WorldWideScience

Sample records for cell transformation viral

  1. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    Science.gov (United States)

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  2. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Prabhakar Sripadi

    Full Text Available BACKGROUND: Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. METHODS AND PRINCIPAL FINDINGS: Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3 transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI mass spectrometry (MS. Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1 and PC(O-34:1 plasmalogens were displaced by PC(30:0 and PC(32:0 species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. CONCLUSIONS AND SIGNIFICANCE: We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3

  3. Human glioblastoma cells persistently infected with simian virus 40 carry nondefective episomal viral DNA and acquire the transformed phenotype and numerous chromosomal abnormalities.

    Science.gov (United States)

    Norkin, L C; Steinberg, V I; Kosz-Vnenchak, M

    1985-02-01

    A stable, persistent infection of A172 human glioblastoma cells with simian virus 40 (SV40) was readily established after infection at an input of 450 PFU per cell. Only 11% of the cells were initially susceptible to SV40, as shown by indirect immunofluorescent staining for the SV40 T antigen at 48 h. However, all cells produced T antigen by week 11. In contrast, viral capsid proteins were made in only about 1% of the cells in the established carrier system. Weekly viral yields ranged between 10(4) and 10(6) PFU/ml. Most of the capsid protein-producing cells contained enormous aberrant (lobulated or multiple) nuclei. Persistent viral DNA appeared in an episomal or "free" state exclusively in Southern blots and was indistinguishable from standard SV40 DNA by restriction analysis. Viral autointerference activity was not detected, and yield reduction assays did not indicate defective interfering particle activity, further implying that variant viruses were not a factor in this carrier system. Interferon was also not a factor in the system, as shown by direct challenge with vesicular stomatitis virus. Persistent infection resulted in cellular growth changes (enhanced saturation density and plating efficiency) characteristic of SV40 transformation. Persistent infection also led to an increased frequency of cytogenetic effects. These included sister chromatid exchanges, a variety of chromosomal abnormalities (ring chromosomes, acentric fragments, breaks, and gaps), and an increase in the chromosome number. Nevertheless, the persistently infected cells continued to display a bipolar glial cell-like morphology with extensive process extension and intercellular contacts.

  4. Mast cells in viral infections

    Directory of Open Access Journals (Sweden)

    Piotr Witczak

    2012-04-01

    Full Text Available  There are some premises suggesting that mast cells are involved in the mechanisms of anti-virus defense and in viral disease pathomechanisms. Mast cells are particularly numerous at the portals of infections and thus may have immediate and easy contact with the external environment and invading pathogens. These cells express receptors responsible for recognition of virus-derived PAMP molecules, mainly Toll-like receptors (TLR3, TLR7/8 and TLR9, but also RIG-I-like and NOD-like molecules. Furthermore, mast cells generate various mediators, cytokines and chemokines which modulate the intensity of inflammation and regulate the course of innate and adaptive anti-viral immunity. Indirect evidence for the role of mast cells in viral infections is also provided by clinical observations and results of animal studies. Currently, more and more data indicate that mast cells can be infected by some viruses (dengue virus, adenoviruses, hantaviruses, cytomegaloviruses, reoviruses, HIV-1 virus. It is also demonstrated that mast cells can release pre formed mediators as well as synthesize de novo eicosanoids in response to stimulation by viruses. Several data indicate that virus-stimulated mast cells secrete cytokines and chemokines, including interferons as well as chemokines with a key role in NK and Tc lymphocyte influx. Moreover, some information indicates that mast cell stimulation via TLR3, TLR7/8 and TLR9 can affect their adhesion to extracellular matrix proteins and chemotaxis, and influence expression of some membrane molecules. Critical analysis of current data leads to the conclusion that it is not yet possible to make definitive statements about the role of mast cells in innate and acquired defense mechanisms developing in the course of viral infection and/or pathomechanisms of viral diseases.

  5. Mesenchymal Stromal Cells and Viral Infection

    Directory of Open Access Journals (Sweden)

    Maytawan Thanunchai

    2015-01-01

    Full Text Available Mesenchymal Stromal Cells (MSCs are a subset of nonhematopoietic adult stem cells, readily isolated from various tissues and easily culture-expanded ex vivo. Intensive studies of the immune modulation and tissue regeneration over the past few years have demonstrated the great potential of MSCs for the prevention and treatment of steroid-resistant acute graft-versus-host disease (GvHD, immune-related disorders, and viral diseases. In immunocompromised individuals, the immunomodulatory activities of MSCs have raised safety concerns regarding the greater risk of primary viral infection and viral reactivation, which is a major cause of mortality after allogeneic transplantation. Moreover, high susceptibilities of MSCs to viral infections in vitro could reflect the destructive outcomes that might impair the clinical efficacy of MSCs infusion. However, the interplay between MSCs and virus is like a double-edge sword, and it also provides beneficial effects such as allowing the proliferation and function of antiviral specific effector cells instead of suppressing them, serving as an ideal tool for study of viral pathogenesis, and protecting hosts against viral challenge by using the antimicrobial activity. Here, we therefore review favorable and unfavorable consequences of MSCs and virus interaction with the highlight of safety and efficacy for applying MSCs as cell therapy.

  6. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  7. A zyxin-related protein whose synthesis is reduced in virally transformed fibroblasts.

    Science.gov (United States)

    Zumbrunn, J; Trueb, B

    1996-10-15

    We have cloned the gene for a novel LIM-domain protein from human fibroblasts whose expression is substantially decreased in simian-virus-40-(SV40)-transformed cells. This protein has a calculated molecular mass of 61 kDa and comprises a proline-rich domain followed by three LIM motifs. It appears to be identical to the focal adhesion protein p83 that has recently been isolated and characterized from porcine and human platelets. Hybridization experiments demonstrate a very low degree of evolutionary conservation of its sequence between mammals and birds. It is therefore possible that the novel protein represents the human equivalent of the chicken protein zyxin as the two proteins display a very similar overall structure, although their amino acid sequences diverge markedly from each other. The repression of this zyxin-related protein in virally transformed fibroblasts may explain, at least in part, the dramatic morphological changes that occur at the cell surface and in the cytoskeleton of transformed cells.

  8. Metabolic programming in chronically stimulated T cells: Lessons from cancer and viral infections.

    Science.gov (United States)

    Bettonville, Marie; D'Aria, Stefania; Braun, Michel Y

    2016-07-01

    T-cell metabolism is central to the shaping of a successful immune response. However, there are pathological situations where T cells are rendered dysfunctional and incapable of eliminating infected or transformed cells. Here, we review the current knowledge on T-cell metabolism and how persistent antigenic stimulation, in the form of cancer and chronic viral infection, modifies both metabolic and functional pathways in T cells. PMID:27271222

  9. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  10. Viral kinetics of Enterovirus 71 in human habdomyosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Lu; Ya-Qing He; Li-Na Yi; Hong Zan; Hsiang-Fu Kung; Ming-Liang He

    2011-01-01

    AIM: To characterise the viral kinetics of enterovirus 71 (EV71). METHODS: In this study, human rhabdomyosarcoma (RD) cells were infected with EV71 at different multiplicity of infection (MOI). After infection, the cytopathic effect (CPE) was monitored and recorded using a phase contrast microscope associated with a CCD camera at different time points post viral infection (0, 6, 12, 24 h post infection). Cell growth and viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in both EV71 infected and mock infected cells at each time point. EV71 replication kinetics in RD cells was determined by measuring the total intracellular viral RNA with real-time reverse-transcription polymerase chain reaction (qRT-PCR). Also, the intracellular and extracellular virion RNA was isolated and quantified at different time points to analyze the viral package and secretion. The expression of viral protein was determined by analyze the levels of viral structure protein VP1 with Western blotting. RESULTS: EV71 infection induced a significant CPE as early as 6 h post infection (p.i.) in both RD cells infected with high ratio of virus (MOI 10) and low ratio of virus (MOI 1). In EV71 infected cells, the cell growth was inhibited and the number of viable cells was rapidly decreased in the later phase of infection. EV71 virions were uncoated immediately after entry. The intracellular viral RNA began to increase at as early as 3 h p.i. and the exponential increase was found between 3 h to 6 h p.i. in both infected groups. For viral structure protein synthesis, results from western-blot showed that intracellular viral protein VP1 could not be detected until 6 h p.i. in the cells infected at either MOI 1 or MOI 10; and reached the peak at 9 h p.i. in the cells infected with EV71 at both MOI 1 and MOI 10. Simultaneously, the viral package and secretion were also actively processed as the virus underwent rapid replication. The viral package kinetics

  11. Theory of morphological transformation of viral capsid shells during maturation process

    CERN Document Server

    Konevtsova, O V; Rochal, S B

    2015-01-01

    In the frame of the Landau-Ginzburg formalism we propose a minimal phenomenological model for a morphological transformation in viral capsid shells. The transformation takes place during virus maturation process which renders virus infectious. The theory is illustrated on the example of the HK97 bacteriophage and viruses with similar morphological changes in the protective protein shell. The transformation is shown to be a structural phase transition driven by two order parameters. The first order parameter describes the isotropic expansion of the protein shell while the second one is responsible for the shape symmetry breaking and the resulting shell faceting. The group theory analysis and the resulting thermodynamic model make it possible to choose the parameter which discriminates between the icosahedral shell faceting often observed in viral capsids and the dodecahedral one observed in viruses of the Parvovirus family. Calculated phase diagram illustrates the discontinuous character of the virus morpholog...

  12. Cell-based Assays to Identify Inhibitors of Viral Disease

    Science.gov (United States)

    Green, Neil; Ott, Robert D.; Isaacs, Richard J.; Fang, Hong

    2009-01-01

    Background Antagonizing the production of infectious virus inside cells requires drugs that can cross the cell membrane without harming host cells. Objective It is therefore advantageous to establish intracellular potency of anti-viral drug candidates early in the drug-discovery pipeline. Methods To this end, cell-based assays are being developed and employed in high-throughput drug screening, ranging from assays that monitor replication of intact viruses to those that monitor activity of specific viral proteins. While numerous cell-based assays have been developed and investigated, rapid counter screens are also needed to define the specific viral targets of identified inhibitors and to eliminate nonspecific screening hits. Results/Conclusions Here, we describe the types of cell-based assays being used in antiviral drug screens and evaluate the equally important counter screens that are being employed to reach the full potential of cell-based high-throughput screening. PMID:19750206

  13. Cell Transformation by RNA Viruses: An Overview

    Directory of Open Access Journals (Sweden)

    Hung Fan

    2011-06-01

    Full Text Available Studies of oncogenic viruses have made seminal contributions to the molecular biology of cancer. Key discoveries include the identification of viral oncogenes and cellular proto-oncogenes, elucidation of signal transduction pathways, and identification of tumor suppressor genes. The origins of cancer virology began almost exactly one hundred years ago with the discovery of avian sarcoma and acute leukemia viruses—RNA-containing viruses of the retrovirus family. The study of animal cancer viruses accelerated beginning in the late 1960s and early 1970s, with the discovery of DNA viruses that could transform cells in culture, and the development of quantitative assays for transformation by DNA and RNA-containing tumor viruses. The discovery of reverse transcriptase in retroviruses in 1970 also greatly accelerated research on these viruses. Indeed RNA and DNA tumor viruses led the way in cancer molecular biology during this era before molecular cloning. It was possible to physically purify virus particles and generate specific hybridization probes for viral DNA and RNA at a time when it was not possible to analyze cellular genes in the same manner. [...

  14. Cell-free translation of bovine viral diarrhea virus RNA.

    OpenAIRE

    Purchio, A F; Larson, R.; Torborg, L L; Collett, M S

    1984-01-01

    Bovine viral diarrhea virus RNA was translated in a reticulocyte cell-free protein synthesizing system. The purified, 8.2-kilobase, virus-specific RNA species was unable to serve an an efficient message unless it was denatured immediately before translation. In this case, several polypeptides, ranging in molecular weight from 50,000 to 150,000 and most of which were immunoprecipitated by bovine viral diarrhea virus-specific antiserum, were synthesized in vitro. When polyribosomes were used to...

  15. Structural and metabolic studies of O-linked fucose-containing proteins of normal and virally-transformed rat fibroblasts

    International Nuclear Information System (INIS)

    Previous studies in this laboratory have demonstrated that cultured human and rodent cells contain a series of low molecular weight glycosylated amino acids of unusual structure, designated amino acid fucosides. The incorporation of radiolabelled-fucose into one of these components, designated FL4a (glucosylfucosylthreonine), is markedly-reduced in transformed epithelial and fibroblastic cells. The authors have examined fucose-labelled normal and virally-transformed rat fibroblast cell lines for glycoproteins which might be precursors to amino acid fucosides. Using milk alkaline/borohydride treatment (the beta-elimination reaction) to release O-linked oligosaccharides from proteins, they have isolated and partially characterized two low M/sub r/ reaction products (designated DS-ol and TS-ol) released from macromolecular cell material. The identity of one of these components (DS-ol, glucosylfucitol) suggested the existence in these cells of a direct protein precursor to FL4a. They examined fucose-labelled macromolecular cell material for proteins which release DS-ol (DS-proteins.). Using gel filtration chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent autoradiography, they have observed DS-proteins which appear to exhibit a broad molecular weight size range, and are also present in culture medium from normal and transformed cells. The findings suggest that mammalian cells contain DS-proteins and TS-proteins with a novel carbohydrate-peptide linkage wherein L-fucose is O-linked to a polypeptide backbone. Metabolic studies were undertaken to examine both the relationship between DS-protein and FL4a and the biochemical basis for the decreased level of FL4a and the biochemical basis for the decreased level of FL4a observed in transformed cells

  16. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach

    OpenAIRE

    Luef, Birgit; Luef, Franz; Peduzzi, Peter

    2009-01-01

    Assessing viral production (VP) requires robust methodological settings combined with precise mathematical calculations. This contribution improves and standardizes mathematical calculations of VP and the assessment of the proportion of lysogenic cells in a sample. We present an online tool ‘Viral Production Calculator’ (vipcal, http://www.univie.ac.at/nuhag-php/vipcal) that calculates lytic production and the percentage of lysogenic cells based on data obtained from a viral reduction approac...

  17. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  18. Viral infections and cell cycle G2/M regulation

    Institute of Scientific and Technical Information of China (English)

    Richard Y.ZHAO; Robert T.ELDER

    2005-01-01

    Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15(Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well-characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.

  19. Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation.

    Science.gov (United States)

    Noval, María G; Gallo, Mariana; Perrone, Sebastián; Salvay, Andres G; Chemes, Lucía B; de Prat-Gay, Gonzalo

    2013-01-01

    Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N). Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29), while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII) structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus. PMID:24086265

  20. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  1. Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation.

    Directory of Open Access Journals (Sweden)

    María G Noval

    Full Text Available Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N. Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29, while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus.

  2. Roles of HTLV-1 basic Zip Factor (HBZ in Viral Chronicity and Leukemic Transformation. Potential New Therapeutic Approaches to Prevent and Treat HTLV-1-Related Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Michel Mesnard

    2015-12-01

    Full Text Available More than thirty years have passed since human T-cell leukemia virus type 1 (HTLV-1 was described as the first retrovirus to be the causative agent of a human cancer, adult T-cell leukemia (ATL, but the precise mechanism behind HTLV-1 pathogenesis still remains elusive. For more than two decades, the transforming ability of HTLV-1 has been exclusively associated to the viral transactivator Tax. Thirteen year ago, we first reported that the minus strand of HTLV-1 encoded for a basic Zip factor factor (HBZ, and since then several teams have underscored the importance of this antisense viral protein for the maintenance of a chronic infection and the proliferation of infected cells. More recently, we as well as others have demonstrated that HBZ has the potential to transform cells both in vitro and in vivo. In this review, we focus on the latest progress in our understanding of HBZ functions in chronicity and cellular transformation. We will discuss the involvement of this paradigm shift of HTLV-1 research on new therapeutic approaches to treat HTLV-1-related human diseases.

  3. Immunofluorescence on avian sarcoma virus-transformed cells: localization of the src gene product.

    Science.gov (United States)

    Rohrschneider, L R

    1979-01-01

    The localization of the avian sarcoma virus src gene product (termed p60src) was examined by indirect immunofluorescence in cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup D (SR-RSV-D). Antiserum to p60src was obtained from rabbits bearing SR-RSV-D-induced tumors, and immunofluorescence was performed on chicken embryo fibroblasts (CEF) transformed with SR-RSV-D, as well as normal rat kidney (NRK) cells transformed by the same virus (termed SR-RK cells). Both acetone and formaldehyde fixation were used for the immunofluorescence tests. The specificity of the anti-tumor serum was first demonstrated in both cell systems by gel electrophoresis of immunoprecipitates prepared from 35S--methionine-labeled cells. Anti-tumor serum precipitated p60src from SR-RSV-D-transformed CEF but not from CEF infected with a transformation-defective mutant of SR-RSV-D. All viral structural proteins and precursors contained in these immunoprecipitates could be eliminated by competition with unlabeled virus. Similar experiments on SR-RK cells indicated that no viral proteins other than p60src were expressed in these cells, and this observation was supported by immunofluorescence tests using antiserum to whole virus. For immunofluorescence localization of p60src, reactions with viral structural proteins were blocked with unlabeled virus. This presaturation step, obligatory for p60src detection in the SR-RSV-D-transformed CEF, was unnecessary when antitumor serum was tested on SR-RK cells, since p60src was the only viral protein detectable in these cells. With acetone-fixed cells, p60src-specific immunofluorescence revealed a characteristic fluorescence pattern which was similar in both cell systems. The principal pattern was diffuse and situated in the cytoplasm. A clear nuclear fluorescence was never observed. Immunofluorescence on formaldehyde-fixed cells also indicated the cytoplasmic location of p60src and revealed a specific subcytoplasmic concentration

  4. Characteristics of Mitochondrial Transformation into Human Cells

    Science.gov (United States)

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  5. Characteristics of Mitochondrial Transformation into Human Cells.

    Science.gov (United States)

    Kesner, E E; Saada-Reich, A; Lorberboum-Galski, H

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process.

  6. Mechanisms of cell transformation induced by polyomavirus

    Directory of Open Access Journals (Sweden)

    M.L.S. Oliveira

    1999-07-01

    Full Text Available Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT, middle T (MT, and small T (ST antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

  7. Memory CD8+ T cell differentiation in viral infection: A cell for all seasons

    Institute of Scientific and Technical Information of China (English)

    Henry Radziewicz; Luke Uebelhoer; Bertram Bengsch; Arash Grakoui

    2007-01-01

    Chronic viral infections such as hepatitis B virus (HBV),hepatitis C virus (HCV) and human immunodeficiency virus (HIV) are major global health problems affecting more than 500 million people worldwide. Virus-specific CD8+ T cells play an important role in the course and outcome of these viral infections and it is hypothesized that altered or impaired differentiation of virusspecific CD8+ T cells contributes to the development of persistence and/or disease progression. A deeper understanding of the mechanisms responsible for functional differentiation of CD8+ T cells is essential for the generation of successful therapies aiming to strengthen the adaptive component of the immune system.

  8. DMPD: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18641647 Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and... (.csml) Show Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases.... PubmedID 18641647 Title Plasmacytoid dendritic cells: sensing nucleic acids in v

  9. Inherited susceptibility to retrovirus-induced transformation of Gardner syndrome cells.

    OpenAIRE

    Rasheed, S; Rhim, J S; Gardner, E J

    1983-01-01

    Skin fibroblasts from patients with Gardner syndrome (GS), those with familial polyposis coli (FPC), and spouse or unrelated controls were karyotyped and tested for various growth properties including susceptibility to transformation by viral or chemical agents. Our results indicated that based on the higher susceptibility to retrovirus-induced transformation and chromosomal aneuploidy, the GS and FPC cells could be distinguished from those of the general population with more than 70% accurac...

  10. Cell of origin of transformed follicular lymphoma.

    Science.gov (United States)

    Kridel, Robert; Mottok, Anja; Farinha, Pedro; Ben-Neriah, Susana; Ennishi, Daisuke; Zheng, Yvonne; Chavez, Elizabeth A; Shulha, Hennady P; Tan, King; Chan, Fong Chun; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Sehn, Laurie H; Marra, Marco A; Shah, Sohrab P; Steidl, Christian; Connors, Joseph M; Scott, David W; Gascoyne, Randy D

    2015-10-29

    Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL. PMID:26307535

  11. Cell of origin of transformed follicular lymphoma.

    Science.gov (United States)

    Kridel, Robert; Mottok, Anja; Farinha, Pedro; Ben-Neriah, Susana; Ennishi, Daisuke; Zheng, Yvonne; Chavez, Elizabeth A; Shulha, Hennady P; Tan, King; Chan, Fong Chun; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Sehn, Laurie H; Marra, Marco A; Shah, Sohrab P; Steidl, Christian; Connors, Joseph M; Scott, David W; Gascoyne, Randy D

    2015-10-29

    Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL.

  12. Progressive transformation of immortalized esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-YingShen; Li-YanXu; Min-HuaChen; JianShen; Wei-JiaCai; YiZeng

    2002-01-01

    AIM:To investigate the progressive transformation of immortal cells of human fetal esophageal epithelium induced by human papillomavirus,and to examine biological criteria of sequential passage of cells,including cellular phenotype,proliferative rate,telomerase,chromosome and tumorigenicity.

  13. Methionine-sensitive glycolysis in transformed cells.

    Science.gov (United States)

    Boerner, P; Racker, E

    1985-10-01

    Glycolysis in several tumor cell lines grown in tissue culture was inhibited by methionine. Kirsten murine sarcoma virus-transformed rat kidney cells (K-NRK) were inhibited 60-75% by 10 mM methionine, whereas normal rat kidney (NRK-49F) cells showed little or no inhibition. Inhibition of glycolysis in K-NRK cells was manifest 2-4 hr after exposure to the amino acid. Glycolysis in a chemically transformed cell line of Madin-Darby canine kidney cells was also sensitive to methionine, but maximal inhibition (75%) required 18-24 hr of incubation with the amino acid. Under the same conditions glycolysis in the nontransformed canine cells was less than 20% inhibited by methionine. In Ehrlich ascites tumor cells grown in tissue culture, 10 mM methionine inhibited glycolysis by about 50%. Inhibition of glycolysis, even by 50 mM methionine, was rapidly reversible. Within 2 hr after removal of methionine the rate of glycolytic activity was restored to that observed in control cells. Furthermore, inhibition by methionine required a minimum level (7%) of serum in the growth medium and inhibition was not sensitive to cycloheximide. Only amino acids that are transported by system A (including the nonmetabolized analogue methylaminoisobutyric acid) specifically inhibited glycolysis in tumor cells. The only exception was phenylalanine, which was toxic to both transformed and normal cell lines.

  14. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  15. Cell transformation as aberrant differentiation:Environmentally dependent spontaneous transformation of NIH 3T3 cells

    Institute of Scientific and Technical Information of China (English)

    XUKANG; HARRYRUBIN

    1990-01-01

    NIH 3T3 cells,a mouse fibroblast cell line used as routine target cells for transfection experiments,undergo spontaneous transformation in our experiments after they form a confluent sheet in medium containing fetal bovine serum (FBS) of lower concentration of calf serum (CS).The transformation takes the form of foci of multiplying cells among the surrounding cells which have stopped cell division.However,no focus of trans formed cells could be seen in medium containing high concentration (10%) of CS.Further experiments indicated that the frequency of transformation is highly dependent on the concentration of serum and the transformation in CS is changeable when the cells are passaged in FBS.&3H-thymidine autoradiography has been proved to be a sensitive measurement indicator for focus formation.Our results suggest that the high frequency of transformation and its dependence on confluency as well as on medium composition are characteristics of cell differentiation rather than mutation.The role of the NIH 3T3 cell line as a cancer-initiated cell population and its accelerated transformation by ras oncogene might be considered as a form of tumor promotion is discussed.

  16. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and su

  17. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  18. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina;

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors and cytoki......INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... with respect to safety issues and ease of handling, improvement of non-viral gene delivery to primary MSCs deserves further attention. The high efficiency of rAAV-mediated gene delivery observed at high titers can be explained by the ability of rAAV vector to transduce nondividing cells and by its tropism...

  19. Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral Replication.

    Science.gov (United States)

    Dutartre, Hélène; Clavière, Mathieu; Journo, Chloé; Mahieux, Renaud

    2016-09-01

    Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.

  20. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  1. Cross-reactive anti-viral T cells increase prior to an episode of viral reactivation post human lung transplantation.

    Directory of Open Access Journals (Sweden)

    Thi H O Nguyen

    Full Text Available Human Cytomegalovirus (CMV reactivation continues to influence lung transplant outcomes. Cross-reactivity of anti-viral memory T cells against donor human leukocyte antigens (HLA may be a contributing factor. We identified cross-reactive HLA-A*02:01-restricted CMV-specific cytotoxic T lymphocytes (CTL co-recognizing the NLVPMVATV (NLV epitope and HLA-B27. NLV-specific CD8+ T cells were expanded for 13 days from 14 HLA-A*02:01/CMV seropositive healthy donors and 11 lung transplant recipients (LTR then assessed for the production of IFN-γ and CD107a expression in response to 19 cell lines expressing either single HLA-A or -B class I molecules. In one healthy individual, we observed functional and proliferative cross-reactivity in response to B*27:05 alloantigen, representing approximately 5% of the NLV-specific CTL population. Similar patterns were also observed in one LTR receiving a B27 allograft, revealing that the cross-reactive NLV-specific CTL gradually increased (days 13-193 post-transplant before a CMV reactivation event (day 270 and reduced to basal levels following viral clearance (day 909. Lung function remained stable with no acute rejection episodes being reported up to 3 years post-transplant. Individualized immunological monitoring of cross-reactive anti-viral T cells will provide further insights into their effects on the allograft and an opportunity to predict sub-clinical CMV reactivation events and immunopathological complications.

  2. Mesenchymal Stromal Cells Do Not Increase the Risk of Viral Reactivation Nor the Severity of Viral Events in Recipients of Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Giovanna Lucchini

    2012-01-01

    Full Text Available Mesenchymal stromal cells (MSC are tested in clinical trials to treat graft versus host disease (GvHD after stem cell transplantation (SCT. In vitro studies demonstrated MSC's broad immunosuppressive activity. As infections represent a major risk after SCT, it is important to understand the role of MSC in this context. We analyzed 24 patients (pts receiving MSC for GvHD in our Unit between 2009 and 2011. We recorded viral reactivations as measured in whole blood with polymerase chain reaction for 100 days following MSC administration. In patients with a documented viral reactivation in the first 3 days following MSCs infusion the frequency of virus-specific IFNgamma-producing cells was determined through enzyme-linked immunospot assay. In our cohort of patients viral reactivation after MSC infusion occurred in 45% of the cases, which did not significantly differ from the incidence in a historical cohort of patients affected by steroid resistant GvHD and treated with conventional immunosuppression. No patient presented severe form of infection. Two cases could be checked for immunological response to viral stimulus and demonstrated virus specific T-cytotoxic lymphocyte activity. In our experience MSC infusion did not prove to trigger more frequent or severer viral reactivations in the post transplantation setting.

  3. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  4. Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, Anneline; Madsen, Andreas Nygaard;

    2003-01-01

    T cell mediated immunity and in particular CD8+ T cells are pivotal for the control of most viral infections. T cells exclusively exert their antiviral effect through close cellular interaction with relevant virus-infected target cells in vivo. It is therefore imperative that efficient mechanisms...

  5. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  6. Viral infections in type 1 diabetes mellitus--why the β cells?

    Science.gov (United States)

    de Beeck, Anne Op; Eizirik, Decio L

    2016-05-01

    Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review. PMID:27020257

  7. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  8. Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans

    OpenAIRE

    Elena Sandalova; Diletta Laccabue; Carolina Boni; Tan, Anthony T.; Katja Fink; Eng Eong Ooi; Robert Chua; Bahar Shafaeddin Schreve; Carlo Ferrari; Antonio Bertoletti

    2010-01-01

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 1...

  9. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  10. Generation of Transgene-free Induced Pluripotent Stem Cells with Non-viral Methods

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Hua-shan Zhao; Qiu-ling Zhang; Chang-lin Xu; Chang-bai Liu

    2013-01-01

    Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4,Sox2,Klf4,and c-Myc). The technique was quickly re-produced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic po-tential in animal models of sickle cell anemia and Parkinson's disease,iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches,transfection of mRNA,and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages,disadvantages,efficiency,and safety of these methods.

  11. Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy.

    Directory of Open Access Journals (Sweden)

    Libin Rong

    2009-10-01

    Full Text Available Although potent combination therapy is usually able to suppress plasma viral loads in HIV-1 patients to below the detection limit of conventional clinical assays, a low level of viremia frequently can be detected in plasma by more sensitive assays. Additionally, many patients experience transient episodes of viremia above the detection limit, termed viral blips, even after being on highly suppressive therapy for many years. An obstacle to viral eradication is the persistence of a latent reservoir for HIV-1 in resting memory CD4(+ T cells. The mechanisms underlying low viral load persistence, slow decay of the latent reservoir, and intermittent viral blips are not fully characterized. The quantitative contributions of residual viral replication to viral and the latent reservoir persistence remain unclear. In this paper, we probe these issues by developing a mathematical model that considers latently infected cell activation in response to stochastic antigenic stimulation. We demonstrate that programmed expansion and contraction of latently infected cells upon immune activation can generate both low-level persistent viremia and intermittent viral blips. Also, a small fraction of activated T cells revert to latency, providing a potential to replenish the latent reservoir. By this means, occasional activation of latently infected cells can explain the variable decay characteristics of the latent reservoir observed in different clinical studies. Finally, we propose a phenomenological model that includes a logistic term representing homeostatic proliferation of latently infected cells. The model is simple but can robustly generate the multiphasic viral decline seen after initiation of therapy, as well as low-level persistent viremia and intermittent HIV-1 blips. Using these models, we provide a quantitative and integrated prospective into the long-term dynamics of HIV-1 and the latent reservoir in the setting of potent antiretroviral therapy.

  12. TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection

    Directory of Open Access Journals (Sweden)

    Tuoqi Wu

    2015-09-01

    Full Text Available T follicular helper (TFH and T helper 1 (Th1 cells generated after viral infections are critical for the control of infection and the development of immunological memory. However, the mechanisms that govern the differentiation and maintenance of these two distinct lineages during viral infection remain unclear. We found that viral-specific TFH and Th1 cells showed reciprocal expression of the transcriptions factors TCF1 and Blimp1 early after infection, even before the differential expression of the canonical TFH marker CXCR5. Furthermore, TCF1 was intrinsically required for the TFH cell response to viral infection; in the absence of TCF1, the TFH cell response was severely compromised, and the remaining TCF1-deficient TFH cells failed to maintain TFH-associated transcriptional and metabolic signatures, which were distinct from those in Th1 cells. Mechanistically, TCF1 functioned through forming negative feedback loops with IL-2 and Blimp1. Our findings demonstrate an essential role of TCF1 in TFH cell responses to viral infection.

  13. T Cell Memory in the Context of Persistent Herpes Viral Infections

    Directory of Open Access Journals (Sweden)

    Nicole Torti

    2012-07-01

    Full Text Available The generation of a functional memory T cell pool upon primary encounter with an infectious pathogen is, in combination with humoral immunity, an essential process to confer protective immunity against reencounters with the same pathogen. A prerequisite for the generation and maintenance of long-lived memory T cells is the clearance of antigen after infection, which is fulfilled upon resolution of acute viral infections. Memory T cells play also a fundamental role during persistent viral infections by contributing to relative control and immuosurveillance of active replication or viral reactivation, respectively. However, the dynamics, the phenotype, the mechanisms of maintenance and the functionality of memory T cells which develop upon acute/resolved infection as opposed to chronic/latent infection differ substantially. In this review we summarize current knowledge about memory CD8 T cell responses elicited during α-, β-, and γ-herpes viral infections with major emphasis on the induction, maintenance and function of virus-specific memory CD8 T cells during viral latency and we discuss how the peculiar features of these memory CD8 T cell responses are related to the biology of these persistently infecting viruses.

  14. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis

    Science.gov (United States)

    Phares, Timothy W.; DiSano, Krista D.; Hinton, David R.; Hwang, Mihyun; Zajac, Allan J.; Stohlman, Stephen A.; Bergmann, Cornelia C.

    2013-01-01

    Acute coronavirus encephalomyelitis is controlled by T cells while humoral responses suppress virus persistence. This study defines the contribution of interleukin (IL)-21, a regulator of T and B cell function, to central nervous system (CNS) immunity. IL-21 receptor deficiency did not affect peripheral T cell activation or trafficking, but dampened granzyme B, gamma interferon and IL-10 expression by CNS T cells and reduced serum and intrathecal humoral responses. Viral control was already lost prior to humoral CNS responses, but demyelination remained comparable. These data demonstrate a critical role of IL-21 in regulating CNS immunity, sustaining viral persistence and preventing mortality. PMID:23992866

  15. Application of ionic liquid to polymorphic transformation of anti-viral/HIV drug adefovir dipivoxil.

    Science.gov (United States)

    An, Ji-Hun; Jin, Feng; Kim, Hak Sung; Ryu, Hyung Chul; Kim, Jae Sun; Kim, Hyuk Min; Kiyonga, Alice Nguvoko; Min, Dong Sun; Youn, Wonno; Kim, Ki Hyun; Jung, Kiwon

    2016-05-01

    Ionic liquids (ILs) are defined as salts with a melting point below 100 °C. ILs have received increasing attention as new alternative to organic solvents because of their unique physicochemical properties. Therefore, this study was conducted in the purpose to present the efficacy of ILs as new solvents capable to control the Polymorphic transformation phenomenon. Here, the polymorphic transformation phenomenon of adefovir dipivoxil, an efficient antiviral active pharmaceutical ingredient on human immunodeficiency virus, was investigated. The phase transformation phenomenon from the metastable polymorph, new form (NF) to the stable polymorph, Form-X in 1-allyl-3-ethylimidazolium tetrafluoroborate (AEImBF4) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BDMImBF4) ILs solutions was observed utilizing the solvent-mediated phase transformation method The thermodynamic factors, AEImBF4/BDMImBF4 solvent composition ratio of 3:7-6:4 and the temperature in range of 25-100 °C, as well as the dynamic factor, the rational speed in range of 300-1000 rpm were parameters studied in this experiment. The thermodynamic and dynamic equations involving nucleation and mass transfer were applied for the quantitative analysis. The result of the present study confirmed the use of ILs as substitute solvent for volatile organic solvents, and demonstrated the efficacy of ILs as potential solvent-media to control the polymorphic transformation. PMID:26908332

  16. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    Science.gov (United States)

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  17. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control.

