneic stem cell transplantation were reported by Duarte et al. in 2014. Autologous stem cell transplantation does not currently represent a therapeutic option, whereas allogeneic stem cell transplantation for advanced cutaneous T‑cell lymphoma, using a non-myeloablative conditioning scheme, does represent a therapeutic option. However, there is no consensus on the appropriate patients and the right timing. Morbidity and mortality of complications should be taken into account. Thus, this procedure is currently subject to an individual case decision.

  20. T cell depleted haploidentical transplantation: positive selection

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  1. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  2. Limbal stem cell transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Atallah MR

    2016-04-01

    Full Text Available Marwan Raymond Atallah, Sotiria Palioura, Victor L Perez, Guillermo Amescua Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD. In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on

  3. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Uhlin, Michael; Wikell, Helena; Sundin, Mikael; Blennow, Ola; Maeurer, Markus; Ringden, Olle; Winiarski, Jacek; Ljungman, Per; Remberger, Mats; Mattsson, Jonas

    2014-02-01

    Allogeneic hematopoietic stem cell transplantation is a successful treatment for hematologic malignancies and a variety of genetic and metabolic disorders. In the period following stem cell transplantation, the immune-compromised milieu allows opportunistic pathogens to thrive. Epstein-Barr virus-associated post-transplant lymphoproliferative disease can be a life-threatening complication for transplanted patients because of suppressed T-cell-mediated immunity. We analyzed possible risk factors associated with post-transplant lymphoproliferative disease in a cohort of over 1,000 patients. The incidence of post-transplant lymphoproliferative disease was 4%. Significant risk factors identified by multivariate analysis were: human leukocyte antigen-mismatch (PEpstein-Barr virus mismatch recipient-/donor+ (Pdisease grade II to IV (P=0.006), pre-transplant splenectomy (P=0.008) and infusion of mesenchymal stromal cells (P=0.015). The risk of post-transplant lymphoproliferative disease has increased in more recent years, from less than 2% before 1998 to more than 6% after 2011. Additionally, we show that long-term survival of patients with post-transplant lymphoproliferative disease is poor despite initial successful treatment. The 3-year survival rate among the 40 patients with post-transplant lymphoproliferative disease was 20% as opposed to 62% among patients without post-transplant lymphoproliferative disease (Pdisease after transplantation in need of pre-emptive measures.

  4. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  5. The journey of islet cell transplantation and future development.

    Science.gov (United States)

    Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James

    2018-03-04

    Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.

  6. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus.

    Science.gov (United States)

    Unsal, Ilknur Ozturk; Ginis, Zeynep; Pinarli, Ferda Alparslan; Albayrak, Aynur; Cakal, Erman; Sahin, Mustafa; Delibasi, Tuncay

    2015-06-01

    Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p islet cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p Transplantation of islet cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.

  7. Effects of X-rays and γ-rays on reconstitution of hematopoiesis and immunity after allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Pan Bin; Zeng Lingyu; Cheng Hai; Song Guoliang; Jia Lu; Yan Zhiling; Chen Chong; Xu Kailin

    2011-01-01

    Objective: To determine the conditioning regimen suitable for mice allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods: Twelve BALB/c mice were randomly divided into 2 equal groups to undergo X-ray irradiation by linear accelerator at the dose of 7.0 Gy (pure X-ray group) or 60 Co source irradiation at the dose of 7.0 Gy (pure γ-ray group). Thirty mice were randomly divided into 2 equal groups to undergo X-ray irradiation and then infusion of bone marrow from donor mice via caudal vein (X-ray + transplantation group) or γ-ray and then infusion of bone marrow via caudal vein (γ-ray + transplantation group). 3, 5, 7, 10, 15, 20, and 30 d later peripheral blood samples were collected to calculate the number of white blood cells (WBCs) and detect the chimeric rates of lymphocytes by flow cytometry. 5, 10, and 20 d after irradiation 15 mice were killed with their lung, liver, small intestine, spleen, and femurs taken out to undergo pathological examination. Results: The survival rates during the period 5-15 days of the γ-ray + transplantation group were all significantly higher than those of the X-ray + transplantation group. The pathological changes of organs of the X-ray + transplantation group were all more severe than those of the γ-ray + transplantation group. Since the fifth day after transplantation cells originating from the donor began to appear in the peripheral blood. The chimeric rate of the γ-ray + transplantation group 10 days after transplantation was (95.53± 2.57) %. The chimeric rates 5, 10, and 20 days after transplantation of the γ-ray + transplantation group were all significantly higher than those of the X-ray + transplantation group (t=15.263, 3.256, P<0.05). The WBC count of both irradiation groups decreased to the lowest level 5 d later and began to increase 10 days after transplantation and the WBC counts of the γ-ray + transplantation group 10 and 20 days after transplantation were both significantly higher than

  8. Imaging of complications from hematopoietic stem cell transplant

    International Nuclear Information System (INIS)

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT

  9. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  10. Treatment of refractory/relapsed adult acute lymphoblastic leukemia with bortezomib- based chemotherapy

    Directory of Open Access Journals (Sweden)

    Zhao J

    2015-06-01

    Full Text Available Junmei Zhao,* Chao Wang,* Yongping Song, Yuzhang Liu, Baijun FangHenan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China  *These authors contributed equally to this work Abstract: Nine pretreated patients aged >19 years with relapsed/refractory acute lymphoblastic leukemia (ALL were treated with a combination of bortezomib plus chemotherapy before allogeneic hematopoietic stem cell transplantation (allo-HSCT. Eight (88.9% patients, including two Philadelphia chromosome-positive ALL patients, achieved a complete remission. Furthermore, the evaluable patients have benefited from allo-HSCT after response to this reinduction treatment. We conclude that bortezomib-based chemotherapy was highly effective for adults with refractory/relapsed ALL before allo-HSCT. Therefore, this regimen deserves a larger series within prospective trials to confirm these results. Keywords: acute lymphoblastic leukemia, refractory, relapsed, bortezomib

  11. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  12. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  13. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  14. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Science.gov (United States)

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  15. Stem cell transplantation for treating Duchenne muscular dystrophy

    Science.gov (United States)

    Yang, Xiaofeng

    2012-01-01

    OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation

  16. Transplantation of co-aggregates of Sertoli cells and islet cells into liver without immunosuppression.

    Science.gov (United States)

    Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo

    2014-02-15

    Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.

  17. Cerebral toxoplasmosis after haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Agnieszka Zaucha-Prażmo

    2017-05-01

    Full Text Available Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic haematopoietic stem cell transplantation (HSCT. It frequently involves the central nervous system. The case is presented of cerebral toxoplasmosis in a 17-year-old youth with Fanconi anaemia treated with haematopoietic stem cell transplantation (HSCT

  18. Genetic modification of cells for transplantation.

    Science.gov (United States)

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  19. Regulatory B cells: an exciting target for future therapeutics in transplantation

    Directory of Open Access Journals (Sweden)

    Alexandre eNouël

    2014-01-01

    Full Text Available Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrates on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting Ab, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg cells -or B10 cells- has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.

  20. Imaging in haematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J.

    2003-01-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants

  1. Imaging in haematopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J

    2003-03-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants.

  2. Haematopoietic stem cell transplantation: activities (2014 report) in a ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Introduction: Hematopoietic Stem Cell transplantation (HSCT) is the only curative therapy for ... Activities: The stem cell transplant centre at the University of Benin Teaching Hospital Edo ...

  3. Transplantation Tolerance Induction: Cell Therapies and their Mechanisms

    Directory of Open Access Journals (Sweden)

    Joseph R Scalea

    2016-03-01

    Full Text Available Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as possible routes to tolerance induction, in the absence of donor derived stem cells. Early data with each of these cell types have been encouraging. However, the induction regimen capable of achieving consistent tolerance, whilst avoiding unwanted sided effects, and which is scalable to the human patient, has yet to be identified. Here we present the status of investigations of various tolerogenic cell types and the mechanistic rationale for their use in in tolerance induction protocols.

  4. Transplantation of hematopoietic and lymphoid cells in mice

    International Nuclear Information System (INIS)

    Bortin, M.M.; Rimm, A.A.; Rose, W.C.; Truitt, R.L.; Saltzstein, E.C.

    1976-01-01

    CBA mice were exposed to a supralethal dose of whole body x-irradiation and received transplants of graded, small doses of bone marrow, fetal liver, or fetal liver plus fetal thymus cells obtained from H-2 matched C58 or H-2 mismatched A donors. Survival at 20 days was used to evaluate the ability of the transplants to restore hematopoiesis following the acute radiation injury. In the higher dose ranges of 6 x 10 7 and 1.2 x 10 8 cells/kg body weight, the fetal cells were as effective as adult bone marrow in both the matched and mismatched strain combinations. Survival at 100 days was used to evaluate the severity of chronic graft-versus-host disease produced by each of the transplants. In the higher dose ranges, cells from fetal donors promoted higher long-term survival rates than did comparable doses of bone marrow cells in both the matched and mismatched strain combinations. The most important finding was that cells from mismatched unrelated fetal donors (using a cell dose per kilogram body weight comparable to the number of fetal liver and thymus cells which would be obtainable from one human fetus at 14 weeks of embryonation) promoted higher long-term survival rates than did bone marrow transplants from matched unrelated donors

  5. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  7. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  8. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    DEFF Research Database (Denmark)

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells, ident......, identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin....

  9. Three-dimensional structure discrepancy between HLA alleles for effective prediction of aGVHD severity and optimal selection of recipient-donor pairs: a proof-of-concept study.

    Science.gov (United States)

    Han, Hongxing; Yuan, Fang; Sun, Yuying; Liu, Jinfeng; Liu, Shuguang; Luo, Yuan; Liang, Fei; Liu, Nan; Long, Juan; Zhao, Xiao; Kong, Fanhua; Xi, Yongzhi

    2015-11-24

    The optimal selection of recipient-donor pair and accurate prediction of acute graft-versus-host disease (aGVHD) severity are always the two most crucial works in allogeneic hematopoietic stem cell transplantation (allo-HSCT), which currently rests mostly with HLA compatibility, the most polymorphic loci in the human genome, in clinic. Thus, there is an urgent need for a rapid and reliable quantitative system for optimal recipient-donor pairs selection and accurate prediction of aGVHD severity prior to allo-HSCT. For these reasons, we have developed a new selection/prediction system for optimal recipient-donor selection and effective prediction of aGVHD severity based on HLA three-dimensional (3D) structure modeling (HLA-TDSM) discrepancy, and applied this system in a pilot randomized clinical allo-HSCT study. The 37 patient-donor pairs in the study were typed at low- and high-resolution levels for HLA-A/-B/-DRB1/-DQB1 loci. HLA-TDSM system covering the 10000 alleles in HLA class I and II consists of the revised local and coordinate root-mean-square deviation (RMSD) values for each locus. Its accuracy and reliability were confirmed using stably transfected Hmy2.CIR-HLA-B cells, TCR Vβ gene scan, and antigen-specific alloreactive cytotoxic lymphocytes. Based on the preliminary results, we theoretically defined all HLA acceptable versus unacceptable mismatched alleles. More importantly, HLA-TDSM enabled a successful retrospective verification and prospective prediction for aGVHD severity in a pilot randomized clinical allo-HSCT study of 32 recipient-donor transplant pairs. There was a strong direct correlation between single/total revised RMSD and aGVHD severity (92% in retrospective group vs 95% in prospective group). These results seem to be closely related to the 3D structure discrepancy of mismatched HLA-alleles, but not the number or loci of mismatched HLA-alleles. Our data first provide the proof-of-concept that HLA-TDSM is essential for optimal selection of

  10. Transplante de células-tronco hematopoéticas (TCTH em doenças falciformes Hematopoietic stem cell transplantation in sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Fabiano Pieroni

    2007-09-01

    Full Text Available O único tratamento curativo para pacientes com doença falciforme é o transplante de células tronco hematopoéticas (TCTH. Neste artigo sumarizamos os resultados do TCTH em pacientes falciformes publicados na literatura e a experiência brasileira. As indicações atuais para o TCTH nestes pacientes serão discutidas.The only curative treatment approach for patients with sickle cell anemia is allogeneic stem cell transplantation. In this article we will review the published data about stem cell transplantation in patients with sickle cell disease and the small Brazilian experience in this field. The possible indications for stem cell patients will be discussed.

  11. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  12. Megakaryocytopoiesis in Stem Cell Transplantation

    National Research Council Canada - National Science Library

    Cohen, IIsaac

    1998-01-01

    Mobilized peripheral blood progenitor cell transplant, used to reconstitute hematopoiesis following high-dose chemotherapy in breast cancer patients, is associated with a requisite period of profound thrombocytopenia...

  13. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

    OpenAIRE

    Nijagal, Amar; Wegorzewska, Marta; Jarvis, Erin; Le, Tom; Tang, Qizhi; MacKenzie, Tippi C.

    2011-01-01

    Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we h...

  14. Childhood Hematopoietic Cell Transplantation (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hematopoietic cell transplantation involves the infusion of blood stem cells (peripheral/umbilical cord blood, bone marrow) into a patient to reconstitute the blood system. Get detailed information about autologous and allogeneic transplant, including cell selection, HLA matching, and preparative regimens, and the acute complications and late effects of treatment in this summary for clinicians.

  15. [Detection of NK and NKT cells in peripheral blood of patients with cGVHD and its significance].

    Science.gov (United States)

    Zhou, Mao-Hua; Wang, Chun-Miao; Gong, Cai-Ping; Luo, Yin; Zhang, Min

    2012-10-01

    The aim of this study was to investigate the correlation of NK and NKT cells in peripheral blood of patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) with chronic graft-versus-host disease (cGVHD). 64 patients undergoing allo-HSCT in Guangdong Provincial People Hospital were studied retrospectively. Among 64 cases, 21 cases were did not develop with cGVHD, 43 cases (mild 15, moderate 18, severe 10) were recorded with cGVHD. The frequency of NK and NKT cells in peripheral blood of patients were measured by flow cytometry. The counts of NK and NKT cells were measured by automatic five sort hematology cyto-analyser (LH-750). The frequency and counts of NK and NKT cells between patients with non-cGVHD and patients with different status of cGVHD were analysed. The results indicated that as compared with the non-cGVHD patients, the frequency and counts of NK cells in patients with cGVHD obviously reduced (P NKT cells were did not changed significantly. The frequency and counts of NK cells gradually decreased within the different status of cGVHD, the frequency and counts of NK cells in severe-cGVHD were significantly lower than that in mild-cGVHD. It is concluded that NK cells may play an important role in the incidence and development of cGVHD. The detection of frequency and counts of NK cells should be helpful to early diagnose cGVHD and provide valuable clues for assessing the severity of illnesses. NKT cells may have little effect on the incidence and development of cGVHD.

  16. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants

    OpenAIRE

    Strober, Samuel

    2016-01-01

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism.

  17. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    Science.gov (United States)

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The role of exogenous neural stem cells transplantation in cerebral ischemic stroke.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen; He, Dan; Lv, Haiqin; Wu, Xiaojing; Gu, Ning

    2014-11-01

    To observe the effects of neural stem cells (NSCs) transplantation in rats' striatum and subventricular zone (SVZ) in rat models of focal cerebral ischemia and reperfusion. Hippocampus was extracted from fetal rats with 14 days of gestation. Suspension culture was used to isolate and culture the rat's NSCs. A cerebral ischemia and reperfusion rat's model was made on the left side of the brain through occlusion of the left middle cerebral artery. Neurological signs were assessed by Zea Longa's five-grade scale, with scores 1, 2, and 3 used to determine the successful establishment of the rat's model. The NSCs were stereotaxically injected into the left striatum 24 hours after the successful rat's model was built. Rats were then randomly divided into 5 groups, namely, normal group, sham operation group, ischemia group, PBS transplantation group, and NSCs transplantation group, each of which was observed on day 3, day 7, and day 14. The ischemia-related neurological deficits were assessed by using a 7-point evaluation criterion. Forelimb injuries were evaluated in all rats using the foot-fault approach. Infarct size changes were observed through TTC staining and cell morphology and structure in the infarct region were investigated by Nissl staining. Apoptosis and apoptosis-positive cell counts were studied by Tunel assay. Expressions of double-labeling positive cells in the striatum and subventricular zone (SVZ) were observed by BrdU/NeuN and BrdU/GFAP fluorescent double-labeling method and the number of positive cells in the striatum and SVZ was counted. Results from the differently treated groups showed that right hemiplegia occurred in the ischemia group, PBS transplantation group, and NSCs transplantation group in varying degrees. Compared with the former two groups, there was least hemiplegia in the NSCs transplantation group. The TTC staining assay showed that rats in the NSCs transplantation group had smaller infarct volume than those from the PBS

  19. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  20. Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Yu, Song-Hee; Jang, Yu-Jin; Lee, Eun-Shil; Hwang, Dong-Youn; Jeon, Chang-Jin

    2010-01-01

    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

  1. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  2. An injectable spheroid system with genetic modification for cell transplantation therapy.

    Science.gov (United States)

    Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori

    2014-03-01

    The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  4. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  5. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  6. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    International Nuclear Information System (INIS)

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  7. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pennell, Samuel D.; Wood, Leonie R. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pitt, James J. [Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children' s Hospital, Parkville (Australia); Allen, Katrina J. [Gastro and Food Allergy, Murdoch Childrens Research Institute, Parkville (Australia); Peters, Heidi L. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may

  8. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  9. Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23.

    Science.gov (United States)

    Clark, Amander T; Gkountela, Sofia; Chen, Di; Liu, Wanlu; Sosa, Enrique; Sukhwani, Meena; Hennebold, Jon D; Orwig, Kyle E

    2017-07-11

    Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  11. Islet and Stem Cell Encapsulation for Clinical Transplantation

    Science.gov (United States)

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  12. Endothelial cell chimerism after renal transplantation and vascular rejection.

    NARCIS (Netherlands)

    Lagaaij, E.L.; Cramer-Knijnenburg, G.F.; Kemenade, F.J. van; Es, L.A. van; Bruijn, J.A.; Krieken, J.H.J.M. van

    2001-01-01

    BACKGROUND: The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ are believed to remain of donor origin after transplantation. We

  13. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants.

    Science.gov (United States)

    Strober, Samuel

    2016-03-24

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism. © 2016 by The American Society of Hematology.

  14. Human dental pulp cell culture and cell transplantation with an alginate scaffold.

    Science.gov (United States)

    Kumabe, Shunji; Nakatsuka, Michiko; Kim, Gi-Seup; Jue, Seong-Suk; Aikawa, Fumiko; Shin, Je-Won; Iwai, Yasutomo

    2006-02-01

    Many studies on tissue stem cells have been conducted in the field of regenerative medicine, and some studies have indicated that cultured dental pulp mesenchymal cells secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured human dental pulp cells subcutaneously into the backs of nude mice. We found that when beta-glycerophosphate was added to the culture medium, dentin sialophosphoprotein mRNA coding dentin sialoprotein (DSP) was expressed. An increase in alkaline phosphatase, which is an early marker for odontoblast differentiation, was also demonstrated. At 6 weeks after implantation the subcutaneous formation of radio-opaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants. Isolated odontoblast-like cells initiated dentin-like hard tissue formation and scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured dental pulp cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  15. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  16. [Results of hematopoietic stem cell transplantation in hemoglobinopathies: thalassemia major and sickle cell disease].

