WorldWideScience

Sample records for cell toxicity significance

  1. Biotechnological significance of toxic marine dinoflagellates.

    Science.gov (United States)

    Camacho, F Garcia; Rodríguez, J Gallardo; Mirón, A Sánchez; García, M C Cerón; Belarbi, E H; Chisti, Y; Grima, E Molina

    2007-01-01

    Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.

  2. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations.

    Science.gov (United States)

    da Silva, Diana Dias; Silva, Elisabete; Carvalho, Félix; Carmo, Helena

    2014-06-01

    Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA.

  3. Toxicity of uranium and lead on osteoblastic bone cells

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S.; Thiebault, C.; Carriere, M.; Gouget, B. [CEA Saclay, CNRS, UMR9956, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France); Malaval, L. [INSERM, 42023 Saint Etienne (France)

    2007-07-01

    Bone is one of the main retention organs affected by uranium (U) and lead (Pb). Intoxications have been documented to inhibit bone formation and impair bone modeling and remodeling. However, only few studies dealt with cellular and molecular mechanisms of their toxicity. The purpose of this study was to investigate the acute cytotoxicity of U and Pb and their phenotypic effects on ROS17/2.8 osteoblastic cells. The most likely forms of the toxics in contact with cells after blood contamination were selected for cell exposure. Results show that whatever their speciation, bone cells are always more sensitive to Pb than to U. Moreover, Pb is toxic when it is left free in the exposure medium or when it is complexed with bicarbonate, cysteine or citrate, but not with albumin or phosphate. U is more cytotoxic when it is complexed with transferrin than with bicarbonate. A direct correlation between toxicity and cellular accumulation could be observed. Beside, exposure of U or Pb to bone cells induces a speciation-dependant variation of RNA expression of two markers of bone formation and mineralization: osteocalcin (OCN) and bone sialoprotein (BSP). OCN and BSP-expression could be activated in sub-toxic condition, respectively, by Pb-albumin (1.6-fold) and U-bicarbonate (2.3-fold). In the meantime, U-transferrin and Pb-citrate lead to an inhibition of the two markers. This study shows a complex mechanism of toxicity of two heavy metals with a significant phenotypic impact on osteoblastic cells highly dependant on metal speciation which controls cell accumulation. (authors)

  4. Analysis of lead toxicity in human cells

    Directory of Open Access Journals (Sweden)

    Gillis Bruce S

    2012-07-01

    Full Text Available Abstract Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were

  5. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Paro, Rita [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Tiboni, Gian Mario [Department of Medicine and Aging, Section of Reproductive Sciences, University “G. D' Annunzio”, Chieti-Pescara (Italy); Buccione, Roberto [Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti (Italy); Rossi, Gianna; Cellini, Valerio [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Canipari, Rita [Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, “Sapienza” University of Rome, Rome (Italy); Cecconi, Sandra, E-mail: sandra.cecconi@cc.univaq.it [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy)

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  6. Preliminary Validation of Tumor Cell Attachment Inhibition Assay for Developmental Toxicants With Mouse S180 Cells

    Institute of Scientific and Technical Information of China (English)

    LU RONG-ZHU; CHEN CHUAN-FEN; LIN HUI-FEN; HUANG LEI-MING; JIN Xl-PENG

    1999-01-01

    This study was designed to explore the possibility of using ascitic mouse sarcoma cell line(S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coated surfaces. Inhibition was dependent on concentration, and the IC5o(the concentration that reduced attachment by 50% ), of these 2 chemicals was 1.2 ×10-3 mol/L and 1.0 mol/L, respectively. Another developmental toxicant, hydrocortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also testedand these did not decrease attachment rates. The main results reported here were generally similar to those obtained with ascitic mouse ovarian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not limit attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an alternative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.

  7. Toxicity of uranium on renal cells

    Energy Technology Data Exchange (ETDEWEB)

    Thiebault, C.; Carriere, M.; Gouget, B. [CEA Saclay, CNRS, UMR9956, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Kidney and bone are the main retention organs affected by uranium toxicity. Although the clinical effects of uranium poisoning are well known, only few studies dealt with cellular mechanisms of toxicity. The purpose of this study was to investigate the cyto- and genotoxicity of uranium (U) on renal cells. The cell death was also studied in this conditions of exposure. The effects of U were evaluated in acute and chronic exposure. The acute effects were evaluated after 24 h exposure to strong U concentrations (200-700{mu}M). The chronic exposure was observed on renal cells incubated with low U concentrations (0.1-100 {mu}M) until 70 days then with high uranium concentrations (400-500 {mu}M) during 24 h. U induces apoptosis cell death mainly by the intrinsic pathway. The high U concentrations (600-700 {mu}M) lead to necrosis. U induces DNA damages (single, double strand breaks, as well as alkali labile sites) from 300{mu}M. The cytotoxicity and intracellular accumulation of uranium were less important in cells previously exposed to low uranium concentrations when compared to non-exposed cells. In the same time, DNA damage observed after acute exposure of uranium decreased with the increase of chronic uranium concentrations. These results suggest that renal cells became resistant to uranium, probably due to a cellular transformation process. In conclusion, high U concentrations (300-700{mu}M) induce apoptosis cell death and DNA damages. Cells previously exposed to low U concentrations present also DNA damages and a cellular transformation. (authors)

  8. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  9. Toxicity of chlorhexidine on odontoblast-like cells

    Directory of Open Access Journals (Sweden)

    Fernanda Campos Rosetti Lessa

    2010-02-01

    Full Text Available Chlorhexidine gluconate (CHX is recommended for a number of clinical procedures and it has been pointed out as a potential cavity cleanser to be applied before adhesive restoration of dental cavities. OBJECTIVE: As CHX may diffuse through the dentinal tubules to reach a monolayer of odontoblasts that underlies the dentin substrate, this study evaluated the cytotoxic effects of different concentrations of CHX on cultured odontoblast-like cells (MDPC-23. MATERIAL AND METHODS: Cells were cultured and exposed to CHX solutions at concentrations of 0.06%, 0.12%, 0.2%, 1% and 2%. Pure culture medium (α-MEM and 3% hydrogen peroxide were used as negative and positive control, respectively. After exposing the cultured cells to the controls and CHX solutions for 60 s, 2 h or 60 s with a 24-h recovery period, cell metabolism (MTT assay and total protein concentration were evaluated. Cell morphology was assessed under scanning electron microscopy. CHX had a dose-dependent toxic effect on the MDPC-23 cells. RESULTS: Statistically significant difference was observed when the cells were exposed to CHX in all periods (p<0.05. Significant difference was also determined for all CHX concentrations (p<0.05. The 60-s exposure time was the least cytotoxic (p<0.05, while exposure to CHX for 60 s with a 24-h recovery period was the most toxic to the cells (p<0.05. CONCLUSION: Regardless of the exposure time, all CHX concentrations had a high direct cytotoxic effect to cultured MDPC-23 cells.

  10. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy.

  11. Cell tracing dyes significantly change single cell mechanics.

    Science.gov (United States)

    Lulevich, Valentin; Shih, Yi-Ping; Lo, Su Hao; Liu, Gang-Yu

    2009-05-07

    Cell tracing dyes are very frequently utilized in cellular biology research because they provide highly sensitive fluorescent tags that do not compromise cellular functions such as growth and proliferation. In many investigations concerning cellular adhesion and mechanics, fluorescent dyes have been employed with the assumption of little impact on the results. Using the single cell compression technique developed by our team, the single cell mechanics of MDA-MB-468 and MLC-SV40 cells were investigated as a function of dye uptake. Cell tracing dyes increase living cell stiffness 3-6 times and cell-to-probe adhesion up to 7 times. These results suggest a more significant effect than toxins, such as thrombin. A simple analytical model was derived to enable the extraction of the Young's moduli of the cell membrane and cytoskeleton from the force-deformation profiles measured for individual cells. The increase in Young's modulus of the membrane is 3-7 times, which is more significant than that of the cytoskeleton (1.1-3.4 times). We propose that changes in cell mechanics upon the addition of fluorescent tracing dye are primarily due to the incorporation of amphiphilic dye molecules into the cellular plasma membrane, which increases the lateral interaction among phospholipid chains and thus enhances their rigidity and adhesion.

  12. [Development of human embryonic stem cell model for toxicity evaluation].

    Science.gov (United States)

    Yu, Guang-yan; Cao, Tong; Ouyang, Hong-wei; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Zou, Xiao-hui; Fu, Xin; Peng, Hui; Wang, Xiao-ying; Zhan, Yuan

    2013-02-18

    The current international standard for toxicity screening of biomedical devices and materials recommend the use of immortalized cell lines because of their homogeneous morphologies and infinite proliferation which provide good reproducibility for in vitro cytotoxicity screening. However, most of the widely used immortalized cell lines are derived from animals and may not be representative of normal human cell behavior in vivo, in particular in terms of the cytotoxic and genotoxic response. Therefore, It is vital to develop a model for toxicity evaluation. In our studies, two Chinese human embryonic stem cell (hESC) lines as toxicity model were established. hESC derived tissue/organ cell model for tissue/organ specific toxicity evaluation were developed. The efficiency and accuracy of using hESC model for cytoxicity, embryotoxicity and genotoxicity evaluation were confirmed. The results indicated that hESCs might be good tools for toxicity testing and biosafety evaluation in vitro.

  13. Clinical significance of metallothioneins in cell therapy and nanomedicine

    Directory of Open Access Journals (Sweden)

    Sharma S

    2013-04-01

    as free radical scavengers inhibit Charnoly body formation and neurodegenerative α-synucleinopathies, hence Charnoly body formation and α-synuclein index may be used as early and sensitive biomarkers to assess NP effectiveness and toxicity to discover better drug delivery and surgical interventions. Furthermore, pharmacological interventions augmenting MTs may facilitate the theranostic potential of NP-labeled cells and other therapeutic agents. These unique characteristics of MTs might be helpful in the synthesis, characterization, and functionalization of emerging NPs for theranostic applications. This report highlights the clinical significance of MTs and their versatility as early, sensitive biomarkers in cell-based therapy and nanomedicine.Keywords: metallothioneins, free radicals, Charnoly body, α-synuclein index, nanomedicine, toxicity, stem cells, theranostics

  14. Toxicity and management in CAR T-cell therapy.

    Science.gov (United States)

    Bonifant, Challice L; Jackson, Hollie J; Brentjens, Renier J; Curran, Kevin J

    2016-01-01

    T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR). Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, "on target/off tumor" recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.

  15. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    Science.gov (United States)

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  16. Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening.

    Science.gov (United States)

    Greenhough, Sebastian; Medine, Claire N; Hay, David C

    2010-12-30

    Despite considerable progress in modelling human liver toxicity, the requirement still exists for efficient, predictive and cost effective in vitro models to reduce attrition during drug development. Thousands of compounds fail in this process, with hepatotoxicity being one of the significant causes of failure. The cost of clinical studies is substantial, therefore it is essential that toxicological screening is performed early on in the drug development process. Human hepatocytes represent the gold standard model for evaluating drug toxicity, but are a limited resource. Current alternative models are based on immortalised cell lines and animal tissue, but these are limited by poor function, exhibit species variability and show instability in culture. Pluripotent stem cells are an attractive alternative as they are capable of self-renewal and differentiation to all three germ layers, and thereby represent a potentially inexhaustible source of somatic cells. The differentiation of human embryonic stem cells and induced pluripotent stem cells to functional hepatocyte like cells has recently been reported. Further development of this technology could lead to the scalable production of hepatocyte like cells for liver toxicity screening and clinical therapies. Additionally, induced pluripotent stem cell derived hepatocyte like cells may permit in vitro modelling of gene polymorphisms and genetic diseases.

  17. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  18. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or CuO...... of the sequence of events explaining Poly toxicity. Briefly, the events include: cellular uptake, most likely via endocytosis, production of ROS, which cause DNA damage that activates a signaling pathway which eventually leads to cell death, mainly via apoptosis......CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or Cu......O particles of three different sizes: CuO NPs of 6 nm (NP6), larger Poly-dispersed CuO NPs of toxic than NP6, Micro and Cu2+ to A6 cells, causing DNA damage, decreased cell viability...