    Science.gov (United States)

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A; Lang, Karl S

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8(+) T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8(+) T cells and for viral control. In contrast to specific antibodies, memory CD8(+) T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  18. iNKT Cells and Their potential Lipid Ligands during Viral Infection

    Directory of Open Access Journals (Sweden)

    Anunya eOpasawatchai

    2015-07-01

    Full Text Available Invariant natural killer T (iNKT cells are a unique population of lipid reactive CD1d restricted innate-like T lymphocytes. Despite being a minor population, they serve as an early source of cytokines and promote immunological crosstalk thus bridging innate and adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer as well as infectious diseases, including viral infection, have been reported to be influenced by iNKT cells. However, it remains unclear how iNKT cells are activated during viral infection, as virus derived lipid antigens have not been reported. Cytokines may activate iNKT cells during infections from influenza and murine cytomegalovirus (MCMV, although CD1d dependent activation is evident in other viral infections. Several viruses, such as dengue virus (DENV, induce CD1d upregulation which correlates with iNKT cell activation. In contrast, Herpes simplex virus type 1 (HSV-1, Human immunodeficiency virus (HIV, Epstein-Barr virus (EBV and Human papiloma virus (HPV promote CD1d downregulation as a strategy to evade iNKT cell recognition. These observations suggest the participation of a CD1d-dependent process in the activation of iNKT cells in response to viral infection. Endogenous lipid ligands, including phospholipids as well as glycosphingolipids, such as glucosylceramide have been proposed to mediate iNKT cell activation. Pro-inflammatory signals produced during viral infection may stimulate iNKT cells through enhanced CD1d dependent endogenous lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit endogenous lipid degradation. Recent advances in this field are reviewed.

  19. A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients.

    Directory of Open Access Journals (Sweden)

    Jessica M Conway

    2011-04-01

    Full Text Available Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART, we present a stochastic model of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips (clinically-observed short periods of detectable viral load represent large deviations from the mean. We model the system as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-outcome variability that cannot be found from deterministic models.

  20. Host and viral factors contributing to CD8+ T cell failure in hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Christoph Neumann-Haefelin; Hans Christian Spangenberg; Hubert E Blum; Robert Thimme

    2007-01-01

    Virus-specific CD8+ T cells are thought to be the major anti-viral effector cells in hepatitis C virus (HCV)infection. Indeed, viral clearance is associated with vigorous CD8+ T cell responses targeting multiple epitopes. In the chronic phase of infection, HCV-specific CD8+ T cell responses are usually weak, narrowly focused and display often functional defects regarding cytotoxicity, cytokine production, and proliferative capacity. In the last few years, different mechanisms which might contribute to the failure of HCV-specific CD8+ T cells in chronic infection have been identified,including insufficient CD4+ help, deficient CD8+ T cell differentiation, viral escape mutations, suppression by viral factors, inhibitory cytokines, inhibitory ligands, and regulatory T cells. In addition, host genetic factors such as the host's human leukocyte antigen (HLA) background may play an important role in the efficiency of the HCVspecific CD8+ T cell response and thus outcome of infection. The growing understanding of the mechanisms contributing to T cell failure and persistence of HCV infection will contribute to the development of successful immunotherapeutical and -prophylactical strategies.

  1. Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins.

    OpenAIRE

    Ekaterina Dadachova; Patel, Mahesh C; Sima Toussi; Christos Apostolidis; Alfred Morgenstern; Brechbiel, Martin W.; Miroslaw K Gorny; Susan Zolla-Pazner; Arturo Casadevall; Harris Goldstein

    2006-01-01

    Editors' Summary Background. In a person infected with HIV, the symptoms of AIDS can be delayed or controlled with drug combinations such as highly active antiretroviral therapy (HAART). However, at the moment there is no cure for HIV infection or AIDS; HAART has to be taken for life and has unpleasant side effects, and the HIV virus can become resistant to some of the drugs. Even in people for whom HAART is successfully controlling disease, HIV remains at very low levels in white blood cells...

  2. Non-viral gene delivery regulated by stiffness of cell adhesion substrates

    Science.gov (United States)

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J.

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  3. Higher Viral Load and Prolonged Viral Shedding Period is Associated with Impaired Th17 Cell Response in Patients with H1N1 Influenza A

    Institute of Scientific and Technical Information of China (English)

    Gui-lin; Yang; Ying-xia; Liu; Mu-tong; Fang; Wei-long; Liu; Xin-chun; Chen; John; Nunnari; Jing-jing; Xie; Ming-feng; Liao; Ming-xia; Zhang; Guo-bao; Li; Pei-ze; Zhang; Yi; Guan; Bo-ping; Zhou

    2012-01-01

    Objective To explore whether age,disease severity,cytokines and lymphocytes in H1N1 influenza A patients correlate with viral load and clearance.Methods Total of 70 mild and 16 severe patients infected with H1N1 influenza A virus were enrolled in this study.Results It was found that the patients under 14 years old and severe patients displayed significantly higher viral loads and prolonged viral shedding periods compared with the patients over 14 years old and mild patients,respectively(P < 0.05).Moreover,the patients under 14 years old and severe patients displayed significantly lower Th17 cell frequency than the patients over 14 years old and mild patients(P < 0.01).The viral shedding period inversely correlated with the frequency of IL-17+IFN-γ-CD4+ T cells.Additionally,the decreased concentration of serum TGF-β correlated with the decreased frequency of IL-17+IFN-γ-CD4+ T cells.Conclusions Both younger and severe patients are associated with higher viral loads and longer viral shedding periods,which may partially be attributed to the impaired Th17 cell response.

  4. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  5. Immunohistochemical study of hepatic oval cells in human chronic viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; De Kai Qiu; Yan Shen Peng

    2001-01-01

    AIM To detect immunohistochemically the presence of oval cells in chronic viral hepatitis with antibody against c-kit.METHODS We detected oval cells in paraffin-embedded liver sections of 3 normal controls and 26 liver samples from patients with chronic viral hepatitis, using immunohistochemistry with antibodies against c-kit, π-class glutathione Stransferase ( Tr-GST ) and cytokeratins 19(CK19).RESULTS Oval cells were not observed in normal livers. In chronic viral hepatitis, hepatic oval cells were located predominantly in the periportal . region and fibrosis septa,characterized by an ovoid nucleus, small size,and scant cytoplasm. Antibody against stem cell factor receptor, c-kit, had higher sensitivity and specificity than π-GST and CK19. About 50% -70% of c-kit positive oval cells were stained positively for either π-GST or CK19.CONCLUSION Oval cells are frequently detected in human livers with chronic viral hepatitis, suggesting that oval cell proliferation is associated with the liver regeneration in this condition.

  6. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status.

    Directory of Open Access Journals (Sweden)

    Anon Srikiatkhachorn

    Full Text Available BACKGROUND: Infection with dengue viruses (DENV causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF, to dengue hemorrhagic fever (DHF. The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known. METHOD: The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR. RESULTS: Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells. CONCLUSIONS: B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC. Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.

  7. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...... in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells...

  8. Isolation of a mutant MDBK cell line resistant to bovine viral diarrhea virus infection due to a block in viral entry.

    Science.gov (United States)

    Flores, E F; Donis, R O

    1995-04-20

    A cell line, termed CRIB, resistant to infection with bovine viral diarrhea virus (BVDV) has been derived from the MDBK bovine kidney cell line. CRIB cells were obtained by selection and cloning of cells surviving infection with a highly cytolytic BVDV strain. CRIB cells contain no detectable infectious or defective BVDV as ascertained by cocultivation, animal inoculation, indirect immunofluorescence, Western immunoblot, Northern hybridization, and RNA PCR. Inoculation of CRIB cells with 24 cytopathic and noncytopathic BVDV strains does not result in expression of viral genes or amplification of input virus. Karyotype and isoenzyme analyses demonstrated that CRIB are genuine bovine cells. CRIB cells are as susceptible as the parental MDBK cells to 10 other bovine viruses, indicating that these cells do not have a broad defect blocking viral replication. Transfection of CRIB cells with BVDV RNA or virus inoculation in the presence of polyethylene-glycol results in productive infection, indicating that the defect of CRIB cells is at the level of virus entry. CRIB cells are the first bovine cells reported to be resistant to BVDV infection in vitro and may be a useful tool for studying the early interactions of pestiviruses with host cells.

  9. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells.

    Directory of Open Access Journals (Sweden)

    Ohad Yogev

    2014-09-01

    Full Text Available Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV is the etiological agent of Kaposi's sarcoma (KS. KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency.

  10. Management of Viral Infections in Allogenic Hematopoietic Stem Cell Transplanted Children

    Directory of Open Access Journals (Sweden)

    Hatice Hale Gumus

    2014-02-01

    Full Text Available Viral infections such as herpes viruses (CMV, EBV, HHV-6, HSV-1 and 2, VZV, adenovirus, and polyomavirus (BK virus may lead to considerable morbidity and mortality in allogenic hematopoietic stem cell transplanted children (HSCT, mainly due to iatrogenic T cell dysfunction. To manage these infections, different strategies like matching of host and donor, viral surveillance, antiviral prophylaxis and preemptive antiviral treatment have been tried and combined, since these infections have become more recognised and can be monitored by quantitative real-time polymerase chain reaction. Viral infections associated with high morbidity and mortality in HSCT patients can be prevented by early diagnosis through the molecular diagnostic techniques and timely initiation of appropriate treatment options.

  11. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  12. [Presence of autocomplementary RNA with viral specificity in cells infected with herpes virus].

    Science.gov (United States)

    Béchet, J M; Montagnier, L; Latarjet, R

    1975-01-13

    RNA from cells infected with Herpes simplex virus contain a higher percentage of double-stranded RNA than non-infected cells. This percentage increases three-fold upon self-annealing. The complementary RNA sequences were shown to be virus-specific by the following criteria: (1) high melting temperature than double-stranded RNA from non infected cells; (2) higher density in caesium sulphate; (3) specific hybridization with viral DNA.

  13. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  14. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  15. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection.

    Science.gov (United States)

    Steinbach, Karin; Vincenti, Ilena; Kreutzfeldt, Mario; Page, Nicolas; Muschaweckh, Andreas; Wagner, Ingrid; Drexler, Ingo; Pinschewer, Daniel; Korn, Thomas; Merkler, Doron

    2016-07-25

    Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8(+) memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ-dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity. PMID:27377586

  16. T cell inactivation by poxviral B22 family proteins increases viral virulence.

    Directory of Open Access Journals (Sweden)

    Dina Alzhanova

    2014-05-01

    Full Text Available Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197 caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.

  17. Subcapsular sinus macrophages promote NK cell accumulation and activation in response to lymph-borne viral particles.

    OpenAIRE

    Garcia, Z; Lemaitre, F; Van Rooijen, N.; Albert, M. L.; Levy, Y; Schwartz, O.; Bousso, P.

    2012-01-01

    Natural killer (NK) cells become activated during viral infection in response to cytokines or to engagement of NK cell activating receptors. However, the identity of cells sensing viral particles and mediating NK cell activation has not been defined. Here, we show that local administration of a modified vaccinia virus Ankara vaccine in mice results in the accumulation of NK cells in the subcapsular area of the draining lymph node and their activation, a process that is strictly dependent on t...

  18. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  19. Pre-micro RNA signatures delineate stages of endothelial cell transformation in Kaposi sarcoma.

    Directory of Open Access Journals (Sweden)

    Andrea J O'Hara

    2009-04-01

    Full Text Available MicroRNAs (miRNA have emerged as key regulators of cell lineage differentiation and cancer. We used precursor miRNA profiling by a novel real-time QPCR method (i to define progressive stages of endothelial cell transformation cumulating in Kaposi sarcoma (KS and (ii to identify specific miRNAs that serve as biomarkers for tumor progression. We were able to compare primary patient biopsies to well-established culture and mouse tumor models. Loss of mir-221 and gain of mir-15 expression demarked the transition from merely immortalized to fully tumorigenic endothelial cells. Mir-140 and Kaposi sarcoma-associated herpesvirus viral miRNAs increased linearly with the degree of transformation. Mir-24 emerged as a biomarker specific for KS.

  20. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection.

    Science.gov (United States)

    Connors, Thomas J; Ravindranath, Thyyar M; Bickham, Kara L; Gordon, Claire L; Zhang, Feifan; Levin, Bruce; Baird, John S; Farber, Donna L

    2016-06-01

    Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage. PMID:26618559

  1. Stem cell gene therapy for HIV: strategies to inhibit viral entry and replication.

    Science.gov (United States)

    DiGiusto, David L

    2015-03-01

    Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches. PMID:25578054

  2. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response.

    Directory of Open Access Journals (Sweden)

    Ren-Huan Xu

    2010-02-01

    Full Text Available The extent to which direct- and cross-presentation (DP and CP contribute to the priming of CD8(+ T cell (T(CD8+ responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral T(CD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV, which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral T(CD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.

  3. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Melanie C., E-mail: melanie.mann@viro.med.uni-erlangen.de; Strobel, Sarah, E-mail: sarah.strobel@viro.med.uni-erlangen.de; Fleckenstein, Bernhard, E-mail: bernhard.fleckenstein@viro.med.uni-erlangen.de; Kress, Andrea K., E-mail: andrea.kress@viro.med.uni-erlangen.de

    2014-09-15

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.

  4. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection.

    Science.gov (United States)

    Petzold, Antje; Solimena, Michele; Knoch, Klaus-Peter

    2015-10-01

    Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.

  5. Use of viral promoters in mammalian cell-based bioassays: How reliable?

    OpenAIRE

    Gill-Sharma Manjit; Choudhuri Jyoti; Betrabet Shrikant S

    2004-01-01

    Abstract Cell-based bioassays have been suggested for screening of hormones and drug bioactivities. They are a plausible alternative to animal based methods. The technique used is called receptor/reporter system. Receptor/reporter system was initially developed as a research technique to understand gene function. Often reporter constructs containing viral promoters were used because they could be expressed with very 'high' magnitude in a variety of cell types in the laboratory. On the other h...

  6. Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    OpenAIRE

    Wyss-Fluehmann, Gaby; Zurbriggen, Andreas; Vandevelde, Marc; Plattet, Philippe

    2010-01-01

    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target ce...

  7. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection

    OpenAIRE

    Petzold, Antje; Solimena, Michele; Knoch, Klaus-Peter

    2015-01-01

    Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While s...

  8. Modelling and analysis of dynamics of viral infection of cells and of interferon resistance

    Science.gov (United States)

    Getto, Ph.; Kimmel, M.; Marciniak-Czochra, A.

    2008-08-01

    Interferons are active biomolecules, which help fight viral infections by spreading from infected to uninfected cells and activate effector molecules, which confer resistance from the virus on cells. We propose a new model of dynamics of viral infection, including endocytosis, cell death, production of interferon and development of resistance. The novel element is a specific biologically justified mechanism of interferon action, which results in dynamics different from other infection models. The model reflects conditions prevailing in liquid cultures (ideal mixing), and the absence of cells or virus influx from outside. The basic model is a nonlinear system of five ordinary differential equations. For this variant, it is possible to characterise global behaviour, using a conservation law. Analytic results are supplemented by computational studies. The second variant of the model includes age-of-infection structure of infected cells, which is described by a transport-type partial differential equation for infected cells. The conclusions are: (i) If virus mortality is included, the virus becomes eventually extinct and subpopulations of uninfected and resistant cells are established. (ii) If virus mortality is not included, the dynamics may lead to extinction of uninfected cells. (iii) Switching off the interferon defense results in a decrease of the sum total of uninfected and resistant cells. (iv) Infection-age structure of infected cells may result in stabilisation or destabilisation of the system, depending on detailed assumptions. Our work seems to constitute the first comprehensive mathematical analysis of the cell-virus-interferon system based on biologically plausible hypotheses.

  9. Rapid cell variation can determine the establishment of a persistent viral infection.

    OpenAIRE

    Martín-Hernández, Ana M.; Carrillo, Elisa C.; Sevilla, Noemí; Domingo, Esteban

    1994-01-01

    Evidence for a mechanism of initiation of viral persistence in which the cell, and not the virus, plays a critical role has been obtained using the important animal pathogen foot-and-mouth disease virus (FMDV). We have developed a virulence assay consisting of quantification of the ability of virus to kill cells and of cells to divide in the presence of virus and to initiate a carrier state. Cells were cured of FMDV at early times following a cytolytic infection of BHK-21 monolayers with FMDV...

  10. Definition of the viral targets of protective HIV-1-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Mothe Beatriz

    2011-12-01

    Full Text Available Abstract Background The efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity. Methods Here, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses to sets of 410 overlapping peptides (OLP spanning the entire HIV-1 proteome. For each OLP, a "protective ratio" (PR was calculated as the ratio of median viral loads (VL between OLP non-responders and responders. Results For both clades, there was a negative relationship between the PR and the entropy of the OLP sequence. There was also a significant additive effect of multiple responses to beneficial OLP. Responses to beneficial OLP were of significantly higher functional avidity than responses to non-beneficial OLP. They also had superior in-vitro antiviral activities and, importantly, were at least as predictive of individuals' viral loads than their HLA class I genotypes. Conclusions The data thus identify immunogen sequence candidates for HIV and provide an approach for T cell immunogen design applicable to other viral infections.

  11. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

    Science.gov (United States)

    Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K

    2014-09-01

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation.

  12. PD-L1-Expressing Dendritic Cells Contribute to Viral Resistance during Acute HSV-1 Infection

    Directory of Open Access Journals (Sweden)

    Katie M. Bryant-Hudson

    2012-01-01

    Full Text Available The inhibitory receptor, Programmed Death 1 (PD-1, and its ligands (PD-L1/PD-L2 are thought to play a role in immune surveillance during chronic viral infection. The contribution of the receptor/ligand pair during an acute infection is less understood. To determine the role of PD-L1 and PD-L2 during acute ocular herpes simplex virus type 1 (HSV-1 infection, HSV-1-infected mice administered neutralizing antibody to PD-L1 or PD-L2 were assessed for viral burden and host cellular immune responses. Virus titers were elevated in cornea and trigeminal ganglia (TG of anti-PD-L1-treated mice which corresponded with a reduced number of CD80-expressing dendritic cells, PD-L1+ dendritic cells, and HSV-1-specific CD8+ T cells within the draining (mandibular lymph node (MLN. In contrast, anti-PD-L2 treatment had no effect on viral replication or changes in the MLN population. Notably, analysis of CD11c-enriched MLN cells from anti-PD-L1-treated mice revealed impaired functional capabilities. These studies indicate PD-L1-expressing dendritic cells are important for antiviral defense during acute HSV-1 infection.

  13. In Vitro transformation of LW13 Rat liver epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    SHICAN; KARLFETNANSKY; 等

    1992-01-01

    A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.

  14. DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding.

    Science.gov (United States)

    Li, Chun Mei; Zheng, Lin Ling; Yang, Xiao Xi; Wan, Xiao Yan; Wu, Wen Bi; Zhen, Shu Jun; Li, Yuan Fang; Luo, Ling Fei; Huang, Cheng Zhi

    2016-01-01

    Viral infections have caused numerous diseases and deaths worldwide. Due to the emergence of new viruses and frequent virus variation, conventional antiviral strategies that directly target viral or cellular proteins are limited because of the specificity, drug resistance and rapid clearance from the human body. Therefore, developing safe and potent antiviral agents with activity against viral infection at multiple points in the viral life cycle remains a major challenge. In this report, we propose a new modality to inhibit viral infection by fabricating DNA conjugated gold nanoparticle (DNA-AuNP) networks on cell membranes as a protective barrier. The DNA-AuNPs networks were found, via a plaque formation assay and viral titers, to have potent antiviral ability and protect host cells from human respiratory syncytial virus (RSV). Confocal immunofluorescence image analysis showed 80 ± 3.8% of viral attachment, 91.1 ± 0.9% of viral entry and 87.9 ± 2.8% of viral budding were inhibited by the DNA-AuNP networks, which were further confirmed by real-time fluorescence imaging of the RSV infection process. The antiviral activity of the networks may be attributed to steric effects, the disruption of membrane glycoproteins and limited fusion of cell membrane bilayers, all of which play important roles in viral infection. Therefore, our results suggest that the DNA-AuNP networks have not only prophylactic effects to inhibit virus attachment and entry, but also therapeutic effects to inhibit viral budding and cell-to-cell spread. More importantly, this proof-of-principle study provides a pathway for the development of a universal, broad-spectrum antiviral therapy.

  15. Genetic assignment of multiple E2 gene products in bovine papillomavirus-transformed cells.

    OpenAIRE

    Lambert, P F; Hubbert, N L; Howley, P M; Schiller, J T

    1989-01-01

    The E2 open reading frame of bovine papillomavirus type 1 has been shown genetically to encode at least three transcriptional regulatory factors, and three E2 specific proteins have been recently identified in virally transformed rodent cells. In this study, the genes encoding these E2 specific proteins have been determined. The 48-kilodalton (kDa) protein was identified as the product of a full-length E2 open reading frame cDNA, which confirmed that this polypeptide is the E2 transactivator....

  16. KSHV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Gretchen L.; Bheda-Malge, Anjali; Wang, Ling [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Shackelford, Julia [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill (United States); Damania, Blossom [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Departments of Medicine and of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC (United States); Pagano, Joseph S., E-mail: joseph_pagano@med.unc.edu [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Departments of Medicine and of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC (United States)

    2014-01-05

    Ubiquitin C-terminal Hydrolase L1 (UCH-L1) has oncogenic properties and is highly expressed during malignancies. We recently documented that Epstein-Barr virus (EBV) infection induces uch-l1 expression. Here we show that Kaposi's Sarcoma-associated herpesvirus (KSHV) infection induced UCH-L1 expression, via cooperation of KSHV Latency-Associated Nuclear Antigen (LANA) and RBP-Jκ and activation of the uch-l1 promoter. UCH-L1 expression was also increased in Primary Effusion Lymphoma (PEL) cells co-infected with KSHV and EBV compared with PEL cells infected only with KSHV, suggesting EBV augments the effect of LANA on uch-l1. EBV latent membrane protein 1 (LMP1) is one of the few EBV products expressed in PEL cells. Results showed that LMP1 was sufficient to induce uch-l1 expression, and co-expression of LMP1 and LANA had an additive effect on uch-l1 expression. These results indicate that viral latency products of both human γ-herpesviruses contribute to uch-l1 expression, which may contribute to the progression of lymphoid malignancies. - Highlights: • Infection of endothelial cells with KSHV induced UCH-L1 expression. • KSHV LANA is sufficient for the induction of uch-l1. • Co-infection with KSHV and EBV (observed in some PELs) results in the additive induction of uch-l1. • EBV LMP1 also induced UCH-L1 expression. • LANA- and LMP1-mediated activation of the uch-l1 promoter is in part through RBP-Jκ.

  17. Synthesis of Mannosylated Polyethylenimine and Its Potential Application as Cell-Targeting Non-Viral Vector for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Ying Hu

    2014-10-01

    Full Text Available Mannose polyethylenimine with a molecular weight of 25 k (Man-PEI25k was synthesized via a phenylisothiocyanate bridge using mannopyranosylphenyl isothiocyanate as a coupling reagent, and characterized by 1H NMR (nuclear magnetic resonance and FT-IR (Fourier transform infrared spectroscopy analysis. Spherical nanoparticles were formed with diameters of 80–250 nm when the copolymer was mixed with DNA at various charge ratios of copolymer/DNA (N/P. Gel electrophoresis demonstrated that the DNA had been condensed and retained by the PEI derivates at low N/P ratios. The Man-PEI25k/DNA complexes were less cytotoxic than the PEI complexes with a molecular weight of 25 k (PEI25k at the same N/P ratio. Laser scan confocal microscopy and flow cytometry confirmed that the Man-PEI25k/DNA complexes gave higher cell uptake efficiency in (Dendritic cells DC2.4 cells than HeLa cells. The transfection efficiency of Man-PEI25k was higher than that of PEI25k towards DC2.4 cells. These results indicated that Man-PEI25k could be used as a potential DC-targeting non-viral vector for gene therapy.

  18. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  19. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  20. Cardiac Fibroblasts Aggravate Viral Myocarditis: Cell Specific Coxsackievirus B3 Replication

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2014-01-01

    Full Text Available Myocarditis is an inflammatory disease caused by viral infection. Different subpopulations of leukocytes enter the cardiac tissue and lead to severe cardiac inflammation associated with myocyte loss and remodeling. Here, we study possible cell sources for viral replication using three compartments of the heart: fibroblasts, cardiomyocytes, and macrophages. We infected C57BL/6j mice with Coxsackievirus B3 (CVB3 and detected increased gene expression of anti-inflammatory and antiviral cytokines in the heart. Subsequently, we infected cardiac fibroblasts, cardiomyocytes, and macrophages with CVB3. Due to viral infection, the expression of TNF-α, IL-6, MCP-1, and IFN-β was significantly increased in cardiac fibroblasts compared to cardiomyocytes or macrophages. We found that in addition to cardiomyocytes cardiac fibroblasts were infected by CVB3 and displayed a higher virus replication (132-fold increase compared to cardiomyocytes (14-fold increase between 6 and 24 hours after infection. At higher virus concentrations, macrophages are able to reduce the viral copy number. At low virus concentration a persistent virus infection was determined. Therefore, we suggest that cardiac fibroblasts play an important role in the pathology of CVB3-induced myocarditis and are another important contributor of virus replication aggravating myocarditis.

  1. Canine Distemper Viral Inclusions in Blood Cells of Four Vaccinated Dogs

    OpenAIRE

    McLaughlin, Bruce G.; Adams, Pamela S.; Cornell, William D.; Elkins, A. Darrel

    1985-01-01

    Four cases of canine distemper were detected by the presence of numerous cytoplasmic inclusions in various circulating blood cells. Fluorescent antibody techniques and electron microscopy confirmed the identity of the viral inclusions. The cases occurred in the same geographic area and within a short time span. All four dogs had been vaccinated against canine distemper, but stress or other factors may have compromised their immune status. The possibility of an unusually virulent virus strain ...

  2. Immunofluorescence of bovine virus diarrhea viral antigen in white blood cells from experimentally infected immunocompetent calves.

    OpenAIRE

    Bezek, D M; Baker, J. C.; Kaneene, J B

    1988-01-01

    A study to evaluate the detection of bovine virus diarrhea viral antigen using immunofluorescence testing of white blood cells was conducted. Five colostrum-deprived calves were inoculated intravenously with a cytopathic strain of the virus. Lymphocyte and buffy coat smears were prepared daily for direct immunofluorescent staining for detection of antigen. Lymphocytes were separated from heparinized blood using a Ficoll density procedure. Buffy coat smears were prepared from centrifuged blood...

  3. Species-specific transformation of T cells by HVMNE

    International Nuclear Information System (INIS)

    HVMNE is an Epstein-Barr virus (EBV)-like lymphocryptovirus (LCV) originally isolated from a Macaca nemestrina with CD8+ T cell mycosis fungoides/cutaneous T cell lymphoma (Blood 98 (2001), 2193). HVMNE transforms rabbit T cells in vitro and causes T cell lymphoma in New Zealand white rabbits. Here we demonstrate that HVMNE also immortalizes T cells from mustached tamarins but not those from owl monkeys, common marmosets, squirrel monkeys, black-capped capuchins, and humans. Cytogenetic and FACS analysis revealed the true origin and T cell lineage of the transformed tamarin T cell lines. Tamarin T cells contained HVMNE DNA sequence and displayed a decreased requirement for the IL-2 cytokine for growth. Thus, this EBV-like virus from M. nemestrina differs from the other EBV-like viruses found in nonhuman primates inasmuch as it appears to preferentially transform T cells

  4. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Yokoo, Masako [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Fujita, Ryosuke [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshimizu, Mamoru; Kasai, Hisae [Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 (Japan); Asano, Shin-ichiro [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Bando, Hisanori, E-mail: hban@abs.agr.hokudai.ac.jp [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan)

    2013-09-13

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.

  5. Temporary protection of rainbow trout gill epithelial cells from infection with viral haemorrhagic septicaemia virus IVb.

    Science.gov (United States)

    Al-Hussinee, L; Pham, P H; Russell, S; Tubbs, L; Tafalla, C; Bols, N C; Dixon, B; Lumsden, J S

    2016-09-01

    The branchial epithelium is not only a primary route of entry for viral pathogens, but is also a site of viral replication and subsequent shedding may also occur from the gill epithelium. This study investigated the potential of agents known to stimulate innate immunity to protect rainbow trout epithelial cells (RTgill-W1) from infection with VHSV IVb. RTgill-W1 cells were pretreated with poly I:C, FuGENE(®) HD + poly I:C, lipopolysaccharide (LPS), LPS + poly I:C or heat-killed VHSV IVb and then infected with VHSV IVb 4 days later. Cytopathic effect (CPE) was determined at 2, 3, 4, 7 and 11 days post-infection. Virus in cells and supernatant was detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). All of the treatments delayed the onset of CPE (per cent of monolayer destruction), compared with untreated controls; however, killed VHSV or poly I:C combined with LPS was the most effective. Similarly, the detection of viral RNA in the supernatant was delayed, and the quantity was significantly (P < 0.05) reduced by all treatments with the exception of LPS alone (4 days). Unlike many of the other treatments, pretreatment of RTgill-W1 with heat-killed VHSV did not upregulate interferon 1, 2 or MX 1 gene expression. PMID:26850791

  6. Expression of Ebolavirus glycoprotein on the target cells enhances viral entry

    Directory of Open Access Journals (Sweden)

    Manicassamy Balaji

    2009-06-01

    Full Text Available Abstract Background Entry of Ebolavirus to the target cells is mediated by the viral glycoprotein GP. The native GP exists as a homotrimer on the virions and contains two subunits, a surface subunit (GP1 that is involved in receptor binding and a transmembrane subunit (GP2 that mediates the virus-host membrane fusion. Previously we showed that over-expression of GP on the target cells blocks GP-mediated viral entry, which is mostly likely due to receptor interference by GP1. Results In this study, using a tetracycline inducible system, we report that low levels of GP expression on the target cells, instead of interfering, specifically enhance GP mediated viral entry. Detailed mapping analysis strongly suggests that the fusion subunit GP2 is primarily responsible for this novel phenomenon, here referred to as trans enhancement. Conclusion Our data suggests that GP2 mediated trans enhancement of virus fusion occurs via a mechanism analogous to eukaryotic membrane fusion processes involving specific trans oligomerization and cooperative interaction of fusion mediators. These findings have important implications in our current understanding of virus entry and superinfection interference.

  7. Intracellular levels of calmodulin are increased in transformed cells

    Institute of Scientific and Technical Information of China (English)

    WANG; HONGQINGZHANG; 等

    1992-01-01

    By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.

  8. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation.

    Directory of Open Access Journals (Sweden)

    Corine St Gelais

    Full Text Available HIV-1 Nef enhances dendritic cell (DC-mediated viral transmission to CD4(+ T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+ T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+ T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+ T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+ T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+ T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+ T cells and in the activation and proliferation of resting CD4(+ T cells, which likely contribute to viral pathogenesis.

  9. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology.

    Science.gov (United States)

    Rodrigues, Ana F; Soares, Hugo R; Guerreiro, Miguel R; Alves, Paula M; Coroadinha, Ana S

    2015-09-01

    Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus-like particles, vectored vaccines and chimeric vaccines requires the use - and often the development - of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.

  10. The viral context instructs the redundancy of costimulatory pathways in driving CD8(+) T cell expansion.

    Science.gov (United States)

    Welten, Suzanne P M; Redeker, Anke; Franken, Kees L M C; Oduro, Jennifer D; Ossendorp, Ferry; Čičin-Šain, Luka; Melief, Cornelis J M; Aichele, Peter; Arens, Ramon

    2015-01-01

    Signals delivered by costimulatory molecules are implicated in driving T cell expansion. The requirements for these signals, however, vary from dispensable to essential in different infections. We examined the underlying mechanisms of this differential T cell costimulation dependence and found that the viral context determined the dependence on CD28/B7-mediated costimulation for expansion of naive and memory CD8(+) T cells, indicating that the requirement for costimulatory signals is not imprinted. Notably, related to the high-level costimulatory molecule expression induced by lymphocytic choriomeningitis virus (LCMV), CD28/B7-mediated costimulation was dispensable for accumulation of LCMV-specific CD8(+) T cells because of redundancy with the costimulatory pathways induced by TNF receptor family members (i.e., CD27, OX40, and 4-1BB). Type I IFN signaling in viral-specific CD8(+) T cells is slightly redundant with costimulatory signals. These results highlight that pathogen-specific conditions differentially and uniquely dictate the utilization of costimulatory pathways allowing shaping of effector and memory antigen-specific CD8(+) T cell responses. PMID:26263500

  11. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population.

    Science.gov (United States)

    Labonté, Jessica M; Field, Erin K; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K Eric; Kieft, Thomas L; Onstott, Tullis C; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  12. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  13. Natural Killer Cell Functional Dichotomy: a Feature of Chronic Viral Hepatitis ?