    Science.gov (United States)

    Hladun, R; Elorza, I; Olivé, T; Dapena, J L; Llort, A; Sánchez de Toledo, J; Díaz de Heredia, C

    2013-08-01

    The prevalence of hemoglobinopathies in Spain is increasing as a result of immigration. Thalassemia major presents with chronic hemolytic anemia that requires regular red blood cell transfusions within the first year of life. Patients with sickle cell disease suffer from chronic anemia, vasculopathy and progressive damage in almost any organ. There is decreased life expectancy in both conditions. Allogeneic hematopoietic stem cell transplantation represents the only potentially curative option. Seventeen patients (fourteen thalassemia major, and three sickle cell disease) underwent allogeneic hematopoietic stem cell transplantations. In the thalassemia group, nine donors were HLA-geno-identical siblings, two were partially matched related donors (one HLA allele mismatch), and three unrelated donors. All three patients with sickle cell disease were transplanted from HLA-geno-identical siblings. The source of stem cells was bone marrow in sixteen cases. Median patient age at transplant was six years (range: 1-16) in the thalassemia group, and twelve years (range: 8-15) in the sickle cell disease group. The graft was successful in all patients. Secondary graft rejection was observed in two thalassemia patients rendering them dependent on blood transfusions. Complete chimerism was observed in thirteen patients and, although mixed chimerism occurred in two, with all of them showing normal hemoglobin levels after transplantation and not requiring further transfusion support. Patients affected by sickle cell disease did not present with new vaso-occlusive crises, and stabilization of pulmonary and neurological function was observed. Chronic graft-versus-host disease was detected in three patients affected by thalassemia, and hypogonadotrophic hypogonadism in five patients. We conclude that for thalassemia major and sickle cell disease, allogenic hematopoietic stem cell transplantation from HLA-geno-identical siblings offers a high probability of complication-free survival

  17. Genetic modification of stem cells for transplantation.

    Science.gov (United States)

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  18. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  19. In Utero Hematopoietic Cell Transplantation for Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Tippi C. Mackenzie

    2015-01-01

    Full Text Available In utero hematopoietic cell transplantation (IUHCTx is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application.

  20. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    Science.gov (United States)

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  1. ES-cell derived hematopoietic cells induce transplantation tolerance.

    Directory of Open Access Journals (Sweden)

    Sabrina Bonde

    Full Text Available BACKGROUND: Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs. Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we derived CD45(+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts. CONCLUSIONS: Our data show, for the first time, the efficacy of ES-derived CD45(+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.

  2. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    Directory of Open Access Journals (Sweden)

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  3. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  4. Advances in Cell Transplantation Therapy for Diseased Myocardium

    Directory of Open Access Journals (Sweden)

    Outi M. Villet

    2011-01-01

    Full Text Available The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

  5. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  6. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells

    Directory of Open Access Journals (Sweden)

    Steven M. Garcia

    2018-03-01

    Full Text Available Summary: Investigation of human muscle regeneration requires robust methods to purify and transplant muscle stem and progenitor cells that collectively constitute the human satellite cell (HuSC pool. Existing approaches have yet to make HuSCs widely accessible for researchers, and as a result human muscle stem cell research has advanced slowly. Here, we describe a robust and predictable HuSC purification process that is effective for each human skeletal muscle tested and the development of storage protocols and transplantation models in dystrophin-deficient and wild-type recipients. Enzymatic digestion, magnetic column depletion, and 6-marker flow-cytometric purification enable separation of 104 highly enriched HuSCs per gram of muscle. Cryostorage of HuSCs preserves viability, phenotype, and transplantation potential. Development of enhanced and species-specific transplantation protocols enabled serial HuSC xenotransplantation and recovery. These protocols and models provide an accessible system for basic and translational investigation and clinical development of HuSCs. : Garcia and colleagues report methods for efficient purification of satellite cells from human skeletal muscle. They use their approaches to demonstrate stem cell functions of endogenous satellite cells and to make human satellite cells accessible for sharing among researchers. Keywords: human satellite cell purification, serial transplantation, satellite cell cryopreservation

  7. A transplant recipient with a mixed germ-cell ovarian tumor

    Directory of Open Access Journals (Sweden)

    Ketata Hafed

    2008-01-01

    Full Text Available Immunosuppressed renal transplant recipients seem to be at significantly increased risk of developing neoplasms comparatively to nonimmunosuppressed individuals. A history of malignancy exposes the patient to a high risk for relapse after transplantation. We present a trans-plant recipient with a history of an ovarian mixed germ-cell tumor, with choriocarcinoma com-ponent, which was treated seven years prior to transplantation. After three years of follow-up, there was no evidence of tumor relapse. To our knowledge, there is no report of such case in the English literature. Regarding our case report and patients with a history of ovarian germ-cell neoplasm, waiting time before transplantation must take into consideration the stage of the tumor, its prognosis, the proportion of different tumor components, and the overall prognosis of the patient if transplantation is withheld.

  8. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  9. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.

    Science.gov (United States)

    Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F

    2007-11-01

    Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.

  10. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    Directory of Open Access Journals (Sweden)

    Bhatia M

    2015-07-01

    Full Text Available Monica Bhatia,1 Sujit Sheth21Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, 2Division of Pediatric Hematology and Oncology, Weill Cornell Medical College, New York, NY, USAAbstract: Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD. The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to

  11. Depression and anxiety following hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kuba, K; Esser, P; Mehnert, A

    2017-01-01

    In this prospective multicenter study, we investigated the course of depression and anxiety during hematopoietic stem cell transplantation (HSCT) until 5 years after transplantation adjusting for medical information. Patients were consulted before HSCT (n=239), at 3 months (n=150), 12 months (n=102...

  12. Allogeneic stem cell transplantation in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  13. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells

    Directory of Open Access Journals (Sweden)

    Chizuka Ide

    2016-01-01

    Full Text Available Transplantation of bone marrow stromal cells (BMSCs enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI. BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  14. Pre-transplant donor-specific T-cell alloreactivity is strongly associated with early acute cellular rejection in kidney transplant recipients not receiving T-cell depleting induction therapy.

    Directory of Open Access Journals (Sweden)

    Elena Crespo

    Full Text Available Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90, to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67. We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction

  15. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.

    Science.gov (United States)

    Song, Jiwon; Millman, Jeffrey R

    2016-12-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

  16. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    Science.gov (United States)

    Howard, MacKenzie A; Baraban, Scott C

    2016-08-01

    Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation. Copyright © 2016 the American Physiological Society.

  17. MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia.

    Science.gov (United States)

    Aranguren, Xabier L; Pelacho, Beatriz; Peñuelas, Ivan; Abizanda, Gloria; Uriz, Maialen; Ecay, Margarita; Collantaes, María; Araña, Miriam; Beerens, Manu; Coppiello, Giulia; Prieto, Inés; Perez-Ilzarbe, Maitane; Andreu, Enrique J; Luttun, Aernout; Prósper, Felipe

    2011-01-01

    There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement. © 2011 Cognizant Comm. Corp.

  18. Islet Cell Transplantation: MedlinePlus Health Topic

    Science.gov (United States)

    ... and Kidney Diseases) Learn More Beta Cell Breakthroughs (American Diabetes Association) Innovative Approaches to Treating Type 1 Diabetes Addressed in Beta-Cell Replacement Presentations (American Diabetes Association) Islet Transplantation (American Diabetes Association) Also in Spanish ...

  19. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  20. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Directory of Open Access Journals (Sweden)

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  1. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. © 2014 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  2. Immunosuppressive T-cell antibody induction for heart transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Møller, Christian H; Gustafsson, Finn

    2013-01-01

    Heart transplantation has become a valuable and well-accepted treatment option for end-stage heart failure. Rejection of the transplanted heart by the recipient's body is a risk to the success of the procedure, and life-long immunosuppression is necessary to avoid this. Clear evidence is required...... to identify the best, safest and most effective immunosuppressive treatment strategy for heart transplant recipients. To date, there is no consensus on the use of immunosuppressive antibodies against T-cells for induction after heart transplantation....

  3. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  4. Cytomegalovirus (CMV) Infection: A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Infection: A Guide for Patients and Families after Stem Cell Transplant What is cytomegalovirus (CMV)? Cytomegalovirus (CMV), a ... weakened by medicines that you must take after stem cell transplant and by the transplant itself. Your body ...

  5. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  6. An update on ABO incompatible hematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Staley, Elizabeth M; Schwartz, Joseph; Pham, Huy P

    2016-06-01

    Hematopoietic progenitor cell (HPC) transplantation has long been established as the optimal treatment for many hematologic malignancies. In the setting of allogenic HLA matched HPC transplantation, greater than 50% of unrelated donors and 30% of related donors demonstrate some degree of ABO incompatibility (ABOi), which is classified in one of three ways: major, minor, or bidirectional. Major ABOi refers to the presence of recipient isoagglutinins against the donor's A and/or B antigen. Minor ABOi occurs when the HPC product contains the isoagglutinins targeting the recipient's A and/or B antigen. Bidirectional refers to the presence of both major and minor ABOi. Major adverse events associated with ABOi HPC transplantation includes acute and delayed hemolysis, pure red cell aplasia, and delayed engraftment. ABOi HPC transplantation poses a unique challenge to the clinical transplantation unit, the HPC processing lab, and the transfusion medicine service. Therefore, it is essential that these services actively communicate with one another to ensure patient safety. This review will attempt to globally address the challenges related to ABOi HPC transplantation, with an increased focus on aspects related to the laboratory and transfusion medicine services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Autologous or reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: analysis of transplantation timing and modality.

    Science.gov (United States)

    Fenske, Timothy S; Zhang, Mei-Jie; Carreras, Jeanette; Ayala, Ernesto; Burns, Linda J; Cashen, Amanda; Costa, Luciano J; Freytes, César O; Gale, Robert P; Hamadani, Mehdi; Holmberg, Leona A; Inwards, David J; Lazarus, Hillard M; Maziarz, Richard T; Munker, Reinhold; Perales, Miguel-Angel; Rizzieri, David A; Schouten, Harry C; Smith, Sonali M; Waller, Edmund K; Wirk, Baldeep M; Laport, Ginna G; Maloney, David G; Montoto, Silvia; Hari, Parameswaran N

    2014-02-01

    To examine the outcomes of patients with chemotherapy-sensitive mantle-cell lymphoma (MCL) following a first hematopoietic stem-cell transplantation (HCT), comparing outcomes with autologous (auto) versus reduced-intensity conditioning allogeneic (RIC allo) HCT and with transplantation applied at different times in the disease course. In all, 519 patients who received transplantations between 1996 and 2007 and were reported to the Center for International Blood and Marrow Transplant Research were analyzed. The early transplantation cohort was defined as those patients in first partial or complete remission with no more than two lines of chemotherapy. The late transplantation cohort was defined as all the remaining patients. Auto-HCT and RIC allo-HCT resulted in similar overall survival from transplantation for both the early (at 5 years: 61% auto-HCT v 62% RIC allo-HCT; P = .951) and late cohorts (at 5 years: 44% auto-HCT v 31% RIC allo-HCT; P = .202). In both early and late transplantation cohorts, progression/relapse was lower and nonrelapse mortality was higher in the allo-HCT group. Overall survival and progression-free survival were highest in patients who underwent auto-HCT in first complete response. Multivariate analysis of survival from diagnosis identified a survival benefit favoring early HCT for both auto-HCT and RIC allo-HCT. For patients with chemotherapy-sensitive MCL, the optimal timing for HCT is early in the disease course. Outcomes are particularly favorable for patients undergoing auto-HCT in first complete remission. For those unable to achieve complete remission after two lines of chemotherapy or those with relapsed disease, either auto-HCT or RIC allo-HCT may be effective, although the chance for long-term remission and survival is lower.

  8. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  9. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Canninga-van Dijk, MR; Sanders, CJ; Verdonck, LF; Fijnheer, R; van den Tweel, JG

    Allogeneic haematopoietic stem cell transplantation (i.e. bone marrow or peripheral blood stem cell transplantation) is a common procedure in the treatment of various haematological disorders such as aplastic anaemia, (pre)leukaemias, some malignant lymphomas, multiple myeloma and immunodeficiency

  10. Comparative Peripheral Blood T Cells Analysis Between Adult Deceased Donor Liver Transplantation (DDLT) and Living Donor Liver Transplantation (LDLT).

    Science.gov (United States)

    Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Gyu-Seong; Kang, Eun-Suk; Lee, Suk-Koo

    2017-08-08

    BACKGROUND T lymphocytes are an essential component of allograft rejection and tolerance. The aim of the present study was to analyze and compare the characteristics of T cell subsets in patients who underwent deceased donor liver transplantation (DDLT) versus living donor liver transplantation (LDLT). MATERIAL AND METHODS Between April 2013 and June 2014, 64 patients underwent adult liver transplantation. The distribution of peripheral blood T lymphocyte subsets before transplantation and at 4, 8, 12, and 24 weeks post-transplantation were monitored serially. RESULTS In the serial peripheral blood samples, the absolute CD3+ T cell counts in the LDLT group were higher than those in the DDLT group (p=0.037). The CD4+, CD8+, CD4/CD8, Vδ1, Vδ2, and γδ T cell counts did not change significantly over time in either group. The Vδ1/Vδ2 ratio was higher in patients with cytomegalovirus (CMV) infection than in patients without CMV infection (0.12 versus 0.26; p=0.033). The median absolute CD3+ and CD8+ T cell counts in patients with biopsy-proven acute rejection (BPAR) were 884 (range, 305-1,320) and 316 (range, 271-1,077), respectively, whereas they were 320 (range, 8-1,167) and 257 (range, 58-1,472) in patients without BPAR. The absolute CD3+ and CD8 T cell counts were higher in patients with BPAR than in patients without BPAR (p=0.007 and p=0.039, respectively). CONCLUSIONS With the exception of CD3+ T cells, T cell populations did not differ significantly between patients who received DDLT versus LDLT. In liver transplantation patients, CMV infection and BPAR were closely associated with T cell population changes.

  11. 76 FR 11491 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Science.gov (United States)

    2011-03-02

    ... transplantation, Program priorities, research priorities, and the scope and design of the Stem Cell Therapeutic... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on Blood Stem Cell Transplantation. The Advisory Council on Blood Stem Cell Transplantation was...

  12. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  13. Hormone Use for Therapeutic Amenorrhea and Contraception During Hematopoietic Cell Transplantation

    Science.gov (United States)

    Chang, Katherine; Merideth, Melissa A.; Stratton, Pamela

    2015-01-01

    There is a growing population of women who have or will undergo hematopoietic stem cell transplant for a variety of malignant and benign conditions. Gynecologists play an important role in addressing the gynecologic and reproductive health concerns for these women throughout the transplant process. As women undergo cell transplantation, they should avoid becoming pregnant and are at risk of uterine bleeding. Thus, counseling about and implementing hormonal treatments such as gonadotropin-releasing hormone agonists, combined hormonal contraceptives, and progestin-only methods help to achieve therapeutic amenorrhea and can serve as contraception during the peritransplant period. In this commentary, we summarize the timing, risks and benefits of the hormonal options just prior, during and for the year after hematopoietic stem cell transplantation. PMID:26348182

  14. Transplantation of bone marrow cells into lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.

    1978-01-01

    Morphological changes were studied of megakaryocytes in the bone marrow and spleen of lethally irradiated mice (0.2 C/kg) after transplantation of living bone marrow cells. It was observed that functional trombopoietic megakaryocytes occur from day 15 after transplantation and that functional active megakaryocytes predominate in bone marrow and spleen from day 20. In addition, other types of cells, primarily granulocytes, were detected in some megakaryocytes. (author)

  15. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  16. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Science.gov (United States)

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  17. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  18. Cell lineage in vascularized bone transplantation.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  19. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Science.gov (United States)

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Endothelial cell chimerism associated with graft rejection after human lung transplantation.

    OpenAIRE

    Ratajczak , Philippe; Murata , Hideyuki; Meignin , Véronique; Groussard , Odile; Fournier , Michel; Socié , Gérard; Mal , Hervé; Janin , Anne

    2008-01-01

    International audience; Endotheliitis is a major sign of graft rejection. Recipient-derived endothelial cells found in two series of liver and kidney transplants were related to graft rejection. Here, we assessed the presence and the number of chimeric endothelial cells in lung transplants, and their relation with graft rejection. In six males grafted with female lungs out of 193 lung transplantations, endothelial chimerism was studied by combined XY-fluorescent in situ hybridization with CD3...

  1. The effect of thymus cells on bone marrow transplants into sublethally irradiated mice

    International Nuclear Information System (INIS)

    Kruszewski, J.A.; Szcylik, C.; Wiktor-Jedrzejczak, W.

    1984-01-01

    Bone marrow cells formed similar numbers of 10-days spleen colonies in sublethally (6 Gy) irradiated C57B1/6 mice as in lethally (7.5 Gy) irradiated mice i.e. approximately 20 per 10 5 cells. Numbers of 10 day endogenous spleen colonies in sublethally irradiated mice (0.2 to 0.6 per spleen) did not differ significantly from the numbers in lethally irradiated mice. Yet, transplants of 10 7 coisogenic marrow cells into sublethally irradiated mice resulted in predominantly endogenous recovery of granulocyte system as evidenced by utilization of ''beige'' marker for transplanted cells. Nevertheless, transplanted cells engrafted into sublethally irradiated mice were present in their hemopoietic tissues throughout the observation period of 2 months never exceeding 5 to 10% of cells. Thymus cells stimulated endogenous and exogenous spleen colony formation as well as endogenous granulopoietic recovery. Additionally, they increased both the frequency and absolute numbers of graft-derived granulocytic cells in hemopoietic organs of transplanted mice. They failed, however, to essentially change the quantitative relationships between endogenous and exogenous hemopoietic recovery. These results may suggest that spleen colony studies are not suitable for prediction of events following bone marrow transplant into sublethally irradiated mice. Simultaneously, they have strengthened the necessity for appropriate conditioning of recipients of marrow transplants. (orig.) [de

  2. Twitter Use in the Hematopoietic Cell Transplantation Community.

    Science.gov (United States)

    Patel, Sagar S; Majhail, Navneet S

    2018-02-01

    Social media has revolutionized the access and exchange of information in healthcare. The microblogging platform Twitter has been used by blood and marrow transplant physicians over the last several years with increasing enthusiasm. We review the adoption of Twitter in the transplant community and its implications on clinical care, education, and research. Twitter allows instantaneous access to the latest research publications, developments at national and international meetings, networking with colleagues, participation in advocacy, and promoting available clinical trials. Additionally, Twitter serves as a gateway for resources dedicated to education and support for patients undergoing transplantation. We demonstrate the utilization and various applications in using Twitter among hematopoietic cell transplant healthcare professionals, patients, and other affiliated stakeholders. Professionalism concerns with clinician use of such social media platforms, however, also exist. Overall, Twitter has enhanced and increased the opportunities for engagement in the transplant community.

  3. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  4. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation.

    Science.gov (United States)

    Thomson, Angus W; Zahorchak, Alan F; Ezzelarab, Mohamed B; Butterfield, Lisa H; Lakkis, Fadi G; Metes, Diana M

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients' dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.

  5. CMV-specific T cell isolation from G-CSF mobilized peripheral blood: depletion of myeloid progenitors eliminates non-specific binding of MHC-multimers.

    Science.gov (United States)

    Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo

    2014-11-19

    Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired

  6. Donor-specific Anti-HLA antibodies in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Morin-Zorman

    2016-08-01

    Full Text Available Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT is a curative treatment for a wide variety of hematological diseases. In 30% of the cases, a geno-identical donor is available. Any other situation displays some level of Human Leukocyte Antigen (HLA incompatibility between donor and recipient. Deleterious effects of anti-HLA immunization have long been recognized in solid organ transplant recipients. More recently, anti-HLA immunization was shown to increase the risk of Primary Graft Failure (PGF, a severe complication of AHSCT that occurs in 3 to 4% of matched unrelated donor transplantation and up to 15% in cord blood transplantation and T-cell depleted haplo-identical stem cell transplantation. Rates of PGF in patients with DSA were reported to be between 24 to 83% with the highest rates in haplo-identical and cord blood transplantation recipients. This led to the recommendation of anti-HLA antibody screening to detect Donor Specific Antibodies (DSA in recipients prior to AHSCT. In this review, we highlight the role of anti-HLA antibodies in AHSCT and the mechanisms that may lead to PGF in patients with DSA, and discuss current issues in the field.