  19. Pinelliae Rhizoma, a Toxic Chinese Herb, Can Significantly Inhibit CYP3A Activity in Rats

    Directory of Open Access Journals (Sweden)

    Jinjun Wu

    2015-01-01

    Full Text Available Raw Pinelliae Rhizoma (RPR is a representative toxic herb that is widely used for eliminating phlegm or treating cough and vomiting. Given its irritant toxicity, its processed products, including Pinelliae Rhizoma Praeparatum (PRP and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine (PRPZA, are more commonly applied and administered concomitantly with other chemical drugs, such as cough medications. This study aimed to investigate the effects of RPR, PRP, and PRPZA on CYP3A activity. Testosterone (Tes and buspirone (BP were used as specific probe substrates ex vivo and in vivo, respectively. CYP3A activity was determined by the metabolite formation ratios from the substrates. Ex vivo results show that the metabolite formation ratios from Tes significantly decreased, indicating that RPR, PRP, and PRPZA could inhibit CYP3A activity in rats. CYP3A protein and mRNA levels were determined to explore the underlying mechanism. These levels showed marked and consistent down-regulation with CYP3A activity. A significant decrease in metabolite formation ratios from BP was also found in PRPZA group in vivo, implying that PRPZA could inhibit CYP3A activity. Conclusively, co-administration of PR with other CYP3A-metabolizing drugs may cause drug–drug interactions. Clinical use of PR-related formulae should be monitored carefully to avoid adverse interactions.

  20. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  1. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Wang, Y; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  2. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells.

    Directory of Open Access Journals (Sweden)

    Sanhita Roy

    Full Text Available Although P. aeruginosa is especially dangerous in cystic fibrosis (CF, there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7. Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.

  3. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats.

    Science.gov (United States)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC(0-t) and C(max) of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC(0-t) of MTX by 55%. In addition, diclofenac enhanced the C(max) of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution.

  4. Selective toxicity of rhodamine 123 in carcinoma cells in vitro.

    Science.gov (United States)

    Lampidis, T J; Bernal, S D; Summerhayes, I C; Chen, L B

    1983-02-01

    The study of mitochondria in situ has recently been facilitated through the use of rhodamine 123, a mitochondrial-specific fluorescent dye. It has been found to be nontoxic when applied for short periods to a variety of cell types and has thus become an invaluable tool for examining mitochondrial morphology and function in the intact living cell. In this report, however, we demonstrate that with continuous exposure, rhodamine 123 selectively kills carcinoma as compared to normal epithelial cells grown in vitro. At doses of rhodamine 123 which were toxic to carcinoma cells, the conversion of mitochondrial-specific to cytoplasmic-nonspecific localization of the drug was observed prior to cell death. At 10 microgram/ml, greater than 50% cell death occurred within 7 days in all nine of the carcinoma cell types and lines of different origin studied, while six of six normal epithelial cell types and lines remained unaffected. Cotreating carcinoma cells with 2-deoxyglucose and rhodamine 123 enhanced the inhibition of growth by rhodamine 123 alone in clonogenic survival assays. The observation of the selective toxicity of rhodamine 123 appears to be unique in view of the absence of selective toxicity reported in vitro for the various antitumor agents currently in clinical use. Preliminary results with rhodamine 123 in animal tumor systems indicate antitumor activity for carcinomas.

  5. Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross Validation

    Science.gov (United States)

    Adams, James; Kruger, Uwe; Geis, Elizabeth; Gehn, Eva; Fimbres, Valeria; Pollard, Elena; Mitchell, Jessica; Ingram, Julie; Hellmers, Robert; Quig, David; Hahn, Juergen

    2017-01-01

    Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate

  6. Toxic effect of terbium ion on horseradish cell.

    Science.gov (United States)

    Jiang, Na; Wang, Lihong; Lu, Tianhong; Huang, Xiaohua

    2011-12-01

    The toxic effect of terbium (III) ion on the horseradish cell was investigated by scanning electron microscopy, gas chromatography, and standard biochemical methods. It was found that the activity of horseradish peroxidase in the horseradish treated with 0.2 mM terbium (III) ion decreased and led to the excessive accumulation of free radicals compared with that in the control horseradish. The excessive free radicals could oxidize unsaturated fatty acids in the horseradish cell and then increase the cell membrane lipid peroxidation of horseradish. The increase in the lipid peroxidation could lead to the destruction of the structure and function of the cell membrane and then damage of the horseradish cell. We propose that this is a possible mechanism for the toxic action of terbium in the biological systems.

  7. Mitochondrial toxicity of triclosan on mammalian cells

    Directory of Open Access Journals (Sweden)

    Charmaine Ajao

    2015-01-01

    Full Text Available Effects of triclosan (5-chloro-2′-(2,4-dichlorophenoxyphenol on mammalian cells were investigated using human peripheral blood mono nuclear cells (PBMC, keratinocytes (HaCaT, porcine spermatozoa and kidney tubular epithelial cells (PK-15, murine pancreatic islets (MIN-6 and neuroblastoma cells (MNA as targets. We show that triclosan (1–10 μg ml−1 depolarised the mitochondria, upshifted the rate of glucose consumption in PMBC, HaCaT, PK-15 and MNA, and subsequently induced metabolic acidosis. Triclosan induced a regression of insulin producing pancreatic islets into tiny pycnotic cells and necrotic death. Short exposure to low concentrations of triclosan (30 min, ≤1 μg/ml paralyzed the high amplitude tail beating and progressive motility of spermatozoa, within 30 min exposure, depolarized the spermatozoan mitochondria and hyperpolarised the acrosome region of the sperm head and the flagellar fibrous sheath (distal part of the flagellum. Experiments with isolated rat liver mitochondria showed that triclosan impaired oxidative phosphorylation, downshifted ATP synthesis, uncoupled respiration and provoked excessive oxygen uptake. These exposure concentrations are 100–1000 fold lower that those permitted in consumer goods. The mitochondriotoxic mechanism of triclosan differs from that of valinomycin, cereulide and the enniatins by not involving potassium ionophoric activity.

  8. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines.

    Science.gov (United States)

    Abudayyak, Mahmoud; Öztaş, Ezgi; Arici, Merve; Özhan, Gül

    2017-02-01

    Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.

  9. Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction

    Science.gov (United States)

    Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje

    2016-12-01

    Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2‑-N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.

  10. POTENTIAL CELL LINE TOXICITY OF ENVIRONMENTAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Mohan Durga

    2012-01-01

    Full Text Available In India, the unprecedented growth rate and urbanization along with the rapid increase in motor vehicle activity and industrialization are contributing to high levels of urban air pollution. The population is mainly exposed to high air pollution concentrations, where motor vehicle emissions constitute the main source of fine and ultrafine particles. Motor exhaust emissions is a mixture of gases and Particulate Matter (PM. Diesel and petrol fuels in vehicles produce combustion-derived particles as a result of combustion. Vehicle exhaust particles are the main constituents of environmental nanoparticles. In the present investigation, environmental nanoparticles such as Diesel Exhaust Particles (DEP and Petrol Exhaust Particles (PEP were collected from on-road vehicles using a specially designed collection chamber. The surface morphology of the collected particles was analyzed through Transmission Electron Microscope (TEM, and the elemental mapping was performed through EDAX analysis. Results indicated the presence of nanometer-size particles in both the categories of vehicle exhaust. These small-size particles of respirable range can enter the respiratory tract of humans and get deposited in the lungs and cause various effects inside the human body. The aim of this study is to assess the cytotoxicity of the collected Diesel Exhaust Nanoparticles (DENPs and Petrol Exhaust Nanoparticles (PENPs. Cytotoxicity endpoint, such as IC50 (50% Inhibitory Concentration, was determined after a 24-h exposure. Results of this study indicated that all five cell lines were sensitive to these vehicle exhaust nanoparticles at varying levels.

  11. Human leukocyte antigen class II transgenic mouse model unmasks the significant extrahepatic pathology in toxic shock syndrome.

    Science.gov (United States)

    Tilahun, Ashenafi Y; Marietta, Eric V; Wu, Tsung-Teh; Patel, Robin; David, Chella S; Rajagopalan, Govindarajan

    2011-06-01

    Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4(+) and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS.

  12. Impact Assessment of Cadmium Toxicity and Its Bioavailability in Human Cell Lines (Caco-2 and HL-7702

    Directory of Open Access Journals (Sweden)

    Rukhsanda Aziz

    2014-01-01

    Full Text Available Cadmium (Cd is a widespread environmental toxic contaminant, which causes serious health-related problems. In this study, human intestinal cell line (Caco-2 cells and normal human liver cell line (HL-7702 cells were used to investigate the toxicity and bioavailability of Cd to both cell lines and to validate these cell lines as in vitro models for studying Cd accumulation and toxicity in human intestine and liver. Results showed that Cd uptake by both cell lines increased in a dose-dependent manner and its uptake by Caco-2 cells (720.15 µg mg−1 cell protein was significantly higher than HL-7702 cells (229.01 µg mg−1 cell protein at 10 mg L−1. A time- and dose-dependent effect of Cd on cytotoxicity assays (LDH release, MTT assay was observed in both Cd-treated cell lines. The activities of antioxidant enzymes and differentiation markers (SOD, GPX, and AKP of the HL-7702 cells were higher than those of Caco-2 cells, although both of them decreased significantly with raising Cd levels. The results from the present study indicate that Cd above a certain level inhibits cellular antioxidant activities and HL-7702 cells are more sensitive to Cd exposure than Caco-2 cells. However, Cd concentrations <0.5 mg L−1 pose no toxic effects on both cell lines.

  13. Toxic effects of decabromodiphenyl ether (BDE-209 on human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Min eLi

    2014-05-01

    Full Text Available Polybrominated diphenyl ethers (PBDEs are widely used as flame-retardant additives in consumer and household products and can escape into the environment over time. PBDEs have become a global environmental organic pollutant due to the properties of persistence, toxicity, and bioaccumulation. The well-studied toxic effects of PBDEs mainly include thyroid hormone disruption and neurotoxicity. There is no consistent conclusions on the carcinogenic potential of PBDEs to date. Here, we explored the toxic effects of BDE-209 on human embryonic kidney cells (HEK293T. The comparison of the gene expression profiles of HEK293T cells with BDE-209 treatment and the negative control found that BDE-209 exposure may alter nucleosome organization through significantly changing the expression of histone gene clusters. The remodeled chromatin structure could further disturb systemic lupus erythematosus as one of the toxic effects of BDE-209. Additionally, gene sets of different cancer modules are positively correlated with BDE-209 exposure. This suggests that BDE-209 has carcinogenic potential for a variety of tumors. Collectively, BDE-209 has a broader toxicity not limited to disruption of thyroid hormone-related biological processes. Notably, the toxic effects of BDE-209 dissolved in dimethyl sulfoxide (DMSO is not the simply additive effects of BDE-209 and DMSO alone.

  14. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Energy Technology Data Exchange (ETDEWEB)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  15. MDR1 overexpression inhibits chemotherapy-induced toxicity of granulosa cells

    Science.gov (United States)

    Salih, Sana M

    2011-01-01

    OBJECTIVE To protect granulosa cells from chemotherapy-induced toxicity by retrovirus-mediated multidrug resistance gene (MDR1) transfection. DESIGN Laboratory study. SETTING Academic research laboratory in a university hospital. INTERVENTION(S) KK15 immortalized murine granulosa cell line was transiently transduced with sf91m3 retrovirus vector carrying MDR1 cDNA that encodes P-glycoprtoein (P-gp). Transduced cells were selected with colchicine and treated with doxorubicin or paclitaxel for 24–72 hours. The expression and function of MDR1 and the mRNA expression of selected steroidogenesis enzymes were evaluated by flow cytometry, cell viability assays, Western blot, and RT-PCR. MAIN OUTCOME MEASURE(S) Viability of sf91m3-transduced KK15 cells after treatment with doxorubicin and paclitaxel. RESULT(S) sf91m3-transduced KK15 demonstrated high expression of biologically active MDR1 as shown by flow cytometry analysis and immunoblotting using P-gp monoclonal antibody and Rhodamine 123 efflux assays. sf91m3-transduced KK15 exhibited significant resistance to toxicity of 10uM paclitaxel(p≤0.001). MDR1-transduced KK15 cells were also protected from doxorubicin toxicity (10nM to 2.5uM) as shown by cell viability assay (p≤0.02). Both flow cytometry and cell viability assay showed that the protection of KK15 from doxorubicin toxicity was lost at 5 uM of doxorubicin; equivalent to 500 times LD50 (p≥0.05). sf91m3-transduced KK15 showed normal mRNA expression of a panel of selected steroidogenesis enzymes. CONCLUSION(S) Retroviral gene delivery of human MDR1 inhibited chemotherapy- induced granulosa cell toxicity and offered chemoprotection in an in vitro model. PMID:21316663

  16. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  17. Toxicity testing of chitosan from tiger prawn shell waste on cell culture

    Directory of Open Access Journals (Sweden)

    Maretaningtias Dwi Ariani

    2009-03-01

    Full Text Available Background: A biomaterial used in oral cavity should not become toxic, irritant, carcinogenic, and allergenic. Chitosan represents a new biomaterial in dentistry. Purpose: To examine the toxicity of chitosan from tiger prawn shell waste on cell culture with MTT assay. Methods: Chitosan with concentration of 0.25%, 0.5%, 0.75% and 1% was used in this experiment. Each sample was immersed on eppendorf microtubes containing media culture. After 24 hours, the immersion of media culture was used to examine the toxicity effects on BHK-21 cell based on MTT assay method. The density of optic formazan indicates the number of living cells. All data were then statistically analyzed by one-way Anava. Results: The number of living cells in chitosan from tiger prawn shell waste was 93.16%; 85.07%; 78.48%; 75.66%. Thus, there was no significant difference among groups. Conclusion: Chitosan with 0.25%, 0.5%, 0.75% and 1% concentrations from tiger prawn shell waste were not toxic for BHK-21 cell culture when using parameter CD50.