    Directory of Open Access Journals (Sweden)

    Mario Umberto Mondelli

    2012-11-01

    Full Text Available NK cells are involved in innate immune responses to viral infections either via direct cytotoxicity which destroys virus-infected cells or production of immunoregulatory cytokines which modulate adaptive immunity and directly inhibit virus replication. These functions are mediated by different NK subpopulations, with cytotoxicity being generally performed by CD56dim NK cells, whereas CD56bright NK cells are mainly involved in cytokine secretion. NK functional defects are usually combined so that impaired degranulation is often associated with deficient cytokine production. Innate immunity is thought to be relevant in the control of hepatitis virus infections such as HBV and HCV, and recent findings reproducibly indicate that NK cells in chronic viral hepatitis are characterized by a functional dichotomy, featuring a conserved or enhanced cytotoxicity and a reduced production of IFN-gamma and TNF-alfa. In chronic HCV infection this appears to be caused by altered IFN-alfa signaling resulting from increased STAT1 phosphorylation, which polarizes NK cells toward cytotoxicity, and a concomitantly reduced IFN-alfa induced STAT4 phosphorylation yielding reduced IFN-gamma mRNA levels. These previously unappreciated findings are compatible on the one hand with the inability to clear HCV and HBV from the liver and on the other they may contribute to understand why these patients are often resistant to interferon (IFNalfa-based therapies.

  14. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology.

    Science.gov (United States)

    Rodrigues, Ana F; Soares, Hugo R; Guerreiro, Miguel R; Alves, Paula M; Coroadinha, Ana S

    2015-09-01

    Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus-like particles, vectored vaccines and chimeric vaccines requires the use - and often the development - of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture. PMID:26212697

  15. Biochemical transformation of deoxythymidine kinase-deficient mouse cells with uv-irradiated equine herpesvirus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.P.; McGowan, J.J.; Gentry, G.A.; Randall, C.C.

    1978-10-01

    A line of 3T3 mouse cells lacking deoxythymidine kinase (dTK/sup -/) was stably transformed to the dTK/sup +/ phenotype after exposure to uv-irradiated equine herpesvirus type 1 (EHV-1). Biochemical transformants were isolated in a system selective for the dTK/sup +/ phenotype (Eagle minimal essential medium containing 10/sup -4/ M hypoxanthine, 6 x 10/sup -7/ M aminopterin, and 2 x 10/sup -5/ M deoxythymidine). Transformation was accompanied by the acquisition of a dTK activity with immunological, electrophoretic, and biochemical characteristics identical to those of the dTK induced by EHV-1 during productive infection. The transformed cells have been maintained in selective culture medium for more than 50 passages and have retained the capacity to express EHV-1-specific antigens. Spontaneous release of infectious virus has not been detected in the transformed lines, and the cells were not oncogenic for athymic nude mice. In contrast to normal dTK/sup +/ 3T3 cells, EHV-1 transformants were unable to grow in the presence of arabinosylthymine, a drug selectively phosphorylated by herpesvirus-coded dTK's. These results indicate that a portion of the EHV-1 genome is able to persist in the transformed cells for many generations and be expressed as an enzymatically active viral gene product.

  16. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity

    Directory of Open Access Journals (Sweden)

    Michaël Chopin

    2016-04-01

    Full Text Available Plasmacytoid dendritic cells (pDCs represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.

  17. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Directory of Open Access Journals (Sweden)

    Shufeng Liu

    Full Text Available Hepatitis C virus (HCV poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP, UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1 and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection.

  18. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    Science.gov (United States)

    Liu, Shufeng; Zhao, Ting; Song, BenBen; Zhou, Jianhua; Wang, Tony T

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  19. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    OpenAIRE

    Kelly B McClellan; Shivaprakash Gangappa; Speck, Samuel H.; Herbert W Virgin

    2006-01-01

    Synopsis B cells can control virus infection by making specific antibodies that bind to virus and infected cells. However, it is unknown whether B cells perform other anti-viral functions to protect the host during infection. The authors addressed this question by infecting mice with murine γ-herpesvirus 68 (γHV68), a relative of Epstein-Barr virus and Kaposi's sarcoma associated virus, which establishes lifelong latent infection in mice. Mice lacking B cells (B cell−/−) failed to control lat...

  20. Transformation of primary human embryonic kidney cells to anchorage independence by a combination of BK virus DNA and the Harvey-ras oncogene

    International Nuclear Information System (INIS)

    Primary human embryonic kidney (HEK) cells were transformed by a focus assay with BK virus (BKV) DNA molecularly cloned at its unique EcoRI site. Both viral DNA sequences and viral tumor antigens were present and expressed in all the foci that the authors examined. However, cells isolated from foci were incapable of growth in soft agar. They then examined the transformation of HEK cells after their transfection with a combination of BKV DNA and either the normal or the activated form of the human Ha-ras oncogene (EJ c-Ha-ras-1). Only the cells transfected with a combination of BKV DNA and the activated form of Ha-ras DNAs were present in the transformed colonies. BKV tumor antigens and the Ha-ras p21 protein were also expressed

  1. A versatile viral system for expression and depletion of proteins in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eric Campeau

    Full Text Available The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA or microRNA (miRNA and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage

  2. Use of viral promoters in mammalian cell-based bioassays: How reliable?

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjit

    2004-01-01

    Full Text Available Abstract Cell-based bioassays have been suggested for screening of hormones and drug bioactivities. They are a plausible alternative to animal based methods. The technique used is called receptor/reporter system. Receptor/reporter system was initially developed as a research technique to understand gene function. Often reporter constructs containing viral promoters were used because they could be expressed with very 'high' magnitude in a variety of cell types in the laboratory. On the other hand mammalian genes are expressed in a cell/tissue specific manner, which makes them (i.e. cells/tissues specialized for specific function in vivo. Therefore, if the receptor/reporter system is to be used as a cell-based screen for testing of hormones and drugs for human therapy then the choice of cell line as well as the promoter in the reporter module is of prime importance so as to get a realistic measure of the bioactivities of 'test' compounds. We evaluated two conventionally used viral promoters and a natural mammalian promoter, regulated by steroid hormone progesterone, in a cell-based receptor/reporter system. The promoters were spliced into vectors expressing enzyme CAT (chloramphenicol acetyl transferase, which served as a reporter of their magnitudes and consistencies in controlling gene expressions. They were introduced into breast cell lines T47D and MCF-7, which served as a cell-based source of progesterone receptors. The yardstick of their reliability was highest magnitude as well as consistency in CAT expression on induction by sequential doses of progesterone. All the promoters responded to induction by progesterone doses ranging from 10-12 to 10-6 molar by expressing CAT enzyme, albeit with varying magnitudes and consistencies. The natural mammalian promoter showed the most coherence in magnitude as well as dose dependent expression profile in both the cell lines. Our study casts doubts on use of viral promoters in a cell-based bioassay for

  3. Battery Cell Voltage Sensing and Balancing Using Addressable Transformers

    Science.gov (United States)

    Davies, Francis

    2009-01-01

    A document discusses the use of saturating transformers in a matrix arrangement to address individual cells in a high voltage battery. This arrangement is able to monitor and charge individual cells while limiting the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad cell in a battery of several hundred cells to be easily spotted.

  4. A color discriminating broad range cell staining technology for early detection of cell transformation

    Directory of Open Access Journals (Sweden)

    Sagiv Idit

    2009-01-01

    Full Text Available Background: Advanced diagnostic tools stand today at the heart of successful cancer treatment. CellDetect® is a new histochemical staining technology that enables color discrimination between normal cells and a wide variety of neoplastic tissues. Using this technology, normal cells are colored blue/green, while neoplastic cells color red. This tinctorial difference coincides with clear morphological visualization properties, mainly in tissue samples. Here we show that the CellDetect® technology can be deployed to distinguish normal cells from transformed cells and most significantly detect cells in their early pre-cancerous transformed state. Materials and Methods: In tissue culture, we studied the ability of the CellDetect® technology to color discriminate foci in a number of two stage transformation systems as well as in a well defined cellular model for cervical cancer development, using HPV16 transformed keratinocytes. Results: In all these cellular systems, the CellDetect® technology was able to sensitively show that all transformed cells, including pre-cancerous HPV 16 transformed cells, are colored red, whereas normal cells are colored blue/green. The staining technology was able to pick up: (i early transformation events in the form of small type 1 foci (non-invasive, not piled up small, with parallel alignment of cells, and (ii early HPV16 transformed cells, even prior to their ability to form colonies in soft agar. The study shows the utility of the CellDetect® technology in early detection of transformation events.

  5. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape

    Directory of Open Access Journals (Sweden)

    Gero Hütter

    2015-07-01

    Full Text Available Allogeneic transplantation with CCR5-delta 32 (CCR5-d32 homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN, clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9, transcription activator-like effectors nuclease (TALEN, short hairpin RNA (shRNA, and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  6. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  7. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape.

    Science.gov (United States)

    Hütter, Gero; Bodor, Josef; Ledger, Scott; Boyd, Maureen; Millington, Michelle; Tsie, Marlene; Symonds, Geoff

    2015-07-27

    Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  8. Lymphocytic choriomeningitis virus-induced immunosuppression: evidence for viral interference with T-cell maturation

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Bro-Jørgensen, K; Jensen, Birgitte Løkke

    1982-01-01

    Acute lymphocytic choriomeningitis virus (LCMV) infection is associated with general immunosuppression which develops during the second week of the infection and persists for several weeks. In the present study, the ability of LCMV-infected mice to mount a cytotoxic T-lymphocyte response was...... investigated in a transplantation assay, using LCMV-immunized mice as recipients. By this means it was possible to evaluate the T-cell responsiveness of the acutely infected mice separately. Our results revealed a marked depression of the T-cell function temporally related to immunosuppression in the intact...... that a numerical deficiency of immunocompetent T-cells due to viral interference with T-cell maturation plays an important role in LCMV-induced immunosuppression....

  9. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    Science.gov (United States)

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  10. Human T cell aging and the impact of persistent viral infections

    Directory of Open Access Journals (Sweden)

    Tamas eFulop

    2013-09-01

    Full Text Available Aging is associated with a dysregulation of the immune response, loosely termed immunosenescence. Each part of the immune system is influenced to some extent by the aging process. However, adaptive immunity seems more extensively affected and among all participating cells it is the T cells that are most altered. There is a large body of experimental work devoted to the investigation of age-associated differences in T cell phenotypes and functions in young and old individuals, but few longitudinal studies in humans actually delineating changes at the level of the individual. In most studies, the number and proportion of late-differentiated T cells, especially CD8+ T cells, is reported to be higher in the elderly than in the young. Limited longitudinal studies suggest that accumulation of these cells is a dynamic process and does indeed represent an age-associated change. Accumulations of such late-stage cells may contribute to the enhanced systemic pro-inflammatory milieu commonly seen in older people. We do not know exactly what causes these observed changes, but an understanding of the possible causes is now beginning to emerge. A favored hypothesis is that these events are at least partly due to the effects of the maintenance of essential immune surveillance against persistent viral infections, notably Cytomegalovirus (CMV, which may exhaust the immune system over time. It is still a matter of debate as to whether these changes are compensatory and beneficial or pathological and detrimental to the proper functioning of the immune system and whether they impact longevity. Here, we will review present knowledge of T cell changes with aging and their relation to chronic viral and possibly other persistent infections.

  11. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  12. DNA Uptake by Transformable Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  13. HIV-Specific CD8+ T Cell-Mediated Viral Suppression Correlates With the Expression of CD57

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Tingstedt, Jeanette Linnea; Larsen, Tine Kochendorf;

    2016-01-01

    BACKGROUND: Virus-specific CD8(+) T-cell responses are believed to play an important role in the control of HIV-1 infection; however, what constitutes an effective HIV-1 CD8(+) T-cell response remains a topic of debate. The ex vivo viral suppressive capacity was measured of CD8(+) T cells from 44...

  14. Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available With the hope of understanding how interleukin (IL-4 and IL-13 modulated quality of anti-viral CD8(+ T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus. Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα was significantly down-regulated on anti-viral CD8(+ T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT mice with vaccinia virus (VV or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6 were required to increase IL-4Rα expression on CD8(+ T cells, but not interferon (IFN-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+ T cells was a feature of poor quality anti-viral CD8(+ T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+ T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+ T cell immunity. Our findings have important implications in understanding anti-viral CD8(+ T cell immunity and designing effective vaccines against chronic viral infections.

  15. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    Science.gov (United States)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  16. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection.

    LENUS (Irish Health Repository)

    O'Shea, D

    2013-02-26

    Dendritic cells (DCs) are key immune sentinels linking the innate and adaptive immune systems. DCs recognise danger signals and initiate T-cell tolerance, memory and polarisation. They are critical cells in responding to a viral illness. Obese individuals have been shown to have an impaired response to vaccinations against virally mediated conditions and to have an increased susceptibility to multi-organ failure in response to viral illness. We investigated if DCs are altered in an obese cohort (mean body mass index 51.7±7.3 kg m(-2)), ultimately resulting in differential T-cell responses. Circulating DCs were found to be significantly decreased in the obese compared with the lean cohort (0.82% vs 2.53%). Following Toll-like receptor stimulation, compared with lean controls, DCs generated from the obese cohort upregulated significantly less CD83 (40% vs 17% mean fluorescence intensity), a molecule implicated in the elicitation of T-cell responses, particularly viral responses. Obese DCs produced twofold more of the immunosuppressive cytokine interleukin (IL)-10 than lean controls, and in turn stimulated fourfold more IL-4-production from allogenic naive T cells. We conclude that obesity negatively impacts the ability of DCs to mature and elicit appropriate T-cell responses to a general stimulus. This may contribute to the increased susceptibility to viral infection observed in severe obesity.International Journal of Obesity advance online publication, 26 February 2013; doi:10.1038\\/ijo.2013.16.

  17. Cytomegalovirus m154 hinders CD48 cell-surface expression and promotes viral escape from host natural killer cell control.

    Directory of Open Access Journals (Sweden)

    Angela Zarama

    2014-03-01

    Full Text Available Receptors of the signalling lymphocyte-activation molecules (SLAM family are involved in the functional regulation of a variety of immune cells upon engagement through homotypic or heterotypic interactions amongst them. Here we show that murine cytomegalovirus (MCMV dampens the surface expression of several SLAM receptors during the course of the infection of macrophages. By screening a panel of MCMV deletion mutants, we identified m154 as an immunoevasin that effectively reduces the cell-surface expression of the SLAM family member CD48, a high-affinity ligand for natural killer (NK and cytotoxic T cell receptor CD244. m154 is a mucin-like protein, expressed with early kinetics, which can be found at the cell surface of the infected cell. During infection, m154 leads to proteolytic degradation of CD48. This viral protein interferes with the NK cell cytotoxicity triggered by MCMV-infected macrophages. In addition, we demonstrate that an MCMV mutant virus lacking m154 expression results in an attenuated phenotype in vivo, which can be substantially restored after NK cell depletion in mice. This is the first description of a viral gene capable of downregulating CD48. Our novel findings define m154 as an important player in MCMV innate immune regulation.

  18. Distribution of T Cells in Rainbow Trout (Oncorhynchus mykiss) Skin and Responsiveness to Viral Infection

    Science.gov (United States)

    Leal, Esther; Granja, Aitor G.; Zarza, Carlos; Tafalla, Carolina

    2016-01-01

    Although the skin constitutes the first line of defense against waterborne pathogens, there is a great lack of information regarding the skin associated lymphoid tissue (SALT) and whether immune components of the skin are homogeneously distributed through the surface of the fish is still unknown. In the current work, we have analyzed the transcription of several immune genes throughout different rainbow trout (Oncorhynchus mykiss) skin areas. We found that immunoglobulin and chemokine gene transcription levels were higher in a skin area close to the gills. Furthermore, this skin area as well as other anterior sections also transcribed significantly higher levels of many different immune genes related to T cell immunity such as T cell receptor α (TCRα), TCRγ, CD3, CD4, CD8, perforin, GATA3, Tbet, FoxP3, interferon γ (IFNγ), CD40L and Eomes in comparison to posterior skin sections. In agreement with these results, immunohistochemical analysis revealed that anterior skin areas had a higher concentration of CD3+ T cells and flow cytometry analysis confirmed that the percentage of CD8+ T lymphocytes was also higher in anterior skin sections. These results demonstrate for the first time that T cells are not homogeneously distributed throughout the teleost skin. Additionally, we studied the transcriptional regulation of these and additional T cell markers in response to a bath infection with viral hemorrhagic septicemia virus (VHSV). We found that VHSV regulated the transcription of several of these T cell markers in both the skin and the spleen; with some differences between anterior and posterior skin sections. Altogether, our results point to skin T cells as major players of teleost skin immunity in response to waterborne viral infections. PMID:26808410

  19. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  20. Establishment, characterization and viral susceptibility of 3 new cell lines from snakehead, Channa striatus (Blooch).

    Science.gov (United States)

    Zhao, Zhengshan; Montgomery-Brock, Dee; Lee, Cheng-Sheng; Lu, Yuanan

    2003-01-01

    Three cell lines were established from muscle (SHMS), heart (SHHT) and swim bladder (SHSB) of snakehead (Channa striatus). The cells grew initially at 25 degrees C in L15 medium supplemented with 20% fetal bovine serum and have been subcultured 13-18 times since their initiation on June 25, 2002. Growth of the snakehead cells was serum-dependent and plating efficiencies ranged from 22-29%. These snakehead cells grew well in RPMI 1640 and L-15 media, which are commonly used for cultivation of animal and mammalian cells and retained 95.9-96.6% cell viability following storage for 4 months in liquid nitrogen. Karyotyping indicated that these snakehead-derived cell lines remained diploid with a chromosome count of 44 at their early passage (passage 8-14). These cell lines were sensitive to CCV, VHSV, SVCV, IPN and SHRV; they were refractory to IHNV. These newly established cell lines are currently being used for the investigation of snakehead viral diseases in Hawaii and will be available for future isolation and study of snakehead viruses.

  1. Isolation of uv-sensitive variants of human FL cells by a viral suicide method

    International Nuclear Information System (INIS)

    A new method (viral suicide method) for the isolation of uv-sensitive mutants is described. Colonies of mutagenized human FL cells were infected with uv-irradiated Herpes simplex viruses and surviving ones which seemed to be deficient in host cell reactivation (HCR) were examined for their uv sensitivity. Nineteen of 238 clones examined were sensitive to uv irradiation at the time of the isolation. After recloning, four of these clones have been studied and two (UVS-1 and UVS-2) of them are stable in their uv sensitivity for 4 months in culture. uv sensitivity of UVS-1, UVS-2, and the parental FL cells are as follows: the extrapolation numbers (n) are 2.2, 2.1, and 1.8 and mean lethal doses (DO) are 2.9, 3.7, and 7.8 J/m2 for UVS-1, UVS-2, and the parental FL cells, respectively. They are no more sensitive than FL cells to x-irradiation. The ability of HCR in UVS-2 cells is apparently lower than that in FL cells, whereas UVS-1 cells are the same as FL cells in the ability

  2. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  3. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load.

    Science.gov (United States)

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as "elite controllers (EC) or suppressors" and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC. PMID:23577012

  4. Cell-mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load

    Directory of Open Access Journals (Sweden)

    Luca eGenovese

    2013-04-01

    Full Text Available The natural course of HIV infection is characterized by high viral load, depletion of immune cells and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome (AIDS phase and the occurrence of opportunistic infections and diseases.Since the discovery of HIV in the early 80’s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as elite controllers or suppressors and do not develop disease in the absence of anti-retroviral therapy.Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and elite controllers.

  5. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  6. Targeting CD45RB alters T cell migration and delays viral clearance.

    Science.gov (United States)

    Lim, Bock; Sutherland, Robyn M; Zhan, Yifan; Deliyannis, Georgia; Brown, Lorena E; Lew, Andrew M

    2006-02-01

    CD45 is a receptor tyrosine phosphatase essential for TCR signaling. One isoform, CD45RB, is down-regulated in memory cells and targeting CD45RB with a specific antibody has been shown to inhibit graft rejection. Its role in immunity to infection, however, has not been tested. Here, we report the effect of anti-CD45RB antibody treatment on the induction of anti-influenza CD8+ T cells and viral clearance. Anti-CD45RB-treated mice had delayed pulmonary viral clearance compared with untreated mice whose infection was completely cleared by day 8 post-infection. In anti-CD45RB-treated mice, the total CD4+ and CD8+ T cell numbers in both the lungs and mediastinal nodes were substantially reduced at days 5 and 8; this effect was less marked for the spleen. CD8+ T cells specific for influenza virus were also reduced compared with the control group in all three organs at day 8. By day 11, when both treated and control groups showed no virus remaining in the lungs, specific CD8+ T cell numbers were at similar low levels. Homing to lymph nodes and lung of dye-labeled T cells was greatly inhibited (by >80%) by anti-CD45RB treatment. This reduced homing corresponded with reduced CD62L and beta1-integrin expression in both uninfected and infected mice. Since CD62L plays a critical role in homing lymphocytes to lymph nodes, and high levels of CD62L and alpha4beta1-integrin are expressed by lymphocytes that home to bronchus-associated lymphoid tissue, we suggest that reduced expression of these molecules is a key explanation for the delay in immune responses. PMID:16361310

  7. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  8. CD30+ large cell transformation of mycosis fungoides during pregnancy

    Directory of Open Access Journals (Sweden)

    Farahnaz Fatemi Naeini

    2013-01-01

    Full Text Available Mycosis fungoides (MF a cutaneous T-cell lymphoma, is a subgroup of non-Hodgkin′s lymphomas, characterized by skin infiltration and occasionally systemic involvement. MF coincidence with pregnancy is rare. The effect of pregnancy on MF and the effect of this disease on pregnancy are still unknown. There are few case reports about pregnancy and its deleterious effect on the clinical course of MF. This case report is about a 30-years-old female with MF who became pregnant and after delivery developed CD30+ large cell transformation; this is the first report of large cell transformation of MF related to pregnancy.

  9. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    International Nuclear Information System (INIS)

    Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1. This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells

  10. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site.

    Science.gov (United States)

    Mun, Ji-Young; Shin, Keun Koo; Kwon, Ohsuk; Lim, Yong Taik; Oh, Doo-Byoung

    2016-09-01

    Genetic engineering approaches to improve the therapeutic potential of mesenchymal stem cells (MSCs) have been made by viral and non-viral gene delivery methods. Viral methods have severe limitations in clinical application because of potential oncogenic, pathogenic, and immunogenic risks, while non-viral methods have suffered from low transfection efficiency and transient weak expression as MSCs are hard-to-transfect cells. In this study, minicircle, which is a minimal expression vector free of bacterial sequences, was employed for MSC transfection as a non-viral gene delivery method. The conventional cationic liposome method was not effective for MSC transfection as it resulted in very low transfection efficiency (less than 5%). Microporation, a new electroporation method, greatly improved the transfection efficiency of minicircles by up to 66% in MSCs without any significant loss of cell viability. Furthermore, minicircle microporation generated much stronger and prolonged transgene expression compared with plasmid microporation. When MSCs microporated with minicircle harboring firefly luciferase gene were subcutaneously injected to mice, the bioluminescence continued for more than a week, whereas the bioluminescence of the MSCs induced by plasmid microporation rapidly decreased and disappeared in mice within three days. By minicircle microporation as a non-viral gene delivery, MSCs engineered to overexpress CXCR4 showed greatly increased homing ability toward an injury site as confirmed through in vivo bioluminescence imaging in mice. In summary, the engineering of MSCs through minicircle microporation is expected to enhance the therapeutic potential of MSCs in clinical applications. PMID:27315214

  11. Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans.

    Science.gov (United States)

    Iqbal, M; Flick-Smith, H; McCauley, J W

    2000-02-01

    Recombinant E(rns) glycoprotein of bovine viral diarrhoea virus (BVDV) has been tagged with a marker epitope or linked to an immunoglobulin Fc tail and expressed in insect and mammalian cell lines. The product was shown to be functional, both having ribonuclease activity and binding to a variety of cells that were permissive and non-permissive for replication of BVDV. Addition of soluble E(rns) to the medium blocked replication of BVDV in permissive cells. Binding of epitope-tagged E(rns) to permissive calf testes (CTe) cells was abolished and virus infection was reduced when cells were treated with heparinases I or III. E(rns) failed to bind to mutant Chinese hamster ovary (CHO) cells that lacked glycosaminoglycans (pgsA-745 cells) or heparan sulphate (pgsD-677 cells) but bound to normal CHO cells. E(rns) also bound to heparin immobilized on agarose and could be eluted by heparin and by a high concentration of salt. Flow cytometric analysis of E(rns) binding to CTe cell cultures showed that glycosaminoglycans such as heparin, fucoidan and dermatan sulphate all inhibit binding but dextran sulphate, keratan sulphate, chondroitin sulphate and mannan fail to inhibit binding. The low molecular mass polysulphonated inhibitor suramin also inhibited binding to CTe cells but poly-L-lysine did not. Furthermore, suramin, the suramin analogue CPD14, fucoidan and pentosan polysulphate inhibited the infectivity of virus. It is proposed that binding of E(rns) to cells is through an interaction with glycosaminoglycans and that BVDV may bind to cells initially through this interaction. PMID:10644844

  12. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells.

    Science.gov (United States)

    Figliozzi, Robert W; Chen, Feng; Balish, Matthew; Ajavon, Amakoe; Hsia, S Victor

    2014-11-15

    A global HSV-1 gene repression occurs during latency in sensory neurons where most viral gene transcriptions are suppressed. The molecular mechanisms of gene silencing and how stress factors trigger the reactivation are not well understood. Thyroid hormones are known to be altered due to stress, and with its nuclear receptor impart transcriptional repression or activation depending upon the hormone level. Therefore we hypothesized that triiodothyronine (T3) treatment of infected differentiated neuron like cells would reduce the ability of HSV-1 to produce viral progeny compared to untreated infected cells. Previously we identified putative thyroid hormone receptor elements (TREs) within the promoter regions of HSV-1 thymidine kinase (TK) and other key genes. Searching for a human cell line that can model neuronal HSV-1 infection, we performed HSV-1 infection experiments on differentiated human neuroendocrine cells, LNCaP. Upon androgen deprivation these cells undergo complete differentiation and exhibit neuronal-like morphology and physiology. These cells were readily infected by our HSV-1 recombinant virus, expressing GFP and maintaining many processes iconic of dendritic morphology. Our results demonstrated that differentiated LNCaP cells produced suppressive effects on HSV-1 gene expression and replication compared to its undifferentiated counterpart and T3 treatment has further decreased the viral plaque counts compared to untreated cells. Upon washout of the T3 viral plaque counts were restored, indicating an increase of viral replication. The qRT-PCR experiments using primers for TK showed reduced expression under T3 treatment. ChIP assays using a panel of antibodies for H3 lysine 9 epigenetic marks showed increased repressive marks on the promoter regions of TK. In conclusion we have demonstrated a T3 mediated quiescent infection in differentiated LNCaP cells that has potential to mimic latent infection. In this HSV-1 infection model thyroid hormone

  13. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  14. Small tumor virus genomes are integrated near nuclear matrix attachment regions in transformed cells.

    Science.gov (United States)

    Shera, K A; Shera, C A; McDougall, J K

    2001-12-01

    More than 15% of human cancers have a viral etiology. In benign lesions induced by the small DNA tumor viruses, viral genomes are typically maintained extrachromosomally. Malignant progression is often associated with viral integration into host cell chromatin. To study the role of viral integration in tumorigenesis, we analyzed the positions of integrated viral genomes in tumors and tumor cell lines induced by the small oncogenic viruses, including the high-risk human papillomaviruses, hepatitis B virus, simian virus 40, and human T-cell leukemia virus type 1. We show that viral integrations in tumor cells lie near cellular sequences identified as nuclear matrix attachment regions (MARs), while integrations in nonneoplastic cells show no significant correlation with these regions. In mammalian cells, the nuclear matrix functions in gene expression and DNA replication. MARs play varied but poorly understood roles in eukaryotic gene expression. Our results suggest that integrated tumor virus genomes are subject to MAR-mediated transcriptional regulation, providing insight into mechanisms of viral carcinogenesis. Furthermore, the viral oncoproteins serve as invaluable tools for the study of mechanisms controlling cellular growth. Similarly, our demonstration that integrated viral genomes may be subject to MAR-mediated transcriptional effects should facilitate elucidation of fundamental mechanisms regulating eukaryotic gene expression.

  15. Multiple Inhibitory Pathways Contribute to Lung CD8+ T Cell Impairment and Protect against Immunopathology during Acute Viral Respiratory Infection.

    Science.gov (United States)

    Erickson, John J; Rogers, Meredith C; Tollefson, Sharon J; Boyd, Kelli L; Williams, John V

    2016-07-01

    Viruses are frequent causes of lower respiratory infection (LRI). Programmed cell death-1 (PD-1) signaling contributes to pulmonary CD8(+) T cell (TCD8) functional impairment during acute viral LRI, but the role of TCD8 impairment in viral clearance and immunopathology is unclear. We now find that human metapneumovirus infection induces virus-specific lung TCD8 that fail to produce effector cytokines or degranulate late postinfection, with minimally increased function even in the absence of PD-1 signaling. Impaired lung TCD8 upregulated multiple inhibitory receptors, including PD-1, lymphocyte activation gene 3 (LAG-3), T cell Ig mucin 3, and 2B4. Moreover, coexpression of these receptors continued to increase even after viral clearance, with most virus-specific lung TCD8 expressing three or more inhibitory receptors on day 14 postinfection. Viral infection also increased expression of inhibitory ligands by both airway epithelial cells and APCs, further establishing an inhibitory environment. In vitro Ab blockade revealed that multiple inhibitory receptors contribute to TCD8 impairment induced by either human metapneumovirus or influenza virus infection. In vivo blockade of T cell Ig mucin 3 signaling failed to enhance TCD8 function or reduce viral titers. However, blockade of LAG-3 in PD-1-deficient mice restored TCD8 effector functions but increased lung pathology, indicating that LAG-3 mediates lung TCD8 impairment in vivo and contributes to protection from immunopathology during viral clearance. These results demonstrate that an orchestrated network of pathways modifies lung TCD8 functionality during viral LRI, with PD-1 and LAG-3 serving prominent roles. Lung TCD8 impairment may prevent immunopathology but also contributes to recurrent lung infections. PMID:27259857

  16. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome.

    Directory of Open Access Journals (Sweden)

    John M O'Dowd

    Full Text Available Many viruses subvert the host cell's ability to mount and complete various DNA damage responses (DDRs after infection. HCMV infection of permissive fibroblasts activates host DDRs at the time of viral deposition and during replication, but the DDRs remain uncompleted without arrest or apoptosis. We believe this was in part due to partitioning of the damage response and double strand break repair components. After extraction of soluble proteins, the localization of these components fell into three groups: specifically associated with the viral replication centers (RCs, diffused throughout the nucleoplasm and excluded from the RCs. Others have shown that cells are incapable of processing exogenously introduced damage after infection. We hypothesized that the inability of the cells to process damage might be due to the differential association of repair components within the RCs and, in turn, potentially preferential repair of the viral genome and compromised repair of the host genome. To test this hypothesis we used multiple strategies to examine repair of UV-induced DNA damage in mock and virus-infected fibroblasts. Comet assays indicated that repair was initiated, but was not completed in infected cells. Quantitative analysis of immunofluorescent localization of cyclobutane pyrimidine dimers (CPDs revealed that after 24 h of repair, CPDs were significantly reduced in viral DNA, but not significantly changed in the infected host DNA. To further quantitate CPD repair, we developed a novel dual-color Southern protocol allowing visualization of host and viral DNA simultaneously. Combining this Southern methodology with a CPD-specific T4 endonuclease V alkaline agarose assay to quantitate repair of adducts, we found efficient repair of CPDs from the viral DNA but not host cellular DNA. Our data confirm that NER functions in HCMV-infected cells and almost exclusively repairs the viral genome to the detriment of the host's genome.

  17. Implementation of additional cell types for transformation studies

    International Nuclear Information System (INIS)

    Our experience with 10T1/2 cells, the cell line generally used for such experiments, indicates that these cells are not suitable for our studies. We have recently made arrangements to obtain two additional cell lines recently developed by G.W. Barendsen. One of these, the NBCH-3 cell line, was derived from a clone which developed spontaneously in a primary cell culture of tissues from a newborn Chinese hamster. The assay procedure to be used with this cell line is the same as that for the C3H 10T1/2 cells; however, clonal development and morphology are considerably clearer. In addition, another cell line, denoted WAGR-2, was also derived in Barendsen's laboratory from the tissues of a newborn Wistar rat. The origin of the cells is again uncertain, but the procedures used for determining transformation frequencies with this cell line are essentially the same as for C3H 10T1/2 cells. Use of one or both of these new cell systems for our transformation experiments should not only increase the capabilities of the studies, but their use should make the assay both more accurate and simpler to perform

  18. Specific dysregulation of IFNγ production by natural killer cells confers susceptibility to viral infection.

    Directory of Open Access Journals (Sweden)

    Nassima Fodil

    2014-12-01

    Full Text Available Natural Killer (NK cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H(+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease.

  19. Complete Genome Sequence of Noncytopathic Bovine Viral Diarrhea Virus 1 Contaminating a High-Passage RK-13 Cell Line

    OpenAIRE

    Nam, Bora; Li, Ganwu; Zheng, Ying; Zhang, Jianqiang; Shuck, Kathleen M.; Timoney, Peter J.; Balasuriya, Udeni B. R.