  7. Allogeneic stem cell transplantation for advanced cutaneous T-cell lymphomas: a study from the French Society of Bone Marrow Transplantation and French Study Group on Cutaneous Lymphomas

    Science.gov (United States)

    de Masson, Adèle; Beylot-Barry, Marie; Bouaziz, Jean-David; de Latour, Régis Peffault; Aubin, François; Garciaz, Sylvain; d’Incan, Michel; Dereure, Olivier; Dalle, Stéphane; Dompmartin, Anne; Suarez, Felipe; Battistella, Maxime; Vignon-Pennamen, Marie-Dominique; Rivet, Jacqueline; Adamski, Henri; Brice, Pauline; François, Sylvie; Lissandre, Séverine; Turlure, Pascal; Wierzbicka-Hainaut, Ewa; Brissot, Eolia; Dulery, Rémy; Servais, Sophie; Ravinet, Aurélie; Tabrizi, Reza; Ingen-Housz-Oro, Saskia; Joly, Pascal; Socié, Gérard; Bagot, Martine

    2014-01-01

    The treatment of advanced stage primary cutaneous T-cell lymphomas remains challenging. In particular, large-cell transformation of mycosis fungoides is associated with a median overall survival of two years for all stages taken together. Little is known regarding allogeneic hematopoietic stem cell transplantation in this context. We performed a multicenter retrospective analysis of 37 cases of advanced stage primary cutaneous T-cell lymphomas treated with allogeneic stem cell transplantation, including 20 (54%) transformed mycosis fungoides. Twenty-four patients (65%) had stage IV disease (for mycosis fungoides and Sézary syndrome) or disseminated nodal or visceral involvement (for non-epidermotropic primary cutaneous T-cell lymphomas). After a median follow up of 29 months, 19 patients experienced a relapse, leading to a 2-year cumulative incidence of relapse of 56% (95%CI: 0.38–0.74). Estimated 2-year overall survival was 57% (95%CI: 0.41–0.77) and progression-free survival 31% (95%CI: 0.19–0.53). Six of 19 patients with a post-transplant relapse achieved a subsequent complete remission after salvage therapy, with a median duration of 41 months. A weak residual tumor burden before transplantation was associated with increased progression-free survival (HR=0.3, 95%CI: 0.1–0.8; P=0.01). The use of antithymocyte globulin significantly reduced progression-free survival (HR=2.9, 95%CI: 1.3–6.2; P=0.01) but also transplant-related mortality (HR=10−7, 95%CI: 4.10−8–2.10−7; P<0.001) in univariate analysis. In multivariate analysis, the use of antithymocyte globulin was the only factor significantly associated with decreased progression-free survival (P=0.04). Allogeneic stem cell transplantation should be considered in advanced stage primary cutaneous T-cell lymphomas, including transformed mycosis fungoides. PMID:24213148

  8. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  9. The anterior lens capsule used as support material in RPE cell-transplantation

    DEFF Research Database (Denmark)

    Nicolini, J; Kiilgaard, Jens Folke; Wiencke, A K

    2000-01-01

    To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells.......To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells....

  10. Stem Cells as a Tool to Improve Outcomes of Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Emily Sims

    2012-01-01

    Full Text Available The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.

  11. Using the cost-effectiveness of allogeneic islet transplantation to inform induced pluripotent stem cell-derived β-cell therapy reimbursement.

    Science.gov (United States)

    Archibald, Peter R T; Williams, David J

    2015-11-01

    In the present study a cost-effectiveness analysis of allogeneic islet transplantation was performed and the financial feasibility of a human induced pluripotent stem cell-derived β-cell therapy was explored. Previously published cost and health benefit data for islet transplantation were utilized to perform the cost-effectiveness and sensitivity analyses. It was determined that, over a 9-year time horizon, islet transplantation would become cost saving and 'dominate' the comparator. Over a 20-year time horizon, islet transplantation would incur significant cost savings over the comparator (GB£59,000). Finally, assuming a similar cost of goods to islet transplantation and a lack of requirement for immunosuppression, a human induced pluripotent stem cell-derived β-cell therapy would dominate the comparator over an 8-year time horizon.

  12. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Danilo Santana Alessio Franceschi

    2011-01-01

    Full Text Available Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.

  13. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Alişan Yıldıran

    2017-12-01

    Full Text Available Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11, Chediak-Higashi syndrome (n=2, leukocyte adhesion deficiency (n=2, MHC class 2 deficiency (n=2, chronic granulomatous syndrome (n=2, hemophagocytic lymphohistiocytosis (n=1, Wiskott-Aldrich syndrome (n=1, and Omenn syndrome (n=1. Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  14. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey.

    Science.gov (United States)

    Yıldıran, Alişan; Çeliksoy, Mehmet Halil; Borte, Stephan; Güner, Şükrü Nail; Elli, Murat; Fışgın, Tunç; Özyürek, Emel; Sancak, Recep; Oğur, Gönül

    2017-12-01

    Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years) with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11), Chediak-Higashi syndrome (n=2), leukocyte adhesion deficiency (n=2), MHC class 2 deficiency (n=2), chronic granulomatous syndrome (n=2), hemophagocytic lymphohistiocytosis (n=1), Wiskott-Aldrich syndrome (n=1), and Omenn syndrome (n=1). Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  15. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview.

    Science.gov (United States)

    Singh, Anurag K; McGuirk, Joseph P

    2016-11-15

    The field of hematopoietic stem cell transplant (HSCT) has made ground-breaking progress in the treatment of many malignant and nonmalignant conditions. It has also pioneered the concepts of stem cell therapy and immunotherapy as a tool against cancer. The success of transplant for hematologic malignancies derives both from the ability to treat patients with intensive chemoradiotherapy and from potent graft-versus-leukemia (GVL) effects mediated by donor immunity. Additionally, HSCT has been a curative therapy for several nonmalignant hematologic disorders through the provision of donor-derived hematopoiesis and immunity. Preclinical and clinical research in the field has contributed to an advanced understanding of histocompatibility, graft-versus-host disease (GVHD), GVL effect, and immune reconstitution after transplant. Improved donor selection, tailored conditioning regimens, and better supportive care have helped reduce transplant-related morbidity and mortality and expanded access. The development of unrelated donor registries and increased utilization of cord blood and partially matched related donor transplants have ensured a donor for essentially everyone who needs a transplant. However, significant barriers still remain in the form of disease relapse, GVHD infectious complications, and regimen-related toxicities. Recent developments in the field of cellular therapy are expected to further improve the efficacy of transplant. In this review, we discuss the current science of HSCT from a historical perspective, highlighting major discoveries. We also speculate on future directions in this field. Cancer Res; 76(22); 6445-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Magentic Cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of heptocytes transplantation

    Science.gov (United States)

    Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this wo...

  17. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Effects of nonpharmacological interventions on reducing fatigue after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Hedayat Jafari

    2017-01-01

    Full Text Available Fatigue is one of the main complaints of patients undergoing allogeneic and autologous hematopoietic stem cell transplantation (HSCT. Since nonpharmacological interventions are cost-effective and causes fewer complications, this study aimed to review the studies performed on the effects of nonpharmacological interventions on fatigue in patients undergoing HSCT during September 2016. MEDLINE, CINAHL, Scientific Information Database, IranMedex, PubMed, ScienceDirect, Scopus, Magiran, and IRANDOC databases were searched using Persian and English keywords. A total of 1217 articles were retrieved, 21 of which were used in this study. Exercise is known as an effective intervention in alleviating physical and mental problems of patients undergoing stem cell transplant. This review-based study showed that nonpharmacological methods such as exercise might be effective in decreasing fatigue in patients undergoing stem cell transplant. There is a multitude of studies on some of the complementary and alternative therapy methods, such as music therapy, yoga, relaxation, and therapeutic massage. These studies demonstrated the positive effects of the aforementioned therapies on reduction of fatigue in patients undergoing stem cell transplantation. All the investigated methods in this study were nonaggressive, safe, and cost-effective and could be used along with common treatments or even as an alternative for pharmacological treatments for the reduction, or elimination of fatigue in patients undergoing stem cell transplantation. Given the advantages of complementary and alternative medicine, conducting further studies on this issue is recommended to reduce fatigue in patients after stem cell transplantation.

  19. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  20. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  1. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis.

    Science.gov (United States)

    Ren, Hongmiao; Chen, Jichuan; Wang, Yinan; Zhang, Shichang; Zhang, Bo

    2013-01-01

    Stem cell-based regenerative therapy is a potential cellular therapeutic strategy for patients with incurable brain diseases. Embryonic neural stem cells (NSCs) represent an attractive cell source in regenerative medicine strategies in the treatment of diseased brains. Here, we assess the capability of intracerebral embryonic NSCs transplantation for C57BL/6J mice with presbycusis in vivo. Morphology analyses revealed that the neuronal rate of apoptosis was lower in the aged group (10 months of age) but not in the young group (2 months of age) after NSCs transplantation, while the electrophysiological data suggest that the Auditory Brain Stem Response (ABR) threshold was significantly decreased in the aged group at 2 weeks and 3 weeks after transplantation. By contrast, there was no difference in the aged group at 4 weeks post-transplantation or in the young group at any time post-transplantation. Furthermore, immunofluorescence experiments showed that NSCs differentiated into neurons that engrafted and migrated to the brain, even to sites of lesions. Together, our results demonstrate that NSCs transplantation improve the auditory of C57BL/6J mice with presbycusis.

  2. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction...... deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly...

  3. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    Science.gov (United States)

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  4. Relapsed Diffuse Large B-Cell Lymphoma Treated by Reduced-Intensity Allogeneic Stem Cell Transplantation with Donor Lymphocyte Infusion

    International Nuclear Information System (INIS)

    Chudhry, Q.N.; Ahmed, P.; Ullah, K.; Satti, T.M.; Raza, S.; Mehmood, S.K.; Akram, M.; Ahmed, S.

    2010-01-01

    A 42 years old male with relapsed diffuse large B-cell lymphoma was given second-line chemotherapy followed by reduced intensity allogeneic stem cell transplantation from HLA matched brother. Twelve weeks post transplant, his disease relapsed evidenced by the appearance of lymphoma cells in the peripheral blood and declining donor chimerism. Donor lymphocyte infusion was given that induced complete lymphoma remission. The patient is well 3 years post transplant with his disease in complete remission. (author)

  5. What Unrelated Hematopoietic Stem Cell Transplantation in Thalassemia Taught us about Transplant Immunogenetics

    Science.gov (United States)

    La Nasa, Giorgio; Vacca, Adriana; Littera, Roberto; Piras, Eugenia; Orru, Sandro; Greco, Marianna; Carcassi, Carlo; Caocci, Giovanni

    2016-01-01

    Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT) continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cord blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS) and thalassemia-free survival (TFS) rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD) remains the most important complication in unrelated HSCT in thalassemia, leading to significant rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individualize appropriate strategies for its prevention and management. This review provides an overview of recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia. PMID:27872728

  6. WHAT UNRELATED HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THALASSEMIA TAUGHT US ABOUT TRANSPLANT IMMUNOGENETICS.

    Directory of Open Access Journals (Sweden)

    Giorgio La Nasa

    2016-10-01

    Full Text Available Abstract Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cordon blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS and thalassemia-free survival (TFS rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD remains the most important complication in unrelated HSCT in thalassemia, leading to considerable rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individuate appropriate strategies for its prevention and management. This review provides an overview on recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia.

  7. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  8. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  9. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions.

    Science.gov (United States)

    Gan, Lu; Duan, Hua; Xu, Qian; Tang, Yi-Qun; Li, Jin-Jiao; Sun, Fu-Qing; Wang, Sha

    2017-05-01

    Intrauterine adhesion (IUA) is a common uterine cavity disease characterized by the unsatisfactory regeneration of damaged endometria. Recently, stem cell transplantation has been proposed to promote the recovery process. Here we investigated whether human amniotic mesenchymal stromal cells (hAMSCs), a valuable resource for transplantation therapy, could improve endometrial regeneration in rodent IUA models. Forty female Sprague-Dawley rats were randomly assigned to five groups: normal, sham-operated, mechanical injury, hAMSC transplantation, and negative control group. One week after intervention and transplantation, histological analyses were performed, and immunofluorescent and immunohistochemical expression of cell-specific markers and messenger RNA expression of cytokines were measured. Thicker endometria, increased gland numbers and fewer fibrotic areas were found in the hAMSC transplantation group compared with the mechanical injury group. Engraftment of hAMSCs was detected by the presence of anti-human nuclear antigen-positive cells in the endometrial glands of the transplantation uteri. Transplantation of hAMSCs significantly decreased messenger RNA levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and increased those of anti-inflammatory cytokines (basic fibroblast growth factor, and interleukin-6) compared with the injured uterine horns. Immunohistochemical expression of endometrial epithelial cells was revealed in specimens after hAMSC transplantation, whereas it was absent in the mechanically injured uteri. hAMSC transplantation promotes endometrial regeneration after injury in IUA rat models, possibly due to immunomodulatory properties. These cells provide a more easily accessible source of stem cells for future research into the impact of cell transplantation on damaged endometria. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody Mediated Rejection After Vascularized Composite Allotransplantation

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0664 TITLE: Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody-Mediated Rejection after...Annual 3. DATES COVERED 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Autologous Hematopoietic Stem Cell Transplantation to...sensitization, autologous hematopoietic stem cell transplantation, antibody mediated rejection, donor specific antibodies 16. SECURITY CLASSIFICATION OF

  11. Hispanics have the lowest stem cell transplant utilization rate for autologous hematopoietic cell transplantation for multiple myeloma in the United States: A CIBMTR report.

    Science.gov (United States)

    Schriber, Jeffrey R; Hari, Parameswaran N; Ahn, Kwang Woo; Fei, Mingwei; Costa, Luciano J; Kharfan-Dabaja, Mohamad A; Angel-Diaz, Miguel; Gale, Robert P; Ganguly, Siddharatha; Girnius, Saulius K; Hashmi, Shahrukh; Pawarode, Attaphol; Vesole, David H; Wiernik, Peter H; Wirk, Baldeep M; Marks, David I; Nishihori, Taiga; Olsson, Richard F; Usmani, Saad Z; Mark, Tomer M; Nieto, Yago L; D'Souza, Anita

    2017-08-15

    Race/ethnicity remains an important barrier in clinical care. The authors investigated differences in the receipt of autologous hematopoietic cell transplantation (AHCT) among patients with multiple myeloma (MM) and outcomes based on race/ethnicity in the United States. The Center for International Blood and Marrow Transplant Research database was used to identify 28,450 patients who underwent AHCT for MM from 2008 through 2014. By using data from the National Cancer Institute's Surveillance, Epidemiology, and End Results 18 registries, the incidence of MM was calculated, and a stem cell transplantation utilization rate (STUR) was derived. Post-AHCT outcomes were analyzed among patients ages 18 to 75 years who underwent melphalan-conditioned peripheral cell grafts (N = 24,102). The STUR increased across all groups from 2008 to 2014. The increase was substantially lower among Hispanics (range, 8.6%-16.9%) and non-Hispanic blacks (range, 12.2%-20.5%) compared with non-Hispanic whites (range, 22.6%-37.8%). There were 18,046 non-Hispanic whites, 4123 non-Hispanic blacks, and 1933 Hispanic patients. The Hispanic group was younger (P blacks (42%) compared with non-Hispanic whites (56%). A Karnofsky score 3 were more common in non-Hispanic blacks compared with Hispanic and non-Hispanic whites (P blacks (54%) and non-Hispanic whites (52%; P blacks (45%) and non-Hispanic whites (44%) had a very good partial response or better before transplantation (P = .005). Race/ethnicity did not impact post-AHCT outcomes. Although the STUR increased, it remained low and was significantly lower among Hispanics followed by non-Hispanic blacks compared with non-Hispanic whites. Race/ethnicity did not impact transplantation outcomes. Efforts to increase the rates of transplantation for eligible patients who have MM, with an emphasis on groups that underuse transplantation, are warranted. Cancer 2017;123:3141-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  13. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation

    OpenAIRE

    Thomson, Angus W.; Zahorchak, Alan F.; Ezzelarab, Mohamed B.; Butterfield, Lisa H.; Lakkis, Fadi G.; Metes, Diana M.

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering...

  14. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Science.gov (United States)

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  15. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: a retrospective, multicenter study of the EBMT

    DEFF Research Database (Denmark)

    Koenecke, C; Hertenstein, B; Schetelig, J

    2010-01-01

    To analyze the outcome of solid organ transplantation (SOT) in patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT), a questionnaire survey was carried out within 107 European Group of Blood and Marrow Transplantation centers. This study covered HSCT between 1984...... for underlying malignant diseases was 4% at 5 years (95% CI, 0% to 12%). In summary, this study shows that selected patients receiving SOT after HSCT have a remarkably good overall and organ survival. These data indicate that SOT should be considered in selected patients with single organ failure after HSCT....

  16. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype.

    Science.gov (United States)

    Hsieh, Matthew M; Fitzhugh, Courtney D; Weitzel, R Patrick; Link, Mary E; Coles, Wynona A; Zhao, Xiongce; Rodgers, Griffin P; Powell, Jonathan D; Tisdale, John F

    2014-07-02

    Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. From July 16, 2004, to October 25, 2013, 30 patients aged 16-65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5-31.7 × 10(6) cells/kg) from human leukocyte antigen-matched siblings. The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell-thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. Twenty-nine patients survived a median 3.4 years (range, 1-8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%-62%); the myeloid chimerism levels, 86% (95% CI, 70%-100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and

  17. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  18. Tolerogenic Dendritic Cells in Solid Organ Transplantation: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Eros Marín

    2018-02-01

    Full Text Available Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs. Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.

  19. Pre- and postmortem imaging of transplanted cells

    Directory of Open Access Journals (Sweden)

    Andrzejewska A

    2015-09-01

    Full Text Available Anna Andrzejewska,1 Adam Nowakowski,1 Miroslaw Janowski,1–4 Jeff WM Bulte,3–7 Assaf A Gilad,3,4 Piotr Walczak,3,4,8 Barbara Lukomska11NeuroRepair Department, 2Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; 3Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, 4Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, 5Department of Biomedical Engineering, 6Department of Chemical & Biomolecular Engineering, 7Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 8Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, PolandAbstract: Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.Keywords: stem cells, transplantation, SPECT, MRI, bioluminescence, cell labeling

  20. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    International Nuclear Information System (INIS)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia; Yu, Xue-Zhong; Xia, Chang-Qing

    2014-01-01

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT

  1. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Yu, Xue-Zhong [Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 (United States); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2014-04-18

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT.

  2. Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells.

    Science.gov (United States)

    Ema, Hideo; Uchinomiya, Kouki; Morita, Yohei; Suda, Toshio; Iwasa, Yoh

    2016-04-07

    The transplantation of blood tissues from bone marrow into a lethally irradiated animal is an experimental procedure that is used to study how the blood system is reconstituted by haematopoietic stem cells (HSC). In a competitive repopulation experiment, a lethally irradiated mouse was transplanted with a single HSC as a test cell together with a number of bone marrow cells as competitor cells, and the fraction of the test cell progeny (percentage of chimerism) was traced over time. In this paper, we studied the stem cell kinetics in this experimental procedure. The balance between symmetric self-renewal and differentiation divisions in HSC determined the number of cells which HSC produce and the length of time for which HSC live after transplantation. The percentage of chimerism depended on the type of test cell (long-, intermediate-, or short-term HSC), as well as the type and number of HSC included in competitor cells. We next examined two alternative HSC differentiation models, one-step and multi-step differentiation models. Although these models differed in blood cell production, the percentage of chimerism appeared very similar. We also estimated the numbers of different types of HSC in competitor cells. Based on these results, we concluded that the experimental results inevitably include stochasticity with regard to the number and the type of HSC in competitor cells, and that, in order to detect different types of HSC, an appropriate number of competitor cells needs to be used in transplantation experiments. Copyright © 2016. Published by Elsevier Ltd.

  3. [Fertility preservation in boys: spermatogonial stem cell transplantation and testicular grafting].