  18. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics.

    Science.gov (United States)

    Drouet, Maryline; Chai, Feng; Barthélémy, Christine; Lebuffe, Gilles; Debaene, Bertrand; Décaudin, Bertrand; Odou, Pascal

    2015-08-01

    French guidelines recommend central intravenous (i.v.) infusion for high concentrations of vancomycin, but peripheral intravenous (p.i.v.) infusion is often preferred in intensive care units. Vancomycin infusion has been implicated in cases of phlebitis, with endothelial toxicity depending on the drug concentration and the duration of the infusion. Vancomycin is frequently infused in combination with other i.v. antibiotics through the same administrative Y site, but the local toxicity of such combinations has been poorly evaluated. Such an assessment could improve vancomycin infusion procedures in hospitals. Human umbilical vein endothelial cells (HUVEC) were challenged with clinical doses of vancomycin over 24 h with or without other i.v. antibiotics. Cell death was measured with the alamarBlue test. We observed an excess cellular death rate without any synergistic effect but dependent on the numbers of combined infusions when vancomycin and erythromycin or gentamicin were infused through the same Y site. Incompatibility between vancomycin and piperacillin-tazobactam was not observed in our study, and rinsing the cells between the two antibiotic infusions did not reduce endothelial toxicity. No endothelial toxicity of imipenem-cilastatin was observed when combined with vancomycin. p.i.v. vancomycin infusion in combination with other medications requires new recommendations to prevent phlebitis, including limiting coinfusion on the same line, reducing the infusion rate, and choosing an intermittent infusion method. Further studies need to be carried out to explore other drug combinations in long-term vancomycin p.i.v. therapy so as to gain insight into the mechanisms of drug incompatibility under multidrug infusion conditions.

  19. Antioxidative effects of berberine pre-treatment on hydrogen peroxide-induced PC12 cell toxicity

    Institute of Scientific and Technical Information of China (English)

    Daohua Xu; Chenhui Zhou

    2010-01-01

    Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease.Oxidative damage could be prevented by augmenting the endogenous defense capacity against oxidative stress by antioxidant intake.As an effective alkaloid component of Chinese herbal medicine Rhizoma coptidis extract,berberine exhibits antioxidative properties and ameliorates memory impairment in a rat model of Alzheimer's disease.The present study investigated the protective effects of berberine on H2O2-induced PC12 cell toxicity.Results demonstrated that berbedne protects PC12 cells from H2O2-induced apoptosis and increases PC12 cell viability.Lactate dehydrogenase release,reactive oxygen content,and malonyl dialdehyde levels were significantly decreased(P < 0.01).The protective effects of berberine on H2O2-induced PC12 cell toxicity were achieved via the antioxidative effects of berberine.

  20. Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features

    OpenAIRE

    Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.

    2009-01-01

    In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) dat...

  1. Combined toxicity of heavy metal mixtures in liver cells.

    Science.gov (United States)

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells.

    Science.gov (United States)

    Mao, Xiaomo; Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2016-08-01

    Engineered nanoparticles (ENPs), such as metallic or metallic oxide nanoparticles (NPs), have gained much attention in recent years. Increasing use of ENPs in various areas may lead to the release of ENPs into the environment and cause the contamination of agricultural and food products by ENPs. In this study, we selected two important ENPs (zinc oxide [ZnO] and silver [Ag] NPs) as potential food contaminants and investigated their toxicity via an in vitro model using Caco-2 cells. The physical properties of ENPs and their effects on Caco-2 cells were characterized by electron microscopy and energy dispersive X-ray spectroscopic (EDS) techniques. Results demonstrate that a significant inhibition of cell viability was observed after a 24-h of exposure of Caco-2 cells to 3-, 6-, and 12-mM ZnO NPs or 0.5-, 1.5-, and 3-mM Ag NPs. The noticeable changes of cells include the alteration in cell shape, abnormal nuclear structure, membrane blebbing, and cytoplasmic deterioration. The toxicity of ZnO NPs, but not that of Ag NPs after exposure to simulated gastric fluid, significantly decreased. Scanning transmission electron microscopy shows that ZnO and Ag NPs penetrated the membrane of Caco-2 cells. EDS results also confirm the presence of NPs in the cytoplasm of the cells. This study demonstrates that ZnO and Ag NPs have cytotoxic effects and can inhibit the growth of Caco-2 cells.

  3. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    Science.gov (United States)

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design.

  4. Acrolein and chloroacetaldehyde: an examination of the cell and cell-free biomarkers of toxicity.

    Science.gov (United States)

    MacAllister, Stephanie L; Martin-Brisac, Nicolas; Lau, Vincent; Yang, Kai; O'Brien, Peter J

    2013-02-25

    Cyclophosphamide and ifosfamide are two commonly used DNA-alkylating agents in cancer chemotherapy that undergo biotransformation to several toxic and non-toxic metabolites, including acrolein and chloroacetaldehyde (CAA). Acrolein and CAA toxicities occur by several different mechanisms, including ROS formation and protein damage (oxidation), however, these pathways of toxicity and protecting agents used to prevent them have yet to be compared and ranked in a single study. This research focused on the molecular targets of acrolein and CAA toxicities and strategies to decrease toxicities. Hepatocyte viability (cytotoxicity) was assessed using Trypan blue uptake; formation of reactive oxygen species (ROS) and endogenous H2O2 were also assessed in the hepatocyte model. In cell-free models (bovine serum albumin and hepatic microsomes), protein carbonylation was the measurement of toxicity. The present study demonstrated that acrolein was a more potent toxin than CAA for freshly isolated rat hepatocytes, bovine serum albumin and rat hepatic microsomes. Acrolein protein carbonylation was dependent on its concentration; as acrolein concentration increased, protein carbonylation increased in a linear trend, whereas, CAA deviated from the trend and did not cause protein carbonylation at lower concentrations (acrolein-treated hepatocytes. The overall effectiveness of protecting agents to prevent or suppress acrolein or CAA toxicities in cell and cell-free models were ranked in order of most effective to least effective: reducing agents (sodium borohydride, sodium bisulfite)>thiol-containing compounds (N-acetylcysteine, cysteine, glutathione, 2-mercaptoethane sulfonate [MESNA], penicillamine)>carbonyl scavengers/amines (aminoguanidine, hydralazine, hydroxylamine)>antioxidants/ROS scavengers (ascorbic acid, Trolox; only utilized in hepatocyte system). An understanding of acrolein and CAA toxicities and the ability of protecting agents to protect against toxicities may help to

  5. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  6. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    Science.gov (United States)

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs.

  7. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology

    Science.gov (United States)

    Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.

    2014-08-01

    The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI

  8. The toxicity of extracts of plant parts of Moringa stenopetala in HEPG2 cells in vitro.

    Science.gov (United States)

    Mekonnen, Negussu; Houghton, Peter; Timbrell, John

    2005-10-01

    The cytotoxicity of extracts from a widely used species of plant, Moringa stenopetala, was assessed in HEPG2 cells, by measuring the leakage of lactate dehydrogenase (LDH) and cell viability. The functional integrity of extract-exposed cells was determined by measuring intracellular levels of ATP and glutathione (GSH). The ethanol extracts of leaves and seeds increased significantly (p leaf and seed extracts. At a concentration of 500 microg/mL, the water extract of leaves increased (p leaf extract decreased GSH levels at a concentration of 500 microg/mL (p Moringa stenopetala show that they contain toxic substances that are extractable with organic solvents or are formed during the process of extraction with these solvents. The significant depletion of ATP and GSH only occurred at concentrations of extract that caused leakage of LDH. Further investigation with this plant in order to identify the constituents extracted and their individual toxic effects both in vivo and in vitro is warranted. This study also illustrates the utility of cell culture for screening plant extracts for potential toxicity.

  9. Manganese is toxic to spiral ganglion neurons and hair cells in vitro.

    Science.gov (United States)

    Ding, Dalian; Roth, Jerome; Salvi, Richard

    2011-03-01

    Occupational exposure to high atmospheric levels of Mn produces a severe and debilitating disorder known as manganism characterized by extrapyramidal disturbances similar to that seen in Parkinson's disease. Epidemiological and case studies suggest that persistent exposures to Mn may have deleterious effects on other organs including the auditory system and hearing. Mn accumulates in the inner ear following acute exposure raising the possibility that it can damage the sensory hair cells that convert sound into neural activity or spiral ganglion neurons (SGN) that transmit acoustic information from the hair cells to the brain via the auditory nerve. In this paper we demonstrate for first time that Mn causes significant damage to the sensory hair cells, peripheral auditory nerve fibers (ANF) and SGN in cochlear organotypic cultures isolated from postnatal day three rats. The peripheral ANF that make synaptic contact with the sensory hair cells were particularly vulnerable to Mn toxicity; damage occurred at concentrations as low 0.01 mM and increased with dose and duration of Mn exposure. Sensory hair cells, in contrast, were slightly more resistant to Mn toxicity than the ANF. Mn induced an atypical pattern of sensory cell damage; Mn was more toxic to inner hair cells (IHC) than outer hair cells (OHC) and in addition, IHC loss was relatively uniform along the length of the cochlea. Mn also caused significant loss and shrinkage of SGN soma. These findings are the first to demonstrate that Mn can produce severe lesions to both neurons and hair cells in the postnatal inner ear.

  10. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  11. n-Hexane toxicity in Jurkat T-cells is mediated by reactive oxygen species.

    Science.gov (United States)

    McDermott, Catherine; O'Donoghue, Maria Hutch; Heffron, James J A

    2008-03-01

    Here we assess the role of reactive oxygen species (ROS) formation in the manifestation of n-hexane toxicity in Jurkat T-cells and the chemo-protective potential of the antioxidants epigallocatechin-3-gallate (EGCG) and thymoquinone (TQ) against n-hexane toxicity in vitro. n-Hexane is an important industrial solvent and ambient air pollutant. Subchronic exposure to n-hexane results in a concentration-dependent increase in ROS formation with a corresponding decrease in Jurkat T-cell proliferation. Results from time-course studies indicate that ROS formation plays a causal role in n-hexane induced alterations in Jurkat T-cell proliferation and membrane integrity. Treatment of cells with EGCG, at a concentration reached in plasma, reduced the ROS formation caused by exposure to n-hexane and inhibited the decrease in cell proliferation. Similar effects were obtained with TQ. Both EGCG and TQ significantly reduced n-hexane-induced LDH leakage to control levels. The combined results show that oxidative stress plays a role in the development of n-hexane toxicity.