    2015-01-01

    A high-passage rabbit kidney RK-13 cell line (HP-RK-13[KY], originally derived from the ATCC CCL-37 cell line) used in certain laboratories worldwide is contaminated with noncytopathic bovine viral diarrhea virus (ncpBVDV). On complete genome sequence analysis, the virus strain was found to belong to BVDV group 1b.

  20. Fuel Transformer Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  1. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  2. Fuel Transformer Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-07-27

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2006 through June 2006. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  3. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  4. Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques.

    Science.gov (United States)

    Liu, L; Wei, Q; Nishiura, K; Peng, J; Wang, H; Midkiff, C; Alvarez, X; Qin, C; Lackner, A; Chen, Z

    2016-07-01

    Innate immune responses have a critical role in the control of early virus replication and dissemination. It remains unknown, however, how severe acute respiratory syndrome coronavirus (SARS-CoV) evades respiratory innate immunity to establish a systemic infection. Here we show in Chinese macaques that SARS-CoV traversed the mucosa through the respiratory tract within 2 days, resulting in extensive mucosal infiltration by T cells, MAC387(+), and CD163(+) monocytes/macrophages followed by limited viral replication in the lung but persistent viral shedding into the upper airway. Mucosal monocytes/macrophages sequestered virions in intracellular vesicles together with infected Langerhans cells and migrated into the tonsils and/or draining lymph nodes within 2 days. In lymphoid tissues, viral RNA and proteins were detected in infected monocytes upon differentiation into dendritic cells (DCs) within 3 days. Systemic viral dissemination was observed within 7 days. This study provides a comprehensive overview of the spatiotemporal interactions of SARS-CoV, monocytes/macrophages, and the DC network in mucosal tissues and highlights the fact that, while these innate cells contribute to viral clearance, they probably also serve as shelters and vehicles to provide a mechanism for the virus to escape host mucosal innate immunity and disseminate systemically. PMID:26647718

  5. Detection of Infectious Bovine Rhinotracheitis and Bovine Viral Diarrhea Viruses in the Nasal Epithelial Cells by the Direct Immunofluorescence Technique

    OpenAIRE

    Silim, A.; Elazhary, M. A. S. Y.

    1983-01-01

    Nasal epithelial cells were collected by cotton swabs for the diagnosis in experimental and field cases of infectious bovine rhinotracheitis and field cases of bovine viral diarrhea in calves. A portion of the cells was washed twice in phosphate buffered saline and a 25 µL drop was placed on microscope slides. The cells were dried, fixed and stained according to the direct fluorescent antibody technique. Another portion of the same specimen was inoculated onto primary bovine skin cell culture...

  6. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  7. Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-05-01

    Full Text Available Abstract Background Actin is required for the gene expression and morphogenesis of respiratory syncytial virus (RSV, a clinically important Pneumovirus of the Paramyxoviridae family. In HEp-2 cells, RSV infection also induces actin stress fibers, which may be important in the immunopathology of the RSV disease. Profilin, a major regulator of actin polymerization, stimulates viral transcription in vitro. Thus, we tested the role of profilin in RSV growth and RSV-actin interactions in cultured cells (ex vivo. Results We tested three cell lines: HEp-2 (human, A549 (human, and L2 (rat. In all three, RSV grew well and produced fused cells (syncytium, and two RSV proteins, namely, the phosphoprotein P and the nucleocapsid protein N, associated with profilin. In contrast, induction of actin stress fibers by RSV occurred in HEp-2 and L2 cells, but not in A549. Knockdown of profilin by RNA interference had a small effect on viral macromolecule synthesis but strongly inhibited maturation of progeny virions, cell fusion, and induction of stress fibers. Conclusions Profilin plays a cardinal role in RSV-mediated cell fusion and viral maturation. In contrast, interaction of profilin with the viral transcriptional proteins P and N may only nominally activate viral RNA-dependent RNA polymerase. Stress fiber formation is a cell-specific response to infection, requiring profilin and perhaps other signaling molecules that are absent in certain cell lines. Stress fibers per se play no role in RSV replication in cell culture. Clearly, the cellular architecture controls multiple steps of host-RSV interaction, some of which are regulated by profilin.

  8. Targeted imaging of ovarian cancer cells using viral nanoparticles doped with indocyanine green

    Science.gov (United States)

    Guerrero, Yadir; Bahmani, Baharak; Jung, Bonsu; Vullev, Valentine; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Our group has constructed a new type of viral nanoparticles (VNPs) from genome-depleted plant infecting brome mosaic virus (BMV) that encapsulates the FDA-approved near infrared (NIR) indocyanine green (ICG)[1]. We refer to these VNPs as optical viral ghosts (OVGs) since the constructs lack the genomic content of wild-type BMV. One of our areas of interest is the application of OVGs for real-time intraoperative NIR fluorescence imaging of small peritoneal ovarian tumor nodules. We target human epidermal growth factor receptor-2 (HER-2) expression in ovarian cancer as a biomarker associated with ovarian cancer, since its over-expression is linked to the disease's progression to death. We functionalize the OVGs with anti-HER-2 monoclonal antibodies using reductive amination methods. We used fluorescence imaging to visualize the SKOV-3 cells (high HER-2 expression) after incubation with free ICG, OVGs, and functionalized OVGs. Our results suggest the possibility of using anti-HER2 conjugated OVGs in conjunction with cytoreductive surgery to detect small tumor nodules (<5cm) which currently are not excised during surgery.

  9. DMPD: The role of viral nucleic acid recognition in dendritic cells for innate andadaptive antiviral immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086372 The role of viral nucleic acid recognition in dendritic cells for innate andadaptive...ritic cells for innate andadaptive antiviral immunity. PubmedID 18086372 Title Th...e role of viral nucleic acid recognition in dendritic cells for innate andadaptive antiviral immunity. Autho

  10. Multi-micronucleus cells related with viral diseases, detected in the study of children affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Cells with multiple chromosome aberrations have been observed in human peripheral blood lymphocytes. Different explanation have proposed, included hot particle induction in persons related to the Chernobyl accident. The frequency of chromosome aberration and micronuclei were established in 14 Ukrainian children with different hematological disorders. They arrived in Cuba thanks to the program by means of which medical attention is offered to children from areas affected by the Chernobyl accident. At least 500 metaphases and bi-nucleate cells were analyzed in each case. The detection of 4 cells with 7-11 micronuclei in a 14 year old boy with cat scratch disease was the most significant cytogenetical finding. The viral origin of the cat scratch disease has been reported, this suggested a viral etiology of the cells with multiple micronuclei. No rogue cells were detected. Cells with multiple micronuclei or rogue cells were not found in other patients from this group. (authors). 7 refs., 3 tabs

  11. Characterization of a transformed rat retinal ganglion cell line.

    Science.gov (United States)

    Krishnamoorthy, R R; Agarwal, P; Prasanna, G; Vopat, K; Lambert, W; Sheedlo, H J; Pang, I H; Shade, D; Wordinger, R J; Yorio, T; Clark, A F; Agarwal, N

    2001-01-31

    The purpose of the present study was to establish a rat retinal ganglion cell line by transformation of rat retinal cells. For this investigation, retinal cells were isolated from postnatal day 1 (PN1) rats and transformed with the psi2 E1A virus. In order to isolate retinal ganglion cells (RGC), single cell clones were chosen at random from the transformed cells. Expression of Thy-1 (a marker for RGC), glial fibrillary acidic protein (GFAP, a positive marker for Muller cells), HPC-1/syntaxin (a marker for amacrine cells), 8A1 (a marker for horizontal and ganglion cells) and neurotrophins was studied using reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting and immunocytochemistry. One of the retinal cell clones, designated RGC-5, was positive for Thy-1, Brn-3C, Neuritin, NMDA receptor, GABA-B receptor, and synaptophysin expression and negative for GFAP, HPC-1, and 8A1, suggesting that it represented a putative RGC clone. The results of RT-PCR analysis were confirmed by immunocytochemistry for Thy-1 and GFAP. Upon further characterization by immunoblotting, the RGC-5 clone was positive for Thy-1, negative for GFAP, 8A1 and syntaxin. RGC 5 cells were also positive for the expression of neurotrophins and their cognate receptors. To establish the physiological relevance of RGC-5, the effects of serum/trophic factor deprivation and glutamate toxicity were analyzed to determine if these cells would undergo apoptosis. The protective effects of neurotrophins on RGC-5 after serum deprivation was also investigated. Apoptosis was studied by terminal deoxynucleotidyl transferase-mediated fluoresceinated dUTP nick end labeling (TUNEL). Serum deprivation resulted in apoptosis and supplementation with both BDNF and NT-4 in the growth media, protected the RGC-5 cells from undergoing apoptosis. On differentiation with succinyl concanavalin A (sConA), RGC-5 cells became sensitive to glutamate toxicity, which could be reversed by inclusion of ciplizone (MK801

  12. Internalization of novel non-viral vector TAT-streptavidin into human cells

    Directory of Open Access Journals (Sweden)

    Kulomaa Markku S

    2007-01-01

    Full Text Available Abstract Background The cell-penetrating peptide derived from the Human immunodeficiency virus-1 transactivator protein Tat possesses the capacity to promote the effective uptake of various cargo molecules across the plasma membrane in vitro and in vivo. The objective of this study was to characterize the uptake and delivery mechanisms of a novel streptavidin fusion construct, TAT47–57-streptavidin (TAT-SA, 60 kD. SA represents a potentially useful TAT-fusion partner due to its ability to perform as a versatile intracellular delivery vector for a wide array of biotinylated molecules or cargoes. Results By confocal and immunoelectron microscopy the majority of internalized TAT-SA was shown to accumulate in perinuclear vesicles in both cancer and non-cancer cell lines. The uptake studies in living cells with various fluorescent endocytic markers and inhibiting agents suggested that TAT-SA is internalized into cells efficiently, using both clathrin-mediated endocytosis and lipid-raft-mediated macropinocytosis. When endosomal release of TAT-SA was enhanced through the incorporation of a biotinylated, pH-responsive polymer poly(propylacrylic acid (PPAA, nuclear localization of TAT-SA and TAT-SA bound to biotin was markedly improved. Additionally, no significant cytotoxicity was detected in the TAT-SA constructs. Conclusion This study demonstrates that TAT-SA-PPAA is a potential non-viral vector to be utilized in protein therapeutics to deliver biotinylated molecules both into cytoplasm and nucleus of human cells.

  13. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-06-01

    Full Text Available Using a viral model of the demyelinating disease multiple sclerosis (MS, we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments.

  14. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells.

    Science.gov (United States)

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-05-07

    Gene transfer into hCD34(+) hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34(+) cell-based gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e90; doi:10.1038/mtna.2013.17; published online 7 May 2013.

  15. E1 Protein of Bovine Papillomavirus Type 1 Interferes with E2 Protein-Mediated Tethering of the Viral DNA to Mitotic Chromosomes

    OpenAIRE

    Voitenleitner, Christian; Botchan, Michael

    2002-01-01

    Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal plasmids. It is therefore of vital importance for viruses to ensure nuclear retention and proper segregation of their viral DNA. The bovine papillomavirus (BPV) E2 enhancer protein plays a key role in these processes by tethering the viral DNA to the host cell chromosomes. Viral genomes that harbor phosphorylation mutations in the E2 gene are transformation defective, and for these mutant genomes, neither the viral ...

  16. The Quest for Targets Executing MYC-Dependent Cell Transformation

    Science.gov (United States)

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  17. The quest for targets executing MYC-dependent cell transformation

    Directory of Open Access Journals (Sweden)

    Markus eHartl

    2016-06-01

    Full Text Available MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than forty upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, for determination which of the known, or yet unidentified targets are responsible for processing the oncogenic MYC program, further systematic and selective approaches are required. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets.Knowledge about essential MYC regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated

  18. Linear fidelity in quantification of anti-viral CD8+ T cells.

    Science.gov (United States)

    Flesch, Inge E A; Hollett, Natasha A; Wong, Yik Chun; Tscharke, David C

    2012-01-01

    Enumeration of anti-viral CD8(+) T cells to make comparisons between mice, viruses and vaccines is a frequently used approach, but controversy persists as to the most appropriate methods. Use of peptide-MHC tetramers (or variants) and intracellular staining for cytokines, in particular IFNγ, after a short ex vivo stimulation are now common, as are a variety of cytotoxicity assays, but few direct comparisons have been made. It has been argued that use of tetramers leads to the counting of non-functional T cells and that measurement of single cytokines will fail to identify cells with alternative functions. Further, the linear range of these methods has not been tested and this is required to give confidence that relative quantifications can be compared across samples. Here we show for two acute virus infections and CD8(+) T cells activated in vitro that DimerX (a tetramer variant) and intracellular staining for IFNγ, alone or in combination with CD107 to detect degranulation, gave comparable results at the peak of the response. Importantly, these methods were highly linear over nearly two orders of magnitude. In contrast, in vitro and in vivo assays for cytotoxicity were not linear, suffering from high background killing, plateaus in maximal killing and substantial underestimation of differences in magnitude of responses. PMID:22745779

  19. Linear fidelity in quantification of anti-viral CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Inge E A Flesch

    Full Text Available Enumeration of anti-viral CD8(+ T cells to make comparisons between mice, viruses and vaccines is a frequently used approach, but controversy persists as to the most appropriate methods. Use of peptide-MHC tetramers (or variants and intracellular staining for cytokines, in particular IFNγ, after a short ex vivo stimulation are now common, as are a variety of cytotoxicity assays, but few direct comparisons have been made. It has been argued that use of tetramers leads to the counting of non-functional T cells and that measurement of single cytokines will fail to identify cells with alternative functions. Further, the linear range of these methods has not been tested and this is required to give confidence that relative quantifications can be compared across samples. Here we show for two acute virus infections and CD8(+ T cells activated in vitro that DimerX (a tetramer variant and intracellular staining for IFNγ, alone or in combination with CD107 to detect degranulation, gave comparable results at the peak of the response. Importantly, these methods were highly linear over nearly two orders of magnitude. In contrast, in vitro and in vivo assays for cytotoxicity were not linear, suffering from high background killing, plateaus in maximal killing and substantial underestimation of differences in magnitude of responses.

  20. Targeted transfection and expression of hepatitis B viral DNA in human hepatoma cells.

    Science.gov (United States)

    Liang, T J; Makdisi, W J; Sun, S; Hasegawa, K; Zhang, Y; Wands, J R; Wu, C H; Wu, G Y

    1993-01-01

    A soluble DNA carrier system consisting of an asialoglycoprotein covalently linked to poly-L-lysine was used to bind DNA and deliver hepatitis B virus (HBV) DNA constructs to asialoglycoprotein receptor-positive human hepatoma cells. 4 d after transfection with surface or core gene expression constructs, HBsAg and HBeAg in the media were measured to be 16 ng/ml and 32 U/ml per 10(7) cells, respectively. Antigen production was completely inhibited by the addition of an excess of asialoorosomucoid. On the other hand, asialoglycoprotein receptor-negative human hepatoma cells, SK-Hep1, did not produce any viral antigens under identical conditions after incubation with HBV DNA complexed to a conjugate composed of asialoorosomucoid and poly-L-lysine. Using a complete HBV genome construct, HBsAg and HBeAg levels reached 16 ng/ml and 16 U/ml per 10(7) cells, respectively. Northern blots revealed characteristic HBV RNA transcripts including 3.5-, 2.4-, and 2.1-kb fragments. Intracellular and extracellular HBV DNA sequences including relaxed circular, linear and single stranded forms were detected by Southern blot hybridization. Finally, 42-nm Dane particles purified from the spent cultures medium were visualized by electron microscopy. This study demonstrates that a targetable DNA carrier system can transfect HBV DNA in vitro resulting in the production of complete HBV virions. Images PMID:8383700

  1. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors

    OpenAIRE

    Cavirani Sandro; Conti Virna; Del Bue Maurizio; Morini Giorgio; Franceschi Valentina; Capocefalo Antonio; Donofrio Gaetano; Grolli Stefano

    2010-01-01

    Abstract Background Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated. Results Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as tran...

  2. A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control

    Directory of Open Access Journals (Sweden)

    Gang Xin

    2015-11-01

    Full Text Available Control of chronic viral infections by CD8 T cells is critically dependent on CD4 help. In particular, helper-derived IL-21 plays a key role in sustaining the CD8 T cell response; however, the molecular pathways by which IL-21 sustains CD8 T cell immunity remain unclear. We demonstrate that IL-21 causes a phenotypic switch of transcription factor expression in CD8 T cells during chronic viral infection characterized by sustained BATF expression. Importantly, BATF expression during chronic infection is both required for optimal CD8 T cell persistence and anti-viral effector function and sufficient to rescue “unhelped” CD8 T cells. Mechanistically, BATF sustains the response by cooperating with IRF4, an antigen-induced transcription factor that is also critically required for CD8 T cell maintenance, to preserve Blimp-1 expression and thereby sustain CD8 T cell effector function. Collectively, these data suggest that CD4 T cells “help” the CD8 response during chronic infection via IL-21-induced BATF expression.

  3. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells.

    Science.gov (United States)

    Lichinchi, Gianluigi; Gao, Shang; Saletore, Yogesh; Gonzalez, Gwendolyn Michelle; Bansal, Vikas; Wang, Yinsheng; Mason, Christopher E; Rana, Tariq M

    2016-01-01

    N(6)-methyladenosine (m(6)A) is the most prevalent internal modification of eukaryotic mRNA. Very little is known of the function of m(6)A in the immune system or its role in host-pathogen interactions. Here, we investigate the topology, dynamics and bidirectional influences of the viral-host RNA methylomes during HIV-1 infection of human CD4 T cells. We show that viral infection triggers a massive increase in m(6)A in both host and viral mRNAs. In HIV-1 mRNA, we identified 14 methylation peaks in coding and noncoding regions, splicing junctions and splicing regulatory sequences. We also identified a set of 56 human gene transcripts that were uniquely methylated in HIV-1-infected T cells and were enriched for functions in viral gene expression. The functional relevance of m(6)A for viral replication was demonstrated by silencing of the m(6)A writer or the eraser enzymes, which decreased or increased HIV-1 replication, respectively. Furthermore, methylation of two conserved adenosines in the stem loop II region of HIV-1 Rev response element (RRE) RNA enhanced binding of HIV-1 Rev protein to the RRE in vivo and influenced nuclear export of RNA. Our results identify a new mechanism for the control of HIV-1 replication and its interaction with the host immune system. PMID:27572442

  4. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  5. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line.

    Science.gov (United States)

    Fernández Fernández, Elena; Santos-Carballal, Beatriz; Weber, Wolf-Michael; Goycoolea, Francisco M

    2016-04-11

    Successful gene therapy requires the development of suitable vehicles for the selective and efficient delivery of genes to specific target cells at the expense of minimal toxicity. In this work, we investigated a non-viral gene delivery system based on chitosan (CS) to specifically address cystic fibrosis (CF). Thus, electrostatic self-assembled CS-pEGFP and CS-pEGFP-siRNA complexes were prepared from high-pure fully characterized CS (Mw ∼ 20 kDa and degree of acetylation ∼ 30%). The average diameter of positively-charged complexes (i.e. ζ ∼+25 mV) was ∼ 200 nm. The complexes were found relatively stable over 14h in Opti-MEM. Cell viability study did not show any significant cytotoxic effect of the CS-based complexes in a human bronchial cystic fibrosis cell line (CFBE41o-). We evaluated the transfection efficiency of this cell line with both CS-pEGFP and co-transfected with CS-pEGFP-siRNA complexes at (N/P) charge ratio of 12. We reported an increase in the fluorescence intensity of CS-pEGFP and a reduction in the cells co-transfected with CS-pEGFP-siRNA. This study shows proof-of-principle that co-transfection with chitosan might be an effective delivery system in a human CF cell line. It also offers a potential alternative to further develop therapeutic strategies for inherited disease treatments, such as CF. PMID:26875537

  6. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  7. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Directory of Open Access Journals (Sweden)

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  8. Restored Circulating Invariant NKT Cells Are Associated with Viral Control in Patients with Chronic Hepatitis B

    Science.gov (United States)

    Jiang, Xiaotao; Zhang, Mingxia; Lai, Qintao; Huang, Xuan; Li, Yongyin; Sun, Jian; Abbott, William G.H.; Ma, Shiwu; Hou, Jinlin

    2011-01-01

    Invariant NKT (iNKT) cells are involved in the pathogenesis of various infectious diseases. However, their role in hepatitis B virus (HBV) infection is not fully understood, especially in human species. In this study, 35 chronic hepatitis B (CHB) patients, 25 inactive carriers (IC) and 36 healthy controls (HC) were enrolled and the proportions of circulating iNKT cells in fresh isolated peripheral blood mononuclear cells (PBMC) were detected by flow cytometry. A longitudinal analysis was also conducted in 19 CHB patients who received antiviral therapy with telbivudine. Thereafter, the immune functions of iNKT cells were evaluated by cytokine secretion and a two-chamber technique. The median frequency of circulating iNKT cells in CHB patients (0.13%) was lower than that in HC (0.24%, P = 0.01) and IC (0.19%, P = 0.02), and increased significantly during antiviral therapy with telbivudine (P = 0.0176). The expressions of CC chemokine receptor 5 (CCR5) and CCR6 were dramatically higher on iNKT cells (82.83%±9.87%, 67.67%±16.83% respectively) than on conventional T cells (30.5%±5.65%, 14.02%±5.92%, both P<0.001) in CHB patients. Furthermore, iNKT cells could migrate toward the CC chemokine ligand 5. Patients with a high ratio (≥1.0) of CD4−/CD4+ iNKT cells at baseline had a higher rate (58.33%) of HBeAg seroconversion than those with a low ratio (<1.0, 0%, P = 0.0174). In conclusion, there is a low frequency of peripheral iNKT cells in CHB patients, which increases to normal levels with viral control. The ratio of CD4−/CD4+ iNKT cells at baseline may be a useful predictor for HBeAg seroconversion in CHB patients on telbivudine therapy. PMID:22194934

  9. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  10. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  11. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells

    NARCIS (Netherlands)

    Garcia, S.; Billecocq, A.; Crance, J.M.; Prins, M.W.; Garin, D.; Bouloy, M.

    2006-01-01

    It was recently shown that infection of ISE6 tick cells by a recombinant Semliki Forest virus (SFV) expressing a heterologous gene induced small interfering RNAs (siRNAs) and silencing of the gene. To gain information on RNA interference (RNAi) in ticks, three known viral inhibitors that act in diff

  12. Red Blood Cells Estimation Using Hough Transform Technique

    Directory of Open Access Journals (Sweden)

    Nasrul Humaimi Mahmood

    2012-05-01

    Full Text Available The number of red blood cells contributes more to clinical diagnosis with respect to blood diseases. Theaim of this research is to produce a computer vision system that can detect and estimate the number of redblood cells in the blood sample image. Morphological is a very powerful tool in image processing, and it isbeen used to segment and extract the red blood cells from the background and other cells. The algorithmused features such as shape of red blood cells for counting process, and Hough transform is introduced inthis process. The result presented here is based on images with normal blood cells. The tested data consistsof 10 samples and produced the accurate estimation rate closest to 96% from manual counting.

  13. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells.

    Science.gov (United States)

    Vij, Puneet; Hardej, Diane

    2012-11-01

    Diphenyl ditelluride (DPDT) and tellurium tetrachloride (TeCl(4)) were evaluated for toxicity in transformed (HT-29, Caco-2) and non-transformed colon cells (CCD-18Co). Significant decreases in viability were observed with DPDT exposure in HT-29 (62.5-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM) and with TeCl(4) in HT-29 (31.25-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM). Light microscopy confirmed viability analysis. Significant increases in caspase 3/7 and 9 activity were observed with DPDT in HT-29 (500-1000 μM) and CCD-18Co cells (1000 μM) indicating apoptosis. No significant increases in caspases were seen with TeCl(4) indicating necrosis. Apoptosis or necrosis was confirmed with fluorescent staining (FITC-Annexin, Hoechst 33342 and Ethidium Homodimer). Significant decreases in GSH/GSSG ratio were observed with DPDT in HT-29 (62.5-1000 μM), and CCD-18Co cells (1000 μM) and with TeCl(4) in HT-29 (62.5-1000 μM) and CCD-18Co cells (250-1000 μM). We concluded that cells treated with DPDT resulted in apoptosis and TeCl(4) treatment in necrosis. GSH/GSSG ratio shifts indicate oxidative mechanisms are involved. PMID:23068156

  14. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  15. Host Cell Protein C9orf9 Promotes Viral Proliferation via Interaction with HSV-1 UL25 Protein

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Yan-mei Li; Long-ding Liu; Li Jiang; Ma Ji; Rui-ju Jiang; Lei Guo; Yun Liao; Qi-han Li

    2011-01-01

    In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins,the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins that can interact with the UL25 protein.C9orf69,a protein of unknown function was identified.The interaction between the two proteins under physiological conditions was also confirmed by biological experiments including co-localization by fluorescence and immunoprecipitation.A preliminary study of the function of C9orf69 showed that it promotes viral proliferation.Further studies showed that C9orf69 did not influence viral multiplication efficiency by transcriptional regulation of viral genes,but indirectly promoted proliferation via interaction with UL25.

  16. HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation.

    Science.gov (United States)

    Choi, Young Bong; Harhaj, Edward William

    2014-10-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.

  17. CXCR4 Signaling Regulates Remyelination by Endogenous Oligodendrocyte Progenitor Cells in a Viral Model of Demyelination

    Science.gov (United States)

    CARBAJAL, KEVIN S.; MIRANDA, JUAN L.; TSUKAMOTO, MICHELLE R.; LANE, THOMAS E.

    2016-01-01

    Following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV), susceptible mice will develop widespread myelin destruction that results in pathological and clinical outcomes similar to those seen in humans with the demyelinating disease Multiple Sclerosis (MS). Partial remyelination and clinical recovery occurs during the chronic phase following control of viral replication yet the signaling mechanisms regulating these events remain enigmatic. Here we report the kinetics of proliferation and maturation of oligodendrocyte progenitor cells (OPCs) within the spinal cord following JHMV-induced demyelination and that CXCR4 signaling contributes to the maturation state of OPCs. Following treatment with AMD3100, a specific inhibitor of CXCR4, mice recovering from widespread demyelination exhibit a significant (P < 0.01) increase in the number of OPCs and fewer (P < 0.05) mature oligodendrocytes compared with HBSS-treated animals. These results suggest that CXCR4 signaling is required for OPCs to mature and contribute to remyelination in response to JHMV-induced demyelination. To assess if this effect is reversible and has potential therapeutic benefit, we pulsed mice with AMD3100 and then allowed them to recover. This treatment strategy resulted in increased numbers of mature oligodendrocytes, enhanced remyelination, and improved clinical outcome. These findings highlight the possibility to manipulate OPCs in order to increase the pool of remyelination-competent cells that can participate in recovery. PMID:21830237

  18. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability.

    Science.gov (United States)

    Ambrosi, Christina M; Boyle, Patrick M; Chen, Kay; Trayanova, Natalia A; Entcheva, Emilia

    2015-12-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability.

  19. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  20. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    Science.gov (United States)

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants.

  1. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    Science.gov (United States)

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants. PMID:22892689

  2. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  3. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  4. Image classifiers for the cell transformation assay: a progress report

    Science.gov (United States)

    Urani, Chiara; Crosta, Giovanni F.; Procaccianti, Claudio; Melchioretto, Pasquale; Stefanini, Federico M.

    2010-02-01

    The Cell Transformation Assay (CTA) is one of the promising in vitro methods used to predict human carcinogenicity. The neoplastic phenotype is monitored in suitable cells by the formation of foci and observed by light microscopy after staining. Foci exhibit three types of morphological alterations: Type I, characterized by partially transformed cells, and Types II and III considered to have undergone neoplastic transformation. Foci recognition and scoring have always been carried visually by a trained human expert. In order to automatically classify foci images one needs to implement some image understanding algorithm. Herewith, two such algorithms are described and compared by performance. The supervised classifier (as described in previous articles) relies on principal components analysis embedded in a training feedback loop to process the morphological descriptors extracted by "spectrum enhancement" (SE). The unsupervised classifier architecture is based on the "partitioning around medoids" and is applied to image descriptors taken from histogram moments (HM). Preliminary results suggest the inadequacy of the HMs as image descriptors as compared to those from SE. A justification derived from elementary arguments of real analysis is provided in the Appendix.

  5. Theory of morphological transformation of viral capsid shell during the maturation process in the HK97 bacteriophage and similar viruses

    Science.gov (United States)

    Konevtsova, O. V.; Lorman, V. L.; Rochal, S. B.

    2016-05-01

    We consider the symmetry and physical origin of collective displacement modes playing a crucial role in the morphological transformation during the maturation of the HK97 bacteriophage and similar viruses. It is shown that the experimentally observed hexamer deformation and pentamer twist in the HK97 procapsid correspond to the simplest irreducible shear strain mode of a spherical shell. We also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the simplest irreducible radial displacement field. The shear field has the rotational icosahedral symmetry group I while the radial field has the full icosahedral symmetry Ih. This difference makes their actions independent. The radial field sign discriminates between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus making the approach relevant not only for the HK97-like viruses but also for the parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple phenomenological model valid for the first reversible step of the HK97 maturation process. The calculated phase diagram illustrates the discontinuous character of the virus shape transformation. The characteristics of the virus shell faceting and expansion obtained in the in vitro and in vivo experiments are related to the decrease in the capsid shell thickness and to the increase of the internal capsid pressure.

  6. Theory of morphological transformation of viral capsid shell during the maturation process in the HK97 bacteriophage and similar viruses.

    Science.gov (United States)

    Konevtsova, O V; Lorman, V L; Rochal, S B

    2016-05-01

    We consider the symmetry and physical origin of collective displacement modes playing a crucial role in the morphological transformation during the maturation of the HK97 bacteriophage and similar viruses. It is shown that the experimentally observed hexamer deformation and pentamer twist in the HK97 procapsid correspond to the simplest irreducible shear strain mode of a spherical shell. We also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the simplest irreducible radial displacement field. The shear field has the rotational icosahedral symmetry group I while the radial field has the full icosahedral symmetry I_{h}. This difference makes their actions independent. The radial field sign discriminates between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus making the approach relevant not only for the HK97-like viruses but also for the parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple phenomenological model valid for the first reversible step of the HK97 maturation process. The calculated phase diagram illustrates the discontinuous character of the virus shape transformation. The characteristics of the virus shell faceting and expansion obtained in the in vitro and in vivo experiments are related to the decrease in the capsid shell thickness and to the increase of the internal capsid pressure.

  7. Fatal and nonfatal AIDS and non-AIDS events in HIV-1-positive individuals with high CD4 cell counts according to viral load strata

    DEFF Research Database (Denmark)

    Reekie, Joanne; Gatell, Jose M; Yust, Israel;

    2011-01-01

    This study compared the incidence of fatal and nonfatal AIDS and non-AIDS events in HIV-positive individuals with a CD4 cell count more than 350¿ cells/µl among viral load strata: low (......This study compared the incidence of fatal and nonfatal AIDS and non-AIDS events in HIV-positive individuals with a CD4 cell count more than 350¿ cells/µl among viral load strata: low (...

  8. A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers.

    Directory of Open Access Journals (Sweden)

    Peter W Hunt

    Full Text Available HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+, regulatory (CD4+CD25+CD127(dim, HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed, untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014. Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001. These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.

  9. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  10. Modeling system states in liver cells: Survival, apoptosis and their modifications in response to viral infection

    Directory of Open Access Journals (Sweden)

    Timmer Jens

    2009-09-01

    Full Text Available Abstract Background The decision pro- or contra apoptosis is complex, involves a number of different inputs, and is central for the homeostasis of an individual cell as well as for the maintenance and regeneration of the complete organism. Results This study centers on Fas ligand (FasL-mediated apoptosis, and a complex and internally strongly linked network is assembled around the central FasL-mediated apoptosis cascade. Different bioinformatical techniques are employed and different crosstalk possibilities including the integrin pathway are considered. This network is translated into a Boolean network (74 nodes, 108 edges. System stability is dynamically sampled and investigated using the software SQUAD. Testing a number of alternative crosstalk possibilities and networks we find that there are four stable system states, two states comprising cell survival and two states describing apoptosis by the intrinsic and the extrinsic pathways, respectively. The model is validated by comparing it to experimental data from kinetics of cytochrome c release and caspase activation in wildtype and Bid knockout cells grown on different substrates. Pathophysiological modifications such as input from cytomegalovirus proteins M36 and M45 again produces output behavior that well agrees with experimental data. Conclusion A network model for apoptosis and crosstalk in hepatocytes shows four different system states and reproduces a number of different conditions around apoptosis including effects of different growth substrates and viral infections. It produces semi-quantitative predictions on the activity of individual nodes, agreeing with experimental data. The model (SBML format and all data are available for further predictions and development.

  11. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.

    Science.gov (United States)

    Snyder, Christopher M; Cho, Kathy S; Bonnett, Elizabeth L; van Dommelen, Serani; Shellam, Geoffrey R; Hill, Ann B

    2008-10-17

    During persistent murine cytomegalovirus (MCMV) infection, the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells, which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation, MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead, we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported, at least in part, by memory T cells primed early in infection, as well as by recruitment of naive T cells at late times. Thus, these data show that memory inflation is maintained by a continuous replacement of short-lived, functional cells during chronic MCMV infection.

  12. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    Science.gov (United States)

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  13. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    Science.gov (United States)

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development. PMID:25176574

  14. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    Science.gov (United States)

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development.

  15. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.