    Science.gov (United States)

    Goossens, E; Tournaye, H

    2013-09-01

    Spermatogonial stem cells (SSC) are the founder cells of spermatogenesis and are responsible for the lifelong production of spermatozoa. The cryopreservation and transplantation of these cells has been proposed as a fertility preservation strategy for young boys at risk for stem cell loss, i.e. patients undergoing chemotherapy for cancer or as a conditioning treatment for bone marrow transplantation. To prevent lifelong sterility in boys, two fertility restoration strategies are being developed: the injection of SSC and the grafting of testicular tissue containing SSC. Depending on the disease of the patient one of these two approaches will be applicable. Grafting has the advantage that SSC can reside within their natural niche, preserving the interactions between germ cells and their supporting cells and may therefore be regarded as the first choice strategy. However, in cases where the risk for malignant contamination of the testicular tissue is real, e.g. leukemia, transplantation of SSC by injection is preferable over grafting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Transplanting Retinal Cells using Bucky Paper for Support

    Science.gov (United States)

    Loftus, David J.; Cinke, Martin; Meyyappan, Meyya; Fishman, Harvey; Leng, Ted; Huie, Philip; Bilbao, Kalayaan

    2004-01-01

    A novel treatment for retinal degenerative disorders involving transplantation of cells into the eye is currently under development at NASA Ames Research Center and Stanford University School of Medicine. The technique uses bucky paper as a support material for retinal pigment epithelial (RPE) cells, iris pigment epithelial (IPE) cells, and/or stem cells. This technology is envisioned as a treatment for age-related macular degeneration, which is the leading cause of blindness in persons over age 65 in Western nations. Additionally, patients with other retinal degenerative disorders, such as retinitis pigmentosa, may be treated by this strategy. Bucky paper is a mesh of carbon nanotubes (CNTs), as shown in Figure 1, that can be made from any of the commercial sources of CNTs. Bucky paper is biocompatible and capable of supporting the growth of biological cells. Because bucky paper is highly porous, nutrients, oxygen, carbon dioxide, and waste can readily diffuse through it. The thickness, density, and porosity of bucky paper can be tailored in manufacturing. For transplantation of cells into the retina, bucky paper serves simultaneously as a substrate for cell growth and as a barrier for new blood vessel formation, which can be a problem in the exudative type of macular degeneration. Bucky paper is easily handled during surgical implantation into the eye. Through appropriate choice of manufacturing processes, bucky paper can be made relatively rigid yet able to conform to the retina when the bucky paper is implanted. Bucky paper offers a distinct advantage over other materials that have been investigated for retinal cell transplantation - lens capsule and Descemet's membrane - which are difficult to handle during surgery because they are flimsy and do not stay flat.

  5. Hematopoietic stem cell transplantation for chronic lymphocytic leukemia.

    Science.gov (United States)

    Gladstone, Douglas E; Fuchs, Ephraim

    2012-03-01

    Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity.

  6. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Science.gov (United States)

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2015-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative regimens of a variety of other hematological and non-hematological malignancies. The addition of newer agents to conditioning like bortezomib or lenalidomide for myeloma, or clofarabine for myeloid malignancies, may improve antitumor effects for transplantation, while in combination with alemtuzumab may represent a backbone for future cellular therapy due to reliable engraftment and low toxicity profile. This review summarizes the development and the current use of this remarkable drug in hematopoietic stem-cell transplantation. PMID:22922522

  7. Prospective clinical testing of regulatory dendritic cells (DCreg in organ transplantation

    Directory of Open Access Journals (Sweden)

    ANGUS W THOMSON

    2016-01-01

    Full Text Available Dendritic cells (DC are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients’ dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.

  8. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  9. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  10. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    International Nuclear Information System (INIS)

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-01-01

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period

  11. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  12. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  13. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  14. Acquisition and Cure of Autoimmune Disease Following Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Hsin-An Hou

    2007-09-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT can either cause or eliminate autoimmune disease. Here, we report two cases. One was a 33-year-old woman with myelodysplastic syndrome (refractory anemia who received bone marrow transplantation from her human leukocyte antigen (HLA-identical sister who had a history of Graves' disease. Antithyroid antibodies, including antimicrosomal antibody and antithy-roglobulin antibody, appeared 4 months after transplantation. Clinical hyperthyroidism appeared 7 months after transplantation, and a hypothyroid state was noted 2 months later. The other case was a 50-year-old woman with Sjögren's syndrome and hypothyroidism who was diagnosed with peripheral T cell non-Hodgkin's lymphoma. She received allogeneic peripheral blood stem cell transplantation (PBSCT from her histocompatible sister owing to only partial response to traditional chemotherapy. Cure of lymphoma and remission of Sjögren's syndrome was noted 4 years after PBSCT. These two illustrative cases, one of acquisition of hyperthyroidism and the other of remission of Sjögren's syndrome after transplantation, highlights that HSCT can induce adoptive autoimmune disease or cure coincidental autoimmune disease. Donor selection and attentive monitoring is required in such circumstances.

  15. The role of interventional radiology and imaging in pancreatic islet cell transplantation

    International Nuclear Information System (INIS)

    Dixon, S.; Tapping, C.R.; Walker, J.N.; Bratby, M.; Anthony, S.; Boardman, P.; Phillips-Hughes, J.; Uberoi, R.

    2012-01-01

    Pancreatic islet cell transplantation (PICT) is a novel treatment for patients with insulin-dependent diabetes who have inadequate glycaemic control or hypoglycaemic unawareness, and who suffer from the microvascular/macrovascular complications of diabetes despite aggressive medical management. Islet transplantation primarily aims to improve the quality of life for type 1 diabetic patients by achieving insulin independence, preventing hypoglycaemic episodes, and reversing hypoglycaemic unawareness. The islet cells for transplantation are extracted and purified from the pancreas of brain-stem dead, heart-beating donors. They are infused into the recipient's portal vein, where they engraft into the liver to release insulin in order to restore euglycaemia. Initial strategies using surgical access to the portal vein have been superseded by percutaneous access using interventional radiology techniques, which are relatively straightforward to perform. It is important to be vigilant during the procedure in order to prevent major complications, such as haemorrhage, which can be potentially life-threatening. In this article we review the history of islet cell transplantation, present an illustrated review of our experience with islet cell transplantation by describing the role of imaging and interventional radiology, and discuss current research into imaging techniques for monitoring graft function.

  16. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    2008-06-01

    Full Text Available Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular

  17. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation

    Science.gov (United States)

    Jahansouz, Cyrus; Jahansouz, Cameron; Kumer, Sean C.; Brayman, Kenneth L.

    2011-01-01

    Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored. PMID:22013505

  18. Unrelated allogeneic stem-cell transplantation in adult patients – 10-year experience

    Directory of Open Access Journals (Sweden)

    Jožef Pretnar

    2012-12-01

    Conclusion: Unrelated allogeneic stem-cell transplantation is suitable for acute myeloblastic leukemias with unfavorable risk factors. However, results in acute lymphoblastic leukemia are worse. Unrelated transplantation is not efficient as salvage treatment for patients with recurrent disease after autologous transplantation or chemotherapy- resistant relapse.

  19. ALLOGENEIC STEM CELL TRANSPLANTATION FOR ADULT PATIENTS WITH ACUTE LEUKEMIA – 14 YEARS EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Jože Pretnar

    2004-12-01

    Full Text Available Background. This study was designed to evaluate the impact of various prognostic factors on long-term survival and event free survival after allogeneic hematopoietic stem cell transplantation for patients with acute leukemia.Methods and patients. Between years 1989 and 2002 44 patients with acute leukemia (30 with AML and 14 with ALL were transplanted. Survival curves using the Kaplan-Meier method were calculated for patients transplanted with two different sources of stem cells – bone marrow and peripheral blood and separately for patients with female donor.Results. Estimated 10 years survival for AML is 43% and 64% for ALL patients which is not statistically different. There are no significant differences in outcome regarding source of stem cells and in donors’ gender.Conclusions. To conclude, our results show that neither source of stem cells nor donor’s gender has impact on the long-term survival after hematopoietic stem cell transplantation. As published previously patients transplanted beyond the first remission have significantly worse outcome.

  20. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    International Nuclear Information System (INIS)

    Bhagavati, Satyakam; Xu Weimin

    2005-01-01

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells

  1. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  2. B cell repertoires in HLA-sensitized kidney transplant candidates undergoing desensitization therapy.

    Science.gov (United States)

    Beausang, John F; Fan, H Christina; Sit, Rene; Hutchins, Maria U; Jirage, Kshama; Curtis, Rachael; Hutchins, Edward; Quake, Stephen R; Yabu, Julie M

    2017-01-13

    Kidney transplantation is the most effective treatment for end-stage renal disease. Sensitization refers to pre-existing antibodies against human leukocyte antigen (HLA) protein and remains a major barrier to successful transplantation. Despite implementation of desensitization strategies, many candidates fail to respond. Our objective was to determine whether measuring B cell repertoires could differentiate candidates that respond to desensitization therapy. We developed an assay based on high-throughput DNA sequencing of the variable domain of the heavy chain of immunoglobulin genes to measure changes in B cell repertoires in 19 highly HLA-sensitized kidney transplant candidates undergoing desensitization and 7 controls with low to moderate HLA sensitization levels. Responders to desensitization had a decrease of 5% points or greater in cumulated calculated panel reactive antibody (cPRA) levels, and non-responders had no decrease in cPRA. Dominant B cell clones were not observed in highly sensitized candidates, suggesting that the B cells responsible for sensitization are either not present in peripheral blood or present at comparable levels to other circulating B cells. Candidates that responded to desensitization therapy had pre-treatment repertoires composed of a larger fraction of class-switched (IgG and IgA) isotypes compared to non-responding candidates. After B cell depleting therapy, the proportion of switched isotypes increased and the mutation frequencies of the remaining non-switched isotypes (IgM and IgD) increased in both responders and non-responders, perhaps representing a shift in the repertoire towards memory B cells or plasmablasts. Conversely, after transplantation, non-switched isotypes with fewer mutations increased, suggesting a shift in the repertoire towards naïve B cells. Relative abundance of different B cell isotypes is strongly perturbed by desensitization therapy and transplantation, potentially reflecting changes in the relative

  3. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    Science.gov (United States)

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland

    International Nuclear Information System (INIS)

    Nanduri, Lalitha S.Y.; Lombaert, Isabelle M.A.; Zwaag, Marianne van der; Faber, Hette; Brunsting, Jeanette F.; Os, Ronald P. van; Coppes, Robert P.

    2013-01-01

    Introduction: During radiotherapy salivary glands of head and neck cancer patients are unavoidably co-irradiated, potentially resulting in life-long impairment. Recently we showed that transplantation of salisphere-derived c-Kit expressing cells can functionally regenerate irradiated salivary glands. This study aims to select a more potent subpopulation of c-Kit + cells, co-expressing stem cell markers and to investigate whether long-term tissue homeostasis is restored after stem cell transplantation. Methods and results: Salisphere derived c-Kit + cells that co-expressed CD24 and/or CD49f markers, were intra-glandularly injected into 15 Gy irradiated submandibular glands of mice. Particularly, c-Kit + /CD24 + /CD49f + cell transplanted mice improved saliva production (54.59 ± 11.1%) versus the irradiated control group (21.5 ± 8.7%). Increase in expression of cells with differentiated duct cell markers like, cytokeratins (CK8, 18, 7 and 14) indicated functional recovery of this compartment. Moreover, ductal stem cell marker expression like c-Kit, CD133, CD24 and CD49f reappeared after transplantation indicating long-term functional maintenance potential of the gland. Furthermore, a normalization of vascularization as indicated by CD31 expression and reduction of fibrosis was observed, indicative of normalization of the microenvironment. Conclusions: Our results show that stem cell transplantation not only rescues hypo-salivation, but also restores tissue homeostasis of the irradiated gland, necessary for long-term maintenance of adult tissue

  5. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice

    International Nuclear Information System (INIS)

    Watanabe, S.; Shimosato, Y.; Kuroki, M.; Sato, Y.; Nakajima, T.

    1980-01-01

    The effects of splenectomy and/or whole-body irradiation of nude mice before xenotransplantation of lymphoid cell lines, lymphoma, and leukemia were studied. Transplantation after whole-body irradiation resulted in the increased ''take'' rate of three cultured cell lines (two of T-cell-derived acute lymphocytic leukemia and one of B-cell derived acute lymphocytic leukemia) and in the tumorous growth of Burkitt-derived Raji and spontaneously transformed lymphoblastoid cell lines. With splenectomy plus irradiation as a pretreatment, tumorous growth occurred in four other cell lines which were not transplantable after irradiation only (two cell lines of Epstein-Barr virus-transformed cord blood cells and one each of null acute lymphocytic leukemia and nodular lymphoma-derived cell lines). Direct transplantation of leukemia and lymphoma cells into the pretreated mice was successful in 7 of 24 cases (29%). B-cell-derived diffuse large lymphoid lymphoma was transplantable in three of seven cases (43%). However, lymphoma and leukemia of peripheral T-cell origin was difficult to transplant even with pretreatment, and only one pleomorphic T-cell lymphoma grew to a significant size (2 cm). One tumor each of B-cell-derived diffuse large lymphoid and T-cell diffuse lymphoblastic lymphoma became transplantable

  6. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience.

    Science.gov (United States)

    Fernandes, Juliana Folloni; Kerbauy, Fabio Rodrigues; Ribeiro, Andreza Alice Feitosa; Kutner, Jose Mauro; Camargo, Luis Fernando Aranha; Stape, Adalberto; Troster, Eduardo Juan; Zamperlini-Netto, Gabriele; Azambuja, Alessandra Milani Prandini de; Carvalho, Bruna; Dorna, Mayra de Barros; Vilela, Marluce Dos Santos; Jacob, Cristina Miuki Abe; Costa-Carvalho, Beatriz Tavares; Cunha, Jose Marcos; Carneiro-Sampaio, Magda Maria; Hamerschlak, Nelson

    2011-06-01

    To report the experience of a tertiary care hospital with allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies. Seven pediatric patients with primary immunodeficiencies (severe combined immunodeficiency: n = 2; combined immunodeficiency: n = 1; chronic granulomatous disease: n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1) who underwent eight hematopoietic stem cell transplants in a single center, from 2007 to 2010, were studied. Two patients received transplants from HLA-identical siblings; the other six transplants were done with unrelated donors (bone marrow: n = 1; cord blood: n = 5). All patients had pre-existing infections before hematopoietic stem cell transplants. One patient received only anti-thymocyte globulin prior to transplant, three transplants were done with reduced intensity conditioning regimens and four transplants were done after myeloablative therapy. Two patients were not evaluated for engraftment due to early death. Three patients engrafted, two had primary graft failure and one received a second transplant with posterior engraftment. Two patients died of regimen related toxicity (hepatic sinusoidal obstruction syndrome); one patient died of progressive respiratory failure due to Parainfluenza infection present prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Patients' status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  7. Evaluation of Performance Status and Hematopoietic Cell Transplantation Specific Comorbidity Index on Unplanned Admission Rates in Patients with Multiple Myeloma Undergoing Outpatient Autologous Stem Cell Transplantation.

    Science.gov (United States)

    Obiozor, Cynthia; Subramaniam, Dipti P; Divine, Clint; Shune, Leyla; Singh, Anurag K; Lin, Tara L; Abhyankar, Sunil; Chen, G John; McGuirk, Joseph; Ganguly, Siddhartha

    2017-10-01

    Although outpatient autologous stem cell transplantation (ASCT) is safe and feasible in most instances, some patients undergoing planned outpatient transplantation for multiple myeloma (MM) will need inpatient admission for transplantation-related complications. We aim to evaluate the difference, if any, between outpatient and inpatient ASCT cohorts of MM patients in terms of admission rate, transplantation outcome, and overall survival. We also plan to assess whether the Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) and Karnofsky Performance Status (KPS) can predict unplanned admissions after adjusting for confounding factors. Patients with MM (n = 448) who underwent transplantation at our institution between 2009 and 2014 were included in this retrospective analysis. Patients were grouped into 3 cohorts: cohort A, planned inpatient ASCT (n = 216); cohort B, unplanned inpatient admissions (n = 57); and cohort C, planned outpatient SCT (n = 175). The statistical approach included descriptive, bivariate, and survival analyses. There were no differences among the 3 cohorts in terms of type of myeloma, stage at diagnosis, time from diagnosis to transplantation, CD34 cell dose, engraftment kinetics, and 100-day response rates. Serum creatinine was higher and patients were relatively older in both the planned inpatient (median age, 62 years; range, 33 to 80 years) and unplanned (median age, 59 years; range, 44 to 69 years) admission cohorts compared with the outpatient-only cohort (median age, 57 years; range, 40 to 70 years) (P Performance status (cohort A: median, 90%; range, 60% to 100%; cohort B: 80%, 50% to 100%; cohort C: 80%, 60% to 100%) was lower (P performance status (KPS 2 also appeared to be associated with worse outcomes compared with HCT-CI 0 to 1, the the difference did not reach statistical significance (hazard ratio, 1.41l 95% confidence interval, 0.72 to 2.76). Only 1 patient out of 448 died from a transplantation

  8. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Aurélie Tormo

    2017-06-01

    Full Text Available Abstract Background Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM transplantation (BMT due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. Methods To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. Results Using a major histocompatibility complex (MHC-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin−Sca1+c-kit+ (LSK subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes and non-hematopoietic (stromal cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10 observed in the IL-21, but not PBS, recipient mice. We also tested the

  9. Germ cell transplantation in an azoospermic Klinefelter bull.

    Science.gov (United States)

    Joerg, Hannes; Janett, Fredi; Schlatt, Stefan; Mueller, Simone; Graphodatskaya, Daria; Suwattana, Duangsmorn; Asai, Mika; Stranzinger, Gerald

    2003-12-01

    Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.

  10. Quantum dot labeling and tracking of cultured limbal epithelial cell transplants in-vitro

    Science.gov (United States)

    Genicio, Nuria; Paramo, Juan Gallo; Shortt, Alex J.

    2015-01-01

    PURPOSE Cultured human limbal epithelial cells (HLEC) have shown promise in the treatment of limbal stem cell deficiency but little is known about their survival, behaviour and long-term fate post transplantation. The aim of this research was to evaluate, in-vitro, quantum dot (QDot) technology as a tool for tracking transplanted HLEC. METHODS In-vitro cultured HLEC were labeled with Qdot nanocrystals. Toxicity was assessed using live-dead assays. The effect on HLEC function was assessed using colony forming efficiency assays and expression of CK3, P63alpha and ABCG2. Sheets of cultured HLEC labeled with Qdot nanocrystals were transplanted onto decellularised human corneo-scleral rims in an organ culture model and observed to investigate the behaviour of transplanted cells. RESULTS Qdot labeling had no detrimental effect on HLEC viability or function in-vitro. Proliferation resulted in a gradual reduction in Qdot signal but sufficient signal was present to allow tracking of cells through multiple generations. Cells labeled with Qdots could be reliably detected and observed using confocal microscopy for at least 2 weeks post transplantation in our organ culture model. In addition it was possible to label and observe epithelial cells in intact human corneas using the Rostock corneal module adapted for use with the Heidelberg HRA. CONCLUSIONS This work demonstrates that Qdots combined with existing clinical equipment could be used to track HLEC for up to 2 weeks post transplantation, however, our model does not permit the assessment of cell labeling beyond 2 weeks. Further characterisation in in-vivo models are required. PMID:26024089

  11. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Niloufar Safinia

    2018-02-01

    Full Text Available Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5. As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8. However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9. As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.

  12. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  14. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent.

    Science.gov (United States)

    Papeta, Natalia; Chen, Tao; Vianello, Fabrizio; Gererty, Lyle; Malik, Ashish; Mok, Ying-Ting; Tharp, William G; Bagley, Jessamyn; Zhao, Guiling; Stevceva, Liljana; Yoon, Victor; Sykes, Megan; Sachs, David; Iacomini, John; Poznansky, Mark C

    2007-01-27

    Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.

  15. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Xu Ke; Zhang Xitong; Han Jinling; Ding Guomin; Gao Jue

    2008-01-01

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl 4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  16. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    Science.gov (United States)

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  17. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  18. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  19. EBV-associated post-transplantation B-cell lymphoproliferative disorder following allogenic stem cell transplantation for acute lymphoblastic leukaemia: tumor regression after reduction of immunosuppression - a case report

    Directory of Open Access Journals (Sweden)

    Niedobitek Gerald

    2010-03-01

    Full Text Available Abstract Epstein-Barr virus (EBV-associated B-cell post-transplantation lymphoproliferative disorder (PTLD is a severe complication following stem cell transplantation. This is believed to occur as a result of iatrogenic immunosuppression leading to a relaxation of T-cell control of EBV infection and thus allowing viral reactivation and proliferation of EBV-infected B-lymphocytes. In support of this notion, reduction of immunosuppressive therapy may lead to regression of PTLD. We present a case of an 18-year-old male developing a monomorphic B-cell PTLD 2 months after receiving an allogenic stem cell transplant for acute lymphoblastic leukemia. Reduction of immunosuppressive therapy led to regression of lymphadenopathy. Nevertheless, the patient died 3 months afterwards due to extensive graft-vs.-host-disease and sepsis. As a diagnostic lymph node biopsy was performed only after reduction of immunosuppressive therapy, we are able to study the histopathological changes characterizing PTLD regression. We observed extensive apoptosis of blast cells, accompanied by an abundant infiltrate comprising predominantly CD8-positive, Granzyme B-positive T-cells. This observation supports the idea that regression of PTLD is mediated by cytotoxic T-cells and is in keeping with the observation that T-cell depletion, represents a major risk factor for the development of PTLD.