  12. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2012-06-01

    Full Text Available Qing-Qing Zhao,1,2 Yu-Lan Hu,1 Yang Zhou,3 Ni Li,1 Min Han,1 Gu-Ping Tang,4 Feng Qiu,2 Yasuhiko Tabata,5 Jian-Qing Gao,11Institute of Pharmaceutics, Zhejiang University, Hangzhou, China; 2Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; 3Institute of Biochemistry, Iowa State University, Ames, IA, USA; 4Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China; 5Institute for Frontier Medical Sciences, Kyoto University, Kyoto, JapanBackground: The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity.Methods: A liver cancer-targeted specific peptide (FQHPSF sequence was successfully synthesized and linked with chitosan-linked polyethylenimine (CP to form a new targeted gene delivery vector called CPT (CP/peptide. The structure of CPT was confirmed by 1H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model.Results: The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT

  13. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pengpeng; Guan Rongfa; Jiang Jiaxin; Liu Mingqi; Huang Guangrong; Chen Xiaoting [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018 (China); Ye Xingqian, E-mail: rfguan@163.com [Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029 (China)

    2011-07-06

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 {mu}g{center_dot}mL{sup -1}. LDH leakage significantly increased in cells exposed to Ag NPs ({>=} 25 {mu}g mL{sup -1}) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 {mu}g{center_dot}mL{sup -1}). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage

  14. Mangiferin, a Dietary Xanthone Protects Against Mercury-Induced Toxicity in HepG2 Cells

    Science.gov (United States)

    Agarwala, Sobhika; Rao, B. Nageshwar; Mudholkar, Kaivalya; Bhuwania, Ridhirama; Rao, B. S. Satish

    2012-01-01

    Mercury is one of the noxious heavy metal environmental toxicants and is a cause of concern for human exposure. Mangiferin (MGN), a glucosylxanthone found in Mangifera indica, reported to have a wide range of pharmacological properties. The objective of this study was to evaluate the cytoprotective potential of MGN, against mercury chloride (HgCl2) induced toxicity in HepG2 cell line. The cytoprotective effect of MGN on HgCl2 induced toxicity was assessed by colony formation assay, while antiapoptotic effect by fluorescence microscopy, flow cytometric DNA analysis, and DNA fragmentation pattern assays. Further, the cytoprotective effect of MGN against HgCl2 toxicity was assessed by using biochemical parameters like reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) by spectrophotometrically, mitochondrial membrane potential by flowcytometry and the changes in reactive oxygen species levels by DCFH-DA spectrofluoremetric analysis. A significant increase in the surviving fraction was observed with 50 µM of MGN administered two hours prior to various concentrations of HgCl2. Further, pretreatment of MGN significantly decreased the percentage of HgCl2 induced apoptotic cells. Similarly, the levels of ROS generated by the HgCl2 treatment were inhibited significantly (P < 0.01) by MGN. MGN also significantly (P < 0.01) inhibited the HgCl2 induced decrease in GSH, GST, SOD, and CAT levels at all the post incubation intervals. Our study demonstrated the cytoprotective potential of MGN, which may be attributed to quenching of the ROS generated in the cells due to oxidative stress induced by HgCl2, restoration of mitochondrial membrane potential and normalization of cellular antioxidant levels. PMID:20629087

  15. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings.

    Science.gov (United States)

    Cai, Miao-Zhen; Wang, Fang-Mei; Li, Rong-Feng; Zhang, Shu-Na; Wang, Ning; Xu, Gen-Di

    2011-07-01

    Root border cells (RBCs) and their secreted mucilage are suggested to participate in the resistance against toxic metal cations, including aluminum (Al), in the rhizosphere. However, the mechanisms by which the individual cell populations respond to Al and their role in Al resistance still remain unclear. In this research, the response and tolerance of RBCs to Al toxicity were investigated in the root tips of two soybean cultivars [Zhechun No. 2 (Al-tolerant cultivar) and Huachun No. 18 (Al-sensitive cultivar)]. Al inhibited root elongation and increased pectin methylesterase (PME) activity in the root tip. Removal of RBCs from the root tips resulted in a more severe inhibition of root elongation, especially in Huachun No. 18. Increasing Al levels and treatment time decreased the relative percent viability of RBCs in situ and in vitro in both soybean cultivars. Al application significantly increased mucilage layer thickness around the detached RBCs of both cultivars. Additionally, a significantly higher relative percent cell viability of attached and detached RBCs and thicker mucilage layers were observed in Zhechun No. 2. The higher viability of attached and detached RBCs, as well as the thickening of the mucilage layer in separated RBCs, suggest that RBCs play an important role in protecting root apices from Al toxicity.

  16. [Significance of regulatory B cells in nosogenesis of immune thrombocytopenia].

    Science.gov (United States)

    Li, Xin; Wang, Fang; Ding, Kai Yang; Dai, Lan

    2014-04-01

    This study was aimed to investigate the role of regulatory B cells (Breg) in pathogenesis of immune thrombocytopenia (ITP) and its clinical significance. A total of 35 ITP patients and 20 normal controls were enrolled in this study. The expression of CD19(+)CD24(hi)CD38(hi) B cells was detected by flow cytometry and the expression of IL-10 mRNA and TGF-β1 mRNA was assayed by RT-PCR. The results indicated that the expression level of CD19(+)CD24(hi)CD38(hi) B cells in peripheral blood of newly diagnosed ITP patients was obviously lower than that in normal controls (P < 0.05); the expression level of CD19(+)CD24(hi)CD38(hi) B cells in ITP patients with increased platelet count after treatment was higher than that before treatment (P < 0.05); the expression level of IL-10 mRNA in newly diagnosed ITP patients was significantly lower than that the in normal controls (P < 0.05), the expression level of TGF-β1 mRNA in newly diagnosed ITP patients increases as compared with normal controls (P < 0.05), after treatment with DXM the expression of IL-10 mRNA was enhanced, the expression of TGF-β1 mRNA was reduced as compared with expression level before treatment (P < 0.05). It is concluded that the Breg cells may play an important role in the pathogenesis of ITP via humoral immunity and its regulation of T lymphocytes.

  17. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals.

    Science.gov (United States)

    Lawal, Akeem O; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM.

  18. Germ Cell Cancer and Multiple Relapses: Toxicity and Survival

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Kier, Maria G.G.; Mortensen, Mette S.

    2015-01-01

    Purpose: A small number of patients with germ cell cancer (GCC) receive more than one line of treatment for disseminated disease. The purpose of this study was to evaluate late toxicity and survival in an unselected cohort of patients who experienced relapse after receiving first-line treatment......, compared with patients treated with only orchiectomy, had an increased risk for a second cancer (hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.5), major cardiovascular disease (HR, 1.9; 95% CI, 1.0 to 3.3), pulmonary disease (HR, 2.0; 95% CI, 1.0 to 3.8), GI disease (HR, 7.3; 95% CI, 3.6 to 14.8), renal...... for disseminated disease. Methods: From the Danish Testicular Cancer database, we identified all patients who received more than one line of treatment for disseminated disease. Information about late toxicity and mortality was obtained by means of linkage to national registers. Prognostic factors for relapse...

  19. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ying [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Juang, Shin-Hun [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Tsai, Shang-Yuan; Chao, Pei-Dawn Lee [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China)

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  20. Toxicity of ZnO and TiO2 to Escherichia coli cells

    Science.gov (United States)

    Leung, Yu Hang; Xu, Xiaoying; Ma, Angel P. Y.; Liu, Fangzhou; Ng, Alan M. C.; Shen, Zhiyong; Gethings, Lee A.; Guo, Mu Yao; Djurišić, Aleksandra B.; Lee, Patrick K. H.; Lee, Hung Kay; Chan, Wai Kin; Leung, Frederick C. C.

    2016-10-01

    We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed.

  1. Toxicity of Volatile Methylated Species of Bismuth, Arsenic, Tin, and Mercury in Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    E. Dopp

    2011-01-01

    Full Text Available The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of these compounds are well documented (e.g., arsenic, mercury and some of them are of relatively low toxicity (e.g., tin, bismuth, the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and genotoxicity of five volatile metal(loid compounds: trimethylbismuth, dimethylarsenic iodide, trimethylarsine, tetramethyltin, and dimethylmercury. As far as we know, this is the first study investigating the toxicity of volatile metal(loid compounds in vitro. Our results showed that dimethylmercury was most toxic to all three used cell lines (CHO-9 cells, CaCo, Hep-G2 followed by dimethylarsenic iodide. Tetramethyltin was the least toxic compound; however, the toxicity was also dependend upon the cell type. Human colon cells (CaCo were most susceptible to the toxicity of the volatile compounds compared to the other cell lines. We conclude from our study that volatile metal(loid compounds can be toxic to mammalian cells already at very low concentrations but the toxicity depends upon the metal(loid species and the exposed cell type.

  2. Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja

    2006-01-01

    experiments, revealed that neither the production of transparent exopolymer particles and chitinous threads nor toxicity can explain the observed response. The cohesion of the threads into pentagonal stars was observed only in the avoided mesoflagellate and might cause a mechanical hindrance for the ingestion...... of mesoflagellates. Our results suggest that grazing loss and trophic transfer efficiency might be overestimated when solitary cells are treated as a single functional group with regard to their trophic position....

  3. Toxicity of RSU-1069 for KHT cells treated in vivo or in vitro: evidence for a diffusible toxic product

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.P.; Gulyas, S.; Whitmore, G.F.

    1989-04-01

    RSU-1069 is a highly effective hypoxic cell cytotoxin in KHT sarcomas treated in vivo. However, relative to the hypoxic cells, the oxic cells in the tumor appear more sensitive to the drug than would have been predicted on the basis of results with CHO (AA8-4) cells treated in vitro with the drug under oxic and hypoxic conditions. To examine possible reasons for this difference, suspensions of KHT cells were prepared from tumors growing in vivo, and treated with RSU-1069 in vitro under oxic or hypoxic conditions. The sensitivity of the KHT cells was similar to that of AA8-4 cells, regardless of whether the cells were obtained from untreated tumors or from tumors given 15 Gy in vivo just prior to the preparation of the cell suspension. We observed, however, that the sensitivity of both AA8-4 cells and KHT cells to drug treatment under hypoxic conditions increased with the density of the cells in the treated suspension. This result suggests the possibility that a diffusible toxic product may be released from cells. Such a product could contribute to the toxicity of the drug for oxic cells in tumors in situ.

  4. Prognostic significance of cell surface phenotype in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Shiek Aejaz Aziz

    2015-01-01

    Full Text Available Context: To find out the phenotypic character of lymphoblasts of acute lymphoblastic leukemia (ALL patients in our study cohort and their possible effect on the prognosis. Aims: To investigate the phenotype in ALL in our demographic population and to prognosticate various upfront current protocols employed in our hospital. Settings and Design: The study spanned over a period of 4 years with retrospective and prospective data of January 2008 through December 2011. Materials and Methods: 159 patients of all age groups were enrolled for the study, of which flow cytometry was done in 144 patients. Statistical Analysis Used: Analysis was done using the variables on SPSS (statistical package for social sciences software on computer. Survival curves were estimated by method of Kaplan-Meir. Results: Majority of the patients were of B-cell (68.1% and 30.6% patients were of T-cell lineage. Of these, 80.6% patients were having cALLa positivity. Complete remission (CR was achieved in 59.1%, 16.4% relapsed, and 20.1% patients died. Conclusions: Phenotyping has become an important and integral part of diagnosis, classification, management and prognosticating in ALL. B-cell has been found to have a better survival over T-cell lymphoblastic leukemia. cALLa antigen positivity has good impact in achieving CR in only B-cell lineage, myeloid coexpression has no significant effect on the outcome. BFM (Berlin-Frankfurt-Münster based protocols though showed a higher CR and survival vis-a-vis UKALL-XII. However, patients enrolled in former group being of low risk category and lesser in numbers cannot be compared statistically with a fair degree of confidence.

  5. Seladin-1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content

    Science.gov (United States)

    Cecchi, C; Rosati, F; Pensalfini, A; Formigli, L; Nosi, D; Liguri, G; Dichiara, F; Morello, M; Danza, G; Pieraccini, G; Peri, A; Serio, M; Stefani, M

    2008-01-01

    The role of brain cholesterol in Alzheimer's disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode-generation and that the cholesterol synthesis catalyst seladin-1 is down-regulated in AD-affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Aβ42 pre-fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH-SY5Y neuroblastoma cells overexpressing seladin-1 or treated with PEG-cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol-depleted cells following treatment with the specific seladin-1 inhibitor 5,22E-cholestadien-3-ol or with methyl-β-cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Aβ42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol-depleted cells. These results suggest that seladin-1-dependent cholesterol synthesis reduces membrane-aggregate interaction and cell damage associated to amyloid-induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin-1 overexpression directly enhances the resistance to Aβ toxicity featuring seladin-1/DHCR 24 as a possible new susceptibility gene for sporadic AD. PMID:18194465

  6. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6)

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2013-01-01

    ) was used to investigate toxicity of copper (Cu) in 3 different forms; Cu ions (Cu2+), CuO NPs (6 nm) and poly-dispersed CuO NPs (100 nm, poly-CuO). Continuous exposures at concentrations of 143–200 μM demonstrated that cytotoxicity differed among the 3 Cu forms tested and that the effects depend on cell...... state (dividing or differentiated). Dividing cells treated with poly-CuO, CuO NPs (6 nm) or Cu2+ showed cell cycle arrest and caused significant increase in cell death via apoptosis after 48 h, 6 and 7 days of treatment, respectively. Treatment with either CuO NPs (6 nm) or Cu2+ caused significant...... decrease in cell proliferation. Treatments of differentiated cells, revealed the same patterns of toxicity for Cu forms tested, but after shorter exposure periods....

  7. Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz.