    Science.gov (United States)

    Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong

    2016-08-01

    Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. PMID:27216457

  16. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Directory of Open Access Journals (Sweden)

    Hirashima Mitsuomi

    2006-12-01

    Full Text Available Abstract Background Nasopharyngeal carcinomas (NPC are consistently associated with the Epstein-Barr virus (EBV. Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1 which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Methods Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15 or negative (C17 – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. Results HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15 or galectin 9 only (C17. Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM. In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM with no synergy with LMP1. Conclusion This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and

  17. Transformation

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  18. Bovine Mx1 enables resistance against foot-and-mouth disease virus in naturally susceptible cells by inhibiting the replication of viral RNA.

    Science.gov (United States)

    Wang, H-M; Xia, X-Z; Hu, G-X; Yu, L; He, H-B

    2016-03-01

    Innate immunity, especially the anti-viral genes, exerts an important barrier function in preventing viral infections. Myxovirus-resistant (Mx) gene take an anti-viral role, whereas its effects on foot-and-mouth disease virus (FMDV) in naturally susceptible cells are still unclear. The bovine primary fetal tracheal epithelial cell line BPTE-siMx1, in which bovine Mx1 gene was silenced, was established and treated with IFN alpha for 6 hr before FMDV infection. The copy numbers of the negative and positive strand viral RNA were determined by strand-specific real-time fluorescence quantitative RT-PCR. The TCID50 of BPTE-siMx1 cells increased at least 17-fold as compared to control cells BPTE-LacZ at 8 hr post infection, thus silencing of bovine Mx1 could promote the replication of FMDV. The amount of both the negative and positive strand viral RNA in BPTE-siMx1 cells significantly increased as compared to BPTE-LacZ cells, indicating that the replication levels of viral RNA were promoted by silencing bovine Mx1. The bovine Mx1 gene could provide resistance against FMDV in the bovine primary fetal tracheal epithelial cells via suppressing the replication of viral RNA. PMID:26982472

  19. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes

    OpenAIRE

    Luo, Xiaoyu; He, Johnny J.

    2014-01-01

    Astrocytes are the most abundant cells in the central nervous system and play important roles in HIV/neuroAIDS. Detection of HIV proviral DNA, RNA and early gene products but not late structural gene products in astrocytes in vivo and in vitro indicates that astrocytes are susceptible to HIV infection albeit in a restricted manner. We as well as others have shown that cell-free HIV is capable of entering CD4− astrocytes through human mannose receptor-mediated endocytosis. In this study, we to...

  20. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    Science.gov (United States)

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals.

  1. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    Science.gov (United States)

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals. PMID:26791245

  2. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    Science.gov (United States)

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  3. Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes.

    Science.gov (United States)

    Mehta, Ashish; Chung, YingYing; Sequiera, Glen Lester; Wong, Philip; Liew, Reginald; Shim, Winston

    2013-02-01

    Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study, we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide), class III (sotalol and amiodarone), and class IV (verapamil), whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability, class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs, verapamil shortened cFPD and FPmin by 25 and 50%, respectively. Furthermore, verapamil reduced beating frequencies drastically. Importantly, the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes, drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine, flecainide, and sotalol was demonstrated at supraphysiological concentrations. Furthermore, off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.

  4. Human nucleotide sequences related to the transforming gene of a murine sarcoma virus: studies with cloned viral and cellular DNAs.

    Science.gov (United States)

    Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Kisselev, L L

    1982-01-01

    A recombinant plasmid, pI26, has been constructed by cloning into pBR322 a transforming gene of murine sarcoma virus (a Moloney strain, clone 124, MSV) synthesized by detergent-treated virions. From this plasmid a XbaI-HindIII fragment has been isolated which contains only mos-specific sequences. This mos-specific probe has been used for screening a human gene library cloned in bacteriophage lambda Charon 4A. Of these, 19 clones have been isolated containing mos-related sequences. By physical mapping and molecular hybridization it has been shown that these sequences are neighboured by DNA regions related to Moloney murine leukemia virus. Recombinant phages have also been found containing human inserts related to MLV, not to the mos gene. The possible existence of murine-like endogenous retroviruses in the normal human genome, including that of a sarcoma type, is discussed. By Northern blotting, expression of the cellular c-mos gene has been detected in mouse liver treated with a hepatocarcinogen. The general significance of the suggested model for evaluating the relationship between chemical carcinogenesis and oncogene expression is discussed.

  5. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    Science.gov (United States)

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.

  6. Experimental infection with non-cytopathic bovine viral diarrhea virus 1 in mice induces inflammatory cell infiltration in the spleen.

    Science.gov (United States)

    Han, Yu-Jung; Kwon, Young-Je; Lee, Kyung-Hyun; Choi, Eun-Jin; Choi, Kyoung-Seong

    2016-09-01

    Previously, our study showed that oral inoculation of mice with cytopathic (cp) bovine viral diarrhea virus (BVDV) led to lymphocyte depletion and increased numbers of megakaryocytes in the spleen as well as thrombocytopenia and lymphopenia. In the present study, to investigate the possible differences in the detection of viral antigen, histopathological lesions, and hematologic changes between non-cytopathic (ncp) BVDV1 and cp BVDV1, mice were orally administered low and high doses of ncp BVDV1 and were necropsied at days 0, 2, 5, and 9 postinfection (pi). None of the ncp BVDV1-infected mice exhibited clinical signs of illness, unlike those infected with cp BVDV1. Statistically significant thrombocytopenia was observed during ncp BVDV1 infection, and lymphopenia was found only in mice infected with a high dose at day 9 pi. Interestingly, ncp BVDV1 infection increased the numbers of basophils, eosinophils, neutrophils, and monocytes in some infected mice. Viral antigen was detected in the lymphocytes of the spleen, mesenteric lymph nodes, Peyer's patches, and bone marrow by immunohistochemistry. Lymphoid depletion was evident in the mesenteric lymph nodes of mice infected with a high dose and also found in the Peyer's patches of some infected mice. Infiltration of inflammatory cells, including neutrophils and monocytes, and an increased number of megakaryocytes were seen in the spleen. These results suggest that the distribution of viral antigens is not associated with the presence of histopathological lesions. Inflammatory cell infiltration was observed in the spleens as a result of viral replication and may be attributable to the host reaction to ncp BVDV1 infection. Together, these findings support the possibility that mice can be used as an animal model for BVDV infection.

  7. The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission

    Science.gov (United States)

    Lemaire, Morgane; Masquelier, Cécile; Beraud, Cyprien; Rybicki, Arkadiusz; Servais, Jean-Yves; Iserentant, Gilles; Schmit, Jean-Claude; Seguin-Devaux, Carole; Perez Bercoff, Danielle

    2016-01-01

    The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines. PMID:27598717

  8. Scientific projection paper for mutagenesis, transformation and cell killing

    International Nuclear Information System (INIS)

    Our knowledge about mutagenesis, transformation, and cell killing by ionizing radiation consists of large bodies of data, which are potentially useful in terms of application to human risk assessment and to the constructive use of radiation, as in cancer treatment. The three end-points discussed above are united by at least five significant concepts in radiation research strategy: (1) The inter-relationships among the important end-points, mutation, carcinogenesis, and cell killing. Research on one is meaningful only in the context of information about the other two. (2) The interaction of radiations with other agents in producing these end-points. (3) The mechanisms of action of other environmental mutagenic, carcinogenic, and cytotoxic agents. (4) The use of repair deficient human mutant cells. (5) The study of radiation damage mechanisms. There is no better way to extrapolate laboratory data to the clinical and public worlds than to understand the underlying biological mechanisms that produced the data

  9. Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model

    CERN Document Server

    Gönci, Balázs; Balogh, Emeric; Szabó, Bálint; Dénes, Ádám; Környei, Zsuzsanna; Vicsek, Tamás

    2010-01-01

    Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model ...

  10. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  11. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    Directory of Open Access Journals (Sweden)

    Katharina Debowski

    Full Text Available Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80 and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement

  12. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells

    Science.gov (United States)

    Sariyer, Ilker Kudret; Sariyer, Rahsan; Otte, Jessica; Gordon, Jennifer

    2016-01-01

    Objective PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV), which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs). We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF). SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen. Methods and Results Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins. Conclusions Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral

  13. In vitro replication activity of bovine viral diarrhea virus in an epithelial cell line and in bovine peripheral blood mononuclear cells.

    Science.gov (United States)

    Turin, Lauretta; Lucchini, Barbara; Bronzo, Valerio; Luzzago, Camilla

    2012-11-01

    The present study focused on the in vitro infection of Madin-Darby bovine kidney (MDBK) cells and bovine peripheral blood mononuclear cells (PBMCs) from naÏve animals with non-cytopathic (ncp, BVDV-1b NY-1) and cytopathic (cp, BVDV-1a NADL) strains. Infections with 0.1 and 1 multiplicity of infections (MOI) and incubation times of 18 and 36 hr were compared. Twelve BVDV naÏve heifers were enrolled to collect PBMCs. The viral loads in MDBK cells and in PBMCs after in vitro infections were measured by real-time polymerase chain reaction (PCR) assays. The highest viral loads were measured at 1 MOI and 36 hr post infection in both cell systems and the lowest at 0.1 MOI and 18 hr with the exception of the cp strain NADL in PBMCs, for which the highest viral load was observed at 0.1 MOI and 36 hr. Viral load mean values were higher for the cp strain than the ncp strain irrespective of the extent of the infection period and MOI. The models of infection studied uncovered different replication activities respectively according to the biotype of virus, the cell substrate and the duration of infection. Replication tends to be higher in PBMCs, particularly at low MOIs and for the ncp strain.

  14. Viral encephalitis

    Directory of Open Access Journals (Sweden)

    Marcus Tulius T Silva

    2013-09-01

    Full Text Available While systemic viral infections are exceptionally common, symptomatic viral infections of the brain parenchyma itself are very rare, but a serious neurologic condition. It is estimated that viral encephalitis occurs at a rate of 1.4 cases per 100.000 inhabitants. Geography is a major determinant of encephalitis caused by vector-borne pathogens. A diagnosis of viral encephalitis could be a challenge to the clinician, since almost 70% of viral encephalitis cases are left without an etiologic agent identified. In this review, the most common viral encephalitis will be discussed, with focus on ecology, diagnosis, and clinical management.

  15. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.

    Directory of Open Access Journals (Sweden)

    Luke Uebelhoer

    Full Text Available Mechanisms by which hepatitis C virus (HCV evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA class I-restricted epitopes targeted by CD8(+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC anchor and T cell receptor (TCR contact residues. Only one of these amino acid substitutions at position 9 (P9 of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7 TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily

  16. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    Science.gov (United States)

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  17. Spatiotemporal Analysis of Purkinje Cell Degeneration Relative to Parasagittal Expression Domains in a Model of Neonatal Viral Infection▿

    OpenAIRE

    Williams, Brent L.; Yaddanapudi, Kavitha; Hornig, Mady; Lipkin, W. Ian

    2006-01-01

    Infection of newborn Lewis rats with Borna disease virus (neonatal Borna disease [NBD]) results in cerebellar damage without the cellular inflammation associated with infections in later life. Purkinje cell (PC) damage has been reported for several models of early-life viral infection, including NBD; however, the time course and distribution of PC pathology have not been investigated rigorously. This study examined the spatiotemporal relationship between PC death and zonal organization in NBD...

  18. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  19. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  20. The input-output transformation of the hippocampal granule cells: from grid cells to place fields

    OpenAIRE

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E.

    2009-01-01

    Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal granule cells whose output is characterized by one or more small place fields. We sought to understand how this input-output transformation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the spatial distribution of excitation in granule cells produced by the convergence of excitatory in...

  1. Global Analysis of a Model of Viral Infection with Latent Stage and Two Types of Target Cells

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    2013-01-01

    Full Text Available By introducing the probability function describing latency of infected cells, we unify some models of viral infection with latent stage. For the case that the probability function is a step function, which implies that the latency period of the infected cells is constant, the corresponding model is a delay differential system. The model with delay of latency and two types of target cells is investigated, and the obtained results show that when the basic reproduction number is less than or equal to unity, the infection-free equilibrium is globally stable, that is, the in-host free virus will be cleared out finally; when the basic reproduction number is greater than unity, the infection equilibrium is globally stable, that is, the viral infection will be chronic and persist in-host. And by comparing the basic reproduction numbers of ordinary differential system and the associated delayed differential system, we think that it is necessary to elect an appropriate type of probability function for predicting the final outcome of viral infection in-host.

  2. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro

    Institute of Scientific and Technical Information of China (English)

    Mostafa K El-Awady; Moataza H Omran; Wael T El-Garf; Said A Goueli; Ashraf A Tabll; Yasmine S El-Abd; Mahmoud M Bahgat; Hussein A Shoeb; Samar S Youssef; Noha G Bader El Din; El-Rashdy M Redwan; Maha El-Demellawy

    2006-01-01

    AIM: To establish a cell culture system with longterm replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS: HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naive cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS: The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION: HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells.

  3. A positive cooperativity binding model between Ly49 natural killer cell receptors and the viral immunoevasin m157: kinetic and thermodynamic studies.

    Science.gov (United States)

    Romasanta, Pablo N; Curto, Lucrecia M; Urtasun, Nicolas; Sarratea, María B; Chiappini, Santiago; Miranda, María V; Delfino, José M; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2014-02-21

    Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼10(8) versus ∼10(5) M(-1)). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.

  4. Efficient Source of Cells in Proximal Oviduct for Testing Non-Viral Expression Constructs in the Chicken Bioreactor Model and for Other in Vitro Studies.

    Science.gov (United States)

    Stadnicka, Katarzyna; Bodnar, Magdalena; Marszałek, Andrzej; Bajek, Anna; Drewa, Tomasz; Płucienniczak, Grazyna; Chojnacka-Puchta, Luiza; Cecuda-Adamczewska, Violetta; Dunisławska, Aleksandra; Bednarczyk, Marek

    2016-01-01

    This work shows the usefulness of chicken oviduct epithelial cells (COEC) in evaluating the efficacy of non-viral expression vectors carrying human therapeutic genes. Secondly, an efficient source of progenitor COEC for in vitro studies is described. Within the distal part of the oviduct, weak to moderate expression of a trans membrane glycoprotein (CD44) was observed. Single cells presenting only weak expression of CD44 were found in magnum sections. in vitro cultured oviduct cells originating from the distal oviduct were suitable for subculturing and showed a stable proliferation potential up to the 2nd passage. However, the pavimentous epithelial-like morphology of COEC was progressively lost over time and mainly a fibroblast-like monolayer was established in consecutive passages. Moreover, various commercial transfection agents including FuGENE6 and XtremeGENE9 DNA were used to optimize delivery of human interferon alfa-2a, (IFNα2a) a therapeutic protein gene under an ovalbumin promoter. The transfection efficiency of adherent COEC was estimated for up to 40% at a ratio of 6:1 of transfectant to pOVA5EIFN + GFP plasmid. Expression of IFNα2a was confirmed by western blotting in transformed COEC. In conclusion, the population of epithelial progenitor cells sourced from the distal oviduct can significantly contribute to in vitro culture of COEC, representing an efficient model to develop the production of avian bioreactors and other in vitro studies related to oviduct tissue. PMID:27172711

  5. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence.

    Directory of Open Access Journals (Sweden)

    Cameron R Cunningham

    2016-01-01

    Full Text Available Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.

  6. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence.

    Science.gov (United States)

    Cunningham, Cameron R; Champhekar, Ameya; Tullius, Michael V; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M; Wilson, Elizabeth B; de la Torre, Juan Carlos; Kitchen, Scott G; Horwitz, Marcus A; Bensinger, Steven J; Smale, Stephen T; Brooks, David G

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  7. RGD-conjugated rod-like viral nanoparticles on 2D scaffold improved bone differentiation of mesenchymal stem cells

    Science.gov (United States)

    Wang, Qian; Pongkwan, Sitasuwan; Lee, L.; Li, Kai; Nguyen, Huong

    2014-05-01

    Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tuneable nanoscale building block for biomaterials development. Unmodified TMV particles have been shown to accelerate osteogenic differentiation of adult stem cells by synergistically upregulating BMP2 and IBSP expression with dexamethasone. However, the lack of affinity to mammalian cell surface resulted in low initial cell adhesion. In this study, to increase cell binding capacity of TMV based material the chemical functionalization of TMV with arginine-glycine-aspartic acid (RGD) peptide was explored. An azide-derivatized RGD peptide was “clicked” to tyrosine residues on TMV outer surface via an efficient copper(I) catalysed azide-alkyne cycloaddition reaction. The ligand spacing is calculated to be 2-4 nm, which could offer a polyvalent ligand clustering effect for enhanced cell receptor signalling, further promoting the proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.

  8. The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers

    Science.gov (United States)

    Ndhlovu, Zaza M.; Stampouloglou, Eleni; Cesa, Kevin; Mavrothalassitis, Orestes; Alvino, Donna Marie; Li, Jonathan Z.; Wilton, Shannon; Karel, Daniel; Piechocka-Trocha, Alicja; Chen, Huabiao; Pereyra, Florencia

    2015-01-01

    ABSTRACT Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8+ T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = −0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8+ T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8+ T lymphocytes, is at least

  9. Liver cell adenoma with malignant transformation: A case report

    Institute of Scientific and Technical Information of China (English)

    Masahiro Ito; Makoto Sasaki; Chun-Yang Wen; Masahiro Nakashima; Toshihito Ueki; Hiromi Ishibashi; Michitami Yano; Masayoshi Kage; Masamichi Kojiro

    2003-01-01

    A 57-year-old woman was referred to our hospital because of a liver mass detected by computed tomography. She had taken oral contraceptives for only one month at the age of thirty. Physical examination revealed no abnormalities, and laboratory data, including hepatic function tests, were within the normal range, with the exception of elevated levels of those serum proteins induced by the absence of vitamin K or by raised levels of the antagonist (PIVKA)-Ⅱ (3 502 AU/ml).Abdominal ultrasonography revealed a hyperechoic mass measuring 10x10 cm in the left posterior segment of the liver. Because hepatocellular carcinoma could not be completely excluded, this mass was resected. The tumor consisted of sheets of uniform cells with clear cytoplasm,perinuclear eosinophilic granules and round nuclei. These histological findings were consistent with liver cell adenoma.Background hepatic tissue appeared normal. After resection of the tumor, serum PIVKA-Ⅱ fell to within the normal range.An area of hepatocellular carcinoma (HCC) with a midtrabecular pattern was immunohistochemically found, which was positive for PIVKA-Ⅱ. Sinusoidal endothelial cells were CD34-positive, containing scattered PIVKA-Ⅱ positive cells.This tumor was therefore finally diagnosed as liver cell adenoma with focal malignant transformation to HCC.

  10. Viral marketing

    OpenAIRE

    BLÁHOVÁ, Adéla

    2012-01-01

    The aim of my thesis is to provide a comprehensive overview of the viral marketing and to analyze selected viral campaigns. There is a description of advantages and disadvantages of this marketing tool. In the end I suggest for which companies viral marketing is an appropriate form of the promotion.

  11. Spontaneous malignant transformation of conventional giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Grote, H.J.; Pomjanski, N.; Boecking, A. [Institute of Cytopathology, Heinrich Heine University, Moorenstrasse 5, 40225, Duesseldorf (Germany); Braun, M. [Orthopedic Hospital Volmarstein, University of Witten/Herdecke, Hartmannstrasse 24, 58300, Wetter (Ruhr) (Germany); Kalinski, T.; Roessner, A. [Department of Pathology, Otto von Guericke University, Leipziger Strasse 44, 39120, Magdeburg (Germany); Back, W.; Bleyl, U. [Department of Pathology, Ruprecht Karls University Heidelberg, University Hospital Mannheim, Theodor-Kutzer-Ufer, 68167, Mannheim (Germany)

    2004-03-01

    Spontaneous malignant transformation of conventional giant cell tumor (GCT) of bone is exceedingly rare. We report on a case of GCT of the iliac crest in a 35-year-old woman with malignant change into a high-grade osteosarcoma 10 years after the first appearance of GCT on a radiograph. Since the patient refused therapy for personal reasons the tumor remained untreated until sarcomatous transformation occurred. Image cytometry showed DNA aneuploidy and a suspiciously high 2c deviation index (2cDI) in the primary bone lesion. A thorough review of the world literature revealed only seven fully documented cases of secondary malignant GCT which matched the definition of a ''sarcomatous growth that occurs at the site of a previously documented benign giant cell tumor'' and not treated by radiotherapy. These cases as well as the current one suggest that a spontaneous secondary malignant GCT presents as a frankly sarcomatous tumor in the form of an osteosarcoma or malignant fibrous histiocytoma. It usually appears at sites of typical GCTs - often without any recurrent intermediate state - and is diagnosed 3 or more years after the primary bone lesion. The prognosis is poor. (orig.)

  12. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection.

    Science.gov (United States)

    Gillespie, Alyssa Lundgren; Teoh, Jeffrey; Lee, Heather; Prince, Jessica; Stadnisky, Michael D; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R; Tung, Kenneth; Brown, Michael G

    2016-02-01

    The MHC class I D(k) molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds D(k), are required to control viral spread. The extent of D(k)-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust D(k)-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.

  13. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Department of Anatomy, Anhui Medical University, Hefei, 230032 (China); Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Chen, Zhiguo, E-mail: chenzhiguo@gmail.com [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, CA (United States); Zhang, Y. Alex, E-mail: yaz@bjsap.org [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China)

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  14. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: ► Spontaneous transformation of cynomolgus monkey MSCs in vitro. ► Transformed mesenchymal cells lack multipotency. ► Transformed mesenchymal cells are highly tumorigenic. ► Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  15. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  16. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  17. CELL SHAPE AND HEXOSE TRANSPORT IN NORMAL AND VIRUS-TRANSFORMED CELLS IN CULTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, M.J.; Farson, D.; Tung, A.S.C.

    1976-07-01

    The rate of hexose transport was compared in normal and virus-transformed cells on a monolayer and in suspension. It was shown that: (1) Both trypsin-removed cells and those suspended for an additional day in methyl cellulose had decreased rates of transport and lower available water space when compared with cells on a monolayer. Thus, cell shape affects the overall rate of hexose transport, especially at higher sugar concentrations. (2) Even in suspension, the initial transport rates remained higher in transformed cells with reference to normal cells. Scanning electron micrographs of normal and transformed chick cells revealed morphological differences only in the flat state. This indicates that the increased rate of hexose transport after transformation is not due to a difference in the shape of these cells on a monolayer. The relation between the geometry of cells, transport rates, and growth regulation is undoubtedly very complex, and our knowledge of these relationships is still very elementary. In a recent review on the influence of geometry on control of cell growth, Folkman and Greenspan (1) pointed out that the permeability of cells in a flat versus a spherical state may indeed be very different. The growth properties of cells on a surface and in suspension have been compared often (1-5). However, with one exception. little is known about the changes in transport properties when cell shape is changed. Foster and Pardee (6) demonstrated that the active transport of a-aminoisobutyric acid was reduced 2.5 times in suspension cultures of Chinese hamster cells with respect to the cells grown on a coverslip. They attributed this to the smaller surface area of suspended cells. While it is not clear why active transport should be dependent on the surface area available, it is possible that once the cells assume a spherical configuration, the carrier proteins are redistributed in such a way as to make them less accessible to the substrate. What happens to

  18. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Phillips, Andrew N; Gatell, Jose;

    2013-01-01

    CD4 cell count and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or increase the risk of disease this would not be identified prior to licensing. The aim of this study...... was to investigate the CD4 cell count and viral load-specific rates of fatal and nonfatal AIDS and non-AIDS events according to current antiretrovirals....

  19. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    Science.gov (United States)

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  20. Transcriptomic analysis of responses to cytopathic bovine viral diarrhea virus-1 (BVDV-1) infection in MDBK cells.

    Science.gov (United States)

    Villalba, Melina; Fredericksen, Fernanda; Otth, Carola; Olavarría, Víctor

    2016-03-01

    The bovine viral diarrhea virus (BVDV) is responsible for significant economic losses in the dairy and cattle industry; however, little is known about the protective and pathological responses of hosts to infection. The present study determined the principal molecular markers implicated in viral infection through meta-transcriptomic analysis using MDBK cells infected for two hours with a field isolate of BVDV-1. While several immune regulator genes were induced, genes involved in cell signaling, metabolic processes, development, and integrity were down-regulated, suggesting an isolation of infected cells from cell-to-cell interactions and responses to external signals. Analysis through RT-qPCR confirmed the expression of more than one hundred markers. Interestingly, there was a significant up-regulation of two negative NF-κB regulators, IER3 and TNFAIP3, indicating a possible blocking of this signaling pathway mediated by BVDV-1 infection. Additionally, several genes involved in the metabolism of reactive oxygen species were down-regulated, suggesting increased oxidative stress. Notably, a number of genes involved in cellular growth and development were also regulated during infection, including MTHFD1L, TGIF1, and Brachyury. Moreover, there was an increased expression of the genes β-catenin, caprin-2, GSK3β, and MMP-7, all of which are crucial to the Wnt signaling pathway that is implicated in the embryonic development of a variety of organisms. This meta-transcriptomic analysis provides the first data towards understanding the infection mechanisms of cytopathic BVDV-1 and the putative molecular relationship between viral and host components. PMID:26919728

  1. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis

    Science.gov (United States)

    Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir

    2016-09-01

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.

  2. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis.

    Science.gov (United States)

    Domanskyi, Sergii; Schilling, Joshua E; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir

    2016-09-01

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions. PMID:27608985

  3. Outcomes from monitoring of patients on antiretroviral therapy in resource-limited settings with viral load, CD4 cell count, or clinical observation alone: a computer simulation model

    DEFF Research Database (Denmark)

    Phillips, Andrew N; Pillay, Deenan; Miners, Alec H;

    2008-01-01

    BACKGROUND: In lower-income countries, WHO recommends a population-based approach to antiretroviral treatment with standardised regimens and clinical decision making based on clinical status and, where available CD4 cell count, rather than viral load. Our aim was to study the potential consequences...... strategies-based on viral load, CD4 cell count, or clinical observation alone-for determining when to switch people starting antiretroviral treatment with the WHO-recommended first-line regimen of stavudine, lamivudine, and nevirapine to second-line antiretroviral treatment. FINDINGS: Over 5 years......, the predicted proportion of potential life-years survived was 83% with viral load monitoring (switch when viral load >500 copies per mL), 82% with CD4 cell count monitoring (switch at 50% drop from peak), and 82% with clinical monitoring (switch when two new WHO stage 3 events or a WHO stage 4 event occur...

  4. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  5. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  6. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  7. Interferon-induced revertants of ras-transformed cells: resistance to transformation by specific oncogenes and retransformation by 5-azacytidine.

    Science.gov (United States)

    Samid, D; Flessate, D M; Friedman, R M

    1987-01-01

    Prolonged alpha/beta interferon (IFN-alpha/beta) treatment of NIH 3T3 cells transformed by a long terminal repeat-activated Ha-ras proto-oncogene resulted in revertants that maintained a nontransformed phenotype long after IFN treatment had been discontinued. Cloned persistent revertants (PRs) produced large amounts of the ras-encoded p21 and were refractile to transformation by EJras DNA and by transforming retroviruses which carried the v-Ha-ras, v-Ki-ras, v-abl, or v-fes oncogene. Transient treatment either in vitro or in vivo with cytidine analogs that alter gene expression by inhibiting DNA methylation resulted in transformation of PR, but not of NIH 3T3, cells. The PR retransformants reverted again with IFN, suggesting that DNA methylation is involved in IFN-induced persistent reversion. Images PMID:2439904

  8. Peripheral blood mononuclear cells from field cattle immune to bovine viral diarrhea virus (BVDV) are permissive in vitro to BVDV.

    Science.gov (United States)

    Gupta, V; Mishra, N; Pateriya, A; Behera, S P; Rajukumar, K

    2014-01-01

    The aim of this study was to determine the in vitro permissivity of peripheral blood mononuclear cells (PBMCs) from bovine viral diarrhea virus (BVDV)-immune field cattle to homologous and heterologous BVDVs. PBMCs from seventeen BVDV-naïve and sixteen BVDV-immune animals were infected with noncytopathic BVDV-1 or BVDV-2. The immune status of cattle was indicated by the presence of virus neutralizing antibodies, while viral load of PBMCs was determined by real-time RT-PCR. The results revealed that the PBMCs from naïve or immune animals were permissive to either BVDV-1 or BVDV-2, but the viral load was significantly higher for the naïve than for the immune animals. Furthermore, the load of homologous virus in PBMCs from immune animals was lower than that of heterologous virus. Our results provide evidence that the PBMCs from BVDV-immune cattle in field are susceptible to reinfection with homologous or heterologous BVDV, albeit to a lower extent in the former case.

  9. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2010-07-01

    Full Text Available Abstract Background Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. Results To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU and ultraviolet light (UV also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. Conclusions These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  10. Absence of cross-presenting cells in the salivary gland and viral immune evasion confine cytomegalovirus immune control to effector CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Senta M Walton

    2011-08-01

    Full Text Available Horizontal transmission of cytomegaloviruses (CMV occurs via prolonged excretion from mucosal surfaces. We used murine CMV (MCMV infection to investigate the mechanisms of immune control in secretory organs. CD4 T cells were crucial to cease MCMV replication in the salivary gland (SG via direct secretion of IFNγ that initiated antiviral signaling on non-hematopoietic cells. In contrast, CD4 T cell helper functions for CD8 T cells or B cells were dispensable. Despite SG-resident MCMV-specific CD8 T cells being able to produce IFNγ, the absence of MHC class I molecules on infected acinar glandular epithelial cells due to viral immune evasion, and the paucity of cross-presenting antigen presenting cells (APCs prevented their local activation. Thus, local activation of MCMV-specific T cells is confined to the CD4 subset due to exclusive presentation of MCMV-derived antigens by MHC class II molecules on bystander APCs, resulting in IFNγ secretion interfering with viral replication in cells of non-hematopoietic origin.

  11. Conformation-specific antibodies targeting the trimer-of-hairpins motif of the human T-cell leukemia virus type 1 transmembrane glycoprotein recognize the viral envelope but fail to neutralize viral entry.

    Science.gov (United States)

    Mirsaliotis, Antonis; Nurkiyanova, Kulpash; Lamb, Daniel; Woof, Jenny M; Brighty, David W

    2007-06-01

    Human T-cell leukemia virus type 1 (HTLV-1) entry into cells is dependent upon the viral envelope glycoprotein-catalyzed fusion of the viral and cellular membranes. Following receptor activation of the envelope, the transmembrane glycoprotein (TM) is thought to undergo a series of fusogenic conformational transitions through a rod-like prehairpin intermediate to a compact trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that TM is a valid target for antiviral therapy. To assess the utility of TM as a vaccine target and to explore further the function of TM in HTLV-1 pathogenesis, we have begun to examine the immunological properties of TM. Here we demonstrate that a recombinant trimer-of-hairpins form of the TM ectodomain is strongly immunogenic. Monoclonal antibodies raised against the TM immunogen specifically bind to trimeric forms of TM, including structures thought to be important for membrane fusion. Importantly, these antibodies recognize the envelope on virally infected cells but, surprisingly, fail to neutralize envelope-mediated membrane fusion or infection by pseudotyped viral particles. Our data imply that, even in the absence of overt membrane fusion, there are multiple forms of TM on virally infected cells and that some of these display fusion-associated structures. Finally, we demonstrate that many of the antibodies possess the ability to recruit complement to TM, suggesting that envelope-derived immunogens capable of eliciting a combination of neutralizing and complement-fixing antibodies would be of value as subunit vaccines for intervention in HTLV infections. PMID:17376912

  12. Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation

    OpenAIRE

    Hahn, William C.; Scott K Dessain; Brooks, Mary W.; King, Jessie E.; Elenbaas, Brian; Sabatini, David M.; DeCaprio, James A.; Weinberg, Robert A.

    2002-01-01

    While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the si...

  13. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E.

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    Full Text Available Adenoviruses (Ads with deletion of E1b55K preferentially replicate in cancer cells and have been used in cancer therapies. We have previously shown that Ad E1B55K protein is involved in induction of cyclin E for Ad replication, but this E1B55K function is not required in cancer cells in which deregulation of cyclin E is frequently observed. In this study, we investigated the interaction of cyclin E and CDK2 in Ad-infected cells. Ad infection significantly increased the large form of cyclin E (cyclin EL, promoted cyclin E/CDK2 complex formation and increased CDK2 phosphorylation at the T160 site. Activated CDK2 caused pRb phosphorylation at the S612 site. Repression of CDK2 activity with the chemical inhibitor roscovitine or with specific small interfering RNAs significantly decreased pRb phosphorylation, with concomitant repression of viral replication. Our results suggest that Ad-induced cyclin E activates CDK2 that targets the transcriptional repressor pRb to generate a cellular environment for viral productive replication. This study reveals a new molecular basis for oncolytic replication of E1b-deleted Ads and will aid in the development of new strategies for Ad oncolytic virotherapies.

  14. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  15. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Science.gov (United States)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  16. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    Science.gov (United States)

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  17. Productive replication of nephropathogenic infectious bronchitis virus in peripheral blood monocytic cells, a strategy for viral dissemination and kidney infection in chickens.