  20. Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Stella M. Matthes

    2013-01-01

    Full Text Available Peripheral nerve injury is a common and devastating complication after trauma and can cause irreversible impairment or even complete functional loss of the affected limb. While peripheral nerve repair results in some axonal regeneration and functional recovery, the clinical outcome is not optimal and research continues to optimize functional recovery after nerve repair. Cell transplantation approaches are being used experimentally to enhance regeneration. Intravenous infusion of mesenchymal stromal cells (MSCs into spinal cord injury and stroke was shown to improve functional outcome. However, the repair potential of intravenously transplanted MSCs in peripheral nerve injury has not been addressed yet. Here we describe the impact of intravenously infused MSCs on functional outcome in a peripheral nerve injury model. Rat sciatic nerves were transected followed, by intravenous MSCs transplantation. Footprint analysis was carried out and 21 days after transplantation, the nerves were removed for histology. Labelled MSCs were found in the sciatic nerve lesion site after intravenous injection and regeneration was improved. Intravenously infused MSCs after acute peripheral nerve target the lesion site and survive within the nerve and the MSC treated group showed greater functional improvement. The results of study suggest that nerve repair with cell transplantation could lead to greater functional outcome.

  1. Prognostic impact of pre-transplantation computed tomography and 67gallium scanning in chemosensitive diffuse large B cell lymphoma patients undergoing hematopoietic stem-cell transplantation

    International Nuclear Information System (INIS)

    Escobar, Ignacio G.; Alonso, Pilar T.; Barrigon, Dolores C.; Perez-Simon, Jose A.; Mateos Manteca, Maria V.; San Miguel Izquierdo, Jesus F.

    2008-01-01

    In the present study, we evaluated computed tomography (CT) and 67 gallium scanning ( 67 Ga scan) pre-transplant as prognostic factors for overall survival (OS) and event-free survival (EFS) in patients with diffuse large B cell lymphoma, undergoing high-dose chemotherapy and stem-cell transplantation. Forty-two patients were included. Of these, 9 (21%) had both positive CT and 67 Ga scans, 17 (41%) negative results with both techniques, and 16 (38%) positive CT/negative 67 Ga scan. Whole-body planar imaging and single-photon emission computed tomography (SPECT) were performed 72 h after an intravenous administration of 67 Ga citrate measuring between 7 mCi and 10 mCi (259-370 MBq). Patients with positive CT/positive 67 Ga scan had a significantly worse EFS and OS at 5 years than those with negative 67 Ga scan regardless of whether it was associated with a positive or a negative CT scan (29% and 16% vs. 81% and 93% vs. 88% and 100%, respectively, P 67 Ga scan and those with positive CT/negative 67 Ga scan, with an EFS and OS at 5 years of 88% versus 81% and 100% versus 93%, respectively. In multivariate analysis, the presence of a pre-transplant positive CT/ 67 Ga scans adversely influenced both EFS and OS [HR 8, 95% confidence interval (CI) (1.4-38), P=0.03 and HR 2; 95% CI (1.3-8), P=0.02, respectively]. 67 Ga scan helps to identify, in the pre-transplant evaluation, two groups with a different outcome: one group of patients with positive CT and negative 67 Ga scans pre-transplant, who showed a favorable outcome with a low rate of relapse, and the other group of patients with both positive CT and 67 Ga scans pre-transplant, who showed a poor prognosis and did not benefit from autologous stem-cell transplantation. They should have been offered other therapeutic strategies. (author)

  2. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    Science.gov (United States)

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  3. In vivo transformation of neural stem cells following transplantation in the injured nervous system.

    Science.gov (United States)

    Radtke, Christine; Redeker, Joern; Jokuszies, Andreas; Vogt, Peter M

    2010-04-01

    Johnson et al report tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model, emphasizing the importance of full in vitro characterization of cells prior to transplantation. Cell lines can change during expansion and subclones which may become tumerogenic may be selected in the process of expansion. Cell transplantation studies with committed cells that have been minimally manipulated and expanded in culture such as olfactory ensheathing cells and Schwann cells may pose less risk of tumerogenicity, but have the disadvantage of limited cell harvest yields. The balance between in vitro transformation of expanded cell lines and the limitation of cell harvest yields from preparation of more stable committed cells must be considered in selection of cells for therapeutic intervention for nerve repair. Copyright Thieme Medical Publishers.

  4. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy

    Science.gov (United States)

    Dong, Huajiang; Li, Gang; Shang, Chongzhi; Yin, Huijuan; Luo, Yuechen; Meng, Huipeng; Li, Xiaohong; Wang, Yali; Lin, Ling; Zhao, Mingliang

    2018-01-01

    This study reports a case of a 4-year-old boy patient with abnormalities of muscle tone, movement and motor skills, as well as unstable gait leading to frequent falls. The results of the electroencephalogram (EEG) indicate moderately abnormal EEG, accompanied by irregular seizures. Based on these clinical characteristics, the patient was diagnosed with cerebral palsy (CP) in our hospital. In this study, the patient was treated with umbilical cord mesenchymal stem cell (UC-MSC) transplantation therapy. This patient received UC-MSC transplantation 3 times (5.3*107) in total. After three successive cell transplantations, the patient recovered well and showed obvious improvements in EEG and limb strength, motor function, and language expression. However, the improvement in intelligence quotient (IQ) was less obvious. These results indicate that UC-MSC transplantation is a promising treatment for cerebral palsy. PMID:29636880

  5. Hickman catheter embolism in a child during stem cell transplantation

    International Nuclear Information System (INIS)

    Ahmed, P.; Khan, B.; Ullah, K.; Ahmed, W.; Hussain, I.; Khan, A.A.; Anwar, M.

    2003-01-01

    The majority of stem cell recipients rely on indwelling central venous catheters situated in superior vena cava or right atrium. Semi-permanent tunneled silicone rubber Hickman catheters are widely used to provide durable central venous access for patients undergoing stem cell transplantation. A case of 5 years old child with diagnosis of severe aplastic anemia is reported. The patient received peripheral blood stem cells (PBSC) and had successful engraftment with complete hematological recovery. He had Hickman catheter embolism in the pulmonary circulation following unsuccessful attempt to remove the line. The catherter was successfully removed by midsternostomy operation. The child is normal with sustained remission on day +218 post stem cell transplant. (author)

  6. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  7. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  8. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    Science.gov (United States)

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  9. Kidney dysfunction after allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  10. Cure of murine thalassemia by bone marrow transplantation without eradication of endogenous stem cells

    International Nuclear Information System (INIS)

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    1986-01-01

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gy followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered

  11. Reconstitution of Th17, Tc17 and Treg cells after paediatric haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Ryder, Lars P; Lennox-Hvenekilde, David

    2018-01-01

    behind these associations have not been investigated previously. We hypothesized that increased levels of IL-7 post-transplant alters the balance between immune-regulatory T cell subsets during the post-transplant lymphocyte recovery towards a more pro-inflammatory profile. We quantified Th17 cells, Tc17.......025). The plasma level of IL-7 at day +90 correlated inversely with Th17 cell counts (rs=-0.65, P=0.0002) and the proportion of Tc17 cells (rs=0.64, P=0.0005) at day +90, but not with Tregs. Furthermore, high IL-7 levels at day +7 were predictive of a less naïve T-cell phenotype at day +90. These findings add...

  12. Prospective clinical testing of regulatory dendritic cells (DCreg) in organ transplantation

    OpenAIRE

    ANGUS W THOMSON; ALAN F ZAHORCHAK; Mohamed B. Ezzelarab; Lisa H. Butterfield; Fadi G. Lakkis; Diana M Metes

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering...

  13. Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell-Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide.

    Science.gov (United States)

    Bashey, Asad; Zhang, Mei-Jie; McCurdy, Shannon R; St Martin, Andrew; Argall, Trevor; Anasetti, Claudio; Ciurea, Stefan O; Fasan, Omotayo; Gaballa, Sameh; Hamadani, Mehdi; Munshi, Pashna; Al Malki, Monzr M; Nakamura, Ryotaro; O'Donnell, Paul V; Perales, Miguel-Angel; Raj, Kavita; Romee, Rizwan; Rowley, Scott; Rocha, Vanderson; Salit, Rachel B; Solh, Melhem; Soiffer, Robert J; Fuchs, Ephraim Joseph; Eapen, Mary

    2017-09-10

    Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up.

  14. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    Science.gov (United States)

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  15. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  16. Evidence of homing of each fraction of bone marrow cells after scheduled transplantation in mice

    International Nuclear Information System (INIS)

    Sun Suping; Cai Jianming; Xiang Yingsong; Huang Dingde; Zhao Fang; Gao Jianguo; Yang Rujun

    2003-01-01

    Objective: To identify homing of bone marrow cells after every fractionation during scheduled transplantation. Methods: The recipient mice were transplanted with homologous (H-2K d ) and allogeneic (H-2K b ) mouse bone marrow cells after lethal irradiation, and the homing status of allogeneic bone marrow cells in host bone marrow and spleen was observed. Results: A quantity of allogeneic homed cells were observed in host bone marrow, and the percentage of homing cells in second fraction was the highest in all groups (P<0.01). The allogeneic homed cells in spleen declined along with increase of the number of fraction, suggesting that regulation of homing to spleen was different from that to bone marrow. Conclusion: In scheduled bone marrow transplantation niche may be more effectively utilized and thus transplantation efficiency be enhanced

  17. Method of cell transplantation promoting the organization of intraarterial thrombus.

    Science.gov (United States)

    Hirano, Koji; Shimono, Takatsugu; Imanaka-Yoshida, Kyoko; Miyamoto, Keiichi; Fujinaga, Kazuya; Kajimoto, Masaki; Miyake, Yoichiro; Nishikawa, Masakatsu; Yoshida, Toshimichi; Uchida, Atsumasa; Shimpo, Hideto; Yada, Isao; Hirata, Hitoshi

    2005-08-30

    Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms. Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that alpha-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of alpha-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo. Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.

  18. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience

    Directory of Open Access Journals (Sweden)

    Juliana Folloni Fernandes

    2011-06-01

    Full Text Available Objective: To report the experience of a tertiary care hospital withallogeneic hematopoietic stem cell transplantation in children withprimary immunodeficiencies. Methods: Seven patients with primaryimmunodeficiencies (severe combined immunodeficiency: n = 2;combined immunodeficiency: n = 1; chronic granulomatous disease:n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1who underwent eight hematopoietic stem cell transplants (HSCTin a single center, from 2007 to 2010, were studied. Results: Twopatients received transplants from HLA-identical siblings; the othersix transplants were done with unrelated donors (bone marrow: n= 1; cord blood: n = 5. All patients had pre-existing infectionsbefore hematopoietic stem cell transplants. One patient receivedonly anti-thymocyte globulin prior to transplant, three transplantswere done with reduced intensity conditioning regimens and fourtransplants were done after myeloablative therapy. Two patientswere not evaluable for engraftment due to early death. Three patientsengrafted, two had primary graft failure and one received a secondtransplant with posterior engraftment. Two patients died of regimenrelated toxicity (hepatic sinusoidal obstruction syndrome; one patient died of progressive respiratory failure due to Parainfluenza infection diagnosed prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Conclusion: Patients’ status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  19. Role of HLA in Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Meerim Park

    2012-01-01

    Full Text Available The selection of hematopoietic stem cell transplantation (HSCT donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.

  20. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis

    International Nuclear Information System (INIS)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-01-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log 10 PD 50 values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain

  1. Establishing an autologous versus allogeneic hematopoietic cell transplant program in nations with emerging economies.

    Science.gov (United States)

    Chaudhri, Naeem A; Aljurf, Mahmoud; Almohareb, Fahad I; Alzahrani, Hazzaa A; Bashir, Qaiser; Savani, Bipin; Gupta, Vikas; Hashmi, Shahrukh K

    2017-12-01

    More than 70,000 hematopoietic cell transplants are currently performed each year, and these continue to increase every year. However, there is a significant variation in the number of absolute transplants and transplant rates between centers, countries, and global regions. The prospect for emerging countries to develop a hematopoietic cell transplantation (HCT) program, as well as to decide on whether autologous HCT (auto-HCT) or allogeneic HCT (allo-HCT) should be established to start with, relies heavily on factors that can explain differences between these two procedures. Major factors that will influence a decision about establishing the type of HCT program are macroeconomic factors such as organization of the healthcare network, available resources and infrastructure. Prevalence of specific diseases in the region as well genetic background of donors and recipients will also influence the mandate or priority of the HCT in the national healthcare plan to explain some of the country-specific differences. Furthermore, microeconomic factors play a role, such as center-specific experience in treating various disorders requiring hematopoietic stem cell transplantation, along with accreditation status and patient volume. The objective of the transplant procedure was to improve the survival and quality of life of patients. The regional difference that one notices in emerging countries about the higher number of allo-HCT compared with auto-HCT procedures performed is primarily based on suboptimal healthcare network in treating various malignant disorders that are the primary indication for auto-stem cell transplantation. In this context, nonmalignant disorders such as bone marrow failure syndromes, inherited genetic disorders and hemoglobinopathies have become the major indication for stem cell transplantation. Better understanding of these factors will assist in establishing new transplant centers in the emerging countries to achieve their specific objectives and

  2. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  3. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  4. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2006-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  5. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2007-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  6. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Abbuehl, Jean-Paul; Tatarova, Zuzana; Held, Werner; Huelsken, Joerg

    2017-08-03

    Hematopoietic stem cell (HSC) transplantation represents a curative treatment for various hematological disorders. However, delayed reconstitution of innate and adaptive immunity often causes fatal complications. HSC maintenance and lineage differentiation are supported by stromal niches, and we now find that bone marrow stroma cells (BMSCs) are severely and permanently damaged by the pre-conditioning irradiation required for efficient HSC transplantation. Using mouse models, we show that stromal insufficiency limits the number of donor-derived HSCs and B lymphopoiesis. Intra-bone transplantation of primary, but not cultured, BMSCs quantitatively reconstitutes stroma function in vivo, which is mediated by a multipotent NT5E + (CD73) + ENG - (CD105) - LY6A + (SCA1) + BMSC subpopulation. BMSC co-transplantation doubles the number of functional, donor-derived HSCs and significantly reduces clinically relevant side effects associated with HSC transplantation including neutropenia and humoral immunodeficiency. These data demonstrate the potential of stroma recovery to improve HSC transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    Science.gov (United States)

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord.

    Science.gov (United States)

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo Fi; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-12-14

    Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. In this study, we demonstrate that genetically modified hMSC lines can survive

  9. Imaging and 1-day kinetics of intracoronary stem cell transplantation in patients with idiopathic dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Lezaic, Luka; Socan, Aljaz; Peitl, Petra Kolenc; Poglajen, Gregor; Sever, Matjaz; Cukjati, Marko; Cernelc, Peter; Vrtovec, Bojan

    2016-01-01

    Background: Stem cell transplantation is an emerging method of treatment for patients with cardiovascular disease. There are few studies completed or ongoing on stem cell therapy in patients with idiopathic dilated cardiomyopathy (IDCM). Information on stem cell homing and distribution in the myocardium after transplantation might provide important insight into effectiveness of transplantation procedure. Aim: To assess early engraftment, retention and migration of intracoronarily transplanted stem cells in the myocardium of patients with advanced dilated cardiomyopathy of non-ischaemic origin using stem cell labeling with 99m Tc-exametazime (HMPAO). Materials, methods: Thirty-five patients with IDCM and advanced heart failure were included in the study. Autologous hematopoietic (CD34 +) stem cells were harvested by peripheral blood apheresis after bone marrow stimulation, labeled with 99m Tc-HMPAO, tested for viability and injected into coronary vessel supplying areas of myocardium selected by myocardial perfusion scintigraphy as dysfunctional yet viable. Imaging was performed 1 h and 18 h after transplantation. Results: Myocardial stem cell retention ranged from 0 to 1.44% on early and 0–0.97% on delayed imaging. Significant efflux of stem cells occurred from site of delivery in this time period (p < 0.001). Stem cell viability was not affected by labeling. Conclusion: Stem cell labeling with 99m Tc-HMPAO is a feasible method for stem cell tracking after transplantation in patients with IDCM.

  10. Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Rocca, Celine J; Kreymerman, Alexander; Ur, Sarah N; Frizzi, Katie E; Naphade, Swati; Lau, Athena; Tran, Tammy; Calcutt, Nigel A; Goldberg, Jeffrey L; Cherqui, Stephanie

    2015-11-01

    Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.

  11. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review.

    Science.gov (United States)

    Chang, Ying-Jun; Huang, Xiao-Jun

    2011-01-01

    In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.

  12. The use of CRISPR/Cas associated technologies for cell transplant applications.

    Science.gov (United States)

    Cowan, Peter J

    2016-10-01

    In this review, I will summarize recent developments in the use of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) genome editing system for cell transplant applications, ranging from transplantation of corrected autologous patient stem cells to treat inherited diseases, to the tailoring of donor pigs for cell xenotransplantation. Rational engineering of the Cas9 nuclease to improve its specificity will also be discussed. Over the past year, CRISPR/Cas9 has been used in preclinical studies to correct mutations in a rapidly increasing spectrum of diseases including hematological, neuromuscular, and respiratory disorders. The growing popularity of CRISPR/Cas9 over earlier genome editing platforms is partly due to its ease of use and flexibility, which is evident from the success of complex manipulations such as specific deletion of up to 725 kb in patient-derived stem cells, and simultaneous disruption of up to 62 endogenous retrovirus loci in pig cells. In addition, high-fidelity variants of Cas9 with greatly increased specificity are now available. CRISPR/Cas9 is a fast-evolving technology that is likely to have a significant impact on autologous, allogeneic, and xenogeneic cell transplantation.

  13. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation.

    Science.gov (United States)

    Hisatomi, Toshio; Sonoda, Koh-hei; Ishikawa, Fumihiko; Qiao, Hong; Nakazawa, Takahiro; Fukata, Mitsuhiro; Nakamura, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi-Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-04-01

    To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild-type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU.

  14. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    Science.gov (United States)

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  15. Isolated rat dental pulp cell culture and transplantation with an alginate scaffold.

    Science.gov (United States)

    Fujiwara, Shiro; Kumabe, Shunji; Iwai, Yasutomo

    2006-05-01

    Many studies have been conducted on tissue stem cells in the field of regenerative medicine, and cultured dental pulp mesenchymal cells have been reported to secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured rat dental-pulp-derived cells subcutaneously into the back of nude mice. We found that when beta-glycerophosphate was added to the culture medium, the mRNA of the dentin sialophosphoprotein (DSPP) gene coding dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) was expressed, and an increase in alkaline phosphatase, an early marker of odontoblast differentiation, was also demonstrated. Six weeks after implantation, subcutaneous formation of radiopaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants, and isolated odontoblast-like cells began to form dentin-like hard tissue formation. Scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured rat dental-pulp-derived cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  16. Preimplantation HLA typing for stem cell transplantation treatment of hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Anver Kuliev

    2014-09-01

    Full Text Available Preimplantation genetic diagnosis (PGD for HLA typing is steadily becoming an option for at risk couples with thalassemic children, requiring HLA matched bone marrow transplantation treatment. The paper presents the world’s largest PGD experience of 475 cases for over 2 dozens thalassemia mutations, resulting in birth of 132 unaffected children. A total of 146 cases were performed together with preimplantation HLA typing, resulting in detection and transfer of HLA matched unaffected embryos in 83 of them, yielding the birth of 16 HLA matched children, potential donors for their affected siblings. The presented experience of HLA matched stem cell transplantation for thalassemia, following PGD demonstrated a successful hematopoietic reconstitution both for younger and older patients. The data show that PGD is an efficient approach for HLA matched stem cell transplantation treatment for thalassemia.