    Science.gov (United States)

    Gomez-Sucerquia, Leysa J; Blas-Garcia, Ana; Marti-Cabrera, Miguel; Esplugues, Juan V; Apostolova, Nadezda

    2012-06-01

    Hepatic toxicity and metabolic disorders are major adverse effects elicited during the pharmacological treatment of the human immunodeficiency virus (HIV) infection. Efavirenz (EFV), the most widely used non-nucleoside reverse transcriptase inhibitor (NNRTI), has been associated with these events, with recent studies implicating it in stress responses involving mitochondrial dysfunction and oxidative stress in human hepatic cells. To expand these findings, we analyzed the influence of EFV on the expression profile of selected stress and toxicity genes in these cells. Significant up-regulation was observed with Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), which indicated metabolic stress. Several genes directly related to oxidative stress and damage exhibited increased expression, including Methalothionein 2A (MT2A), Heat shock 70kDa protein 6 (HSPA6), Growth differentiation factor 15 (GDF15) and DNA-damage-inducible transcript 3 (DDIT3). In addition, Early growth response protein 1 (EGR1) was enhanced, whereas mRNA levels of the inflammatory genes Chemokine (C-X-C motif) ligand 10 (CXCL10) and Serpin peptidase inhibitor (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1) decreased and increased, respectively. This profile of gene expression supports previous data demonstrating altered mitochondrial function and presence of oxidative stress/damage in EFV-treated hepatic cells, and may be of relevance in the search for molecular targets with therapeutic potential to be employed in the prevention, diagnosis and treatment of the hepatic toxicity associated with HIV therapy.

  8. Clinical Significance of Long Non-Coding RNA CASC8 rs10505477 Polymorphism in Lung Cancer Susceptibility, Platinum-Based Chemotherapy Response, and Toxicity

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2016-05-01

    Full Text Available Long non-coding RNA (lncRNA CASC8 rs10505477 polymorphism has been identified to be related to risk of many kinds of cancers, such as colorectal cancer, gastric cancer, and invasive ovarian cancer, and it may be involved in the prognosis of gastric cancer patients who have received platinum-based chemotherapy after surgical treatment. So far, there is no study investigating the clinical significance of lncRNA CASC8 rs10505477 in lung cancer susceptibility and treatment. In this study, we genotyped 498 lung cancer patients and 213 healthy control subjects to explore the correlation between the rs10505477 polymorphism and lung cancer risk in a Chinese population. Among the 498 patients, 467 were selected for the chemotherapy response and toxicity study. We found that the single nucleotide polymorphisms (SNP rs10505477 was greatly related to lung cancer risk in male and adenocarcinoma subgroups in recessive model (adjusted OR = 0.51, 95%CI = 0.29–0.90, p = 0.02; adjusted OR = 0.52, 95%CI = 0.30–0.89, p = 0.02, respectively. It was also closely correlated with platinum-based chemotherapy response in dominant model (adjusted OR = 1.58, 95%CI = 1.05–2.39, p = 0.03. Additionally, we observed that CASC8 rs10505477 polymorphism was significantly relevant to severe hematologic toxicity in non-small-cell lung cancer (NSCLC subgroup in dominant model (adjusted OR = 0.59, 95%CI = 0.35–0.98, p = 0.04 and in additive model (adjusted OR = 0.62, 95%CI = 0.43–0.90, p = 0.01. Furthermore, it was found that rs10505477 polymorphism was greatly associated with gastrointestinal toxicity in SCLC and cisplatin subgroups in dominant model (adjusted OR = 7.82, 95%CI = 1.36–45.07, p = 0.02; adjusted OR = 1.94, 95%CI = 1.07–3.53, p = 0.03, respectively. Thus, lncRNA CASC8 rs10505477 could serve as a possible risk marker for diagnosing lung cancer, and could be used to forecast the response and toxicity of platinum-based treatment in lung cancer patients.

  9. Toxicity and antitumor efficacy of Croton polyandrus oil against Ehrlich ascites carcinoma cells

    Directory of Open Access Journals (Sweden)

    Déborah R.P. Meireles

    Full Text Available ABSTRACT The essential oil from Croton polyandrus Spreng., Euphorbiaceae, leaves was tested for the toxicity and antitumor activity. The concentration producing 50% hemolysis was 141 µg/ml on mice erythrocytes. In the acute toxicological study, the estimated LD50 was 447.18 mg/kg. The essential oil did not induce increase in number of micronucleated erythrocytes, suggesting low genotoxicity. Essential oil (100 or 150 mg/kg showed significant antitumor activity in Ehrlich ascitic carcinoma model. We observed that essential oil induces cell-cycle arrest at the G0/G1 phase, and increases the sub-G1 peak, which represents a marker of cell death by apoptosis. Survival also increased for the treated animals. The toxicological analyses revealed reduction in body weight, increased aspartate aminotransferase and alanine aminotransferase activity, hematological changes, and a thymus index reduction. These data suggest gastrointestinal and liver toxicity, anemia, leukopenia/lymphocytopenia, and immunosuppressive effects. Histopathological analysis revealed the weak hepatotoxicity of essential oil. In summary, essential oil of C. polyandrus displays in vivo antitumor activity and moderate toxicity.

  10. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells.

    Science.gov (United States)

    Wen, Xia; Gibson, Christopher J; Yang, Ill; Buckley, Brian; Goedken, Michael J; Richardson, Jason R; Aleksunes, Lauren M

    2014-10-01

    Paraquat is a herbicide that is highly toxic to the lungs and kidneys following acute exposures. Prior studies have demonstrated that the organic cation transporter 2 and multidrug and toxin extrusion protein 1 contribute to the urinary secretion of paraquat in the kidneys. The purpose of this study was to determine whether the multidrug resistance protein 1 (MDR1/Mdr1, ABCB1, or P-glycoprotein) also participates in the removal of paraquat from the kidneys and protects against renal injury. Paraquat transport and toxicity were quantified in human renal proximal tubule epithelial cells (RPTEC) that endogenously express MDR1, HEK293 cells overexpressing MDR1, and Mdr1a/1b knockout mice. In RPTEC cells, reduction of MDR1 activity using the antagonist PSC833 or siRNA transfection increased the cellular accumulation of paraquat by 50%. Reduced efflux of paraquat corresponded with enhanced cytotoxicity in PSC833-treated cells. Likewise, stable overexpression of the human MDR1 gene in HEK293 cells reduced intracellular levels of paraquat by 50%. In vivo studies assessed the renal accumulation and subsequent nephrotoxicity of paraquat (10 or 30 mg/kg ip) in wild-type and Mdr1a/1b knockout mice. At 4 h after paraquat treatment, renal concentrations of paraquat in the kidneys of Mdr1a/1b knockout mice were 750% higher than wild-type mice. By 72 h, paraquat-treated Mdr1a/1b knockout mice had more extensive tubular degeneration and significantly greater mRNA expression of kidney injury-responsive genes, including kidney injury molecule-1, lipocalin-2, and NAD(P)H quinone oxidoreductase 1, compared with wild-type mice. In conclusion, MDR1/Mdr1 participates in the elimination of paraquat from the kidneys and protects against subsequent toxicity.

  11. Possible role of root border cells in detection and avoidance of aluminum toxicity.

    Science.gov (United States)

    Miyasaka, S C; Hawes, M C

    2001-04-01

    Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 microM total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 microM total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 microM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage.

  12. Toxicity induced by cumene hydroperoxide in PC12 cells: protective role of thiol donors.

    Science.gov (United States)

    Vimard, F; Saucet, M; Nicole, O; Feuilloley, M; Duval, D

    2011-01-01

    Oxidative shock and production of reactive oxygen species are known to play a major role in situations leading to neuron degeneration, but the precise mechanisms responsible for cell degeneration remain uncertain. In the present article, we have studied in PC 12 cells the effect of cumene hydroxyperoxide on both cell metabolism and morphology. We observed that relatively low concentrations of the drug (100 μM) led to a significant decrease in the cellular content of ATP and reduced glutathione as well as to a decreased mitochondrial potential. These metabolic alterations were followed by an important increase in intracellular free calcium and membrane disruption and death. In parallel, we observed profound changes in cell morphology with a shortening of cell extensions, the formation of ruffles and blebs at the cell surface, and a progressive detachment of the cells from the surface of the culture flasks. We also showed that addition of thiol donors such as N-acetylcysteine or β-mercaptoethanol, which were able to enhance cell glutathione content, almost completely protected PC 12 cells from the toxic action of cumene hydroperoxide whereas pretreatment by buthionine sulfoximine, a selective inhibitor of GSH synthesis, enhanced its action.

  13. Keratins significantly contribute to cell stiffness and impact invasive behavior.

    Science.gov (United States)

    Seltmann, Kristin; Fritsch, Anatol W; Käs, Josef A; Magin, Thomas M

    2013-11-12

    Cell motility and cell shape adaptations are crucial during wound healing, inflammation, and malignant progression. These processes require the remodeling of the keratin cytoskeleton to facilitate cell-cell and cell-matrix adhesion. However, the role of keratins for biomechanical properties and invasion of epithelial cells is only partially understood. In this study, we address this issue in murine keratinocytes lacking all keratins on genome engineering. In contrast to predictions, keratin-free cells show about 60% higher cell deformability even for small deformations. This response is compared with the less pronounced softening effects for actin depolymerization induced via latrunculin A. To relate these findings with functional consequences, we use invasion and 3D growth assays. These experiments reveal higher invasiveness of keratin-free cells. Reexpression of a small amount of the keratin pair K5/K14 in keratin-free cells reverses the above phenotype for the invasion but does not with respect to cell deformability. Our data show a unique role of keratins as major players of cell stiffness, influencing invasion with implications for epidermal homeostasis and pathogenesis. This study supports the view that down-regulation of keratins observed during epithelial-mesenchymal transition directly contributes to the migratory and invasive behavior of tumor cells.

  14. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Lulla, Aaron [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Araujo, Jesus A., E-mail: JAraujo@mednet.ucla.edu [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Molecular Biology Institute, University of California, Los Angeles (United States)

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  15. Significance of myofibroblasts in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Thode, Christenze; Jørgensen, Trine G.; Dabelsteen, Erik;

    2011-01-01

    -smooth muscle actin-positive myofibroblast that often represent the majority of tumor stromal cells. Their production of growth factors chemokines and extracellular matrix facilitates tumor growth. Myofibroblast have been demonstrated in close to 50% of oral squamous cell carcinomas. In this review, we...... highlight the histological distribution of myofibroblast in oral squamous cell and the myofibroblast relation to tumor growth on prognosis....

  16. Functional significance of erythropoietin receptor on tumor cells

    Institute of Scientific and Technical Information of China (English)

    Kodetthoor B Udupa

    2006-01-01

    Erythropoietin (Epo) is the regulator of red blood cell formation. Its receptor (EpoR) is now found in many cells and tissues of the body. EpoR is also shown to occur in tumor cells and Epo enhances the proliferation of these cells through cell signaling. EpoR antagonist can reduce the growth of the tumor in vivo. In view of our current knowledge of Epo, its recombinant forms and receptor,use of Epo in cancer patients to enhance the recovery of hematocrit after chemotherapy treatment has to be carefully evaluated.

  17. Availability and toxicity of Fe(Ⅱ) and Fe(Ⅲ) in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Wan-ling HE; Ying FENG; Xiao-li LI; Yan-yan WEI; Xiao-e YANG

    2008-01-01

    The objective of the present study was to compare the toxicity and availability of Fe(Ⅱ) and Fe(Ⅲ) to Caco-2 cells.Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(Ⅱ) is significantly higher than that of the cells treated with Fe(Ⅲ) (P<0.05). Fe(Ⅱ) at a concentration>1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(Ⅲ). LDH release investigation suggests that Fe(Ⅱ) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(Ⅱ) were higher than those of the cells treated with Fe(Ⅲ), although both of them increased with raising iron supply levels. The results indicate that both Fe(Ⅱ) and Fe(Ⅲ) could reduce the cellular antioxidase gene expression at high levels.

  18. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  19. The cytoskeleton significantly impacts invasive behavior of biological cells

    Science.gov (United States)

    Fritsch, Anatol; Käs, Josef; Seltman, Kristin; Magin, Thomas

    2014-03-01

    Cell migration is a key determinant of cancer metastasis and nerve regeneration. The role of the cytoskeleton for the epithelial-meschenymal transition (EMT), i.e, for invasive behavior of cells, is only partially understood. Here, we address this issue in cells lacking all keratins upon genome engineering. In contrast to prediction, keratin-free cells show a 60% higher deformability compared to less pronounced softening effects for actin depolymerization. To relate these findings with functional consequences, we use invasion and three-dimensional growth assays. These reveal higher invasiveness of keratin-free cells. This study supports the view that downregulation of keratins observed during EMT directly contributes to the migratory and invasive behavior of tumor cells. Cancer cells that effectively move through tissues are softer and more contractile than cells that stay local in tissues. Soft and contractile avoids jamming. Naturally, softness has to have its limits. So neuronal growth cones are too soft to carry large loads to move efficiently through scar tissue, which is required for nerve regeneration. In synopsis, the physical bounds that the functional modules of a moving cell experience in tissues may provide an overarching motif for novel approaches in diagnosis and therapy.