    Science.gov (United States)

    Reddy, Vishwanatha R A P; Trus, Ivan; Desmarets, Lowiese M B; Li, Yewei; Theuns, Sebastiaan; Nauwynck, Hans J

    2016-01-01

    In the present study, the replication kinetics of nephropathogenic (B1648) and respiratory (Massachusetts-M41) IBV strains were compared in vitro in respiratory mucosa explants and blood monocytes (KUL01(+) cells), and in vivo in chickens to understand why some IBV strains have a kidney tropism. B1648 was replicating somewhat better than M41 in the epithelium of the respiratory mucosa explants and used more KUL01(+) cells to penetrate the deeper layers of the respiratory tract. B1648 was productively replicating in KUL01(+) monocytic cells in contrast with M41. In B1648 inoculated animals, 10(2.7-6.8) viral RNA copies/100 mg were detected in tracheal secretions at 2, 4, 6, 8, 10 and 12 days post inoculation (dpi), 10(2.4-4.5) viral RNA copies/mL in plasma at 2, 4, 6, 8, 10 and 12 dpi and 10(1.8-4.4) viral RNA copies/10(6) mononuclear cells in blood at 2, 4, 6 and 8 dpi. In M41 inoculated animals, 10(2.6-7.0) viral RNA copies/100 mg were detected in tracheal secretions at 2, 4, 6, 8 and 10 dpi, but viral RNA was not demonstrated in plasma and mononuclear cells (except in one chicken at 6 dpi). Infectious virus was detected only in plasma and mononuclear cells of the B1648 group. At euthanasia (12 dpi), viral RNA and antigen positive cells were detected in lungs, liver, spleen and kidneys of only the B1648 group and in tracheas of both the B1648 and M41 group. In conclusion, only B1648 can easily disseminate to internal organs via a cell-free and -associated viremia with KUL01(+) cells as important carrier cells. PMID:27412035

  18. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival.

    Science.gov (United States)

    Mangraviti, Antonella; Tzeng, Stephany Y; Gullotti, David; Kozielski, Kristen L; Kim, Jennifer E; Seng, Michael; Abbadi, Sara; Schiapparelli, Paula; Sarabia-Estrada, Rachel; Vescovi, Angelo; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Green, Jordan J; Quinones-Hinojosa, Alfredo

    2016-09-01

    There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies. PMID:27240162

  19. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available UNLABELLED: The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules. METHODS AND RESULTS: SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS: Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  20. Protegrin-1 Inhibits Dengue NS2B-NS3 Serine Protease and Viral Replication in MK2 Cells

    Directory of Open Access Journals (Sweden)

    Hussin A. Rothan

    2012-01-01

    Full Text Available Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2 cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2 replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC50 of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P<0.001 at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P<0.01 higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.

  1. Experimental depletion of CD8+ cells in acutely SIVagm-Infected African Green Monkeys results in increased viral replication

    Directory of Open Access Journals (Sweden)

    Apetrei Cristian

    2010-05-01

    Full Text Available Abstract Background In vivo CD8+ cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8+ cell depletion during acute SIV infection in AGMs. Results Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg, 6, and 13 (10 mg/kg, respectively post infection (p.i.. CD8+ cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8+ T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (107-108 RNA copies/ml. However, while VLs were controlled in undepleted AGMs, reaching set-point levels (104-105 RNA copies/ml by day 28 p.i., high VLs (>106 RNA copies/ml were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS. Conclusion CD8+ cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8+ T cells and avoid disease progression.

  2. Molecular Mechanisms of Viral and Host Cell Substrate Recognition by Hepatitis C Virus NS3/4A Protease

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.; Cao, Hong; Massi, Francesca; Schiffer, Celia A. (UMASS, MED)

    2011-08-16

    Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF and 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.

  3. Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model.

    Directory of Open Access Journals (Sweden)

    Balázs Gönci

    Full Text Available Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation.

  4. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  5. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors

    Science.gov (United States)

    Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-01-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3–15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase.

  6. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors.

    Science.gov (United States)

    Dorantes-Heredia, Rita; Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-08-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3-15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase.

  7. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  8. H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast

    Science.gov (United States)

    Becker, Björn; Blum, Andrea; Gießelmann, Esther; Dausend, Julia; Rammo, Domenik; Müller, Nina C.; Tschacksch, Emilia; Steimer, Miriam; Spindler, Jenny; Becherer, Ute; Rettig, Jens; Breinig, Frank; Schmitt, Manfred J.

    2016-01-01

    A/B toxins such as cholera toxin, Pseudomonas exotoxin and killer toxin K28 contain a KDEL-like amino acid motif at one of their subunits which ensures retrograde toxin transport through the secretory pathway of a target cell. As key step in host cell invasion, each toxin binds to distinct plasma membrane receptors that are utilized for cell entry. Despite intensive efforts, some of these receptors are still unknown. Here we identify the yeast H/KDEL receptor Erd2p as membrane receptor of K28, a viral A/B toxin carrying an HDEL motif at its cell binding β-subunit. While initial toxin binding to the yeast cell wall is unaffected in cells lacking Erd2p, binding to spheroplasts and in vivo toxicity strongly depend on the presence of Erd2p. Consistently, Erd2p is not restricted to membranes of the early secretory pathway but extends to the plasma membrane where it binds and internalizes HDEL-cargo such as K28 toxin, GFPHDEL and Kar2p. Since human KDEL receptors are fully functional in yeast and restore toxin sensitivity in the absence of endogenous Erd2p, toxin uptake by H/KDEL receptors at the cell surface might likewise contribute to the intoxication efficiency of A/B toxins carrying a KDEL-motif at their cytotoxic A-subunit(s). PMID:27493088

  9. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  10. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    International Nuclear Information System (INIS)

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virus 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells

  11. HCV Specific IL-21 Producing T Cells but Not IL-17A Producing T Cells Are Associated with HCV Viral Control in HIV/HCV Coinfection

    Science.gov (United States)

    MacParland, Sonya A.; Fadel, Saleh M.; Mihajlovic, Vesna; Fawaz, Ali; Kim, Connie; Rahman, A. K. M. Nur-ur; Liu, Jun; Kaul, Rupert; Kovacs, Colin; Grebely, Jason; Dore, Gregory J.; Wong, David K.; Ostrowski, Mario A.

    2016-01-01

    Background Decreased hepatitis C virus (HCV) clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV) coinfection. The CD4+ T helper cytokines interleukin (IL)-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control. Methods We measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels. Results In acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21. Conclusions These data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals. PMID:27124305

  12. Modeling human endothelial cell transformation in vascular neoplasias

    Directory of Open Access Journals (Sweden)

    Victoria W. Wen

    2013-09-01

    Full Text Available Endothelial cell (EC-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia.

  13. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells.

    Science.gov (United States)

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-12-01

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.

  14. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    OpenAIRE

    Vikas Duhan; Vishal Khairnar; Sarah-Kim Friedrich; Fan Zhou; Asmae Gassa; Nadine Honke; Namir Shaabani; Nicole Gailus; Lacramioara Botezatu; Cyrus Khandanpour; Ulf Dittmer; Dieter Häussinger; Mike Recher; Cornelia Hardt; Lang, Philipp A.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-spec...

  15. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    OpenAIRE

    Qiang Tu; Jia Yin; Jun Fu; Jennifer Herrmann; Yuezhong Li; Yulong Yin; Francis Stewart, A.; Rolf Müller; Youming Zhang

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and re...

  16. Cutting Edge: B Cell-Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection.

    Science.gov (United States)

    Barnett, Burton E; Staupe, Ryan P; Odorizzi, Pamela M; Palko, Olesya; Tomov, Vesselin T; Mahan, Alison E; Gunn, Bronwyn; Chen, Diana; Paley, Michael A; Alter, Galit; Reiner, Steven L; Lauer, Georg M; Teijaro, John R; Wherry, E John

    2016-08-15

    The role of Ab and B cells in preventing infection is established. In contrast, the role of B cell responses in containing chronic infections remains poorly understood. IgG2a (IgG1 in humans) can prevent acute infections, and T-bet promotes IgG2a isotype switching. However, whether IgG2a and B cell-expressed T-bet influence the host-pathogen balance during persisting infections is unclear. We demonstrate that B cell-specific loss of T-bet prevents control of persisting viral infection. T-bet in B cells controlled IgG2a production, as well as mucosal localization, proliferation, glycosylation, and a broad transcriptional program. T-bet controlled a broad antiviral program in addition to IgG2a because T-bet in B cells was important, even in the presence of virus-specific IgG2a. Our data support a model in which T-bet is a universal controller of antiviral immunity across multiple immune lineages. PMID:27430722

  17. VIRAL MARKETING

    OpenAIRE

    OLENTSOVA Y. A

    2016-01-01

    Abstract This project seeks to investigate how the company Gitz can create awareness towards their brand by using viral marketing. To do this we analyze which elements of viral marketing the company can use, to reach their goal. In order to utilize the selected tools of viral marketing best possible, we need to figure out the company’s customer segment and figure out how to reach that segment. This has been done with the use of Henrik Dahl’s Minerva-model that divides the population into f...

  18. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone

    Science.gov (United States)

    Mostafa, Heba H.; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J.

    2016-01-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus—specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential. PMID:27589232

  19. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Directory of Open Access Journals (Sweden)

    Chetan Sood

    Full Text Available HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles. Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  20. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Science.gov (United States)

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH. PMID:26863211

  1. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone.

    Science.gov (United States)

    Mostafa, Heba H; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J

    2016-09-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential. PMID:27589232

  2. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis

    OpenAIRE

    Greenberg, Milton L.; Weinger, Jason G.; Matheu, Melanie P.; Carbajal, Kevin S.; Parker, Ian; Macklin, Wendy B.; Lane, Thomas E; Cahalan, Michael D.

    2014-01-01

    Stem cell transplantation has emerged as a promising cell-based therapy for the treatment of demyelinating diseases such as multiple sclerosis (MS). This study provides the first real-time imaging of transplanted stem cell-mediated remyelination in a mouse model of MS. Whereas current treatments solely delay disease progression, transplanted stem cells actively reverse clinical disease in animal models. Using two-photon microscopy and viral-induced demyelination, we describe a technique to vi...

  3. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    Science.gov (United States)

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development.

  4. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    Science.gov (United States)

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  5. Improving Plant Transformation Using Zygote as the Recipient Cell

    Institute of Scientific and Technical Information of China (English)

    Y.H. Yang; H.Q. Tian

    2007-01-01

    @@ Since the first transgenic plant was obtained from tobacco in the 1980's, the transformation of higher plants has been a vigorous field of study using applications of molecular biology. To date, transgenic methods of introducing foreign genes into higher plants include techniques of electrofusion, eletroporation, microinjection and transformation mediated by PEG and Agrobacterium.

  6. Rhesus monkeys kidney cells persistently infected with Simian Virus 40: production of defective interfering virus and acquisition of the transformed phenotype.

    Science.gov (United States)

    Norkin, L C

    1976-09-01

    Monolayer cultures of LLC-MK2 rhesus monkey kidney cells became persistently infected with simian virus 40 (SV40) when infected at a multiplicity of infection of 100 plaque-forming units/cell. A stable carrier state developed characterized by extensive viral proliferation without obvious cytopathic effect other than the slow growth of these cultures. By 11 weeks all cells produced the SV40 T antigen. In contrast, less than 5% of the cells produced V antigen. Virus-free clonal isolates were obtained by cloning in SV40 antiserum. Continuous cultivation in antiserum resulted in a temporary cure of unclone cultures. When virus did eventually reappear in the "cured" cultures the titers remained low. The virus produced by the carrier culture was defective at both 31 and 37% c, and it interfered with the growth of standard s40 during mixed infection of CV-1 green monkey kidney cells. All of the interfering activity in carrier culture homogenates could be sedimented by centrifugation at 109,000 x g for 3 h. These cultures were completely susceptible to vesicular stomatitis virus. Extensive viral deoxyribonucleic acid synthesis occurred in CV-1 cells infected with carrier culture virus. Carrier culture homogenates are only slightly less cytopathic to CV-1 cells than standard SV40. The carrier culture express several properties of SV40 transformation.

  7. Comparison of gene expression profiles in chromate transformed BEAS-2B cells.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available BACKGROUND: Hexavalent chromium [Cr(VI] is a potent human carcinogen. Occupational exposure has been associated with increased risk of respiratory cancer. Multiple mechanisms have been shown to contribute to Cr(VI induced carcinogenesis, including DNA damage, genomic instability, and epigenetic modulation, however, the molecular mechanism and downstream genes mediating chromium's carcinogenicity remain to be elucidated. METHODS/RESULTS: We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of Cr(VI followed by anchorage-independent growth. These transformed cell lines not only exhibited consistent morphological changes but also acquired altered and distinct gene expression patterns compared with normal BEAS-2B cells and control cell lines (untreated that arose spontaneously in soft agar. Interestingly, the gene expression profiles of six Cr(VI transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell lines or normal BEAS-2B cells. A total of 409 differentially expressed genes were identified in Cr(VI transformed cells compared to control cells. Genes related to cell-to-cell junction were upregulated in all Cr(VI transformed cells, while genes associated with the interaction between cells and their extracellular matrices were down-regulated. Additionally, expression of genes involved in cell proliferation and apoptosis were also changed. CONCLUSION: This study is the first to report gene expression profiling of Cr(VI transformed cells. The gene expression changes across individual chromate exposed clones were remarkably similar to each other but differed significantly from the gene expression found in anchorage-independent clones that arose spontaneously. Our analysis identified many novel gene expression changes that may contribute to chromate induced cell transformation, and collectively this type of

  8. Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns..

    Directory of Open Access Journals (Sweden)

    Sylvie Python

    Full Text Available Plasmacytoid dendritic cells (pDC have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral E(rns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic.

  9. Viral pneumonia

    Science.gov (United States)

    More serious infections can result in respiratory failure, liver failure, and heart failure. Sometimes, bacterial infections occur during or just after viral pneumonia, which may lead to more serious forms ...

  10. Viral Hepatitis

    Science.gov (United States)

    ... Hepatitis viruses B and C can cause both acute and chronic infections. Chronic hepatitis B and C are serious health problems. They can lead to: Cirrhosis (suh-ROH-suhs) Liver failure Liver cancer Return to top How is viral ...

  11. Pharyngitis - viral

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001392.htm Pharyngitis - viral To use the sharing features on this page, please enable JavaScript. Pharyngitis , or sore throat, is swelling, discomfort, pain, or ...

  12. Viral arthritis

    Science.gov (United States)

    Infectious arthritis - viral ... Arthritis may be a symptom of many virus-related illnesses. It usually disappears on its own without ... the rubella vaccine, only a few people develop arthritis. No risk factors are known.

  13. Evaluation of EBV transformation of human memory B-cells isolated by FACS and MACS techniques.

    Science.gov (United States)

    Sadreddini, Sanam; Jadidi-Niaragh, Farhad; Younesi, Vahid; Pourlak, Tala; Afkham, Amir; Shokri, Fazel; Yousefi, Mehdi

    2016-07-01

    Several studies have been performed to develop effective neutralizing monoclonal antibodies. The Epstein-Barr virus (EBV) can efficiently immortalize B-cells to establish lymphoblastoid cell lines (LCL) and so it has been used extensively for transformation of B-cells to produce and secrete immunoglobulin. The present study addressed the effect of TLR7/8 agonist (R848), feeder cells layer and fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) cell separation methods on the transformation efficiency of antibody-producing memory B-cells. For these studies, the antigen used for analyses of antibody formation was the tetanus neurotoxin (TeNT) derived from Clostridium tetani. The results here showed that employing an HFFF.PI6 feeder cell layer, R848 agonist and FACS-mediated purification of memory B-cells led to increased transformation efficiency. Altogether, the effects of the R848 and the feeder cells provided an efficient method for EBV transformation of human B-cells. Moreover, there was an advantage in using FACS sorting of B-cells over the MACS method in the context of EBV transformation and immortalization of precursors of antigen-specific B-cells. PMID:27043044

  14. Viral Marketing

    OpenAIRE

    Sorina Raula Gîrboveanu; Silvia Puiu

    2008-01-01

    With consumers showing increasing resistance to traditional forms of advertising such as TV or newspaper ads, marketers have turned to alternate strategies, including viral marketing. Viral marketing exploits existing social networks by encouraging customers to share product information with their friends.In our study we are able to directly observe the effectiveness of person to person word of mouth advertising for hundreds of thousands of products for the first time

  15. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage.

    Science.gov (United States)

    Raisin, Sophie; Belamie, Emmanuel; Morille, Marie

    2016-10-01

    Recent regenerative medicine and tissue engineering strategies for bone and cartilage repair have led to fascinating progress of translation from basic research to clinical applications. In this context, the use of gene therapy is increasingly being considered as an important therapeutic modality and regenerative technique. Indeed, in the last 20 years, nucleic acids (plasmid DNA, interferent RNA) have emerged as credible alternative or complement to proteins, which exhibited major issues including short half-life, loss of bioactivity in pathologic environment leading to high dose requirement and therefore high production costs. The relevance of gene therapy strategies in combination with a scaffold, following a so-called "Gene-Activated Matrix (GAM)" approach, is to achieve a direct, local and sustained delivery of nucleic acids from a scaffold to ensure efficient and durable cell transfection. Among interesting cells sources, Mesenchymal Stem Cells (MSC) are promising for a rational use in gene/cell therapy with more than 1700 clinical trials approved during the last decade. The aim of the present review article is to provide a comprehensive overview of recent and ongoing work in non-viral genetic engineering of MSC combined with scaffolds. More specifically, we will show how this inductive strategy can be applied to orient stem cells fate for bone and cartilage repair. PMID:27467418

  16. [Viral superantigens].

    Science.gov (United States)

    Us, Dürdal

    2016-07-01

    , expression of endogenous SAgs leads to thymic deletion of responding T cells (bearing Vβ6-9+ TCR) due to self-tolerance induction during the fetal life, and protects the host against future exogenous MMTV infections. The SAg of rabies virus is the N protein found in nucleocapsid structure and stimulates Vβ8+TCR-bearing T cells. The SAg-induced polyclonal activation of T cells leads to turn-off the specific immune response, to enhance the immunopathogenesis and facilitates viral transmission from the initial site of infection (the muscle tissue) to the nerve endings. In case of EBV-associated SAg that activates Vβ13+TCR-bearing T cells, it was detected that the SAg activity was not encoded by EBV itself, but instead was due to the transactivation of HERV-K18 by EBV latent membrane proteins, whose env gene encodes the SAg (Sutkowski, et al. 2001). It has been denoted that EBV-induced SAg expression plays a role in the long-term persistence and latency of virus in memory B cells, in the development of autoimmune diseases and in the oncogenesis mechanisms. The proteins which are identified as SAgs of HIV are Nef and gp120. It is believed that, the massive activation of CD4+ T cells (selectively with Vβ-12+, Vβ-5.3+ and Vβ-18+ TCRs) in early stages of infection and clonal deletion, anergy and apoptosis of bystander T cells in the late stages may be due to SAg property of Nef protein, as well as the other mechanisms. However there are some studies indicating that Nef does not act as a SAg (Lapatschek, et al. 2001). HIV gp120 glycoprotein is a B-cell SAg that binds to VH3-expressing B cell receptors and causes polyclonal B cell activation. In addition, binding of gp120 to IgE on the surface of basophiles and mast cells causes activation of those cells, secretion of high level proinflammatory mediators leading to allergic reactions and tissue damage. In a recent study, the depletion (anergy or deletion) of T cell populations bearing Vβ12+, Vβ13+ and Vβ17+ TCR have been

  17. The input-output transformation of the hippocampal granule cells: from grid cells to place fields.

    Science.gov (United States)

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E

    2009-06-10

    Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal granule cells whose output is characterized by one or more small place fields. We sought to understand how this input-output transformation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the spatial distribution of excitation in granule cells produced by the convergence of excitatory inputs from randomly chosen grid cells. Because the resulting summation depends on the number of inputs, it is necessary to use a realistic number (approximately 1200) and to take into consideration their 20-fold variation in strength. The resulting excitation maps have only modest peaks and valleys. To analyze how this excitation interacts with inhibition, we used an E%-max (percentage of maximal suprathreshold excitation) winner-take-all rule that describes how gamma-frequency inhibition affects firing. We found that simulated granule cells have firing maps that have one or more place fields whose size and number approximates those observed experimentally. A substantial fraction of granule cells have no place fields, as observed experimentally. Because the input firing rates and synaptic properties are known, the excitatory charge into granule cells could be calculated (2-3 pC) and was found to be only somewhat larger than required to fire granule cells (1 pC). We conclude that the input-output transformation of dentate granule does not depend strongly on synaptic modification; place field formation can be understood in terms of simple summation of randomly chosen excitatory inputs, in conjunction with a winner-take-all network mechanism.

  18. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day...... of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...

  19. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines

    Directory of Open Access Journals (Sweden)

    Nadine eVan Montfoort

    2014-04-01

    Full Text Available Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL. Since dendritic cells (DC have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allows direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL.Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the DC subsets involved, however, these results cannot be readily translated towards the role of human DC in MHC class I antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated.We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.

  20. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  1. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  2. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  3. Ouabain sensitivity is linked to ras -transformation in human HOS cells

    International Nuclear Information System (INIS)

    Mouse cells transformed by the retroviral oncogene v-Ki- ras are significantly more sensitive to the toxic effects of 1mM ouabain than are their nontransformed counterparts. We have extended these findings to a human cell line (HOS). HOS cells (ATCC CRL 1543) are relatively resistant to treatment with 1 microM ouabain while KHOS cells (transformed by Kirsten murine sarcoma virus) are extremely sensitive. Two flat revertant cell lines isolated from the KHOS line and lacking the v- ras gene sequences are resistant to ouabain. This effect may be observed morphologically and can also be demonstrated by dye exclusion and plating efficiency tests. In addition, the toxic effects of ouabain may be rapidly and efficiently quantitated in a 51Cr-release assay. This differential lethality may be used to enrich the proportion of non-transformed revertants in populations of mutagen-treated transformed cells

  4. Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral Load Suppression In Vivo

    Science.gov (United States)

    Gill, Upkar S.; Peppa, Dimitra; Micco, Lorenzo; Singh, Harsimran D.; Carey, Ivana; Foster, Graham R.; Maini, Mala K.; Kennedy, Patrick T. F.

    2016-01-01

    NK cells are important antiviral effectors, highly enriched in the liver, with the potential to regulate immunopathogenesis in persistent viral infections. Here we examined whether changes in the NK pool are induced when patients with eAg-positive CHB are ‘primed’ with PegIFNα and importantly, whether these changes are sustained or further modulated long-term after switching to nucleos(t)ides (sequential NUC therapy), an approach currently tested in the clinic. Longitudinal sampling of a prospectively recruited cohort of patients with eAg+CHB showed that the cumulative expansion of CD56bright NK cells driven by 48-weeks of PegIFNα was maintained at higher than baseline levels throughout the subsequent 9 months of sequential NUCs. Unexpectedly, PegIFNα-expanded NK cells showed further augmentation in their expression of the activating NK cell receptors NKp30 and NKp46 during sequential NUCs. The expansion in proliferating, functional NK cells was more pronounced following sequential NUCs than in comparison cohorts of patients treated with de novo NUCs or PegIFNα only. Reduction in circulating HBsAg concentrations, a key goal in the path towards functional cure of CHB, was only achieved in those patients with enhancement of NK cell IFNγ and cytotoxicity but decrease in their expression of the death ligand TRAIL. In summary, we conclude that PegIFNα priming can expand a population of functional NK cells with an altered responsiveness to subsequent antiviral suppression by NUCs. Patients on sequential NUCs with a distinct NK cell profile show a decline in HBsAg, providing mechanistic insights for the further optimisation of treatment strategies to achieve sustained responses in CHB. PMID:27487232

  5. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; de Beer, R; Godeke, G J; Raamsman, M J; Horzinek, M C; Vennema, H; Rottier, P J

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to th

  6. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein.

    Science.gov (United States)

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for

  7. Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein.

    Science.gov (United States)

    van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M

    2016-01-01

    Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for

  8. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity

    Science.gov (United States)

    Duev-Cohen, Alexandra; Bar-On, Yotam; Glasner, Ariella; Berhani, Orit; Ophir, Yael; Levi-Schaffer, Francesca; Mandelboim, Michal; Mandelboim, Ofer

    2016-01-01

    Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality. PMID:26919106

  9. VP2 capsid domain of the H-1 parvovirus determines susceptibility of human cancer cells to H-1 viral infection.

    Science.gov (United States)

    Cho, I-R; Kaowinn, S; Song, J; Kim, S; Koh, S S; Kang, H-Y; Ha, N-C; Lee, K H; Jun, H-S; Chung, Y-H

    2015-05-01

    Although H-1 parvovirus is used as an antitumor agent, not much is known about the relationship between its specific tropism and oncolytic activity. We hypothesize that VP2, a major capsid protein of H-1 virus, determines H-1-specific tropism. To assess this, we constructed chimeric H-1 viruses expressing Kilham rat virus (KRV) capsid proteins, in their complete or partial forms. Chimeric H-1 viruses (CH1, CH2 and CH3) containing the whole KRV VP2 domain could not induce cytolysis in HeLa, A549 and Panc-1 cells. However, the other chimeric H-1 viruses (CH4 and CH5) expressing a partial KRV VP2 domain induced cytolysis. Additionally, the significant cytopathic effect caused by CH4 and CH5 infection in HeLa cells resulted from preferential viral amplification via DNA replication, RNA transcription and protein synthesis. Modeling of VP2 capsid protein showed that two variable regions (VRs) (VR0 and VR2) of H-1 VP2 protein protrude outward, because of the insertion of extra amino-acid residues, as compared with those of KRV VP2 protein. This might explain the precedence of H-1 VP2 protein over KRV in determining oncolytic activity in human cancer cells. Taking these results together, we propose that the VP2 protein of oncolytic H-1 parvovirus determines its specific tropism in human cancer cells.

  10. Asymmetric Assembly of Merkel Cell Polyomavirus Large T-Antigen Origin Binding Domains at the Viral Origin

    Energy Technology Data Exchange (ETDEWEB)

    C Harrison; G Meinke; H Kwun; H Rogalin; P Phelan; P Bullock; Y Chang; P Moore; A Bohm

    2011-12-31

    The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 {angstrom} crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistent with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be {approx} 740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.

  11. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  12. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors

    OpenAIRE

    Urani, Chiara; Corvi, Raffaella; CALLEGARO G.; Stefanini, Federico Mattia

    2013-01-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide ado...

  13. Viral arthritis.

    Science.gov (United States)

    Marks, Michael; Marks, Jonathan L

    2016-04-01

    Acute-onset arthritis is a common clinical problem facing both the general clinician and the rheumatologist. A viral aetiology is though to be responsible for approximately 1% of all cases of acute arthritis with a wide range of causal agents recognised. The epidemiology of acute viral arthritis continues to evolve, with some aetiologies, such as rubella, becoming less common due to vaccination, while some vector-borne viruses have become more widespread. A travel history therefore forms an important part of the assessment of patients presenting with an acute arthritis. Worldwide, parvovirus B19, hepatitis B and C, HIV and the alphaviruses are among the most important causes of virally mediated arthritis. Targeted serological testing may be of value in establishing a diagnosis, and clinicians must also be aware that low-titre autoantibodies, such as rheumatoid factor and antinuclear antibody, can occur in the context of acute viral arthritis. A careful consideration of epidemiological, clinical and serological features is therefore required to guide clinicians in making diagnostic and treatment decisions. While most virally mediated arthritides are self-limiting some warrant the initiation of specific antiviral therapy. PMID:27037381

  14. Optimization of energy-consuming pathways towards rapid growth in HPV-transformed cells.

    Directory of Open Access Journals (Sweden)

    Sarit Mizrachy-Schwartz

    Full Text Available Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16 and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK, which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation.

  15. Marek's Disease Viral Interleukin-8 Promotes Lymphoma Formation through Targeted Recruitment of B Cells and CD4+ CD25+ T Cells

    OpenAIRE

    Engel, Annemarie T.; Selvaraj, Ramesh K.; Kamil, Jeremy P.; Osterrieder, Nikolaus; Kaufer, Benedikt B

    2012-01-01

    Marek's disease virus (MDV) is a cell-associated and highly oncogenic alphaherpesvirus that infects chickens. During lytic and latent MDV infection, a CXC chemokine termed viral interleukin-8 (vIL-8) is expressed. Deletion of the entire vIL-8 open reading frame (ORF) was shown to severely impair disease progression and tumor development; however, it was unclear whether this phenotype was due to loss of secreted vIL-8 or of splice variants that fuse exons II and III of vIL-8 to certain upstrea...

  16. Cell Dynamics Simulation of Kolmogorov-Johnson-Mehl-Avrami Kinetics of Phase Transformation

    OpenAIRE

    Iwamatsu, Masao; Nakamura, Masato

    2005-01-01

    In this study, we use the cell dynamics method to test the validity of the Kormogorov-Johnson-Mehl-Avrami (KJMA) theory of phase transformation. This cell dynamics method is similar to the well-known phase-field model, but it is a more simple and efficient numerical method for studying various scenarios of phase transformation in a unified manner. We find that the cell dynamics method reproduces the time evolution of the volume fraction of the transformed phase predicted by the KJMA theory. S...

  17. Neoplastic transformation of chimpanzee cells induced by adenovirus type 12--simian virus 40 hybrid virus.

    OpenAIRE

    Rhim, J S; Trimmer, R; Arnstein, P; Huebner, R J

    1981-01-01

    The adenovirus 12--simian virus 40 hybrid virus produced neoplastic transformation of chimpanzee skin fibroblasts in vitro. The transformed fibroblasts showed morphological alteration and became permanent lines. The transformed cells contained both adenovirus 12 and simian virus 40 large tumor antigens and were virus producers. However at passage 9, one line (WES) was found to be a nonproducer, producing neither infectious virus nor virus-specific antigen detectable by the complement fixation...

  18. Efficient retrovirus-mediated transfer of cell-cycle control genes to transformed cells

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    1999-07-01

    Full Text Available The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.

  19. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  20. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P;

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...

  1. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection.

    Science.gov (United States)

    Swadling, Leo; Halliday, John; Kelly, Christabel; Brown, Anthony; Capone, Stefania; Ansari, M Azim; Bonsall, David; Richardson, Rachel; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Del Sorbo, Mariarosaria; Von Delft, Annette; Traboni, Cinzia; Hill, Adrian V S; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Klenerman, Paul; Folgori, Antonella; Barnes, Eleanor

    2016-01-01

    An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were

  2. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells

  3. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Science.gov (United States)

    Swadling, Leo; Halliday, John; Kelly, Christabel; Brown, Anthony; Capone, Stefania; Ansari, M. Azim; Bonsall, David; Richardson, Rachel; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Del Sorbo, Mariarosaria; Von Delft, Annette; Traboni, Cinzia; Hill, Adrian V. S.; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Klenerman, Paul; Folgori, Antonella; Barnes, Eleanor

    2016-01-01

    An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were

  4. Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells

    DEFF Research Database (Denmark)

    Ternette, Nicola; Yang, Hongbing; Partridge, Thomas;

    2016-01-01

    Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding...... of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time...... the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4+ T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82...

  5. Human transforming growth factor type α coding sequence is not a directed-acting oncogene when overexpressed in NIH 3T3 cells

    International Nuclear Information System (INIS)

    A peptide secreted by some tumor cells in vitro imparts anchorage-independent growth to normal rat kidney (NRK) cells and has been termed transforming growth factor type α (TGF-α). To directly investigate the transforming properties of this factor, the human sequence coding for TGF-α was placed under the control of either a metallothionein promoter or a retroviral long terminal repeat. These constructs failed to induce morphological transformation upon transfection of NIH 3T3 cells, whereas viral oncogenes encoding a truncated form of its cognate receptor, the EGF receptor, or another growth factor, sis/platelet-derived growth factor 2, efficiently induced transformed foci. Binding assays were done using [125I]-EGF. When NIH 3T3 clonal sublines were selected by transfection of TGF-α expression vectors in the presence of a dominant selectable market, they were shown to secrete large amounts of TGF-α into the medium, to have downregulated EGF receptors, and to be inhibited in growth by TGF-α monoclonal antibody. These results indicated that secreted TGF-α interacts with its receptor at a cell surface location. Single cell-derived TGF-α-expressing sublines grew to high saturation density in culture. These and other results imply that TGF-α exerts a growth-promoting effect on the entire NIH 3T3 cell population after secretion into the medium but little, if any, effect on the individual cell synthesizing this factor. It is concluded that the normal coding sequence for TGF-α is not a direct-acting oncogene when overexpressed in NIH 3T3 cells

  6. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    Science.gov (United States)

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models. PMID:26800776

  7. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Directory of Open Access Journals (Sweden)

    Ogris Manfred

    2010-03-01

    Full Text Available Abstract Background The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP and directed into a 2000 bp long matrix attachment region sequence (MARS derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. Results Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P element that is known to be less affected by epigenetic silencing events. Conclusions The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.

  8. Viral Marketing

    OpenAIRE

    Jelínková, Petra

    2012-01-01

    Diploma thesis is focused on Viral marketing, as a part of internet marketing communication i.e. iPromotion. It’s presented as a „niche” in the way of reaching the target group (audience) that rejects traditional forms of promotion. There’s an explanation of differences between various types of viral marketing as well as proposed possibilities of it’s applying into a practice including the rules of campaign execution. The primary data sources, necessary for the solution of investigated issue...

  9. Tracking of peptide-specific CD4+ T-cell responses after an acute resolving viral infection: a study of parvovirus B19

    DEFF Research Database (Denmark)

    Kasprowicz, Victoria; Isa, Adiba; Tolfvenstam, Thomas;

    2006-01-01

    The evolution of peptide-specific CD4(+) T-cell responses to acute viral infections of humans is poorly understood. We analyzed the response to parvovirus B19 (B19), a ubiquitous and clinically significant pathogen with a compact and conserved genome. The magnitude and breadth of the CD4(+) T...

  10. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    NARCIS (Netherlands)

    Mocroft, A.; Phillips, A.N.; Gatell, J.; Horban, A.; Ledergerber, B.; Zilmer, K.; Jevtovic, D.; Maltez, F.; Podlekareva, D.; Lundgren, J.D.; Burger, D.M.

    2013-01-01

    BACKGROUND: CD4 cell count and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or increase the risk of disease this would not be identified prior to licensing. The aim of this stud

  11. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis.