  17. Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2013-10-01

    Full Text Available AIM: To observe the clinical effectiveness and practicality the autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium.METHODS: Of the 53 recurrent pterygium patients(57 eyes, after all pathological tissues were removed, underwent the autologous conjunctiva transplantation with stem cells on edge of cornea which were locked above conjunctival transplantation of the operated eye.RESULTS: Postopretive follow-up was 1-12 months for all 57 eyes, of which 3 eyes(5%relapsed. The corneoscleral autolysis was occurred in one eye and surgery treatment was conducted. Corneal wounds were healing and transplantations survived well for the remaining 53 patients without obvious surgical marks. Cure rate was 93%.CONCLUSION: Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium can meet the aesthetic requirements of the some patients, with the advantages of obtaining material easily, faster wound healing, lower postoperative recurrence rate, meeting the aesthetic needs of some patients and improving postoperative results. Thus, it is an ideal surgery and is worthy of applying on primary hospital.

  18. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2018-05-01

    Full Text Available This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  19. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells.

    Science.gov (United States)

    Sakata, Naoaki; Yoshimatsu, Gumpei; Kodama, Shohta

    2018-05-07

    This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  20. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    Science.gov (United States)

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  1. MRI screening before stem cell transplantation - necessary?

    International Nuclear Information System (INIS)

    Zimmermann, U.; Mentzel, H.J.; Kaiser, W.A.; Wolf, J.; Fuchs, D.; Gruhn, B.; Zintl, F.

    2008-01-01

    Purpose: in the context of stem cell transplantation (SCT), we often observe neurological complications as a consequence of immune system suppression, conditioning therapy or prophylaxis and treatment of graft-versus-host disease. Furthermore, cerebral lesions in existence prior to transplantation can be found. The aim of this study was to evaluate the benefit of cerebral magnetic resonance imaging (MRI) prior to stem cell transplantation. Patients and method: cerebral MR examinations of 116 children and adolescents were performed before SCT. Patients ranged in age from 1.1 to 21.4 years (mean 12.6 years). All MR images were obtained by a 1.5 T System. The predefined short protocol included an axial T1-weighted SE sequence and a coronary T2-weighted TSE sequence. We evaluated existing cerebral lesions, the diameter of the ventricular system, and the paranasal sinuses. In the case of pathological findings, the short examination protocol was expanded. Results: in 5 of 116 children (4.3%) we observed prior to SCT findings requiring immediate treatment although the patients did not show any clinical symptoms (1 x aspergilloma, 1 x hemorrhage of vascular anomaly). An increased risk of bleeding caused by cavernoma or another vascular anomaly without hemorrhage also had to be taken into account. 32 of 116 patients (37.1%) showed atrophic lesions. In 42 children (36.2%), we observed affections of the paranasal sinuses. (orig.)

  2. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  3. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Science.gov (United States)

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  4. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  5. Impact of HLA diversity on donor selection in organ and stem cell transplantation.

    Science.gov (United States)

    Tiercy, Jean-Marie; Claas, Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation, because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation, pre-transplant anti-HLA antibodies need to be taken into account for organ allocation. Although HLA-incompatible transplants can be performed thanks to immunosuppressive drugs, the de novo production of anti-HLA antibodies still represents a major cause of graft failure. The HLAMatchmaker computer algorithm determines the immunogenicity of HLA mismatches and allows to define HLA antigens that will not induce an antibody response. Because of the much higher stringency of HLA compatibility criteria in stem cell transplantation, the best donor is a HLA genotypically identical sibling. However, more than 50% of the transplants are now performed with hematopoietic stem cells from volunteer donors selected from the international registry. The development of European national registries covering populations with different HLA haplotype frequencies is essential for optimizing donor search algorithms and providing the best chance for European patients to find a fully compatible donor.

  6. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  7. Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Loredana eRuggeri

    2015-10-01

    Full Text Available Natural killer cells express activating and inhibitory receptors which recognize MHC class I alleles, termed Killer cell Immunoglobulin-like Receptors (KIRs. Preclinical and clinical data from haploidentical T-cell depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched natural killer cells play a major role as effectors against acute myeloid leukemia. Outside the transplantation setting, several reports have proven the safety and feasibility of natural killer cell infusion in acute myeloid leukemia patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. Aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts of exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against acute myeloid leukemia. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of acute myeloid leukemia.

  8. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  9. Resident Arterial Cells and Circulating Bone Marrow-Derived Cells both Contribute to Intimal Hyperplasia in a Rat Allograft Carotid Transplantation Model

    Directory of Open Access Journals (Sweden)

    Yi He

    2017-07-01

    Full Text Available Background/Aims: Neointimal formation following vascular injury remains a major mechanism of restenosis, whereas the precise sources of neointimal cells are still uncertain. We tested the hypothesis that both injured arterial cells and non-arterial cells contribute to intimal hyperplasia. Methods: Following allograft transplantation of the balloon-injured carotid common artery (n = 3-6, the cellular composition of the transplant grafts and the origins of neointimal cells were measured by immunohistochemistry and immunofluorescence staining. Results: Smooth muscle actin (SMA-positive and CD68-positive cells were clearly observed 14 days later in the neointima after allograft transplantation of the balloon-injured carotid common artery, where re-endothelialization was not yet complete. Green fluorescent protein (GFP and wild-type (WT allograft transplantation revealed that the majority of the neointima cells were apparently from the recipient (≈85% versus the donor (≈15%. Both monocyte chemotactic protein-1 (MCP-1/CCR2 and stromal cell-derived factor-1 (SDF-1/CXCR4 signaling were involved in intimal hyperplasia, with bone marrow-derived cells also playing a role. Conclusion: These data support the hypothesis that intimal hyperplasia could develop in our novel rat allograft transplantation model of arterial injury, where neointima is attributable not only to local arterial cells but also non-arterial cells including the bone marrow.

  10. CMV driven CD8(+) T-cell activation is associated with acute rejection in lung transplantation.

    Science.gov (United States)

    Roux, Antoine; Mourin, Gisèle; Fastenackels, Solène; Almeida, Jorge R; Iglesias, Maria Candela; Boyd, Anders; Gostick, Emma; Larsen, Martin; Price, David A; Sacre, Karim; Douek, Daniel C; Autran, Brigitte; Picard, Clément; Miranda, Sandra de; Sauce, Delphine; Stern, Marc; Appay, Victor

    2013-07-01

    Lung transplantation is the definitive treatment for terminal respiratory disease, but the associated mortality rate is high. Acute rejection of the transplanted lung is a key determinant of adverse prognosis. Furthermore, an epidemiological relationship has been established between the occurrence of acute lung rejection and cytomegalovirus infection. However, the reasons for this association remain unclear. Here, we performed a longitudinal characterization of CMV-specific T-cell responses and immune activation status in the peripheral blood and bronchoalveolar lavage fluid of forty-four lung transplant patients. Acute rejection was associated with high levels of cellular activation in the periphery, reflecting strong CMV-specific CD8(+) T-cell activity post-transplant. Peripheral and lung CMV-specific CD8(+) T-cell responses were very similar, and related to the presence of CMV in the transplanted organ. These findings support that activated CMV-specific CD8(+) T-cells in the lung may play a role in promoting acute rejection. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    Science.gov (United States)

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  12. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    Science.gov (United States)

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i

  13. Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

    Directory of Open Access Journals (Sweden)

    Dânia Sofia Marques

    2011-01-01

    Full Text Available Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections. This is a major cause of morbidity and mortality. We report a case of a 17-year-old male patient diagnosed with severe idiopathic acquired aplastic anemia who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis, its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies.

  14. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    International Nuclear Information System (INIS)

    Tan Haibo; Liu Xingdang

    2004-01-01

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  15. The effects of renal transplantation on circulating dendritic cells

    NARCIS (Netherlands)

    D.A. Hesselink (Dennis); L.M.B. Vaessen (Leonard); W.C.J. Hop (Wim); W. Schoordijk-Verschoor (Wenda); J.N.M. IJzermans (Jan); C.C. Baan (Carla); W. Weimar (Willem)

    2005-01-01

    textabstractThe effects of immunosuppressive agents on T cell function have been well characterized but virtually nothing is known about the effects of renal transplantation on human dendritic cells (DCs). With the use of flow cytometry, we studied the kinetics of myeloid and plasmacytoid DCs in

  16. Evaluation of febrile neutropenia in patients undergoing hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Shahideh Amini

    2014-01-01

    Full Text Available The aim of this study was to determine the incidence and causes of fever as a major problem contributing to transplantation related mortality among patients undergoing hematopoietic stem cell transplantation (HSCT and evaluation of antibiotic use, according to reliable guidelines.We retrospectively reviewed hospital records of 195 adult patients who underwent HSCT between 2009-2011 at hematology-oncology and bone marrow transplantation research center. Baseline information and also data related to fever and neutropenia, patient's outcomes, duration of hospitalization and antibiotic use pattern were documented.A total of 195 patients were analyzed and a total of 268 febrile episodes in 180 patients were recorded (mean 1.5 episodes per patient. About 222 episodes (82% were associated with neutropenia which one-fourth of them were without any documented infection sources. Microbiologic documents showed that the relative frequencies of gram positive and gram negative bacteria were 62.5% and 37.5%, respectively. The hospital stay duration was directly related to the numbers of fever episodes (P<0.0001.The rate of febrile episodes in autologous stem cell transplantation was significantly higher compared to allogeneic type (P<0.05.It is necessary to determine not only the local profile of microbiologic pattern, but also antibiotic sensitivities in febrile neutropenic patients following hematopoietic stem cell transplantation, and reassess response to antibiotic treatment to establish any necessity for modifications to treatment guidelines in order to prevent any fatal complications from infection.

  17. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  18. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  19. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  20. Allogeneic fetal stem cell transplantation to child with psychomotor retardation: A case report

    Directory of Open Access Journals (Sweden)

    Dajić Katerina

    2016-01-01

    Full Text Available Introduction. The consequences of autologous and allogeneic stem cell transplantation (stem cells of hematopoiesis, applied in adults and children suffering from leukemia or some other malignant disease, are well-known and sufficiently recognizable in pediatric clinical practice regardless of the indication for the treatment. However, the efficacy of fetal stem cell transplantation is unrecognizable when the indications are psychomotor retardation and epilepsy. Case Outline. With the exception of neurological psychiatric problems, a boy aged 9.5 years was in good general health before transplantation with allogeneic fetal stem cells. The main aim of allogeneic fetal stem cell transplantation was treatment of psychomotor retardation and epilepsy. After 13 months of treatment, he was admitted to hospital in a very serious, life-threatening condition due to sepsis and severe pleuropneumonia. The humoral immunity in the boy was adequate, unlike cellular immunity. The immune imbalance in terms of predominance of T-suppressor lymphocytes contributes to delayed and late development of sepsis and severe pleuropneumonia. The boy still shows the same severity of psychomotor retardation, dyslalia, epilepsy, strabismus and amblyopia. Conclusion. Implementation of fetal stem cell therapy for unconfirmed indications abuses the therapeutic approach, harms patients, misleads parents, and brings financial harm to the healthcare system of any country, including Serbia.

  1. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue

    Directory of Open Access Journals (Sweden)

    Richard J. Davis

    2017-07-01

    Full Text Available Age-related macular degeneration (AMD is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC-derived RPE cells (RPESC-RPE preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.

  2. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury.

    Science.gov (United States)

    Radtke, Christine; Wewetzer, Konstantin; Reimers, Kerstin; Vogt, Peter M

    2011-01-01

    Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies. © 2011 Cognizant Comm. Corp.

  3. Preliminary Study on Testicular Germ Cell Transplantation of Endemic Species Oryzias celebensis

    Science.gov (United States)

    Andriani, I.; Agustiani, F.; Hassan, M.; Parenrengi, A.; Inoue, K.

    2018-03-01

    The research has been conducted to study some technical steps for male germ-plasm from endemic fish species such as some species of Oryzias fish in Indonesia to preserve and propagate through germ cell transplantation technology. For preliminary research, the study was started with germ cell characterization of testes, cryopreservation of TGC and the transplantation of Oryzias celebensis as candidates for surrogate broodstock of Oryzias fish male germ plasm. The data analized included the potential number of TGC as donor, the viability of cryopreserved TGC in two types of cryoprotectans and the survival rate of O.celebensis larvae as recipient after transplantation. The result showed that the average amount of TGC yielded after dissociation was 131000 ± 31349 with 74.2 % viability of TGC each. Cryoprotectan10% DMSO +glucose yielded higher viable of TGC. More than 80 % of O.celebensis larvae survived after transplantation. In conclusion, these preliminary data of O.celebensis as surrogate broodstock candidate will support the application of TGC transplantation technology in Oryzias endemic species.

  4. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    Science.gov (United States)

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  5. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  6. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington's animal model.

    Science.gov (United States)

    Mu, S; Han, L; Zhou, G; Mo, C; Duan, J; He, Z; Wang, Z; Ren, L; Zhang, J

    2016-10-01

    The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD). In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum. At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats. The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD. © 2016 British Neuropathological Society.

  7. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  8. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization.

    Science.gov (United States)

    Bhang, Suk Ho; Lee, Seahyoung; Shin, Jung-Youn; Lee, Tae-Jin; Kim, Byung-Soo

    2012-10-01

    Despite promising results from the therapeutic use of stem cells for treating ischemic diseases, the poor survival of cells transplanted into ischemic regions is one of the major problems that undermine the efficacy of stem cell therapy. Cord blood mononuclear cells (CBMNCs) are an alternative source of mesenchymal stem cells (MSCs) without disadvantages, such as the painful and invasive harvesting procedure, of MSCs derived from bone marrow or adipose tissue. In the present study, we investigated whether the angiogenic efficacy of cord blood mesenchymal stem cells (CBMSCs) can be enhanced by grafting as spheroids in a mouse hindlimb ischemia model. Human CBMSC (hCBMSC) spheroids were prepared by using the hanging-drop method. Mouse hindlimb ischemia was induced by excising the femoral artery and its branches. After surgery, the animals were divided into no-treatment, dissociated hCBMSC, and spheroid hCBMSC groups (n=8 per group) and received corresponding hCBMSC treatments. After surgery, the ischemic hindlimbs were monitored for 4 weeks, and then, the ischemic hindlimb muscles were harvested for histological analysis. Apoptotic signaling, angiogenesis-related signal pathways, and blood vessel formation were investigated in vitro and/or in vivo. The transplantation of hCBMSCs as spheroids into mouse ischemic hindlimbs significantly improved the survival of the transplanted cells by suppressing apoptotic signaling while activating antiapoptotic signaling. Furthermore, the transplantation of hCBMSCs as spheroids significantly increased the number of microvessels and smooth muscle α-actin-positive vessels in the ischemic limbs of mice, and attenuated limb loss and necrosis. Human CBMNC can be considered an alternative source of MSC, and spheroid-based hCBMSC delivery can be considered a simple and effective strategy for enhancing the therapeutic efficacy of hCBMSCs.

  9. High-risk cutaneous squamous cell carcinoma in a Japanese allogeneic bone marrow transplant recipient on long-term voriconazole.

    Science.gov (United States)

    Ng, William; Takahashi, Akira; Muto, Yusuke; Yamazaki, Naoya

    2017-10-01

    Cutaneous squamous cell carcinomas arise as secondary cancers in hematopoietic stem cell transplant survivors. They have been documented primarily in Western cohorts and relatively little is known about their occurrence in Asian hematopoietic stem cell transplant recipients, with no reports of squamous cell carcinomas with high-risk features in Asian patients. We describe a case of a cutaneous squamous cell carcinoma with high-risk features on the scalp of a Japanese bone marrow transplant recipient approximately 6.5 years post-transplant, who was on long-term voriconazole. The history of a photodistributed erythema followed by the appearance of multiple actinic keratoses and solar lentigines, together with the rarity of cutaneous squamous cell carcinomas in Asian hematopoietic stem cell transplant cohorts revealed in our literature review, suggest that voriconazole use contributed to the development of high-risk squamous cell carcinoma in our patient. © 2017 Japanese Dermatological Association.

  10. T cell reconstitution in allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, K; Jordan, K K; Uhlving, H H

    2015-01-01

    Infections and acute graft-versus-host disease (aGVHD) are major causes of treatment-related mortality and morbidity following allogeneic haematopoietic stem cell transplantation (HSCT). Both complications depend on reconstitution of the T-lymphocyte population based on donor T cells. Although...... it is well established that Interleukin-7 (IL-7) is a cytokine essential for de novo T cell development in the thymus and homoeostatic peripheral expansion of T cells, associations between circulating levels of IL-7 and T cell reconstitution following HSCT have not been investigated previously. We...... in patients treated with anti-thymocyte globulin (ATG) compared with those not treated with ATG (P = 0.0079). IL-7 levels at day +7 were negatively associated with T cell counts at day +30 to +60 (at day +60: CD3(+) : β = -10.6 × 10(6) cells/l, P = 0.0030; CD8(+) : β = -8.4 × 10(6) cells/l, P = 0.061; CD4...

  11. Donor-derived circulating endothelial cells after kidney transplantation

    NARCIS (Netherlands)

    Popa, ER; Kas-Deelen, AM; Hepkema, BG; van Son, WJ; The, TH; Harmsen, MC

    2002-01-01

    Background. In solid-organ transplantation, the allograft vasculature, in particular the endothelium, is prone to injury inflicted by peritransplantational and posttransplantational factors. Previously, we have shown that circulating endothelial cells (cEC) can be detected in the peripheral blood of

  12. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Science.gov (United States)

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  13. Successful orthotopic liver transplantation in an adult patient with sickle cell disease and review of the literature

    Directory of Open Access Journals (Sweden)

    Morey Blinder

    2013-05-01

    Full Text Available Sickle cell disease can lead to hepatic complications ranging from acute hepatic crises to chronic liver disease including intrahepatic cholestasis, and iron overload. Although uncommon, intrahepatic cholestasis may be severe and medical treatment of this complication is often ineffective. We report a case of a 37 year-old male patient with sickle cell anemia, who developed liver failure and underwent successful orthotopic liver transplantation. Both pre and post-operatively, he was maintained on red cell transfusions. He remains stable with improved liver function 42 months post transplant. The role for orthotopic liver transplantation is not well defined in patients with sickle cell disease, and the experience remains limited. Although considerable challenges of post-transplant graft complications remain, orthotopic liver transplantation should be considered as a treatment option for sickle cell disease patients with end-stage liver disease who have progressed despite conventional medical therapy. An extended period of red cell transfusion support may lessen the post-operative complications.

  14. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  15. Invasive Pulmonary Aspergillosis in a Sickle Cell Patient Transplant Recipient: A Successful Treatment

    Directory of Open Access Journals (Sweden)

    Katia Paciaroni

    2015-08-01

    Full Text Available Sickle Cell Anaemia (SCA is the most common inherited blood disorder and is associated with severe morbidity and decreased survival. Allogeneic Haematopoietic Stem Cell Transplantation (HSCT is the only curative approach. Nevertheless the decision to perform a marrow transplant includes the risk of major complications  and mortality transplant related. The infections represent the main cause of mortality for SCA patients undergoing transplant. Invasive Pulmonary Aspergillosis (IPA is a devastating opportunistic infection and remains a significant cause of morbidity and mortality in HSCT recipients. Data regarding IPA in the setting of SCA are lacking. In the present report,  we describe a patient with SCA who developed IPA after allogeneic bone marrow transplant. The fungal infection was treated by systemic antifungal therapy in addition to the surgery, despite  mild chronic GVHD and with continuing immunosuppression therapy. This case shows that IPA occurring in bone marrow recipient with SCA can be successful treated

  16. Four decades of stem cell transplantation for Fanconi anaemia in the Netherlands

    NARCIS (Netherlands)

    Smetsers, Stephanie E.; Smiers, Frans J.; Bresters, Dorine; Sonnevelt, Martine C.; Bierings, Marc B.