  20. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line.

    Directory of Open Access Journals (Sweden)

    Akhilesh Dubey

    Full Text Available Metallic nanoparticles are widely used in cosmetics, food products and textile industry. These particles are known to cause respiratory toxicity and epithelial inflammation. They are eventually released to aquatic environment necessitating toxicity studies in cells from respiratory organs of aquatic organisms. Hence, we have developed and characterized a new cell line, WAG, from gill tissue of Wallago attu for toxicity assessment of TiO2 and ZnO nanoparticles. The efficacy of the cell line as an in vitro system for nanoparticles toxicity studies was established using electron microscopy, cytotoxicity assays, genotoxicity assays and oxidative stress biomarkers. Results obtained with MTT assay, neutral red uptake assay and lactate dehydrogenase assay showed acute toxicity to WAG cells with IC50 values of 25.29 ± 0.12, 34.99 ± 0.09 and 35.06 ± 0.09 mg/l for TiO2 and 5.716 ± 0.1, 3.160 ± 0.1 and 5.57 ± 0.12 mg/l for ZnO treatment respectively. The physicochemical properties and size distribution of nanoparticles were characterized using electron microscopy with integrated energy dispersive X-ray spectroscopy and Zetasizer. Dose dependent increase in DNA damage, lipid peroxidation and protein carbonylation along with a significant decrease in activity of Superoxide Dismutase, Catalase, total Glutathione levels and total antioxidant capacity with increasing concentration of exposed nanoparticles indicated that the cells were under oxidative stress. The study established WAG cell line as an in vitro system to study toxicity mechanisms of nanoparticles on aquatic organisms.

  1. Toxicity of pyrrolizidine alkaloids to Spodoptera exigua using insect cell lines and injection bioassays.

    Science.gov (United States)

    Nuringtyas, Tri R; Verpoorte, Robert; Klinkhamer, Peter G L; van Oers, Monique M; Leiss, Kirsten A

    2014-06-01

    Pyrrolizidine alkaloids (PAs) are feeding deterrents and toxic compounds to generalist herbivores. Among the PAs of Jacobaea vulgaris Gaertn, jacobine and erucifoline are the most effective against insect herbivores as indicated by correlative studies. Because little is known about the effect of jacobine and erucifoline as individual PAs, we isolated these compounds from their respective Jacobaea chemotypes. These PAs and other commercially available senecionine-like PAs, including senecionine, seneciphylline, retrorsine, and senkirkine, were tested as free base and N-oxide forms at a range of 0-70 ppm. Feeding bioassays using live insects are closer to the natural pattern but require relatively large amounts of test compounds. We, therefore, compared the toxicity of PAs using both Spodoptera exigua cell line and larval injection bioassays. Both bioassays led to similar results in the order of PA toxicity, indicating that the cell lines are a valuable tool for a first toxicity screen. Testing individual PAs, jacobine and erucifoline were the most toxic PAs, suggesting their major role in plant defense against generalist herbivores. Senkirkine and seneciphylline were less toxic than jacobine and erucifoline but more toxic than retrorsine. Senecionine was not toxic at the tested concentrations. For all toxic PAs, the free base form was more toxic than the N-oxide form. Our results demonstrate that structural variation of PAs influences their effectiveness in plant defense.

  2. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics

    OpenAIRE

    Drouet, Maryline; Chai, Feng; Barthélémy, Christine; Lebuffe, Gilles; Debaene, Bertrand; Décaudin, Bertrand; Odou, Pascal

    2015-01-01

    French guidelines recommend central intravenous (i.v.) infusion for high concentrations of vancomycin, but peripheral intravenous (p.i.v.) infusion is often preferred in intensive care units. Vancomycin infusion has been implicated in cases of phlebitis, with endothelial toxicity depending on the drug concentration and the duration of the infusion. Vancomycin is frequently infused in combination with other i.v. antibiotics through the same administrative Y site, but the local toxicity of such...

  3. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment.

  4. Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum.

    Science.gov (United States)

    Boatti, Lara; Rapallo, Fabio; Viarengo, Aldo; Marsano, Francesco

    2017-02-01

    Governmental agencies (www.epa.gov/mercury) and the scientific community have reported on the high toxicity due to mercury. Indeed, exposure to mercury can cause severe injury to the central nervous system and kidney in humans. Beyond its recognized toxicity, little is known regarding the molecular mechanisms involved in the actions of this heavy metal. Mercury has been also observed to form insoluble fibrous protein aggregates in the cell nucleus. We used D. discoideum to evaluate micronuclei formation and, since mercury is able to induce oxidative stress that could bring to protein aggregation, we assessed nuclear protein carbonylation by Western Blot. We observed a significant increase in micronuclei formation and 14 carbonylated proteins were identified. Moreover, we used isotope-coded protein label (ICPL) and mass spectrometry analysis of proteins obtained by lysis of purified nuclei, before of tryptic digestion to quantify nuclear proteins affected by mercury. In particular, we examined the effects of mercury that associate a classical genotoxic assay to proteomic effects into the nucleus. The data present direct evidences for mercury genotoxicity, nuclear protein carbonylation, quantitative change in core histones, and the involvement of pseudouridine synthase in mercury toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 417-425, 2017.

  5. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells.

    Science.gov (United States)

    Jeannet, Natalie; Fierz, Martin; Schneider, Sarah; Künzi, Lisa; Baumlin, Nathalie; Salathe, Matthias; Burtscher, Heinz; Geiser, Marianne

    2016-01-01

    Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro. Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies.

  6. Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.

    Science.gov (United States)

    Pace, Clare; Banerjee, Tania Das; Welch, Barrett; Khalili, Roxana; Dagda, Ruben K; Angermann, Jeff

    2016-09-01

    Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS.

  7. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles.

    NARCIS (Netherlands)

    Park, M.V.; Annema, W.; Salvati, A.; Lesniak, A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C.; Lynch, I.; Dawson, K.; Piersma, A.H.; de Jong, W.H.

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining thei

  8. Toxicity of formaldehyde and acrolein mixtures : in vitro studies using nasal epithelial cells

    NARCIS (Netherlands)

    Cassee, F.R.; Stenhuis, W.S.; Groten, J.P.; Feron, V.J.

    1996-01-01

    In vitro studies with human and rat nasal epithelial cells were carried out to investigate the combined toxicity of formaldehyde and acrolein and the role of aldehyde dehydrogenases in this process. These studies showed that the toxic effect of mixtures of aldehydes was additive. In addition, aldehy

  9. The effect of exposure duration of self etch dentin bonding on the toxicity of human gingival fibroblast of cell culture

    Directory of Open Access Journals (Sweden)

    Sri Lestari

    2008-06-01

    Full Text Available Self etch dentin bonding created to make light easily activate the application of composite resin on tooth surface. The monomer content has acid effect that could irritate tooth pulp. The purpose of this study was to evaluate the effect of light exposure duration of self etch dentin bonding on toxicity of human gingival fibroblast of cell culture by MTT assay. Self etch dentin bonding was used as on experimental unit and the sample was exposed by visible light curing in different duration: 10, 20, 30 seconds and immerged in artificial saliva in pH 7 for 24 hours. 100 µl artificial saliva was exposed to human gingival fibroblast of cell culture 20.000 cells/100 µl RPMI for 24 hours. Toxicity was evaluated by MTT assay, optical density was measured using 550 nm spectrophotometer. The data was analyzed using Kruskal Wallis in 5% degree of significance. The result showed that increasing exposure duration (10, 20, 30 seconds of self etch dentin bonding will reduce the toxicity of human gingival fibroblast of cell culture. It is concluded that 30 seconds-exposure of self etch dentin bonding will reduce the toxicity of human gingival fibroblast of cell culture.

  10. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.

    Science.gov (United States)

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.

  11. N-acetyl cysteine mitigates the acute effects of cocaine-induced toxicity in astroglia-like cells.

    Directory of Open Access Journals (Sweden)

    Ramesh B Badisa

    Full Text Available Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS, are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2-4 mM for 1h and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS generation, glutathione (GSH levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.

  12. Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Okeson, C.D.; Riley, M.R.; Fernandez, A.; Wendt, J.O.L. [University of Arizona, Tucson, AZ (USA). Dept. of Agriculture & Biosystems Engineering

    2003-06-01

    Inhaled airborne particulate matter (PM) represents a potentially significant health hazard to humans. PM generated from the combustion of fuel oils and coals contain a number of water-soluble transition metals including Fe, V, and Zn. The authors evaluated the impact of PM types with varying composition collected from the combustion of oils and coals on the health and metabolism of lung cell cultures. Three colorimetric assays (sulforhodamine B (SRB), Janus green, and MTT) were adapted to quantify the impact of PM on rat lung alveolar type 11 epithelial cells (RLE-6TN cells). The PM toxicity metrics evaluated were inhibition of cell proliferation (SRB and Janus green) and inhibition of cellular metabolism (MTT). Cell proliferation is inhibited in a consistent dose-dependent manner by PM concentrations from 25 to 250 {mu}g/ml. At a level of 100 {mu}g/ml, oil-derived PM diminishes cell metabolism by as much as 40% relative to controls; the degree of inhibition is strongly dependent on PM particle size and metal content. Conversely, coal-derived PM at the same dosage diminishes cell metabolism by no more than 20% relative to controls. All three assays provide highly repeatable results and consistent toxicity rankings of the PMs evaluated. Overall, metabolic inhibition as measured by the MTT assay was deemed the most appropriate metric for PM toxicity, primarily due to its applicability with in vivo-like confluent cell monolayers.

  13. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Boczkowski Jorge

    2009-04-01

    Full Text Available Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red and analyzed 2 time points (3 and 24 hours for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

  14. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  15. PROGNOSTIC SIGNIFICANCE OF BIOMARKERS IN ORAL SQUAMOUS CELL CARCINOMA. REVIEW

    Directory of Open Access Journals (Sweden)

    A. V. Ignatova

    2014-01-01

    Full Text Available Advances in understanding of the molecular mechanisms underlying oral squamous cell carcinoma (OSCC have resulted in an increasing number of molecules-biomarkers that can be used for prediction of behaviour of this disease to achieve the above objective.We identified and classified 24 molecular biomarkers into five groups based on their biological functions: 1 cell cycle acceleration and proliferation; 2 hypoxia-inducible factors; 3 tumour suppression and apoptosis; 4 angiogenesis; 5 cell adhesion and matrix degradation. We considered articles published in PubMed-indexed journals over the past 8 years and conducted a literature review of studies examining the role of immunohistochemistry-based protein biomarkers in predicting OSCC outcome.

  16. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  17. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    Science.gov (United States)

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  18. Link between Domoic Acid Production and Cell Physiology after Exchange of Bacterial Communities between Toxic Pseudo-nitzschia multiseries and Non-Toxic Pseudo-nitzschia delicatissima

    Directory of Open Access Journals (Sweden)

    Aurélie Lelong

    2014-06-01

    Full Text Available Bacteria are known to influence domoic acid (DA production by Pseudo-nitzschia spp., but the link between DA production and physiology of diatoms requires more investigation. We compared a toxic P. multiseries to a non-toxic P. delicatissima, investigating links between DA production, physiological parameters, and co-occurring bacteria. Bacterial communities in cultures of both species were reduced by antibiotic treatment, and each of the diatoms was inoculated with the bacterial community of the other species. The physiology of P. delicatissima was minimally affected by the absence of bacteria or the presence of alien bacteria, and no DA was detected. P. multiseries grew faster without bacteria, did not produce a significant amount of DA, and exhibited physiological characteristics of healthy cells. When grown with alien bacteria, P. multiseries did not grow and produced more DA; the physiology of these cells was affected, with decreases in chlorophyll content and photosynthetic efficiency, an increase in esterase activity, and almost 50% mortality of the cells. The alien bacterial community had morphological and cellular characteristics very different from the original bacteria, and the number of free-living bacteria per algal cell was much higher, suggesting the involvement of bacteria in DA production.

  19. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  20. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  1. Superoxide Mediates the Toxicity of Paraquat for Chinese Hamster Ovary Cells

    Science.gov (United States)

    Bagley, Ann C.; Krall, Judith; Lynch, Robert E.