    Science.gov (United States)

    Wang, H; Xu, Lj; Lu, Lq

    2016-02-01

    Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.

  12. Factors associated with short-term changes in HIV viral load and CD4+ cell count in antiretroviral-naive individuals

    DEFF Research Database (Denmark)

    Lundgren, Jens

    2014-01-01

    OBJECTIVES: Among antiretroviral therapy (ART)-naive individuals, viral load levels tend to increase and CD4(+) cell counts decline over time. We sought to explore the rate of change and influence of other factors associated with these markers of HIV progression. DESIGN: An observational cohort...

  13. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B;

    2011-01-01

    replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  14. T20-insensitive HIV-1 from naive patients exhibits high viral fitness in a novel dual-color competition assay on primary cells.

    Science.gov (United States)

    Neumann, Thomas; Hagmann, Isabel; Lohrengel, Sabine; Heil, Marintha L; Derdeyn, Cynthia A; Kräusslich, Hans-Georg; Dittmar, Matthias T

    2005-03-15

    The relationship between sensitivity to antiviral drugs and viral fitness is of paramount importance in understanding the long-term implications of clinical resistance. Here we report the development of a novel recombinant virus assay to study entry inhibitor-resistant HIV variants using a biologically relevant cell type, primary CD4 T-cells. We have modified the replication-competent molecular clone HIV(NL4-3) to express a reporter protein (Renilla luciferase), Green Fluorescent Protein (EGFP), or Red Fluorescent Protein (DsRed2) upon infection, thus allowing quantification of replication. Luciferase-expressing virus was used to evaluate drug sensitivity, while co-infection with viruses carrying the green and red fluorescent proteins was employed in the competitive fitness assay. Using envelope proteins from three T20 insensitive variants, lower levels of resistance were observed in primary CD4 T-cells than had been previously reported for cell lines. Importantly, dual-color competition assays demonstrated comparable or higher fitness for these variants despite their reduced T20 sensitivity. We conclude that reduced sensitivity to T20 is compatible with high viral fitness in the absence of selection pressure. Thus, simultaneously measuring both resistance and viral fitness using this newly described dual-color competition assay will likely provide important information about resistant viral variants that emerge during therapy with entry inhibitors.

  15. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated Myeloid cells which is associated with decreased MyD88 expression

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...

  16. Comparison of flow cytometry and virus isolation in cell culture for identification of cattle persistently infected with bovine viral diarrhea virus.

    OpenAIRE

    Qvist, P.; Houe, H.; Aasted, B.; Meyling, A

    1991-01-01

    Detection of bovine viral diarrhea virus in 143 blood samples by virus isolation in cell culture and flow cytometry was performed. The material included 37 samples later shown to originate from persistently infected cattle. Thirty-three samples were positive by virus isolation, and all 37 samples were positive by the flow cytometric assay.

  17. Single-step cloning-screening method: a new tool for developing and studying high-titer viral vector producer cells.

    Science.gov (United States)

    Rodrigues, A F; Formas-Oliveira, A S; Guerreiro, M R; Tomás, H A; Alves, P M; Coroadinha, A S

    2015-09-01

    This article describes a novel method merging the cloning of viral vector producer cells with vector titer screening, allowing for screening 200-500 clones in 2 weeks. It makes use of a GFP separated into two fragments, S10 and S11 (Split GFP), fluorescing only upon transcomplementation. Producer cells carrying a S11 viral transgene are cloned in 96-well plates and co-cultured with target cells stably expressing S10. During the period of clone expansion, S11 viruses infect S10 target cells reconstituting the GFP signal. Transcomplemented fluorescence data provide direct estimation of the clone's productivity and can be analyzed in terms of density distribution, offering valuable information on the average productivity of the cell population and allowing the identification of high-producing clones. The method was validated by establishing a retrovirus producer from a nude cell line, in <3 months, inserting three vector constructs without clone selection or screening in between. Clones producing up to 10(8) infectious particles per ml were obtained, delivering optimal ratios of infectious-to-total particles (1 to 5). The method was additionally used to evaluate the production performance of HEK 293 and HEK 293T cell lines demonstrating that the latter sustains increased titers. Finally, it was used to study genetic manipulation of glutathione metabolism in retrovirus production showing that changing cell metabolism steers higher vector expression with titer increases of more than one order of magnitude.This method is a valuable tool not only for cell line development but also for genetic manipulation of viral vector and/or producer cells contributing to advancing the field of viral gene therapy.

  18. Friend leukemia virus transformed cells exposed to microgravity in the presence of DMSO (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    The purpose of this experiment is to study the adaptation of living cells to microgravity. The in vitro transformation of Friend cells by Dimethylsufoxide (DMSO) is a good model for the study of cell differentiation and protein biosynthesis. Cultures of cells will be prepared shortly before launch. Once in space, transformation will be induced by injection of DMSO. One set of cultures will be chemically fixed with glutaraldehyde for electron microscope investigations; another set will be preserved for determining the amount of hemogloben produced and the extent of cell proliferation.

  19. Fucolipid metabolism as a function of cell population density in normal and murine sarcoma virus-transformed rat cells

    International Nuclear Information System (INIS)

    The incorporation of isotopically labeled fucose into the lipids of normal and murine sarcoma virus-transformed rat cells as a function of cell population density was examined. When normal cells were seeded at low cell density, the levels of the major fucolipids, i.e., fucolipids III and IV, were substantially reduced, but then they increased as the cells approached confluency. This variation in synthesis of fucolipids III and IV appeared to be primarily related to cell density and not to cell growth. Chase experiments revealed that the reduced level of fucolipids III and IV in sparse normal cells is due to decreased synthesis rather than to increased catabolism. In contrast to the observations with normal rat cells, the high level of fucolipid III and the low level of fucolipid IV in murine sarcoma virus-transformed rat cells was shown to be independent of cell population density

  20. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination.

    Directory of Open Access Journals (Sweden)

    Kai Hu

    Full Text Available The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality.

  1. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    OpenAIRE

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Steven X Hou

    2010-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-t...

  2. Bhas 42 cell transformation activity of cigarette smoke condensate is modulated by selenium and arsenic.

    Science.gov (United States)

    Han, Sung Gu; Pant, Kamala; Bruce, Shannon W; Gairola, C Gary

    2016-04-01

    Cigarette smoking remains a major health risk worldwide. Development of newer tobacco products requires the use of quantitative toxicological assays. Recently, v-Ha-ras transfected BALB/c3T3 (Bhas 42) cell transformation assay was established that simulates the two-stage animal tumorigenesis model and measures tumor initiating and promoting activities of chemicals. The present study was performed to assess the feasibility of using this Bhas 42 cell transformation assay to determine the initiation and promotion activities of cigarette smoke condensate (CSC) and its water soluble fraction. Further, the modulating effects of selenium and arsenic on cigarette smoke-induced cell transformation were investigated. Dimethyl sulfoxide (DMSO) and water extracts of CSC (CSC-D and CSC-W, respectively) were tested at concentrations of 2.5-40 µg mL(-1) in the initiation or promotion assay formats. Initiation protocol of the Bhas 42 assay showed a 3.5-fold increase in transformed foci at 40 µg mL(-1) of CSC-D but not CSC-W. The promotion phase of the assay yielded a robust dose response with CSC-D (2.5-40 µg mL(-1)) and CSC-W (20-40 µg mL(-1)). Preincubation of cells with selenium (100 nM) significantly reduced CSC-induced increase in cell transformation in initiation assay. Co-treatment of cells with a sub-toxic dose of arsenic significantly enhanced cell transformation activity of CSC-D in promotion assay. The results suggest a presence of both water soluble and insoluble tumor promoters in CSC, a role of oxidative stress in CSC-induced cell transformation, and usefulness of Bhas 42 cell transformation assay in comparing tobacco product toxicities and in studying the mechanisms of tobacco carcinogenesis.

  3. HIV-1 Vpr accelerates viral replication during acute infection by exploitation of proliferating CD4+ T cells in vivo.

    Directory of Open Access Journals (Sweden)

    Kei Sato

    Full Text Available The precise role of viral protein R (Vpr, an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5(+ CD4(+ T cells, which mainly consist of regulatory CD4(+ T cells (Tregs, resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD, to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4(+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5(+ CD4(+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.

  4. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

    Directory of Open Access Journals (Sweden)

    Fussenegger Martin

    2007-11-01

    Full Text Available Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7. Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as

  5. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H Protein

    Directory of Open Access Journals (Sweden)

    Liang-Tzung Lin

    2016-09-01

    Full Text Available The hemagglutinin (H protein of measles virus (MeV interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46 as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150 and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles

  6. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  7. Examination of a Viral Infection Mimetic Model in Human iPS Cell-Derived Insulin-Producing Cells and the Anti-Apoptotic Effect of GLP-1 Analogue.

    Directory of Open Access Journals (Sweden)

    Megu Yamaguchi Baden

    Full Text Available Viral infection is associated with pancreatic beta cell destruction in fulminant type 1 diabetes mellitus. The aim of this study was to investigate the acceleration and protective mechanisms of beta cell destruction by establishing a model of viral infection in pancreatic beta cells.Polyinosinic:polycytidylic acid was transfected into MIN6 cells and insulin-producing cells differentiated from human induced pluripotent stem cells via small molecule applications. Gene expression was analyzed by real-time PCR, and apoptosis was evaluated by caspase-3 activity and TUNEL staining. The anti-apoptotic effect of Exendin-4 was also evaluated.Polyinosinic:polycytidylic acid transfection led to elevated expression of the genes encoding IFNα, IFNβ, CXCL10, Fas, viral receptors, and IFN-inducible antiviral effectors in MIN6 cells. Exendin-4 treatment suppressed the elevated gene expression levels and reduced polyinosinic:polycytidylic acid-induced apoptosis both in MIN6 cells and in insulin-producing cells from human induced pluripotent stem cells. Glucagon-like peptide-1 receptor, protein kinase A, and phosphatidylinositol-3 kinase inhibitors counteracted the anti-apoptotic effect of Exendin-4.Polyinosinic:polycytidylic acid transfection can mimic viral infection, and Exendin-4 exerted an anti-apoptotic effect both in MIN6 and insulin-producing cells from human induced pluripotent stem cells.

  8. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening

    OpenAIRE

    Zhu, Jiyue; Wang, He; Bishop, J. Michael; Elizabeth H. Blackburn

    1999-01-01

    Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes. Surprisingly, ...

  9. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression

    Science.gov (United States)

    Davey, Richard T.; Bhat, Niranjan; Yoder, Christian; Chun, Tae-Wook; Metcalf, Julia A.; Dewar, Robin; Natarajan, Ven; Lempicki, Richard A.; Adelsberger, Joseph W.; Miller, Kirk D.; Kovacs, Joseph A.; Polis, Michael A.; Walker, Robert E.; Falloon, Judith; Masur, Henry; Gee, Dennis; Baseler, Michael; Dimitrov, Dimiter S.; Fauci, Anthony S.; Lane, H. Clifford

    1999-01-01

    Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells. PMID:10611346

  10. BOVINE VIRAL DIARRHEA VIRUSES

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. BVDV viruses are further subclassified as cytopathic and noncytopathic based on their activity in cultured epithelial cells. Noncytopathic BVDV p...

  11. WATERBORNE VIRAL GASTROENTERITIS

    Science.gov (United States)

    In the study of human gastroenteritis, the use of electron microscopy and related techniques has led to the identification of new viral agents which had previously escaped detection by routine cell-culture procedures. Efforts to characterize and further study these agents are cur...

  12. VIRAL GASTROENTERITIS

    Science.gov (United States)

    Two virus types have been clearly shown to have epidemiologic importance in viral gastroenteritis, i.e., rotavirus and Norwalk virus. Four other virus types have been associated with gastroenteritis but their epidemiologic importance is not yet known, i.e., enteric adenovirus, ca...

  13. Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum.

    Directory of Open Access Journals (Sweden)

    Susanne E Biesold

    Full Text Available Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum. Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs.

  14. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M. Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2014-01-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72 h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen–pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence

  15. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens.

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2014-06-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen-pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence.

  16. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Warren C Plaisted

    Full Text Available We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs derived from human embryonic stem cells (hESCs in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs. Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.

  17. Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture

    Science.gov (United States)

    Jiang, Tian; Nogales, Aitor; Baker, Steven F; Martinez-Sobrido, Luis; Turner, Douglas H

    2016-01-01

    Influenza A virus is a significant public health threat, but little is understood about the viral RNA structure and function. Current vaccines and therapeutic options to control influenza A virus infections are mostly protein-centric and of limited effectiveness. Here, we report using an ensemble defect approach to design mutations to misfold regions of conserved mRNA structures in influenza A virus segments 7 and 8. Influenza A mutant viruses inhibit pre-mRNA splicing and attenuate viral replication in cell culture, thus providing evidence for functions of the targeted regions. Targeting these influenza A viral RNA regions provides new possibilities for designing vaccines and therapeutics against this important human respiratory pathogen. The results also demonstrate that the ensemble defect approach is an efficient way to test for function of RNA sequences. PMID:27272307

  18. Development Of PIXE Measurement Of Ca Changes Resulting From Viral Transduction In Cells

    Science.gov (United States)

    Whitlow, Harry J.; Chienthavorn, Orapin; Eronen, Hannele; Sajavaara, Timo; Laitinen, Mikko; Norarat, Rattanaporn; Gilbert, Leona K.

    2011-06-01

    Ca is a life-element of particular interest because it is both bound to proteins, and as Ca2+ which functions as a signal molecule in apoptosis. Here we report development of chemical-matrix blind assaying the Ca fluxes from transduced HepG2 cells using particle induced X-ray emission. The cells were transduced with recombinant baculoviruses hosting the DNA for non-structural protein 1 (NS1) of the human pavovirus B19. Different recombinant baculoviruses were used that carried different DNA payloads of this NS1. Two different approaches have been developed to assay Ca in cells. The first is where the cells were directly cultured using a self-supporting pioloform as a substrate. In the second approach the cells are permeabilized, and bound-Ca content in the debris, and unbound-Ca in the wash solutions were measured using an internal V reference standard. The results support a difference in the Ca contents depending on the payload of the infecting virus, however the PIXE signals were too close to the minimum detection limit to draw reliable conclusions.

  19. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    Energy Technology Data Exchange (ETDEWEB)

    Kamau Chapman, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Koch-Schneidemann, Sabine; Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland)], E-mail: hottiger@vetbio.uzh.ch

    2008-04-15

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  20. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    International Nuclear Information System (INIS)

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs

  1. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    Science.gov (United States)

    Kamau Chapman, Sarah W.; Hassa, Paul O.; Koch-Schneidemann, Sabine; von Rechenberg, Brigitte; Hofmann-Amtenbrink, Margarethe; Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich; Hottiger, Michael O.

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  2. Genetic modification of cancer cells using non-viral, episomal S/MAR vectors for in vivo tumour modelling.

    Directory of Open Access Journals (Sweden)

    Orestis Argyros

    Full Text Available The development of genetically marked animal tumour xenografts is an area of ongoing research to enable easier and more reliable testing of cancer therapies. Genetically marked tumour models have a number of advantages over conventional tumour models, including the easy longitudinal monitoring of therapies and the reduced number of animals needed for trials. Several different methods have been used in previous studies to mark tumours genetically, however all have limitations, such as genotoxicity and other artifacts related to the usage of integrating viral vectors. Recently, we have generated an episomally maintained plasmid DNA (pDNA expression system based on Scaffold/Matrix Attachment Region (S/MAR, which permits long-term luciferase transgene expression in the mouse liver. Here we describe a further usage of this pDNA vector with the human Ubiquitin C promoter to create stably transfected human hepatoma (Huh7 and human Pancreatic Carcinoma (MIA-PaCa2 cell lines, which were delivered into "immune deficient" mice and monitored longitudinally over time using a bioluminometer. Both cell lines revealed sustained episomal long-term luciferase expression and formation of a tumour showing the pathological characteristics of hepatocellular carcinoma (HCC and pancreatic carcinoma (PaCa, respectively. This is the first demonstration that a pDNA vector can confer sustained episomal luciferase transgene expression in various mouse tumour models and can thus be readily utilised to follow tumour formation without interfering with the cellular genome.

  3. SPONTANEOUS TRANSFORMATION OF CULTURED PORCINE BONE MARROW STROMAL CELLS

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Li, Haisheng;

    INTRODUCTION Recently, the possibility that tumors originate from cancer stem cells (CSCs) has been proposed. Stem cells and CSCs share certain features such as self-renewal and differentiation potential. The aim of this study was to evaluate whether bone marrow stromal cells (BMSC) after long-te...

  4. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim;

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... for human gene therapy, primarily due to its lack of pathogenicity and low risk of insertional mutagenesis. However, the existing data pertaining to AAV transduction of MSCs is limited. The objective of this work was to examine the efficiency and kinetics of in vitro transduction using AAV serotype 2...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...

  5. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  6. Targeted transfection and expression of hepatitis B viral DNA in human hepatoma cells.

    OpenAIRE

    Liang, T J; Makdisi, W J; Sun, S.; Hasegawa, K.; Zhang, Y.; Wands, J R; Wu, C. H.; Wu, G Y

    1993-01-01

    A soluble DNA carrier system consisting of an asialoglycoprotein covalently linked to poly-L-lysine was used to bind DNA and deliver hepatitis B virus (HBV) DNA constructs to asialoglycoprotein receptor-positive human hepatoma cells. 4 d after transfection with surface or core gene expression constructs, HBsAg and HBeAg in the media were measured to be 16 ng/ml and 32 U/ml per 10(7) cells, respectively. Antigen production was completely inhibited by the addition of an excess of asialoorosomuc...

  7. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  8. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Institute of Scientific and Technical Information of China (English)

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  9. Malignant transformation of ectopic pancreatic cells in the duodenal wall

    Institute of Scientific and Technical Information of China (English)

    Roberto; Bini; Paolo; Voghera; Alberto; Tapparo; Raffaele; Nunziata; Andrea; Demarchi; Matteo; Capocefalo; Renzo; Leli

    2010-01-01

    Ectopic pancreas (EP) is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. This condition is usually asymptomatic and rarely complicated by pancreatitis and malignant transformation. A few cases of neoplastic phenomena that developed from EP into the duodenal wall are described in the literature. Herein we report a case of gastric outlet obstruction due to adenocarcinoma arising from EP of the duodenal wall. The patient underwent a Whipple's procedure and had...

  10. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  11. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  12. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  13. Reduced Amount of Japanese Encephalitis Viral RNA in the Infected Cells Treated with Human Interferon Beta

    OpenAIRE

    Daji, Hu; TANAKA Mariko; Morita, Kouichi; Igarashi, Akira

    1992-01-01

    Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that the amount of Japanese encephalitis (JE) virus-specific positive sense RNA was found to be reduced in the infected Hep-2 cells treated with human interferon beta at 1,000 IU/ml in the medium compared with untreated specimens.

  14. Role of very late antigen-1 in T-cell-mediated immunity to systemic viral infection

    DEFF Research Database (Denmark)

    Ørding Kauffmann, Susanne; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2006-01-01

    or their distribution between lymphoid and nonlymphoid organs. Regarding a functional role of VLA-1, we found that intracerebral infection of both VLA-1(-/-) and wild-type (wt) mice resulted in lethal T-cell-mediated meningitis, and quantitative and qualitative analyses of the cellular exudate did not reveal any...

  15. Cell replacement therapies to promote remyelination in a viral model of demyelination

    OpenAIRE

    Tirotta, Emanuele; Carbajal, Kevin S.; Schaumburg, Chris S; Whitman, Lucia; Lane, Thomas E

    2010-01-01

    Persistent infection of the central nervous system (CNS) of mice with the neuroadapted JHM strain of mouse hepatitis (MHV) is characterized by ongoing demyelination mediated by inflammatory T cells and macrophages that is similar both clinically and histologically with the human demyelinating disease multiple sclerosis (MS).

  16. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  17. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo

    Directory of Open Access Journals (Sweden)

    Kesic Matthew

    2008-05-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF II (p30 and p28, respectively acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28 was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for

  18. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    Science.gov (United States)

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016.

  19. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Raggo, Camilo; Ruhl, Rebecca; McAllister, Shane; Koon, Henry; Dezube, Bruce J; Früh, Klaus; Moses, Ashlee V

    2005-06-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is involved in the development of lymphoproliferative diseases and Kaposi's sarcoma. The oncogenicity of this virus is reflected in vitro by its ability to transform B cells and endothelial cells. Infection of dermal microvascular endothelial cells (DMVEC) transforms the cells from a cobblestone-like monolayer to foci-forming spindle cells. This transformation is accompanied by dramatic changes in the cellular transcriptome. Known oncogenes, such as c-Kit, are among the KSHV-induced host genes. We previously showed that c-Kit is an essential cellular component of the KSHV-mediated transformation of DMVEC. Here, we test the hypothesis that the transformation process can be used to discover novel oncogenes. When expression of a panel of KSHV-induced cellular transcripts was inhibited with antisense oligomers, we observed inhibition of DMVEC proliferation and foci formation using antisense molecules to RDC1 and Neuritin. We further showed that transformation of KSHV-infected DMVEC was inhibited by small interfering RNA directed at RDC1 or Neuritin. Ectopic expression of Neuritin in NIH 3T3 cells resulted in changes in cell morphology and anchorage-independent growth, whereas RDC1 ectopic expression significantly increased cell proliferation. In addition, both RDC1- and Neuritin-expressing cells formed tumors in nude mice. RDC1 is an orphan G protein-coupled receptor, whereas Neuritin is a growth-promoting protein known to mediate neurite outgrowth. Neither gene has been previously implicated in tumorigenesis. Our data suggest that KSHV-mediated transformation involves exploitation of the hitherto unrealized oncogenic properties of RDC1 and Neuritin. PMID:15958552

  20. Quantitative analysis of viral load per haploid genome revealed the different biological features of Merkel cell polyomavirus infection in skin tumor.

    Directory of Open Access Journals (Sweden)

    Satoshi Ota

    Full Text Available Merkel cell polyomavirus (MCPyV has recently been identified in Merkel cell carcinoma (MCC, an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9 and other sun exposure-related skin tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen's disease [n = 34], seborrheic keratosis [n = 5], primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]. In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%, BCC (1 case; 2%, and AK (3 cases; 6%. We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119-42.8 and AK (0.02-0.07 groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662. Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4 demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC, but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection.

  1. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pecoraro, G.; Morgan, D.; Defendi, V. (New York Univ. Medical Center, NY (USA))

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result in cervical carcinoma in vivo.

  2. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  3. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm2) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  4. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  5. Chemicals as the Sole Transformers of Cell Fate

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-01-01

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes. PMID:27426081

  6. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  7. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard;

    2004-01-01

    of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...... acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge...

  8. Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine.

    OpenAIRE

    Holliday, R; McFarland, G. A.

    1996-01-01

    Human diploid fibroblasts growth normally in medium containing physiological concentrations of the naturally occurring dipeptide carnosine (beta-alanyl-L-histidine). These concentrations are cytotoxic to transformed and neoplastic cells lines in modified Eagle medium (MEM), whereas these cells grow vigorously in Dulbecco's modified Eagle medium (DMEM) containing carnosine. This difference is due to the presence of 1 mM sodium pyruvate in DMEM. Seven human cell lines and two rodent cell lines ...

  9. Abortive infection of snakehead fish vesiculovirus in ZF4 cells was associated with the RLRs pathway activation by viral replicative intermediates.

    Science.gov (United States)

    Wang, Wenwen; Asim, Muhammad; Yi, Lizhu; Hegazy, Abeer M; Hu, Xianqin; Zhou, Yang; Ai, Taoshan; Lin, Li

    2015-03-18

    Snakehead fish vesiculovirus (SHVV) is a negative strand RNA virus which can cause great economic losses in fish culture. To facilitate the study of SHVV-host interactions, the susceptibility of zebrafish embryonic fibroblast cell line (ZF4) to the SHVV was investigated in this report. The results showed that high amount of viral mRNAs and cRNAs were detected at the 3 h post-infection. However, the expressions of the viral mRNAs and cRNA were decreased dramatically after 6 h post-infection. In addition, the expressions of interferon (IFN) and interferon-induced GTP-binding protein Mx were all up regulated significantly at the late stage of the infection. Meanwhile, the expressions of Retinoic acid-inducible gene I (RIG-I) and Melanoma differentiation-associated gene 5 (MDA5) were also all up-regulated significantly during the infection. Two isoforms of DrLGP2 from zebrafish were also cloned and analyzed. Interestingly, the expression of DrLGP2a but not DrLGP2b was significantly up-regulated at both mRNA and protein levels, indicating that the two DrLGP2 isoforms might play different roles during the SHVV infection. Transfection experiment showed that viral replicative intermediates were required for the activation of IFN-α expression. Taken together, the abortive infection of SHVV in ZF4 cells was associated with the activation of RLRs pathway, which was activated by viral replicative intermediates.

  10. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line

    Institute of Scientific and Technical Information of China (English)

    Wei He; Li-Xia Li; Qing-Jiao Liao; Chun-Lan Liu; Xu-Lin Chen

    2011-01-01

    AIM: To analyze the antiviral mechanism of Epigallocatechin gallate (EGCG) against hepatitis B virus (HBV) replication. METHODS: In this research, the HBV-replicating cell line HepG2.117 was used to investigate the antiviral mechanism of EGCG. Cytotoxicity of EGCG was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hepatitis B virus e antigen (HBeAg) and hepatitis B virus surface antigen (HBsAg) in the supernatant were detected by enzyme-linked immunosorbent assay. Precore mRNA and pregenomic RNA (pgRNA) levels were determined by semi-quantitative reverse transcription polymerase chain reaction (PCR) assay. The effect of EGCG on HBV core promoter activity was measured by dual luciferase reporter assay. HBV covalently closed circular DNA and replicative intermediates of DNA were quantified by real-time PCR assay. RESULTS: When HepG2.117 cells were grown in the presence of EGCG, the expression of HBeAg was suppressed, however, the expression of HBsAg was not affected. HBV precore mRNA level was also downregulated by EGCG, while the transcription of precore mRNA was not impaired. The synthesis of both HBV covalently closed circular DNA and replicative intermediates of DNA were reduced by EGCG treatment to a similar extent, however, HBV pgRNA transcripted from chromosome-integrated HBV genome was not affected by EGCG treatment, indicating that EGCG targets only replicative intermediates of DNA synthesis. CONCLUSION: In HepG2.117 cells, EGCG inhibits HBV replication by impairing HBV replicative intermediates of DNA synthesis and such inhibition results in reduced production of HBV covalently closed circular DNA.

  11. Differential behaviour of normal, transformed and Fanconi's anemia lymphoblastoid cells to modeled microgravity

    Directory of Open Access Journals (Sweden)

    Sancandi Monica

    2010-07-01

    Full Text Available Abstract Background Whether microgravity might influence tumour growth and carcinogenesis is still an open issue. It is not clear also if and how normal and transformed cells are differently solicited by microgravity. The present study was designed to verify this issue. Methods Two normal, LB and HSC93, and two transformed, Jurkat and 1310, lymphoblast cell lines were used as representative for the two conditions. Two lymphoblast lines from Fanconi's anemia patients group A and C (FA-A and FA-C, respectively, along with their isogenic corrected counterparts (FA-A-cor and FA-C-cor were also used. Cell lines were evaluated for their proliferative ability, vitality and apoptotic susceptibility upon microgravity exposure in comparison with unexposed cells. Different parameters correlated to energy metabolism, glucose consumption, mitochondrial membrane potential (MMP, intracellular ATP content, red-ox balance and ability of the cells to repair the DNA damage product 8-OHdG induced by the treatment of the cells with 20 mM KBrO3 were also evaluated. Results Transformed Jurkat and 1310 cells appear resistant to the microgravitational challenge. On the contrary normal LB and HSC93 cells display increased apoptotic susceptibility, shortage of energy storages and reduced ability to cope with oxidative stress. FA-A and FA-C cells appear resistant to microgravity exposure, analogously to transformed cells. FA corrected cells did shown intermediate sensitivity to microgravity exposure suggesting that genetic correction does not completely reverts cellular phenotype. Conclusions In the light of the reported results microgravity should be regarded as an harmful condition either when considering normal as well as transformed cells. Modeled microgravity and space-based technology are interesting tools in the biomedicine laboratory and offer an original, useful and unique approach in the study of cellular biochemistry and in the regulation of metabolic pathways.

  12. Transformation-deformation bands in C60 after the treatment in a shear diamond anvil cell

    Science.gov (United States)

    Kulnitskiy, B. A.; Blank, V. D.; Levitas, V. I.; Perezhogin, I. A.; Popov, M. Yu; Kirichenko, A. N.; Tyukalova, E. V.

    2016-04-01

    The C60 fullerene has been investigated by high-resolution transmission electron microscopy and electron energy loss spectroscopy in a shear diamond anvil cell after applying pressure and shear deformation treatment of fcc phase. Shear transformation-deformation bands are revealed consisting of shear-strain-induced nanocrystals of linearly polymerized fullerene and polytypes, the triclinic, monoclinic, and hcp C60, fragments of amorphous structures, and voids. Consequently, after pressure release, the plastic strain retains five high pressure phases, which is potentially important for their engineering applications. Localized shear deformation initially seems contradictory because high pressure phases of C60 are stronger than the initial low pressure phase. However, this was explained by transformation-induced plasticity during localized phase transformations. It occurs due to a combination of applied stresses and internal stresses from a volume reduction during phase transformations. Localized phase transformations and plastic shear deformation promote each other, which produce positive mechanochemical feedback and cascading transformation-deformation processes. Since the plastic shear in a band is much larger than is expected based on the torsion angle, five phase transformations occur in the same region with no transformation outside the band. The results demonstrate that transformation kinetics cannot be analyzed in terms of prescribed shear, and methods to measure local shear should be developed.

  13. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    Science.gov (United States)

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  14. UV-stimulation of DNA-mediated transformation of human cells.

    NARCIS (Netherlands)

    M. van Duin (Mark); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1985-01-01

    textabstractIrradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are defic

  15. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  16. Low creep and hysteresis silicon load cell based on a force-to-liquid pressure transformation

    NARCIS (Netherlands)

    Zwijze, Robert A.F.; Wiegerink, Remco J.; Lammerink, Theo S.J.; Elwenspoek, Miko

    1998-01-01

    Important problems in load cells are creep and hysteresis. Expensive high grade steels are used in order to reduce these effects. In this paper a silicon load cell design is presented which is based on a force-to-liquid-pressure transformation. The design is insensitive to hysteresis and creep, can

  17. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.;

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and d...

  18. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells.

    Science.gov (United States)

    Milo, G E; Shuler, C F; Lee, H; Casto, B C

    1995-12-01

    The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells

  19. Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration.

    Science.gov (United States)

    Zurnic, Irena; Hütter, Sylvia; Rzeha, Ute; Stanke, Nicole; Reh, Juliane; Müllers, Erik; Hamann, Martin V; Kern, Tobias; Gerresheim, Gesche K; Lindel, Fabian; Serrao, Erik; Lesbats, Paul; Engelman, Alan N; Cherepanov, Peter; Lindemann, Dirk

    2016-08-01

    Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. PMID:27579920

  20. Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration

    Science.gov (United States)

    Zurnic, Irena; Hütter, Sylvia; Rzeha, Ute; Stanke, Nicole; Reh, Juliane; Müllers, Erik; Hamann, Martin V.; Kern, Tobias; Gerresheim, Gesche K.; Serrao, Erik; Lesbats, Paul; Engelman, Alan N.; Cherepanov, Peter; Lindemann, Dirk

    2016-01-01

    Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. PMID:27579920

  1. Neoplastic transformation of a human prostate epithelial cell line by the v-Ki-ras oncogene.

    Science.gov (United States)

    Parda, D S; Thraves, P J; Kuettel, M R; Lee, M S; Arnstein, P; Kaighn, M E; Rhim, J S; Dritschilo, A

    1993-01-01

    Investigations of mechanisms of human prostate carcinogenesis are limited by the unavailability of a suitable in vitro model system. We have demonstrated that an immortal, but nontumorigenic, human epithelial cell line (267B1) established from fetal prostate tissue can be malignantly transformed by a biological carcinogen, and can serve as a useful model for investigations of the progression steps of carcinogenesis. Activated Ki-ras was introduced into 267B1 cells by infection with the Kirsten murine sarcoma virus. Morphological alterations and anchorage-independent growth were observed; when cells were injected into nude mice, poorly differentiated adenocarcinomas developed. These findings represent the first evidence of malignant transformation of human prostate epithelial cells in culture, and support a role for Ki-ras activation in a multistep process for prostate neoplastic transformation.

  2. Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence

    Directory of Open Access Journals (Sweden)

    Scott M. Sugden

    2016-03-01

    Full Text Available The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV, which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef and viral protein U (Vpu, which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.

  3. Post-transcriptional regulation of connexin43 in H-Ras-transformed cells.

    Directory of Open Access Journals (Sweden)

    Mustapha Kandouz

    Full Text Available Connexin43 (Cx43 expression is lost in cancer cells and many studies have reported that Cx43 is a tumor suppressor gene. Paradoxically, in a cellular NIH3T3 model, we have previously shown that Ha-Ras-mediated oncogenic transformation results in increased Cx43 expression. Although the examination of transcriptional regulation revealed essential regulatory elements, it could not solve this paradox. Here we studied post-transcriptional regulation of Cx43 expression in cancer using the same model in search of novel gene regulatory elements. Upon Ras transformation, both Cx43 mRNA stability and translation efficiency were increased. We investigated the role of Cx43 mRNA 3' and 5'Untranslated regions (UTRs and found an opposing effect; a 5'UTR-driven positive regulation is observed in Ras-transformed cells (NIH-3T3(Ras, while the 3'UTR is active only in normal NIH-3T3(Neo cells and completely silenced in NIH-3T3(Ras cells. Most importantly, we identified a previously unknown regulatory element within the 3'UTR, named S1516, which accounts for this 3'UTR-mediated regulation. We also examined the effect of other oncogenes and found that Ras- and Src-transformed cells show a different Cx43 UTRs post-transcriptional regulation than ErbB2-transformed cells, suggesting distinct regulatory pathways. Next, we detected different patterns of S1516 RNA-protein complexes in NIH-3T3(Neo compared to NIH-3T3(Ras cells. A proteomic approach identified most of the S1516-binding proteins as factors involved in post-transcriptional regulation. Building on our new findings, we propose a model to explain the discrepancy between the Cx43 expression in Ras-transformed NIH3T3 cells and the data in clinical specimens.