    2016-01-01

    This article presents the haematopoietic stem cell transplantation (SCT) results of the complete Dutch Fanconi anaemia (FA) patient cohort. Sixty-eight Dutch FA patients have been transplanted since 1972. In total, 63 (93%) patients engrafted, 54 after first SCT and 9 after second SCT. Fludarabine

  17. Beneficial Effect of the Nutritional Support in Children Who Underwent Hematopoietic Stem Cell Transplant.

    Science.gov (United States)

    Koç, Nevra; Gündüz, Mehmet; Tavil, Betül; Azik, M Fatih; Coşkun, Zeynep; Yardımcı, Hülya; Uçkan, Duygu; Tunç, Bahattin

    2017-08-01

    The aim of this study was to evaluate nutritional status in children who underwent hematopoietic stem cell transplant compared with a healthy control group. A secondary aim was to utilize mid-upper arm circumference as a measure of nutritional status in these groups of children. Our study group included 40 children (18 girls, 22 boys) with mean age of 9.2 ± 4.6 years (range, 2-17 y) who underwent hematopoietic stem cell transplant. Our control group consisted of 20 healthy children (9 girls, 11 boys). The children were evaluated at admission to the hospital and followed regularly 3, 6, 9, and 12 months after discharge from the hospital. In the study group, 27 of 40 patients (67.5%) received nutritional support during hematopoietic stem cell transplant, with 15 patients (56%) receiving enteral nutrition, 6 (22%) receiving total parenteral nutrition, and 6 (22%) receiving enteral and total parenteral nutrition. Chronic malnutrition rate in the study group was 47.5% on admission to the hospital, with the control group having a rate of 20%. One year after transplant, the rate decreased to 20% in the study group and 5% in the control group. The mid-upper arm circumference was lower in children in the study group versus the control group at the beginning of the study (P groups at follow-up examinations (P > .05). During follow-up, all anthropometric measurements increased significantly in both groups. Monitoring nutritional status and initiating appropriate nutritional support improved the success of hematopoietic stem cell transplant and provided a more comfortable process during the transplant period. Furthermore, mid-upper arm circumference is a more sensitive, useful, and safer parameter that can be used to measure nutritional status of children who undergo hematopoietic stem cell transplant.

  18. Body composition of Fanconi anemia patients after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Priscilla Peixoto Policarpo da Silva

    Full Text Available Abstract Introduction: Fanconi anemia is a rare genetic disease linked to bone marrow failure; a possible treatment is hematopoietic stem cell transplantation. Changes in the nutritional status of Fanconi anemia patients are not very well known. This study aimed to characterize body composition of adult, children and adolescent patients with Fanconi anemia who were submitted to hematopoietic stem cell transplantation or not. Methods: This cross-sectional study enrolled 63 patients (29 adults and 34 children and adolescents. Body composition was assessed based on diverse methods, including triceps skin fold, arm circumference, arm muscle area and bioelectrical impedance analysis, as there is no established consensus for this population. Body mass index was also considered as reference according to age. Results: Almost half (48.3% of the transplanted adult patients were underweight considering body mass index whereas eutrophic status was observed in 66.7% of the children and adolescents submitted to hematopoietic stem cell transplantation and in 80% of those who were not. At least 50% of all groups displayed muscle mass depletion. Half of the transplanted children and adolescents presented short/very short stature for age. Conclusion: All patients presented low muscle stores, underweight was common in adults, and short stature was common in children and adolescents. More studies are needed to detect whether muscle mass loss measured at the early stages of treatment results in higher risk of mortality, considering the importance of muscle mass as an essential body component to prevent mortality related to infectious and non-infectious diseases and the malnutrition inherent to Fanconi anemia.

  19. 78 FR 54257 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Science.gov (United States)

    2013-09-03

    ...; Program priorities; research priorities; and the scope and design of the Stem Cell Therapeutic Outcomes... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on the Advisory Council on Blood Stem Cell Transplantation (ACBSCT). The ACBSCT was established...

  20. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  1. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    Science.gov (United States)

    Beksac, Meral

    2015-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow-mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.

  2. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Javier Pilcante

    2015-12-01

    Full Text Available ABSTRACT Introduction: Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identi- fied. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods: A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results: Two hundred and fifty patients were studied (mean age: 39 years; range: 17-69, with 147 (59% receiving allogeneic transplants and 103 (41% receiving autologous trans- plants. One hundred and ninety-two (77% patients had diarrhea, with 25 (10% cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic trans- plants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia. In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56. Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008. In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p

  4. The Role of Tissue-Resident Donor T Cells in Rejection of Clinical Face Transplants

    Science.gov (United States)

    2017-10-01

    cells contribute to VCA rejection, and that pathogenic T cells (both donor and recipient-derived) are detectable in blood during rejection to serve as...AWARD NUMBER: W81XWH-16-1-0760 TITLE: The role of tissue-resident donor T cells in rejection of clinical face transplants PRINCIPAL...AND SUBTITLE The role of tissue-resident donor T cells in rejection of clinical face transplants 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1

  5. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  6. Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration

    Directory of Open Access Journals (Sweden)

    J. Behaegel

    2017-01-01

    Full Text Available Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.

  7. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  8. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    Science.gov (United States)

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  9. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study

    Science.gov (United States)

    Fleischhauer, Katharina; Gooley, Theodore; Malkki, Mari; Bardy, Peter; Bignon, Jean-Denis; Dubois, Valérie; Horowitz, Mary M; Madrigal, J Alejandro; Morishima, Yasuo; Oudshoorn, Machteld; Ringden, Olle; Spellman, Stephen; Velardi, Andrea; Zino, Elisabetta; Petersdorf, Effie W

    2013-01-01

    Summary Background The risks after unrelated-donor haemopoietic-cell transplantation with matched HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1 alleles between donor and recipient (10/10 matched) can be decreased by selection of unrelated donors who also match for HLA-DPB1; however, such donors are difficult to find. Classification of HLA-DPB1 mismatches based on T-cell-epitope groups could identify mismatches that might be tolerated (permissive) and those that would increase risks (non-permissive) after transplantation. We did a retrospective study to compare outcomes between permissive and non-permissive HLA-DPB1 mismatches in unrelated-donor haemopoietic-cell transplantation. Methods HLA and clinical data for unrelated-donor transplantations submitted to the International Histocompatibility Working Group in haemopoietic-cell transplantation were analysed retrospectively. HLA-DPB1 T-cell-epitope groups were assigned according to a functional algorithm based on alloreactive T-cell crossreactivity patterns. Recipients and unrelated donors matching status were classified as HLA-DPB1 match, non-permissive HLA-DPB1 mismatch (those with mismatched T-cell-epitope groups), or permissive HLA-DPB1 mismatch (those with matched T-cell-epitope groups). The clinical outcomes assessed were overall mortality, non-relapse mortality, relapse, and severe (grade 3–4) acute graft-versus-host disease (aGvHD). Findings Of 8539 transplantations, 5428 (64%) were matched for ten of ten HLA alleles (HLA 10/10 matched) and 3111 (36%) for nine of ten alleles (HLA 9/10 matched). Of the group overall, 1719 (20%) were HLA-DPB1 matches, 2670 (31%) non-permissive HLA-DPB1 mismatches, and 4150 (49%) permissive HLA-DPB1 mismatches. In HLA 10/10-matched transplantations, non-permissive mismatches were associated with a significantly increased risk of overall mortality (hazard ratio [HR] 1·15, 95% CI 1·05–1·25; p=0·002), non-relapse mortality (1·28, 1·14–1·42; pKarolinska Institutet; and

  10. Antigen-Encoding Bone Marrow Terminates Islet-Directed Memory CD8+ T-Cell Responses to Alleviate Islet Transplant Rejection

    DEFF Research Database (Denmark)

    Coleman, Miranda; Jessup, Claire F.; Bridge, Jennifer A.

    2016-01-01

    in islet transplantation, and this will extend to application of personalized approaches using stem cell–derived replacement β-cells. New approaches are required to limit memory autoimmune attack of transplanted islets or replacement β-cells. Here, we show that transfer of bone marrow encoding cognate......Islet-specific memory T cells arise early in type 1 diabetes (T1D), persist for long periods, perpetuate disease, and are rapidly reactivated by islet transplantation. As memory T cells are poorly controlled by “conventional” therapies, memory T cell–mediated attack is a substantial challenge......-cell responses, and this can alleviate destruction of antigen-expressing islets. This addresses a key challenge facing islet transplantation and, importantly, the clinical application of personalized β-cell replacement therapies using patient-derived stem cells....

  11. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    Science.gov (United States)

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells

    Science.gov (United States)

    Nicholls, Francesca J.; Liu, Jessie R.; Modo, Michel

    2017-01-01

    The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2′-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations. PMID:27938486

  13. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Directory of Open Access Journals (Sweden)

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  14. Enhancement of the grafting efficiency of transplanted marrow cells by preincubation with interleukin-3 and granulocyte-macrophage colony-stimulating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, M.; Konno, M.; Shiota, Y.; Omoto, E.; Minguell, J.J.; Zanjani, E.D.

    1991-04-01

    To improve the grafting efficiency of transplanted murine hematopoietic progenitors, we briefly preincubated mouse bone marrow cells with interleukin-3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) ex vivo before their transplantation into irradiated recipients. This treatment was translated into an increase in the seeding efficiency of colony-forming unit-spleen (CFU-S) and CFU-GM after transplantation. Not only was the concentration of CFU-S in the tibia increased 2 and 24 hours after transplantation, but the total cell number and CFU-S and CFU-GM concentrations were persistently higher in IL-3- and GM-CSF-treated groups 1 to 3 weeks after transplantation. In addition, the survival of animals as a function of transplanted cell number was persistently higher in IL-3- and GM-CSF-treated groups compared with controls. The data indicate that the pretreatment of marrow cells with IL-3 and GM-CSF before transplantation increases the seeding efficiency of hematopoietic stem cells and probably other progenitor cells after transplantation. This increased efficiency may be mediated by upward modulation of homing receptors. Therefore, ex vivo preincubation of donor marrow cells with IL-3 and GM-CSF may be a useful tactic in bone marrow transplantation.

  15. Regulatory Myeloid Cells in Transplantation

    Science.gov (United States)

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  16. Immune reconstitution after allogeneic hematopoietic stem cell transplantation in children: a single institution study of 59 patients

    Directory of Open Access Journals (Sweden)

    Hyun O Kim

    2013-01-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Lymphocyte subset recovery is an important factor that determines the success of hematopoietic stem cell transplantation (HSCT. Temporal differences in the recovery of lymphocyte subsets and the factors influencing this recovery are important variables that affect a patient's posttransplant immune reconstitution, and therefore require investigation. &lt;b&gt;Methods:&lt;/b&gt; The time taken to achieve lymphocyte subset recovery and the factors influencing this recovery were investigated in 59 children who had undergone HSCT at the Department of Pediatrics, The Catholic University of Korea Seoul St. Mary's Hospital, and who had an uneventful follow-up period of at least 1 year. Analyses were carried out at 3 and 12 months post-transplant. An additional study was performed 1 month post-transplant to evaluate natural killer (NK cell recovery. The impact of preand post-transplant variables, including diagnosis of Epstein-Barr virus (EBV DNAemia posttransplant,on lymphocyte recovery was evaluated. &lt;b&gt;Results:&lt;/b&gt; The lymphocyte subsets recovered in the following order: NK cells, cytotoxic T cells, B cells,and helper T cells. At 1 month post-transplant, acute graft-versus-host disease was found to contribute significantly to the delay of CD16+/56+ cell recovery. Younger patients showed delayed recovery of both CD3+/CD8+ and CD19+ cells. EBV DNAemia had a deleterious impact on the recovery of both CD3+ and CD3+/CD4+ lymphocytes at 1 year post-transplant. &lt;b&gt;Conclusion:&lt;/b&gt; In our pediatric allogeneic HSCT cohort, helper T cells were the last subset to recover. Younger age and EBV DNAemia had a negative impact on the post-transplant recovery of T cells and B cells.

  17. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2015-09-01

    Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.

  18. The role of gamma delta T cells in haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, L; Sengeløv, H

    2015-01-01

    transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies...... recognition independent from the major histocompatibility complex (MHC) allows for the theoretical possibility of mediating GVL without an allogeneic response in terms of GVHD. Early studies on the impact of γδ T cells in HSCT have reported conflicting results. Recent studies, however, do suggest an overall...

  19. Human umbilical cord blood mononuclear cell transplantation for delayed encephalopathy after carbon monoxide intoxication

    Directory of Open Access Journals (Sweden)

    Gong D

    2013-08-01

    Full Text Available Dianrong Gong,1 Haiyan Yu,1 Weihua Wang,2 Haixin Yang,1 Fabin Han1,21Department of Neurology, 2Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital, The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of ChinaAbstract: Stem cell transplantation is one of the potential treatments for neurological disorders. Since human umbilical cord stem cells have been shown to provide neuroprotection and promote neural regeneration, we have attempted to transplant the human umbilical cord blood mononuclear cells (hUCB-MNCs to treat patients with delayed encephalopathy after carbon monoxide intoxication (DEACOI. The hUCB-MNCs were isolated from fresh umbilical cord blood and were given to patients subarachnoidally. Physical examinations, mini-mental state examination scores, and computed tomography scans were used to evaluate the improvement of symptoms, signs, and pathological changes of the patient's brain before and after hUCB-MNC transplantation. A total of 12 patients with DEACOI were treated with hUCB-MNCs in this study. We found that most of the patients have shown significant improvements in movement, behavior, and cognitive function, and improved brain images in 1–4 months from the first transplantation of hUCB-MNCs. None of these patients have been observed to have any severe adverse effects. Our study suggests that the hUCB-MNC transplantation may be a safe and effective treatment for DEACOI. Further studies and clinical trials with more cases, using more systematic scoring methods, are needed to evaluate brain structural and functional improvements in patients with DEACOI after hUCB-MNC therapy.Keywords: human umbilical cord blood mononuclear cells, transplantation, delayed encephalopathy after carbon monoxide intoxication, MMSE

  20. Donor-specific alloreactive T cells can be quantified from whole blood, and may predict cellular rejection after renal transplantation.

    Science.gov (United States)

    Fischer, Michaela; Leyking, Sarah; Schäfer, Marco; Elsäßer, Julia; Janssen, Martin; Mihm, Janine; van Bentum, Kai; Fliser, Danilo; Sester, Martina; Sester, Urban

    2017-07-01

    Preformed cellular alloreactivity can exist prior to transplantation and may contribute to rejection. Here, we used a rapid flow-cytometric whole-blood assay to characterize the extent of alloreactive T cells among 1491 stimulatory reactions from 61 renal transplant candidates and 75 controls. The role of preformed donor-specific alloreactive T cells in cellular rejection was prospectively analyzed in 21 renal transplant recipients. Alloreactive CD8 + T cells were more frequent than respective CD4 + T cells, and these levels were stable over time. CD8 + T cells were effector-memory T cells largely negative for expression of CD27, CD62L, and CCR7, and were susceptible to steroid and calcineurin inhibitor inhibition. Alloreactivity was more frequent in samples with higher number of HLA mismatches. Moreover, the percentage of individuals with alloreactive T cells was higher in transplant candidates than in controls. Among transplant candidates, 5/61 exhibited alloreactive CD8 + T cells against most stimulators, 23/61 toward a limited number of stimulators, and 33/61 did not show any alloreactivity. Among 21 renal transplant recipients followed prospectively, one had donor-specific preformed T-cell alloreactivity. She was the only patient who developed cellular rejection posttransplantation. In conclusion, donor-specific alloreactive T cells may be rapidly quantified from whole blood, and may predict cellular rejection after transplantation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Engraftment of mouse amniotic fluid-derived progenitor cells after in utero transplantation in mice.

    Science.gov (United States)

    Lin, Kun-Yi; Peng, Shao-Yu; Chou, Chih-Jen; Wu, Chia-Chun; Wu, Shinn-Chih

    2015-11-01

    Amniotic fluid-derived progenitor cells (AFPCs) are oligopotent and shed from the fetus into the amniotic fluid. It was reported that AFPCs express stem cell-like markers and are capable of differentiating into specific cell type in in vitro experiments. However, no study has fully investigated the potentiality and destiny of these cells in in vivo experiments. Ds-red transgenic mice (on Day 13.5 of pregnancy) were transplanted in utero with enhanced green fluorescent protein-labeled mouse AFPC (EGFP-mAFPCs). After birth, baby mice were euthanized at 3-week intervals beginning 3 weeks postnatally, and the specimens were examined by polymerase chain reaction, histology, and flow cytometry. Our results demonstrate the transplantability of mAFPCs into all three germ layers and the potential of mAFPCs in the study of progenitor cell homing, differentiation, and function. Engraftment of EGFP-mAFPCs was detected in the intestine, kidney, muscle, skin, bladder, heart, stomach, etc., at 3 weeks after delivery. This model using EGFP-mAFPCs injected in utero may provide an ideal method for determining the fate of transplanted cells in recipients and these findings may justify a clinical trial of in utero transplantation during gestation for patients who have inherited genetic disorders. Copyright © 2014. Published by Elsevier B.V.

  2. Introduction of a Quality Management System and Outcome After Hematopoietic Stem-Cell Transplantation

    NARCIS (Netherlands)

    Gratwohl, Alois; Brand, Ronald; Niederwieser, Dietger; Baldomero, Helen; Chabannon, Christian; Cornelissen, Jan; de Witte, Theo; Ljungman, Per; McDonald, Fiona; McGrath, Eoin; Passweg, Jakob; Peters, Christina; Rocha, Vanderson; Slaper-Cortenbach, Ineke; Sureda, Anna; Tichelli, Andre; Apperley, Jane

    2011-01-01

    Purpose A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We

  3. Limited transplantation of antigen-expressing hematopoietic stem cells induces long-lasting cytotoxic T cell responses.

    Directory of Open Access Journals (Sweden)

    Warren L Denning

    2011-02-01

    Full Text Available Harnessing the ability of cytotoxic T lymphocytes (CTLs to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4-6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS.

  4. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE cell transplantation into infarct brain of mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamauchi

    Full Text Available Bone marrow stromal cells (BMSCs are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke.Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells into the ipsilateral striatum 7 days later.Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation.These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement.

  5. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Qin Hanlin; Gao Bin

    2010-01-01

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  6. Squamous cell carcinoma of skin after 20 years of renal transplantation

    Directory of Open Access Journals (Sweden)

    J Poddar

    2017-01-01

    Full Text Available Solid organ transplant recipients are at high risk of developing malignancies due to the prolonged use of immunosuppressant drugs. Squamous cell carcinoma of skin can occur in these patients even after decades of organ transplant. A 45-year-old male underwent renal transplant for end-stage renal disease 23 years ago and was on immunosuppressive drugs since then. The patient was on regular follow-up. Three years back, he developed squamous cell carcinoma of both forearms and hands, which was treated with radiation therapy using 8 MeV electrons, by parallel opposed fields to a dose of 60 Gy/30 fractions. Complete response to treatment was achieved at 3 months posttreatment. The patient is currently on follow-up and asymptomatic for skin lesions. Hence, these patients require longer follow-up, active surveillance, and screening for early diagnosis and prompt treatment of the premalignant and malignant conditions.

  7. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  8. HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THALASSEMIA AND SICKLE CELL DISEASE: EXPERIENCE OF MEDITERRANEAN INSTITUTE OF HEMATOLOGY IN A MULTI-ETHNIC POPULATION.

    Directory of Open Access Journals (Sweden)

    Marco Marziali

    2009-12-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT still remains the only definitive cure currently available for patients with thalassemia and sickle cell anemia.  Results of transplant in thalassemia  and in sickle cell anemia  have steadily improved over the last two decades due to improvements in preventive strategies, and effective control of transplant-related complications. From 2004 through  2009,  145 consecutive patients with thalassemia and sickle cell anemia, ethnically heterogeneous from Mediterranean and Middle East countries, were given HSCT in the International Center for Transplantation in Thalassemia and Sickle Cella Anemia in Rome. This experience is characterized by two peculiarities: patients were ethnically very heterogeneous and the vast majority of these patients were not regularly transfesed/chelated and therefore were highly sensitized due to RBC transfusions without leukodepletion filters. Consequently, they could have a high risk of graft rejection as a result of sensitization to HLA antigens. The Rome experience of SCT in patients with thalassemia and sickle cell anemia confirmed the results obtained in Pesaro, and most importantly showed the reproducibility of these results in other centers.