    1986-05-01

    The roles of superoxide and H2O2 in the cytotoxicity of paraquat were assessed in Chinese hamster ovary cells. Neither catalase nor superoxide dismutase inhibited the loss of ability to form colonies when added to the medium. When introduced into the cells, superoxide dismutase but not catalase inhibited the toxicity of paraquat. That superoxide dismutase acted by its known catalytic action is shown by the loss of inhibition when the enzyme was inactivated by H2O2 before being introduced into the cells. The lack of inhibition by catalase, by dimethyl sulfoxide, and by desferoxamine suggests that the toxicity is not mediated by a reaction between H2O2 and superoxide to engender the hydroxyl radical. Exposure of Chinese hamster ovary cells to paraquat may be a suitable means to determine the effects of superoxide anion in cultured cells and the ways in which cells can resist this toxic action.

  2. Potential toxicity of improperly discarded exhausted photovoltaic cells.

    Science.gov (United States)

    Motta, C M; Cerciello, R; De Bonis, S; Mazzella, V; Cirino, P; Panzuto, R; Ciaravolo, M; Simoniello, P; Toscanesi, M; Trifuoggi, M; Avallone, B

    2016-09-01

    Low tech photovoltaic panels (PVPs) installed in the early '80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.

  3. New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro.

    Science.gov (United States)

    Müller, Loretta; Comte, Pierre; Czerwinski, Jan; Kasper, Markus; Mayer, Andreas C R; Gehr, Peter; Burtscher, Heinz; Morin, Jean-Paul; Konstandopoulos, Athanasios; Rothen-Rutishauser, Barbara

    2010-04-01

    A constantly growing number of scooters produce an increasing amount of potentially harmful emissions. Due to their engine technology, two-stroke scooters emit huge amounts of adverse substances, which can induce adverse pulmonary and cardiovascular health effects. The aim of this study was to develop a system to expose a characterized triple cell coculture model of the human epithelial airway barrier, to freshly produced and characterized total scooter exhaust emissions. In exposure chambers, cell cultures were exposed for 1 and 2 h to 1:100 diluted exhaust emissions and in the reference chamber to filtered ambient air, both controlled at 5% CO(2), 85% relative humidity, and 37 degrees C. The postexposure time was 0-24 h. Cytotoxicity, used to validate the exposure system, was significantly increased in exposed cell cultures after 8 h postexposure time. (Pro-) inflammatory chemo- and cytokine concentrations in the medium of exposed cells were significantly higher at the 12 h postexposure time point. It was shown that the described exposure system (with 2 h exposure duration, 8 and 24 h postexposure time, dilution of 1:100, flow of 2 L/min as optimal exposure conditions) can be used to evaluate the toxic potential of total exhaust emissions.

  4. Immunglobulin Expression and Its Biological Significance in Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Hui Zheng; Haidan Liu; Ming Li; Wei Ren; Wei Liao; Zhi Duan; Lili Li; Ya Cao

    2008-01-01

    It is generally believed that the expression of a gene iS restricted "within the right place and at the right time".This principle has long been considered applicable as well to the expression of immunoglobulin(Ig)lymphocytes of B cell lineage.However,increasing evidence has shown Ig "paradoxically" expressed in malignant tumors of epitheliaI origin.We reviewed the recent progress in the study of cancer-derived Ig,and also discussed its mechanisms and possible functions,trying to arouse interest and attention to those working in the field of immunology and oncology.

  5. Predictive value of cell assays for developmental toxicity and embryotoxicity of conazole fungicides.

    Science.gov (United States)

    Dreisig, Karin; Taxvig, Camilla; Birkhøj Kjærstad, Mia; Nellemann, Christine; Hass, Ulla; Vinggaard, Anne Marie

    2013-01-01

    This paper evaluates in vivo predictability of a battery of in vitro tests covering developmental toxicity and embryotoxicity of five widely used conazole fungicides. The conazoles were investigated in the embryonic stem cell test, and data were compared to in vivo embryotoxicity data. The same conazoles were evaluated on the basis of data from a battery of cell assays for endocrine activity, including assays for AR, ER, AhR, and sex hormone synthesis, and data were compared to in vivo developmental toxicity data. Overall, the ranking of the five conazole fungicides based on in vitro data were in reasonably good agreement with available in vivo effects. Ketoconazole and epoxiconazole are the most potent embryotoxic compounds, whereas prochloraz belongs to the most potent developmental toxicants. In conclusion, a rough prediction of the ranking of these conazole fungicides for in vivo toxicity data was possible by a holistic evaluation of data from a panel of cell-based assays.

  6. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin Weisheng [Missouri University of Science and Technology, Department of Chemistry and Environmental Research Center (United States); Xu Yi; Huang Chuanchin [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States); Ma Yinfa [Missouri University of Science and Technology, Department of Chemistry and Environmental Research Center (United States); Shannon, Katie B. [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States); Chen Daren [Washington University in St. Louis, Department of Energy, Environmental and Chemical Engineering (United States); Huang, Yue-Wern, E-mail: huangy@mst.ed [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States)

    2009-01-15

    This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn{sup 2+} and metal impurities were not major contributors of ROS induction as indicated by limited free Zn{sup 2+} cytotoxicity, extent of Zn{sup 2+} dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose-response pattern unseen in other metal oxides, and (3) neither free Zn{sup 2+} nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

  7. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Yu-ling MI; Kai-ming WANG; Wei-dong ZENG; Cai-qiao ZHANG

    2008-01-01

    The attenuating effect of daidzein (DAD on oxidative toxicity induced by Aroclor 1254 (A 1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A 1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.

  8. Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity

    Science.gov (United States)

    Marín de Mas, Igor; Marín, Silvia; Pachón, Gisela; Rodríguez-Prados, Juan C.; Vizán, Pedro; Centelles, Josep J.; Tauler, Romà; Azqueta, Amaya; Selivanov, Vitaly; López de Ceraín, Adela; Cascante, Marta

    2017-01-01

    Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of p-phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound in vivo with Wistar rats and in vitro with C2C12 muscle cells. To this aim we have combined multi-omic experimental measurements with computational approaches using model-driven methods. The integrative study presented here has unveiled the metabolic disorders associated to PPD exposure that may underlay the aberrant metabolism observed in rhabdomyolys disease. Animals treated with lower doses of PPD (10 and 20 mg/kg) showed depressed activity and myoglobinuria after 10 h of treatment. We measured the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) in rats after 24, 48, and 72 h of PPD exposure. At all times, treatment with PPD at higher doses (40 and 60 mg/kg) showed an increase of AST and ALT, and also an increase of lactate dehydrogenase (LDH) and CK after 24 h. Blood packed cell volume and hemoglobin levels, as well as organs weight at 48 and 72 h, were also measured. No significant differences were observed in these parameters under any condition. PPD induce cell cycle arrest in S phase and apoptosis (40% or early apoptotic cells) on mus musculus mouse C2C12 cells after 24 h of treatment. Incubation of mus musculus mouse C2C12 cells with [1,2-13C2]-glucose during 24 h, subsequent quantification of 13C isotopologues distribution in key metabolites of glucose metabolic network and a computational fluxomic analysis using in-house developed software (Isodyn) showed that PPD is inhibiting glycolysis, non-oxidative pentose

  9. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines.

    Science.gov (United States)

    Falé, P L; Amaral, F; Amorim Madeira, P J; Sousa Silva, M; Florêncio, M H; Frazão, F N; Serralheiro, M L M

    2012-08-01

    This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile.

  10. Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis

    Directory of Open Access Journals (Sweden)

    Sandeep Mittal

    2014-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs have promising industrial and biomedical applications. In spite of their applications, the toxicity of these NPs in biological/physiological environment is a major concern. Present study aimed to understand the molecular mechanism underlying the toxicity of CeO2 NPs on lung adenocarcinoma (A549 cells. After internalization, CeO2 NPs caused significant cytotoxicity and morphological changes in A549 cells. Further, the cell death was found to be apoptotic as shown by loss in mitochondrial membrane potential and increase in annexin-V positive cells and confirmed by immunoblot analysis of BAX, BCl-2, Cyt C, AIF, caspase-3, and caspase-9. A significant increase in oxidative DNA damage was found which was confirmed by phosphorylation of p53 gene and presence of cleaved poly ADP ribose polymerase (PARP. This damage could be attributed to increased production of reactive oxygen species (ROS with concomitant decrease in antioxidant “glutathione (GSH” level. DNA damage and cell death were attenuated by the application of ROS and apoptosis inhibitors N-acetyl-L- cysteine (NAC and Z-DEVD-fmk, respectively. Our study concludes that ROS mediated DNA damage and cell cycle arrest play a major role in CeO2 NPs induced apoptotic cell death in A549 cells. Apart from beneficial applications, these NPs also impart potential harmful effects which should be properly evaluated prior to their use.

  11. Gene expression profiling of MPP+-treated MN9D cells: a mechanism of toxicity study.

    Science.gov (United States)

    Wang, Jianyong; Xu, Zengjun; Fang, Hong; Duhart, Helen M; Patterson, Tucker A; Ali, Syed F

    2007-09-01

    Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of midbrain dopaminergic neurons with unknown etiology. MPP+ (1-methyl-4-phenylpyridinium) is the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces Parkinson's-like syndromes in humans and animals. MPTP/MPP+ treatment produces selective dopaminergic neuronal degeneration, therefore, these agents are commonly used to study the pathogenesis of PD. However, the mechanisms of their toxicity have not been elucidated. In order to gain insights into MPP+-induced neurotoxicity, a gene expression microarray study was performed using a midbrain-derived dopaminergic neuronal cell line, MN9D. Utilizing a two-color reference design, Agilent mouse oligonucleotide microarrays were used to examine relative gene expression changes in MN9D cells treated with 40microM MPP+ compared with controls. Bioinformatics tools were used for data evaluation. Briefly, raw data were imported into the NCTR ArrayTrack database, normalized using a Lowess method and data quality was assessed. The Student's t-test was used to determine significant changes in gene expression (set as p1.5). Gene Ontology for Function Analysis (GOFFA) and Ingenuity Pathway Analysis were employed to analyze the functions and roles of significant genes in biological processes. Of the 51 significant genes identified, 44 were present in the GOFFA or Ingenuity database. These data indicate that multiple pathways are involved in the underlying mechanisms of MPP+-induced neurotoxicity, including apoptosis, oxidative stress, iron binding, cellular metabolism, and signal transduction. These data also indicate that MPP+-induced toxicity shares common molecular mechanisms with the pathogenesis of PD and further pathway analyses will be conducted to explore these mechanisms.

  12. Toxicity assessment of metoprolol and its photodegradation mixtures obtained by using different type of TiO{sub 2} catalysts in the mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Četojević-Simin, Dragana D., E-mail: ddaaggeerr@gmail.com [University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica (Serbia); Armaković, Sanja J., E-mail: sanja.armakovic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Šojić, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Abramović, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad (Serbia)

    2013-10-01

    Toxicity of metoprolol (MET) alone and in mixtures with its photocatalytic degradation intermediates obtained by using TiO{sub 2} Wackherr and Degussa P25 under UV irradiation in the presence of O{sub 2} was evaluated in vitro in a panel of three histologically different cell lines: rat hepatoma (H-4-II-E), human colon adenocarcinoma (HT-29) and human fetal lung (MRC-5). Both catalysts promoted a time-dependent increase in the toxicity of the photodegradation products, and those obtained using Degussa P25 photocatalyst were more toxic. The most pronounced and selective toxic action of MET and products of its photodegradation was observed in the hepatic cell line. The higher toxicity of the mixtures obtained using Degussa P25 catalyst could be explained by a different mechanism of MET degradation, i.e. by the presence or higher concentrations of some intermediates. Although the concentrations of intermediates obtained using TiO{sub 2} Wackherr catalyst were higher, they did not affect significantly the growth of the examined cell lines, indicating their lower toxicity. This suggests that a treatment aiming at complete mineralization should be performed bearing in mind that the type of catalyst, the concentration of target molecule, and the duration of the process are significant factors that determine the nature and toxicity of the resulting mixtures. Although the EC{sub 50} values of MET obtained in mammalian cell lines were higher compared to the bioassays for lower trophic levels, the time-dependent promotion of toxicity of degradation mixtures should be attributed to the higher sensitivity of mammalian cell bioassays. - Highlights: • Toxicity study of metoprolol and its photocatalytic degradation mixtures • Toxicity evaluation in vitro in H-4-II-E, HT-29 and MRC-5 cell lines • TiO{sub 2} Wackherr and Degussa P25 promoted a time-dependent increase in toxicity. • The higher toxicity of degradation mixtures obtained using Degussa P25 • Most pronounced and

  13. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.