  4. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  5. Construction and characteristics of a transformed lepidopteran cell clone expressing baculovirus p35

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guiling; LI Changyou; LI Guoxun; WANG Ping; Robert R. Granados

    2005-01-01

    A transformed cell line was constructed from Mythimna separata cells Ms7311 by lipofection method. TMs7311 cells were generated using a double selection technique involving a selection in the antibiotic Zeocin, followed by a second round of selection by exhibiting cell characterization. A cell clone expressing p35 was obtained with high level of AcMNPV and recombinant proteins. Compared with wild type Ms7311 cells, the cell clone showed increased resistance to Actinamycin D-induced apoptosis and a profound resistance to nutrient development (PBS). When the cell clone was infected with recombinant baculoviruses expressing secreted alkaline phosphatase (SEAP) and β-galactosi- dase, expression of the recombinant proteins from TMs7311 cells exceeded that from parental Ms7311 cells. Production of budded virus and occlusion body was significantly higher than that from parental cells Ms7311.

  6. Morphological transformation of an established Syrian hamster dermal cell with the anti-tussive agent noscapine.

    Science.gov (United States)

    Porter, R; Parry, E M; Parry, J M

    1992-05-01

    Following exposure to the alkaloid noscapine hydrochloride over a concentration range of 10-120 micrograms/ml immortal cultures of Syrian hamster dermal fibroblasts were shown to undergo morphological transformation. The resultant transformed foci produced cultures which were anchorage independent as confirmed by soft agar tests. Karyotype analysis of a noscapine transformed colony demonstrated an increase in chromosome number compared to the immortal culture and the non-random duplication of a translocated chromosome 9 previously identified in the immortal culture. These data indicate that noscapine, which has previously been shown to be a spindle inhibitor and inducer of polyploidy in cultured cells, is capable of inducing in vitro cell transformation. Such data indicate a carcinogenic potential for this widely used cough suppressant. PMID:1602976

  7. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  8. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts

    Science.gov (United States)

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin- 2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light- sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions. PMID:26965132

  9. Manipulating mammalian cell by phase transformed titanium surface fabricated through ultra-short pulsed laser synthesis.

    Science.gov (United States)

    Chinnakkannu Vijayakumar, Sivaprasad; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-15

    Developing cell sensitive indicators on interacting substrates that allows specific cell manipulation by a combination of physical, chemical or mechanical cues is a challenge for current biomaterials. Hence, various fabrication approaches have been created on a variety of substrates to mimic or create cell specific cues. However, to achieve cell specific cues a multistep process or a post-chemical treatment is often necessitated. So, a simple approach without any chemical or biological treatment would go a long way in developing bio-functionalized substrates to effectively modulate cell adhesion and interaction. The present investigation is aimed to study the manipulative activity induced by phase transformed titanium surface. An ultra-short laser is used to fabricate the phase transformed titanium surface where a polymorphic titanium oxide phases with titanium monoxide (TiO), tri-titanium oxide (Ti3O) and titanium dioxide (TiO2) have been synthesized on commercially pure titanium. Control over oxide phase transformed area was demonstrated via a combination of laser scanning time (laser pulse interaction time) and laser pulse widths (laser pulse to pulse separation time). The interaction of phase transformed titanium surface with NIH3T3 fibroblasts and MC3T3-E1 osteoblast cells developed a new bio-functionalized platforms on titanium based biomaterials to modulate cell migration and adhesion. The synthesized phase transformed titanium surface on the whole appeared to induce directional cues for cell migration with unique preferential cell adhesion unseen by other fabrication approaches. The precise bio-functionalization controllability exhibited during fabrication offers perceptible edge for developing a variety of smart bio-medical devices, implants and cardiovascular stents where the need in supressing specific cell adhesion and proliferation is of great demand.

  10. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    Directory of Open Access Journals (Sweden)

    José Alberto Aguilar-Briseño

    2015-01-01

    Full Text Available Sulphated polysaccharides (SP extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata, and of its mixture with a fucoidan (SP from Cladosiphon okamuranus, against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.

  11. Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen.

    Science.gov (United States)

    Wang, Q; Li, D-C; Li, Z-F; Liu, C-X; Xiao, Y-M; Zhang, B; Li, X-D; Zhao, J; Chen, L-P; Xing, X-M; Tang, S-F; Lin, Y-C; Lai, Y-D; Yang, P; Zeng, J-L; Xiao, Q; Zeng, X-W; Lin, Z-N; Zhuang, Z-X; Zhuang, S-M; Chen, W

    2011-09-01

    The introduction of the Simian virus 40 (SV40) early region, the telomerase catalytic subunit (hTERT) and an oncogenic allele of H-Ras directly transforms primary human cells. SV40 small T antigen (ST), which forms a complex with protein phosphatase 2A (PP2A) and inhibits PP2A activity, is believed to have a critical role in the malignant transformation of human cells. Recent evidence has shown that aberrant microRNA (miRNA) expression patterns are correlated with cancer development. Here, we identified miR-27a as a differentially expressed miRNA in SV40 ST-expressing cells. miR-27a is upregulated in SV40 ST-transformed human bronchial epithelial cells (HBERST). Suppression of miR-27a expression in HBERST cells or lung cancer cell lines (NCI-H226 and SK-MES-1) that exhibited high levels of miR-27a expression lead to cell growth arrested in the G(0)-G(1) phase. In addition, suppression of miR-27a in HBERST cells attenuated the capacity of such cells to grow in an anchorage-independent manner. We also found that suppression of the PP2A B56γ expression resulted in upregulation of miR-27a similar to that achieved by the introduction of ST, indicating that dysregulation of miR-27a expression in ST-expressing cells was mediated by the ST-PP2A interaction. Moreover, we discovered that Fbxw7 gene encoding F-box/WD repeat-containing protein 7 was a potential miR-27a target validated by dual-luciferase reporter system analysis. The inverse correlation between miR-27a expression levels and Fbxw7 protein expression was further confirmed in both cell models and human tumor samples. Fbxw7 regulates cell-cycle progression through the ubiquitin-dependent proteolysis of a set of substrates, including c-Myc, c-Jun, cyclin E1 and Notch 1. Thus, promotion of cell growth arising from the suppression of Fbxw7 by miR-27a overexpression might be responsible for the viral oncoprotein ST-induced malignant transformation. These observations demonstrate that miR-27a functions as an oncogene

  12. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  13. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    Science.gov (United States)

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  14. A Methodology for Cell Merging Circuit Transformation on Post-placement High Speed Design

    Directory of Open Access Journals (Sweden)

    Diana Tan Hui Lyn

    2012-01-01

    Full Text Available This paper proposes a localize circuit transformation algorithm to further optimize the post-placement netlist in order to improve the overall timing of a design. The proposed algorithm reduces the total cell delay and net delay of timing violation paths by replacing a small group of cells (form up by two to three cells that are placed close to each other with a functional equivalent standard cell available in the technology library. The algorithm has been implemented and applied to a number of optimized postplacement netlists which have went through conventional post-placement circuit transformation optimization processes such as gate relocation, cell re-sizing, repeater insertion and cell replication. The experimental results show that on average, this algorithm is able to further improve the timing of the optimized post-placement netlist by 27.75%, while keeping the design area increase by 0.2%.

  15. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  16. Viral membrane fusion

    International Nuclear Information System (INIS)

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  17. Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner

    OpenAIRE

    Avadhanula, Vasanthi; Rodriguez, Carina A.; DeVincenzo, John P.; Wang, Yan; Webby, Richard J; Ulett, Glen C.; Adderson, Elisabeth E.

    2006-01-01

    Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known recept...

  18. Virally Activated CD8 T Cells Home to Mycobacterium bovis BCG-Induced Granulomas but Enhance Antimycobacterial Protection Only in Immunodeficient Mice▿

    OpenAIRE

    Hogan, Laura H.; Co, Dominic O; Karman, Jozsef; Heninger, Erika; Suresh, M.; Sandor, Matyas

    2006-01-01

    The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of...

  19. Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Aliccia Bollig-Fischer

    Full Text Available Normal breast epithelial cells require insulin and EGF for growth in serum-free media. We previously demonstrated that over expression of breast cancer oncogenes transforms MCF10A cells to an insulin-independent phenotype. Additionally, most breast cancer cell lines are insulin-independent for growth. In this study, we investigated the mechanism by which oncogene over expression transforms MCF10A cells to an insulin-independent phenotype. Analysis of the effects of various concentrations of insulin and/or IGF-I on proliferation of MCF10A cells demonstrated that some of the effects of insulin were independent from those of IGF-I, suggesting that oncogene over expression drives a true insulin-independent proliferative phenotype. To test this hypothesis, we examined metabolic functions of insulin signaling in insulin-dependent and insulin-independent cells. HER2 over expression in MCF10A cells resulted in glucose uptake in the absence of insulin at a rate equal to insulin-induced glucose uptake in non-transduced cells. We found that a diverse set of oncogenes induced the same result. To gain insight into how HER2 oncogene signaling affected increased insulin-independent glucose uptake we compared HER2-regulated gene expression signatures in MCF10A and HER2 over expressing MCF10A cells by differential analysis of time series gene expression data from cells treated with a HER2 inhibitor. This analysis identified genes specifically regulated by the HER2 oncogene, including VAMP8 and PHGDH, which have known functions in glucose uptake and processing of glycolytic intermediates, respectively. Moreover, these genes specifically implicated in HER2 oncogene-driven transformation are commonly altered in human breast cancer cells. These results highlight the diversity of oncogene effects on cell regulatory pathways and the importance of oncogene-driven metabolic transformation in breast cancer.

  20. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  1. Silencing KRAS overexpression in arsenic-transformed prostate epithelial and stem cells partially mitigates malignant phenotype.

    Science.gov (United States)

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Waalkes, Michael P

    2014-12-01

    Inorganic arsenic is a human carcinogen that likely targets the prostate. Chronic arsenic exposure malignantly transforms the RWPE-1 human prostate epithelial line to chronic arsenic exposed-prostate epithelial (CAsE-PE) cells, and a derivative normal prostate stem cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs). The KRAS oncogene is highly overexpressed in CAsE-PE cells and activation precedes transformation, inferring mechanistic significance. As-CSCs also highly overexpress KRAS. Thus, we hypothesize KRAS activation is key in causing and maintaining an arsenic-induced malignant phenotype, and hence, KRAS knockdown (KD) may reverse this malignant phenotype. RNA interference using shRNAmirs to obtain KRAS KD was used in CAsE-PE and As-CSC cells. Cells analyzed 2 weeks post transduction showed KRAS protein decreased to 5% of control after KD, confirming stable KD. KRAS KD decreased phosphorylated ERK, indicating inhibition of RAS/ERK signaling, a proliferation/survival pathway activated with arsenic transformation. Secreted metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but KRAS KD from 4 weeks on decreased secreted MMP-9 activity by 50% in As-CSCs. Colony formation, a characteristic of cancer cells, was decreased in both KRAS KD transformants. KRAS KD also decreased the invasive capacity of both cell types. KRAS KD decreased proliferation in As-CSCs, consistent with loss of rapid tumor growth. Genes predicted to impact cell proliferation (eg, Cyclin D1, p16, and p21) changed accordingly in both KD cell types. Thus, KRAS silencing impacts aspects of arsenic-induced malignant phenotype, inducing loss of many typical cancer characteristics particularly in As-CSCs.

  2. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  3. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  4. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  5. Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-02-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  6. Malignant transformation and treatment of cystic mixed germ cell tumor

    Institute of Scientific and Technical Information of China (English)

    Yapeng Zhao; Hongyu Duan; Qinghui Zhang; Bingxin Shi; Hui Liang; Yuqi Zhang

    2016-01-01

    Objective: The authors report an extremely unusual presentation and management of a children pineal mixed germ cell tumor mainly composed of immature teratoma, aiming to summarize main theraptic points by literature review. Methods: A cystic lesion located in the rear of third ventricle in a child was detected 3 years ago with no other therapy performed except for a ventriculo-peritoneal shunt. During the following 3 years, intermitted regular brain MRI demonstrated no evidence of lesion aggrandizement. However from 20 days before admission to our institute the patient began to present acutely with exacerbating clinical symptoms meanwhile brain MRI showed signs of abrupt revulsions of initial lesion without any incentive cause. Neurological examination revealed a significant rising of serum tumor marker level. Then surgical resection was performed immediately after admission which was followed by correlative two-course chemotherapy. Results: Postoperative brain MRI demonstrated totally removing of the lesion in rear of third ventricle. Serum tumor marker level decreased remarkably after surgery and declined to normal level after two-course chemotherapy. No obvious neurological deficit occurred except for short-term memory difficulty which gradually recovered within two weeks. Soon after the second course chemotherapy the patient was currently asymptomatic and returned to school. Conclusions: (1) To ensure definitive diagnosis and proper therapecutic protocols benefit from grasping clinical features of mixed germ cell tumor. (2) Overall preoperative investigation including serum tumor marker level is as critical as neurological imaging examination. (3) Surgical excision is confirmed to be the key modality of treatment. With the regarding of mixed germ cell tumor, never highlight total resection too much. (4) Postoperative adjuvant chemotherapy is recommended as further intensive treatment to improve the prognosis of mix germ cell tumor.

  7. Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion.

    Science.gov (United States)

    Sigeno, Asako; Hayashi, Sugane; Terachi, Toru; Yamagishi, Hiroshi

    2009-11-01

    Plastid engineering technique has been established only in Nicotiana tabacum, and the widespread application is severely limited so far. In order to exploit a method to transfer the genetically transformed plastomes already obtained in tobacco into other plant species, somatic cell fusion was conducted between a plastome transformant of tobacco and a cultivar of petunia (Petunia hybrida). A tobacco strain whose plastids had been transformed with aadA (a streptomycin/spectinomycin adenylyltransferase gene) and mdar [a gene for monodehydroascorbate reductase (MDAR)] and a petunia variety, 'Telstar', were used as cell fusion partners. An efficient regeneration system from the protoplasts of both the parents, and effectiveness of selection for the aadA gene with spectinomycin were established before the cell fusion. In addition, the influence of UV irradiation on the callus development from the protoplasts and shoot regeneration of tobacco was investigated. Protoplasts were cultured after cell fusion treatment with polyethylene glycol, and asymmetric somatic cybrids were selected using the aadA gene as a marker. Although many shoots of tobacco that had escaped the UV irradiation regenerated, several shoots possessing the morphology of petunia and the resistance to spectinomycin were obtained. Molecular analyses of the petunia type regenerants demonstrated that they had the nuclear and mitochondrial genomes derived from petunia besides the chloroplasts of tobacco transformed with aadA and mdar. Furthermore, it was ascertained that mdar was transcribed in the somatic cybrids. The results indicate the success in intergeneric transfer of transformed plastids of tobacco into petunia. PMID:19727738

  8. Influence of fungal elicitation on glycyrrhizin production in transformed cell cultures of Abrus precatorius Linn

    Directory of Open Access Journals (Sweden)

    Vijai Singh Karwasara

    2011-01-01

    Full Text Available Background: Glycyrrhizin, obtained from Abrus precatorius (Indian liquorice, is a phytoconstituent of importance for pharmaceutical and food industries. Materials and Methods: High producing and fast growing cell lines of A. precatorius were developed by transformation with Agrobacterium tumefaciens for glycyrrhizin production. Its maximum transformation efficiency of 85% was obtained by infecting leaves with A. tumefaciens MTCC-431 supplemented with 50 μM acetosyringone. Thorough culture growth kinetics with sugar consumption profiles was established. Results: A twofold increase in glycyrrhizin productivity was obtained in transformed A. precatorius cell suspension cultures over the untransformed cultures. The fungal elicitors prepared from Aspergillus niger and Rhizopus stolonifer were tested at different concentrations to enhance glycyrrhizin production in transformed cell suspension cultures of A. precatorius. Maximum enhancement of 4.9- and 3.8-fold in glycyrrhizin contents, were obtained with A. niger (7.5% v/v and R. stolonifer (5.0% v/v, respectively, on the 5th day after elicitor treatment. Conclusion: This study indicates the prospective of the amalgamation of elicitation methodology with transformed cell cultures for the large-scale production of glycyrrhizin.

  9. Human T-Cell Leukemia Virus Type I-Mediated Repression of PDZ-LIM Domain-Containing Protein 2 Involves DNA Methylation But Independent of the Viral Oncoprotein Tax

    Directory of Open Access Journals (Sweden)

    Pengrong Yan

    2009-10-01

    Full Text Available Human T-cell leukemia virus type I (HTLV-I is the etiological agent of adult T-cell leukemia (ATL. Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2 repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2′-deoxycytidine (5-aza-dC restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.

  10. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Yasuko Hatta

    Full Text Available Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  11. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    Science.gov (United States)

    Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M

    2010-10-07

    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  12. Neutralization of feline infectious peritonitis virus: preparation of monoclonal antibody that shows cell tropism in neutralizing activity after viral absorption into the cells.

    Science.gov (United States)

    Kida, K; Hohdatsu, T; Kashimoto-Tokunaga, J; Koyama, H

    2000-01-01

    Feline infectious peritonitis virus (FIPV) infection of feline macro-phages is enhanced by mouse anti-FIPV monoclonal antibody (MAb). This anti-body-dependent enhancement (ADE) of FIPV infection is dependent on mouse MAb subclass, and MAb of IgG2a subclass has a strong ADE activity. Furthermore, MAb showing strong neutralizing activity in Felis catus whole fetus (fcwf-4) cells and Crandell feline kidney (CrFK) cells shows strong enhancing activity in feline macrophages, indicating that the neutralizing epitope and the enhancing epitope are closely related. In this study, we prepared MAb FK50-4 that showed a strong neutralizing activity in feline macrophages, despite the fact that the MAb belonged to the IgG2a subclass. However, MAb FK50-4 did not exhibit neutralizing activity in CrFK cells or fcwf-4 cells, thus showing a very unusual property. MAb FK50-4 recognized FIPV small integral membrane glycoprotein (M protein). Even when feline macrophages were pretreated with MAb FK50-4 prior to FIPV inoculation, this antibody prevented FIPV infection. This reaction disappeared after treatment of FK50-4 with protein A. The neutralizing activity of FK50-4 was also effective on feline macrophages after the cells were inoculated with FIPV. These findings indicated that the FIPV replication mechanism differs between feline macrophages and CrFK/fcwf-4 cells and that a neutralizing epitope that can prevent FIPV infection of feline macrophages after viral absorption is present on M protein.

  13. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Shengniao Niu

    Full Text Available Hibiscus chlorotic ringspot virus (HCRSV is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP functions on virus replication and movement in kenaf (Hibiscus cannabinus L., two HCRSV mutants, designated as p2590 (A to G in which the first start codon ATG was replaced with GTG and p2776 (C to G in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.

  14. B cell depletion in HIV-1 subtype A infected Ugandan adults: relationship to CD4 T cell count, viral load and humoral immune responses.

    Directory of Open Access Journals (Sweden)

    Peter Oballah

    Full Text Available To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naïve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001. HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb titers against subtype A (p = 0.05 and subtype CRF02_AG (p = 0.02 viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (p = 0.02 and mean titer against the 10 viruses (p = 0.0002. In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001. These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection.

  15. Highly efficient transformation of intact yeast-like conidium cells of Tremella fuciformin by electroporation

    Institute of Scientific and Technical Information of China (English)

    GUO LiQiong; LIU Yong; ZHAO ShuXian; LIU ErXian; LIU JunFang

    2008-01-01

    Tremella fuciformis is one of higher basidiomycetes. Its basidiospore can reproduce yeast-like conidia, also called the blastospore by budding. The yeast-like conidia of T. Fuciformis is monokaryotic and easy to culture by submerged fermentation similar to yeast. So it is a good recipient cell for exogenous gone expression. In this study, two expression vectors pGIg-gfp containing gpd-GI promoter and gfp gone and pGIg-hph containing gpd-GI promoter and hph gone were constructed. The lowest sensitive concentration of hygromycin for the blastospore was determined on three types of media. Our ex-perimenta showed that the lowest sensitive concentration of hygromycin for the blastospore was 5 μg/mL on MA medium. The intact blastospores were transformed with the expression vector pGIg-hph by electroporation. The putative transformants were obtained by the MA selective medium. Experi-mental results showed that the most effective parameters for the electroporation of intact blastospores were obtained by using STM buffer, 1.0×108 cells/mL of blastospores, 200 μL in transformation volume, 6 μg plasmid, 2.0 kV/cm of electric pulse voltage, stillness culturing on MB liquid medium for 48 h after electroporation. In these transformation conditions, the efficiency reached 277 colonies/μg DNA. With the optimal parameters. The putative co-transformants were obtained by the MA selective medium. Eight randomly selected colonies from the vast putative co-transformants were analyzed by PCR de-tection and Southern blotting. The experiments showed that the gfp was integrated into the genomes of three transformants. The co-transformation efficiency was 37.5%. Green fluorescence was observed under laser scanning confocal microscope in these gfp positive transformants. This indicates that the exogenous gfp can be expressed effectively in the yeast-like conidia of T. Fuciformis.

  16. In vitro effect of p21WAF-1/CIP1 gene on growth of human glioma cells mediated by EGFR targeted non-viral vector GE7 system

    Institute of Scientific and Technical Information of China (English)

    陈永新; 许秀兰; 张光霁; 王韦; 金海英; 卢亦成; 朱诚; 顾健人

    2003-01-01

    Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIP1 gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene(reporter gene) and p21WAF-1/CIP1 gene (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/CIP1 gene in transfected U251MG cell was examined by immunohistochemistry staining. Results: The highest transfer rate of exogenous gene was 70%. After transfection with p21WAF-1/CIP1 gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIP1 gene can induce apoptosis of glioma cell and inhibit its growth.

  17. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  18. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement.

    Directory of Open Access Journals (Sweden)

    Masanori Kaido

    2014-11-01

    Full Text Available The formation of virus movement protein (MP-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV, a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A, which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.

  19. Rearrangements of chicken immunoglobulin genes in lymphoid cells transformed by the avian retroviral oncogene v-rel.

    Science.gov (United States)

    Chen, L; Lim, M Y; Bose, H; Bishop, J M

    1988-01-01

    The retroviral oncogene v-rel transforms poorly characterized lymphoid cells. We have explored the nature of these cells by analyzing the configuration and expression of immunoglobulin genes in chicken hemopoietic cells transformed by v-rel. None of the transformed cells expressed their immunoglobulin genes. The cells fell into three classes: class I cells have their immunoglobulin genes potentially in an embryonic configuration; class II and class III cells have lost one copy of the lambda light chain locus and have one copy of the heavy chain locus rearranged into a configuration that differs from what is found in mature B cells. In class II cells, the other heavy chain locus may be in embryonic configuration, whereas it is deleted in class III cells. The first of these classes may represent the earliest stage of the lymphoid lineage yet encountered among virus-transformed cells, whereas the second and third classes represent an apparently anomalous rearrangement whose origin remains unknown.

  20. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

    Science.gov (United States)

    Oser, Matthew G; Niederst, Matthew J; Sequist, Lecia V; Engelman, Jeffrey A

    2015-04-01

    Lung cancer is the most common cause of cancer deaths worldwide. The two broad histological subtypes of lung cancer are small-cell lung cancer (SCLC), which is the cause of 15% of cases, and non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Although NSCLC and SCLC are commonly thought to be different diseases owing to their distinct biology and genomic abnormalities, the idea that these malignant disorders might share common cells of origin has been gaining support. This idea has been supported by the unexpected findings that a subset of NSCLCs with mutated EGFR return as SCLC when resistance to EGFR tyrosine kinase inhibitors develops. Additionally, other case reports have described the coexistence of NSCLC and SCLC, further challenging the commonly accepted view of their distinct lineages. Here, we summarise the published clinical observations and biology underlying tumours with combined SCLC and NSCLC histology and cancers that transform from adenocarcinoma to SCLC. We also discuss pre-clinical studies pointing to common potential cells of origin, and speculate how the distinct paths of differentiation are determined by the genomics of each disease.

  1. Relationship between transformation of human embryo lung cell and DNA strand break induced by γ-irradiation

    International Nuclear Information System (INIS)

    γ-irradiation effects on transformation and DNA strand break of human embryo lung cell were studied by means of cell and molecular biology. The cell transformation appeared at 20 th passage post 0.25∼5.0 Gy γ-irradiation. The transformation was relative to doses and post-time of irradiation. DNA strand break was detected by NTA (nick translation assay). The result indicated DNA strand break was arisen from γ ray with different doses. DNA strand break also was relative to radiation doses as cell transformation. Correlation between DNA strand break and cell transformation was analysed. The analysis indicated that effect of cell transformation enhanced with increase of DNA strand break. It was suggested that carcinogenesis by radiation is closely relative to DNA damage

  2. Role of transcriptional repressors in transformation by bovine papillomavirus type 1.

    OpenAIRE

    Zemlo, T R; Lohrbach, B; Lambert, P F

    1994-01-01

    Transformation of rodent cells by bovine papillomavirus type 1 (BPV-1) has been shown to require the direct contribution of the viral oncogenes encoded by the E5, E6, and E7 translational open reading frames (ORFs). It is also known that the viral E1 and E2 ORFs contribute indirectly to cellular transformation through their transcriptional modulation of these viral oncogenes. A mutant BPV-1 disrupted in two of the proteins encoded by the E2 ORF, the E2 transcriptional repressors, has a comple...

  3. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines.

    Science.gov (United States)

    Jaynes, J M; Julian, G R; Jeffers, G W; White, K L; Enright, F M

    1989-01-01

    Several types of transformed mammalian cells, derived from established cell lines, were found to be lysed in vitro by three novel lytic peptides (SB-37, SB-37*, and Shiva-1). This is in contrast with the behavior of normal cells, where the observed lytic activity of the peptides is greatly reduced. Based on experiments utilizing compounds which disrupt the cytoskeleton (colchicine and cytochalasin-D), it is surmised that alterations in the cytoskeleton of transformed cells increase their sensitivity to the cytolytic activity exerted by the peptides, primarily by causing a loss of osmotic integrity. Thus, a stable and regenerative cytoskeletal system, as that possessed by normal cells, would seem requisite to withstanding the lytic effects of the peptides.

  4. Relative efficiencies of three ultraviolet radiation wavelengths for cell killing and transformation in mouse cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulo, D.; Muel, B.; Latarjet, R. (Institut du Radium, 75 - Paris (France). Lab. Curie)

    1983-09-01

    C3H 10 T 1/2 clone 8 mouse cells were irradiated in vitro with three U.V. wavelengths 280, 254, and 230 nm. Two effects were investigated, survival and malignant transformation, and the relative efficiences were determined for the three radiation. For transformation, these efficiences were: 280 nm: 3.9; 254 nm: 5.1; 230 nm: 2.3 (transformations produced by 5 J m/sup -2/ of U.V. for 1000 surviving cells). For cell killing the efficiencies were, in relative units, 34, 100, and 50 respectively. These efficiencies are in agreement with the hypothesis that the main chromophore for both effects is the nucleic acid, and not the protein moiety of the genome. This conclusion agrees with that previously reached by other investigators, but our present results obtained with the short wave-length 230 nm provide an especially strong new argument.

  5. Relative efficiencies of three ultraviolet radiation wavelengths for cell killing and transformation in mouse cells in vitro.

    Science.gov (United States)

    Papadopoulo, D; Muel, B; Latarjet, R

    1983-09-01

    C3H 10 T 1/2 clone 8 mouse cells were irradiated in vitro with three U.V. wavelengths 280, 254, and 230 nm. Two effects were investigated, survival and malignant transformation, and the relative efficiencies were determined for the three radiations. For transformation, these efficiencies were: 280nm:3.9; 254nm:5.1; 230nm:2.3 (transformations produced by 5 Jm-2 of U.V. for 1000 surviving cells). For cell killing the efficiencies were, in relative units, 34, 100, and 50 respectively. These efficiencies are in agreement with the hypothesis that the main chromophore for both effects is the nucleic acid, and not the protein moiety of the genome. This conclusion agrees with that previously reached by other investigators, but our present results obtained with the short wave-length 230 nm provide an especially strong new argument.

  6. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells

    Science.gov (United States)

    Yokoyama, Masaru; Nomaguchi, Masako; Doi, Naoya; Kanda, Tadahito; Adachi, Akio; Sato, Hironori

    2016-01-01

    Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness. PMID:26903989

  7. Differential effects of viral hemorrhagic septicaemia virus (VHSV) genotypes IVa and IVb on gill epithelial and spleen macrophage cell lines from rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Pham, P H; Lumsden, J S; Tafalla, C; Dixon, B; Bols, N C

    2013-02-01

    The two most prominent genotypes of viral hemorrhagic septicemia virus (VHSV) are -I in the Northeastern Atlantic region and -IV in North America, but much more is known about the cellular pathogenesis of genotype -I than -IV. VHSV genotype -IV is divided into -IVa from the Northeast Pacific Ocean and -IVb from the Great Lakes and both of which are less virulent to rainbow trout than genotype -I. In this work, infections of VHSV-IVa and -IVb have been studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than -IVb toward RTgill-W1: -IVa caused cytopathic effect (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres. By contrast, no CPE and no increase in viral titre were observed in RTS11 cultures infected with either genotype. Yet in RTS11 all six VHSV genes were expressed and antiviral genes, Mx2 and Mx3, were up regulated by VHSV-IVb and -IVa. However, replication appeared to terminate at the translational stage as viral N protein, presumably the most abundant of the VSHV proteins, was not detected in either infected RTS11 cultures. In RTgill-W1, Mx2 and Mx3 were up regulated to similar levels by both viral genotypes, while VHSV-IVa induced higher levels of IFN1, IFN2 and LGP2A than VHSV-IVb.

  8. Molecular Mechanism and Treatment of Viral Hepatitis-Related Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Tung-Hung Su

    2014-06-01

    Full Text Available Hepatic fibrosis is a wound-healing response to various chronic stimuli, including viral hepatitis B or C infection. Activated myofibroblasts, predominantly derived from the hepatic stellate cells (HSCs, regulate the balance between matrix metalloproteinases and their tissue inhibitors to maintain extracellular matrix homeostasis. Transforming growth factor-β and platelet-derived growth factor are classic profibrogenic signals that activate HSC proliferation. In addition, proinflammatory cytokines and chemokines coordinate macrophages, T cells, NK/NKT cells, and liver sinusoidal endothelial cells in complex fibrogenic and regression processes. In addition, fibrogenesis involves angiogenesis, metabolic reprogramming, autophagy, microRNA, and epigenetic regulations. Hepatic inflammation is the driving force behind liver fibrosis; however, host single nucleotide polymorphisms and viral factors, including the genotype, viral load, viral mutation, and viral proteins, have been associated with fibrosis progression. Eliminating the underlying etiology is the most crucial antifibrotic therapy. Growing evidence has indicated that persistent viral suppression with antiviral therapy can result in fibrosis regression, reduced liver disease progression, decreased hepatocellular carcinoma, and improved chances of survival. Preclinical studies and clinical trials are currently examining several investigational agents that target key fibrogenic pathways; the results are promising and shed light on this debilitating illness.

  9. Upregulated expression of Ezrin and invasive phenotype in malignantly transformed esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Ming-Hua Chen; En-Min Li; Jin-Tao Li; Xian-Ying Wu; Yi Zeng

    2003-01-01

    AIM: To investigate the correlation between ezrin expression and invasive phenotype formation in malignantly transformed esophageal epithelial cells. METHODS: The experimental cell line employed in the present study was originated form the progressive induction of a human embryonic esophageal epithelial cell line (SHEE)by the E6E7 genes of human papillomavirus (HPV) type 18.The cells at the 35th passage after induction called SHEEIMM were in a state of immortalized phase and used as the control,while that of the 85th passage denominated as SHEEMT represented the status of cells that were malignantly transformed. The expression changes of ezrin and its mRNA in both cell passages were respectively analyzed by RT-PCR and Western blot. Invasive phenotype was assessed in vivo by inoculating these cells into the severe combined immunodeficient (SCID) mice via subcutaneous and intraperitoneal injection, and in vitro by inoculating them on the surface of the amnion membranes, which then was determined by light microscopy and scanning electron microscopy. RESULTS: Upregulated expression of ezrin protein and its mRNA was observed in SHEEMT compared with that in SHEEIMM cells. The SHEEMT cells inoculated in SCID mice were observed forming tumor masses in both visceral organs and soft tissues in a period of 40 days with a special propensity to invading mesentery and pancreas, but did not exhibit hepatic metastases. Pathologically, these tumor cells harboring larger nucleus, nucleolus and less cytoplasm could infiltrate and destroy adjacent tissues. In the in vitro study,the inoculated SHEEMT cells could grow in cluster on the amniotic epithelial surface and intrude into the amniotic stroma. In contrast, unrestricted growth and invasiveness were not found in SHEEIMM cells in both in vivo and in vitroexperiment. CONCLUSION: The upregulated ezrin expression is one of the important factors that are possibly associated with the invasive phenotype formation in malignantly

  10. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    Science.gov (United States)

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  11. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C; knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the