  9. Impact of stem cell source on allogeneic stem cell transplantation outcome in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Stamatović Dragana

    2011-01-01

    Full Text Available Background/Aim. Peripheral blood (PB is used more frequently as a source of stem cells (SCs for allogeneic transplantation. However, the influence of cell source on the clinical outcome of SC transplantation is not yet well established. The aim of this study was to compare the results of PBSC transplantation (PBSCT with bone marrow transplantation (BMT on the basis of engraftment, frequency and severity of immediate (mucositis, acute Graft versus Host Disease - aGvHD and delayed (chronic GvHD - cGvHD complications, as well as transplant-related mortality (TRM, transfusion needs, relapses and overall survival (OS. Methods. We analyzed 158 patients, women/men ratio 64/94 median age 29 (range 9-57, who underwent allogeneic SC transplantation between 1989 and 2009. All included patients had diseases as follows: acute myeloid leukemia (AML - 39, acute lymphoblastic leukemia (ALL - 47, chronic myeloid leukemia (CML - 32, myelodysplastic syndrome (MDS - 10, Hodgkin’s lymphoma (HL - 2, multiple myeloma (MM - 3, granulocytic sarcoma (GrSa - 3, severe aplastic anemia (sAA - 22. The patients underwent transplantations were divided into two groups: BMT group (74 patients and PBSCT group (84 patients. Each recipient had HLA identical sibling donor. SCs from bone marrow were collected by multiple aspirations of iliac bone and from PB by one “Large Volume Leukapheresis” (after recombinant human granulocyte colony stimulating factor, rHuG-CSF application (5-12 μg/kgbm, 5 days. Conditioning regimens were applied according to primary disease, GvHD prophylaxis consisted of combination of a cyclosporine A and methotrexate. Results. Engraftment, according to the count of polymorphonuclear and platelets, were significantly (p < 0.001 faster in the PBSCT vs BMT group. The needs for transfusion support were significantly (p < 0.01 higher in the BMT group. Those patients had more frequently oropharingeal mucositis grade 3/4 (33.3% vs 10.0%, p < 0.05. There were

  10. Impact of HLA Diversity on Donor Selection in Organ and Stem Cell Transplantation

    OpenAIRE

    Tiercy Jean-Marie; Claas Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation pre transplant anti HLA antibodies nee...

  11. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation

    International Nuclear Information System (INIS)

    Reisner, Y.; Ben-Bassat, I.; Douer, D.; Kaploon, A.; Schwartz, E.; Ramot, B.

    1986-01-01

    The phenomenon of marrow rejection following supralethal radiochemotherapy was explained in the past mainly by non-T-cell mechanisms known to be resistant to high-dose irradiation. In the present study a low but significant number of radiochemoresistant-clonable T cells was found in the peripheral blood and spleen of Rhesus monkeys following the cytoreductive protocol used for treatment of leukemia patients prior to bone marrow transplantation. More than 95% of the clonable cells are concentrated in the spleen 5 days after transplant. The cells possess immune memory as demonstrated by the generation of alloreactive-specific cytotoxicity. The present findings suggest that host-versus-graft activity may be mediated by alloreactive T cells. It is hoped that elimination of such cells prior to bone marrow transplantation will increase the engraftment rate of HLA-nonidentical marrow in leukemia patients

  12. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    NARCIS (Netherlands)

    Halter, Joerg P.; Schuepbach, W. Michael M.; Mandel, Hanna; Casali, Carlo; Orchard, Kim; Collin, Matthew; Valcarcel, David; Rovelli, Attilio; Filosto, Massimiliano; Dotti, Maria T.; Marotta, Giuseppe; Pintos, Guillem; Barba, Pere; Accarino, Anna; Ferra, Christelle; Illa, Isabel; Beguin, Yves; Bakker, Jaap A.; Boelens, Jaap J.; de Coo, Irenaeus F. M.; Fay, Keith; Sue, Carolyn M.; Nachbaur, David; Zoller, Heinz; Sobreira, Claudia; Simoes, Belinda Pinto; Hammans, Simon R.; Savage, David; Marti, Ramon; Chinnery, Patrick F.; Elhasid, Ronit; Gratwohl, Alois; Hirano, Michio

    2015-01-01

    Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known

  13. Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model.

    Science.gov (United States)

    Pauley, Penelope; Matthews, Brya G; Wang, Liping; Dyment, Nathaniel A; Matic, Igor; Rowe, David W; Kalajzic, Ivo

    2014-09-01

    Osteogenesis imperfecta is a serious genetic disorder that results from improper type I collagen production. We aimed to evaluate whether bone marrow stromal cells (BMSC) delivered locally into femurs were able to engraft, differentiate into osteoblasts, and contribute to formation of normal bone matrix in the osteogenesis imperfect murine (oim) model. Donor BMSCs from bone-specific reporter mice (Col2.3GFP) were expanded in vitro and transplanted into the femoral intramedullary cavity of oim mice. Engraftment was evaluated after four weeks. We detected differentiation of donor BMSCs into Col2.3GFP+ osteoblasts and osteocytes in cortical and trabecular bone of transplanted oim femurs. New bone formation was detected by deposition of dynamic label in the proximity to the Col2.3GFP+ osteoblasts, and new bone showed more organized collagen structure and expression of type I α2 collagen. Col2.3GFP cells were not found in the contralateral femur indicating that transplanted osteogenic cells did not disseminate by circulation. No osteogenic engraftment was observed following intravenous transplantation of BMSCs. BMSC cultures derived from transplanted femurs showed numerous Col2.3GFP+ colonies, indicating the presence of donor progenitor cells. Secondary transplantation of cells recovered from recipient femurs and expanded in vitro also showed Col2.3GFP+ osteoblasts and osteocytes confirming the persistence of donor stem/progenitor cells. We show that BMSCs delivered locally in oim femurs are able to engraft, differentiate into osteoblasts and osteocytes and maintain their progenitor potential in vivo. This suggests that local delivery is a promising approach for introduction of autologous MSC in which mutations have been corrected.

  14. The role of endothelial cells on islet function and revascularization after islet transplantation.

    Science.gov (United States)

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-02

    Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.

  15. Role of pancreatic polypeptide as a market of transplanted insulin-producing fetal pig cells.

    Science.gov (United States)

    Tuch, B E; Tabiin, M T; Casamento, F M; Yao, M; Georges, P; Amaratunga, A; Pinto, A N

    2001-01-01

    Transplantation of insulin-producing fetal pancreatic tissue into diabetic recipients has been shown to normalize blood glucose levels after several months. This time period is required for the growth and maturation of the fetal tissue so insulin levels cannot be used as a marker of graft function while the beta-cell is immature. Therefore, we have examined the use of another pancreatic endocrine hormone, pancreatic polypeptide (PP), to monitor graft function. The cell that produces this hormone has been shown to be the first mature endocrine cell in the fetal pancreas. Fetal pig pancreatic tissue, both in the form of 1 mm3 explants and islet-like cell clusters (ICCs), was transplanted into immunodeficient SCID mice and the levels of PP and insulin were measured in plasma and in the graft for up to 12 weeks. PP was detected in the untransplanted explants (0.58 pmol/mg) and ICCs (0.06 pmol/ICC) and the PP to insulin ratio was 2.7% and 5.8%, respectively. PP (but not porcine C-peptide, a marker of insulin secretion) was detectable in the plasma of SCID mice from 4 days to 3 weeks after transplantation, but not thereafter. The highest values were obtained at 4 days to 1 week. In the grafted tissue PP and insulin were present at all time points and the ratio of PP to insulin was 59%, 87%, 75%, 56%, 7%, 8%, and 7% at 4 days, 1, 2, 3, 6, 9, and 12 weeks, respectively. The decline in PP levels 3 weeks after transplantation was associated with beta-cell development in the graft. PP was also secreted by fetal pig pancreatic explants transplanted into diabetic NOD/SCID mice, with plasma levels measurable in the first week after the tissue was grafted. In immunocompetent BALB/c mice transplanted with the tissue, PP was detectable in plasma for 2 days after transplantation but not at 4 days, when cellular rejection commenced, or thereafter. We conclude that plasma PP levels can be used as a marker of the viability of fetal porcine pancreatic tissue in the first 3 weeks after

  16. Stroke promotes survival of nearby transplanted neural stem cells by decreasing their activation of caspase 3 while not affecting their differentiation.

    Science.gov (United States)

    Kosi, Nina; Alić, Ivan; Salamon, Iva; Mitrečić, Dinko

    2018-02-14

    Although transplantation of stem cells improves recovery of the nervous tissue, little is known about the influence of different brain regions on transplanted cells. After we confirmed that cells with uniform differentiation potential can be generated in independent experiments, one million of neural stem cells isolated from B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse embryos were transplanted into the brain 24 h after induction of stroke. The lateral ventricles, the corpus callosum and the striatum were tested. Two and four weeks after the transplantation, the cells transplanted in all three regions have been attracted to the ischemic core. The largest number of attracted cells has been observed after transplantation into the striatum. Their differentiation pattern and expression of neuroligin 1, SynCAM 1, postsynaptic density protein 95 and synapsin 1 followed the same pattern observed during in vitro cultivation and it did not differ among the tested regions. Differentiation pattern of the cells transplanted in the stroke-affected and healthy animals was the same. On the other hand, neural stem cells transplanted in the striatum of the animals affected by stroke exhibited significantly increased survival rates reaching 260 ± 19%, when compared to cells transplanted in their wild type controls. Surprisingly, improved survival two and four weeks after transplantation was not due to increased proliferation of the grafted cells and it was accompanied by decreased levels of activity of Casp3 (19.56 ± 3.1% in the stroke-affected vs. 30.14 ± 2.4% in healthy animals after four weeks). We assume that the decreased levels of Casp3 in cells transplanted near the ischemic region was linked to increased vasculogenesis, synaptogenesis, astrocytosis and axonogenesis detected in the host tissue affected by ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Umbilical cord blood banking in the worldwide hematopoietic stem cell transplantation system: perspectives for Ukraine.

    Science.gov (United States)

    Kalynychenko, T O

    2017-09-01

    Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.

  18. No association between infections, HLA type and other transplant-related factors and risk of cutaneous squamous cell carcinoma in solid organ transplant recipients.

    Science.gov (United States)

    Ingvar, Åsa; Ekström Smedby, Karin; Lindelöf, Bernt; Fernberg, Pia; Bellocco, Rino; Tufveson, Gunnar; Höglund, Petter; Adami, Johanna

    2012-11-01

    Recipients of solid organ transplants are at a markedly increased risk of cutaneous squamous cell carcinoma (SCC). We investigated potential associations between post-transplant infections, HLA type, and other transplant-related factors and risk of SCC, taking immuno-suppressive treatment into account. A population-based case-control study was conducted. All patients who developed SCC during follow-up (1970-1997) were eligible as cases (n = 207). Controls (n = 189) were individually matched to the cases on age and calendar period of transplantation. Detailed exposure information was collected through an extensive, blinded review of medical records. Odds ratios were computed with conditional logistic regression. There were no significant associations with any infectious agents, or with number and timing of infections, specific HLA-type, donor characteristics, or other transplant characteristics and risk of post-transplant SCC. These results suggest that risk of post-transplant SCC is neither closely related to specific post-transplant infectious disorders, nor to the infectious load or specific HLA types.

  19. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats.

    Science.gov (United States)

    Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang

    2017-01-01

    Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.

  20. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke.

    Science.gov (United States)

    Peña, Ike dela; Borlongan, Cesar V

    2015-12-01

    Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further

  1. Mycobacterium genavense-induced spindle cell pseudotumor in a pediatric hematopoietic stem cell transplant recipient: Case report and review of the literature.

    Science.gov (United States)

    Coelho, Ritika; Hanna, Rabi; Flagg, Aron; Stempak, Lisa M; Ondrejka, Sarah; Procop, Gary W; Harrington, Susan; Zembillas, Anthony; Kusick, Karissa; Gonzalez, Blanca E

    2017-04-01

    We describe the first reported pediatric patient to our knowledge with a spindle cell pseudotumor caused by Mycobacterium genavense in a hematopoietic stem cell transplant recipient, and review the literature of such an entity in the transplant population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. T Cell-Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia.

    Science.gov (United States)

    How, Joan; Slade, Michael; Vu, Khoan; DiPersio, John F; Westervelt, Peter; Uy, Geoffrey L; Abboud, Camille N; Vij, Ravi; Schroeder, Mark A; Fehniger, Todd A; Romee, Rizwan

    2017-04-01

    Outcomes for patients with acute myeloid leukemia (AML) who fail to achieve complete remission remain poor. Hematopoietic cell transplantation (HCT) has been shown to induce long-term survival in AML patients with active disease. HCT is largely performed with HLA-matched unrelated or HLA-matched related donors. Recently, HCT with HLA-haploidentical related donors has been identified as a feasible option when HLA-matched donors are not immediately available. However, there are little data comparing outcomes for AML patients with active disease who receive haploidentical versus traditionally matched HCT. We retrospectively analyzed data from 99 AML patients with active disease undergoing allogeneic HCT at a single institution. Forty-three patients received unrelated donor HCT, 32 patients received matched related donor HCT, and 24 patients received peripheral blood haploidentical HCT with post-transplantation cyclophosphamide. We found no significant differences between treatment groups in terms of overall survival (OS), event-free survival, transplantation-related mortality, cumulative incidence of relapse, and cumulative incidence of acute and chronic graft-versus-host disease (GVHD). We performed univariate regression analysis of variables that modified OS in all patients and found only younger age at transplantation and development of chronic GVHD significantly improved outcome. Although limited by our relatively small sample size, these results indicate that haploidentical HCT in active AML patients have comparable outcomes to HCT with traditionally matched donors. Haploidentical HCT can be considered in this population of high-risk patients when matched donors are unavailable or when wait times for transplantation are unacceptably long. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Gastroesophageal reflux disease and its association with bronchiolitis obliterans syndrome in allogeneic hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Khalid, Mohammed; Aljurf, Mahmoud; Saleemi, Sarfraz; Khan, Mohammed Qaseem; Khan, Basha; Ahmed, Shad; Ibrahim, Khalid El Tayeb; Mobeireek, Abdullah; Al Mohareb, Fahad; Chaudhri, Naeem

    2013-06-01

    Bronchiolitis obliterans syndrome is a significant postallogeneic hematopoietic stem cell transplant problem. Recent data in lung transplant patients suggest an association with gastroesophageal reflux disease and bronchiolitis obliterans syndrome. We studied posthematopoietic stem cell transplant patients with bronchiolitis obliterans syndrome for gastroesophageal reflux disease and its response to a proton pump inhibitor. Seven postallogeneic hematopoietic stem cell transplant patients with bronchiolitis obliterans syndrome were studied. Gastroesophageal reflux disease was assessed by 24-hour pH monitoring with a Bravo catheter-free radio pH capsule. Patients with positive gastroesophageal reflux disease were started on omeprazole. Pretreatment and posttreatment pulmonary function tests were done at 3-month intervals. Of 7 patients, 5 had positive results for gastroesophageal reflux disease (71%). Omeprazole had a disease-stabilizing effect on the patients' pulmonary function tests. Our study shows a significant association between bronchiolitis obliterans syndrome and gastroesophageal reflux disease in postallogeneic hematopoietic stem cell transplant patients. Use of omeprazole may have a disease-stabilizing effect in short-term follow-up.

  4. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    Science.gov (United States)

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  5. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Chen, J. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China); Li, L.; Ran, J.H.; Liu, J. [The First People' s Hospital of Kunming, Kunming, Yunnan, China, The First People’s Hospital of Kunming, Kunming, Yunnan (China); Gao, T.X.; Guo, B.Y. [Dongchangfu Hospital of Women and Child Health Care, Liaocheng, Shandong (China); Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China)

    2013-07-30

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.

  6. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    International Nuclear Information System (INIS)

    Li, Z.; Chen, J.; Li, L.; Ran, J.H.; Liu, J.; Gao, T.X.; Guo, B.Y.; Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L.

    2013-01-01

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation

  7. Haematopoietic stem cell transplantation as first-line treatment in myeloma: a global perspective of current concepts and future possibilities

    Directory of Open Access Journals (Sweden)

    Catriona Elizabeth Mactier

    2012-10-01

    Full Text Available Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies.

  8. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  9. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    Science.gov (United States)

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection. Copyright © 2015. Published by Elsevier B.V.

  10. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-12-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.

  11. Facilitated Engraftment of Isolated Islets Coated With Expanded Vascular Endothelial Cells for Islet Transplantation.

    Science.gov (United States)

    Barba-Gutierrez, D Alonso; Daneri-Navarro, A; Villagomez-Mendez, J Jesus Alejandro; Kanamune, J; Robles-Murillo, A Karina; Sanchez-Enriquez, S; Villafan-Bernal, J Rafael; Rivas-Carrillo, J D

    2016-03-01

    Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Derivation of Traceable and Transplantable Photoreceptors from Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Sarah Decembrini

    2014-06-01

    Full Text Available Retinal degenerative diseases resulting in the loss of photoreceptors are one of the major causes of blindness. Photoreceptor replacement therapy is a promising treatment because the transplantation of retina-derived photoreceptors can be applied now to different murine retinopathies to restore visual function. To have an unlimited source of photoreceptors, we derived a transgenic embryonic stem cell (ESC line in which the Crx-GFP transgene is expressed in photoreceptors and assessed the capacity of a 3D culture protocol to produce integration-competent photoreceptors. This culture system allows the production of a large number of photoreceptors recapitulating the in vivo development. After transplantation, integrated cells showed the typical morphology of mature rods bearing external segments and ribbon synapses. We conclude that a 3D protocol coupled with ESCs provides a safe and renewable source of photoreceptors displaying a development and transplantation competence comparable to photoreceptors from age-matched retinas.

  13. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  14. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  15. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    Science.gov (United States)

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations.

    Science.gov (United States)

    Ebens, Christen L; MacMillan, Margaret L; Wagner, John E

    2017-01-01

    Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to 40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.

  17. Predicting Alloreactivity in Transplantation

    Directory of Open Access Journals (Sweden)

    Kirsten Geneugelijk

    2014-01-01

    Full Text Available Human leukocyte Antigen (HLA mismatching leads to severe complications after solid-organ transplantation and hematopoietic stem-cell transplantation. The alloreactive responses underlying the posttransplantation complications include both direct recognition of allogeneic HLA by HLA-specific alloantibodies and T cells and indirect T-cell recognition. However, the immunogenicity of HLA mismatches is highly variable; some HLA mismatches lead to severe clinical B-cell- and T-cell-mediated alloreactivity, whereas others are well tolerated. Definition of the permissibility of HLA mismatches prior to transplantation allows selection of donor-recipient combinations that will have a reduced chance to develop deleterious host-versus-graft responses after solid-organ transplantation and graft-versus-host responses after hematopoietic stem-cell transplantation. Therefore, several methods have been developed to predict permissible HLA-mismatch combinations. In this review we aim to give a comprehensive overview about the current knowledge regarding HLA-directed alloreactivity and several developed in vitro and in silico tools that aim to predict direct and indirect alloreactivity.

  18. The transplantation of neural stem cells and predictive factors in hematopoietic recovery in irradiated mice.

    Science.gov (United States)

    Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D

    2005-04-01

    A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, pthird experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.

  19. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.

    Science.gov (United States)

    Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-09-01

    Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.

  20. Unique B cell differentiation profile in tolerant kidney transplant patients.

    Science.gov (United States)

    Chesneau, M; Pallier, A; Braza, F; Lacombe, G; Le Gallou, S; Baron, D; Giral, M; Danger, R; Guerif, P; Aubert-Wastiaux, H; Néel, A; Michel, L; Laplaud, D-A; Degauque, N; Soulillou, J-P; Tarte, K; Brouard, S

    2014-01-01

    Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  2. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

    International Nuclear Information System (INIS)

    Schmidt, M.; Haagen, J.; Noack, R.; Siegemund, A.; Gabriel, P.; Doerr, W.

    2014-01-01

    Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation. Daily fractionated irradiation (5 x 3 Gy/week) was given over 1 (days 0-4) or 3 weeks (days 0-4, 7-11, 14-18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose-effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols. Transplantation of 6 x 10 6 , but not of 3 x 10 6 bone marrow stem cells on day -1, +4, +8, +11 or +15 significantly increased the ED 50 values (dose, at which an ulcer is expected in 50% of the mice); transplantation on day +2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day -1, 2 or +8 significantly, and on day +4 marginally increased the ED 50 values. Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation. (orig.)

  3. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  4. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  5. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vector