    Science.gov (United States)

    Korshed, Peri; Li, Lin; Liu, Zhu; Wang, Tao

    2016-01-01

    Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the

  14. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Pick Neora

    2004-01-01

    Full Text Available The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death.

  15. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Itarte, Emilio, E-mail: emili.itarte@uab.es [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Meseguer, Anna, E-mail: ana.meseguer@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  16. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays.

    Science.gov (United States)

    Palmieri, Marcel José; Andrade-Vieira, Larissa Fonseca; Campos, José Marcello Salabert; Dos Santos Gedraite, Leonardo; Davide, Lisete Chamma

    2016-11-01

    Spent Pot Liner (SPL) is a waste generated during the production of aluminum. It is comprised of a mixture of substances most of which, like cyanide, aluminum and fluoride, are toxic. Previous studies indicate the highly toxic nature of SPL. However studies using cells of the differentiation/elongation zone of the root meristem (referred as M2 cells in this study) after a proper recovery period in water were never considered. Using these cells could be useful to further understanding the toxicity mechanisms of SPL. A comparative approach between the effects on M2 cells and meristematic cells of the proximal meristem zone (referred as M1 cells in this study) could lead to understanding how DNA damage caused by SPL behaves on successive generations of cells. Allium cepa cells were exposed to 4 different concentrations of SPL (2.5, 5, 7.5 and 10gL(-1)) mixed with soil and diluted in a CaCl2 0.01M to simulate the ionic forces naturally encountered on the environment. A solution containing only soil diluted on CaCl2 0.01M was used as control. M1 and M2 cells were evaluated separately, taking into account four different parameters: (1) mitotic alterations (MA); (2) presence of condensed nuclei (CN); (3) mitotic index (MI); (4) presence of micronucleus (MCN). Significant differences were observed between M1 and M2 roots tip cells for these four parameters accessed. M1 cells was more prompt to reveal citogenotoxicity through the higher frequency of MA observed. Meanwhile, for M2 cells higher frequencies of MCN and CN was noticed, followed by a reduction of MI. Also, it was possible to detect significant differences between the tested treatments and the control on every case. These results indicate SPL toxic effects carries on to future cells generations. This emphasizes the need to properly manage this waste. Joint evaluation of cells from both M1 and M2 regions was proven valuable for the evaluation of a series of parameters on all toxicity tests.

  17. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells

    Science.gov (United States)

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313

  18. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems.

    Science.gov (United States)

    Woehrling, E K; Hill, E J; Coleman, M D

    2010-02-01

    Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.

  19. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.

    Science.gov (United States)

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.

  20. The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.

    Science.gov (United States)

    Lee, Jong Soo; Kim, Young Hi; Park, Young Min

    2015-12-01

    This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na(+) concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K(+) and Cl(-) concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.

  1. Whole-cell bioluminescent bioreporter sensing of foodborne toxicants

    Science.gov (United States)

    Ripp, Steve A.; Applegate, Bruce M.; Simpson, Michael L.; Sayler, Gary S.

    2001-03-01

    The presence of biologically derived toxins in foods is of utmost significance to food safety and human health concerns. Biologically active amines, referred to as biogenic amines, serve as a noteworthy example, having been implicated as the causative agent in numerous food poisoning episodes. Of the various biogenic amines encountered, histamine, putrescine, cadaverine, tyramine, tryptamine, beta-phenylethylamine, spermine, and spermidine are considered to be the most significant, and can be used as hygienic-quality indicators of food. Biogenic amines can be monitored using whole-cell bioluminescent bioreporters, which represent a family of genetically engineered microorganisms that generate visible light in response to specific chemical or physical agents in their environment. The light response occurs due to transcriptional activation of a genetically incorporated lux cassette, and can be measured using standard photomultiplier devices. We have successfully engineered a lux-based bioreporter capable of detecting and monitoring the biogenic amine beta-phenylethylamine. This research represents a biologically-based sensor technology that can be readily integrated into Hazard Analysis Critical Control Point programs to provide a rugged monitoring regime that can be uniformly applied for field-based and in-house laboratory quality control analyses. Since the bioreporter and biosensing elements are completely self-contained within the sensor design, this system provides ease of use, with operational capabilities realized by simply combining the food sample with the bioreporter and allowing the sensor to process the ensuing bioluminescent signal and communicate the results. The application of this technology to the critically important issue of food safety and hygienic quality represents a novel method for detecting, monitoring, and preventing biologically active toxins in food commodities.

  2. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    Energy Technology Data Exchange (ETDEWEB)

    Theunissen, P.T., E-mail: Peter.Theunissen@rivm.nl [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Robinson, J.F. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Pennings, J.L.A. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Herwijnen, M.H. van [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Kleinjans, J.C.S. [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Piersma, A.H. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Institute for Risk Assessment Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht (Netherlands)

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  3. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn).

    Science.gov (United States)

    Theunissen, P T; Robinson, J F; Pennings, J L A; van Herwijnen, M H; Kleinjans, J C S; Piersma, A H

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO-BP) were identified after 24h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO-BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO-BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO-BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  4. Predictive value of cell assays for developmental toxicity and embryotoxicity of conazole fungicides

    DEFF Research Database (Denmark)

    Sørensen, Karin Dreisig; Taxvig, Camilla; Kjærstad, Mia Birkhøj

    2013-01-01

    This paper evaluates in vivo predictability of a battery of in vitro tests covering developmental toxicity and embryotoxicity of five widely used conazole fungicides. The conazoles were investigated in the embryonic stem cell test, and data were compared to in vivo embryotoxicity data. The same...... in reasonably good agreement with available in vivo effects. Ketoconazole and epoxiconazole are the most potent embryotoxic compounds, whereas prochloraz belongs to the most potent developmental toxicants. In conclusion, a rough prediction of the ranking of these conazole fungicides for in vivo toxicity data...

  5. Properties of lewis lung carcinoma cells surviving curcumin toxicity.

    Science.gov (United States)

    Yan, Dejun; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-01-01

    The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC) cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establish a new cell line. The resulting line had approximately 20% slower growth than the original LLC cell line and based on ELISA contained less of two markers, NF-κB and ALDH1A, used to identify more aggressive cancer cells. We also injected cells from the original and surviving lines subcutaneously into syngeneic C57BL/6 mice and monitored tumor development over three weeks and found that the curcumin surviving-line remained tumorigenic. Because curcumin has been reported to kill cancer cells more effectively when administered with light, we examined this as a possible way of enhancing the efficacy of curcumin against LLC cells. When LLC cells were exposed to curcumin and light from a fluorescent lamp source, cell loss caused by 20 μM curcumin was enhanced by about 50%, supporting a therapeutic use of curcumin in combination with white light. This study is the first to characterize a curcumin-surviving subpopulation among lung cancer cells. It shows that curcumin at a high concentration either selects for an intrinsically less aggressive cell subpopulation or generates these cells. The findings further support a role for curcumin as an adjunct to traditional chemical or radiation therapy of lung and other cancers.

  6. Cell apoptosis of caprine spleen induced by toxicity of cadmium with different levels of molybdenum.

    Science.gov (United States)

    Gu, Xiaolong; Chen, Rongrong; Hu, Guoliang; Zhuang, Yu; Luo, Junrong; Zhang, Caiying; Guo, Xiaoquan; Huang, Aiming; Cao, Huabin

    2015-07-01

    In order to clarify the effects of the combination of Mo and Cd on goat and relationship between the two elements, combined chronic toxicity of cadmium with different levels of molybdenum in vivo on apoptosis gene and ultrastructure of spleen was evaluated with the methods of RT-qPCR and transmission electron microscopy. A total of thirty-six goats were randomly distributed in equal number into four groups. These groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mgCd kg(-1)) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1), group I; 30 mg Mo kg(-1), group II; 45 mg Mo kg(-1), group III), while the control group received deionized water. Spleen tissues were taken from individual goat at different time intervals to measure the levels of apoptosis genes including Bcl-2, Bax, Cyt c, Caspase-3, Smac and ceruloplasmin (Cp). The results revealed that a significant suppression in Bcl-2 expression and increase in Cyt c, Caspase-3 and Cp expression in splenic cells. The Bax expression in group I and II was up-regulated, however, it displayed reduction in group III, whereas no statistical significance was observed on Smac expression. In addition, histopathologic injury revealed remarkable morphplogical changes on the splenocytes in the means of apoptosis including fragmentized nucleus, apoptotic body and vesiculation of cytoplasma and mitochondria. Taken together, combined chronic toxicity of cadmium with different levels of molybdenum induce goat spleen cell apoptosis associated with mitochondrial intrinsic pathway, and the two elements showed possible antergic relationship.

  7. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites.

    Science.gov (United States)

    Barbosa, Daniel José; Capela, João Paulo; Silva, Renata; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Bastos, Maria Lourdes; Carvalho, Félix

    2014-02-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.

  8. Increased oxidative stress and toxicity in ADH and CYP2E1 overexpressing human hepatoma VL-17A cells exposed to high glucose.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Clemens, Dahn L; Dey, Aparajita

    2012-05-01

    High glucose mediated oxidative stress and cell death is a well documented phenomenon. Using VL-17A cells which are HepG2 cells over-expressing alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) and control HepG2 cells, the association of ADH and CYP2E1 with high glucose mediated oxidative stress and toxicity in liver cells was investigated. Cell viability was measured and apoptosis or necrosis was determined through caspase-3 activity, Annexin V-propidium iodide staining and detecting decreases in mitochondrial membrane potential. Reactive oxygen species, lipid peroxidation and the formation of advanced glycated-end products were assessed. The levels of several antioxidants which included glutathione, glutathione peroxidase, catalase and superoxide dismutase were altered in high glucose treated VL-17A cells. Greater toxicity was observed in VL-17A cells exposed to high glucose when compared to HepG2 cells. Oxidative stress parameters were greatly increased in high glucose exposed VL-17A cells and apoptotic cell death was observed. Inhibition of CYP2E1 or caspase 3 or addition of the antioxidant trolox led to significant decreases in high glucose mediated oxidative stress and toxicity. Thus, the over-expression of ADH and CYP2E1 in liver cells is associated with increased high glucose mediated oxidative stress and toxicity.

  9. A microbial fuel cell-based biosensor for the detection of toxic components in water

    NARCIS (Netherlands)

    Stein, N.E.

    2011-01-01

    In a microbial fuel cell bacteria produce electricity. When water with a constant quality is lead passed the bacteria, a constant current will be measured. When toxic components enter the cell with the water, the bacteria are affected a

  10. Protection of human upper respiratory tract cell lines against sulphur mustard toxicity by hexamethylenetetramine (HMT).

    Science.gov (United States)

    Andrew, D J; Lindsay, C D

    1998-07-01

    1. Sulphur mustard ('mustard gas', HD) is a highly toxic chemical warfare agent which affects the skin and respiratory tract. The primary targets of inhaled HD are the epithelia of the upper respiratory tract. Hexamethylenetetramine (HMT) has been shown to protect human lung cells against HD toxicity and has also been shown to be effective in vivo against the chemical warfare agent phosgene. The ability of HMT to protect against the toxicity of HD was investigated in the human upper respiratory tract cell lines BEAS-2B and RPMI 2650. 2. HD was highly toxic to both cell lines, with LC50 values of 15-30 microM. HMT, at a concentration of 10 mM, was shown to protect the cell lines against the toxic effects of 20 microM and 40 microM HD. Results demonstrated that it was necessary for HMT to be in situ at the time of exposure to HD for effective cytoprotection. No protection was seen when cells were treated with HMT following exposure to HD, or where HMT was removed prior to HD exposure. 3. Results suggest that HMT may be effective prophylaxis for exposure to HD by inhalation.

  11. Embryonic stem cells: An alternative approach to developmental toxicity testing

    Directory of Open Access Journals (Sweden)

    S Tandon

    2012-01-01

    Full Text Available Stem cells in the body have a unique ability to renew themselves and give rise to more specialized cell types having functional commitments. Under specified growth conditions, these cell types remain unspecialized but can be triggered to become specific cell type of the body such as heart, nerve, or skin cells. This ability of embryonic stem cells for directed differentiation makes it a prominent candidate as a screening tool in revealing safer and better drugs. In addition, genetic variations and birth defects caused by mutations and teratogens affecting early human development could also be studied on this basis. Moreover, replacement of animal testing is needed because it involves ethical, legal, and cost issues. Thus, there is a strong requirement for validated and reliable, if achievable, human stem cell-based developmental assays for pharmacological and toxicological screening.

  12. Embryonic stem cells: An alternative approach to developmental toxicity testing.

    Science.gov (United States)

    Tandon, S; Jyoti, S

    2012-04-01

    Stem cells in the body have a unique ability to renew themselves and give rise to more specialized cell types having functional commitments. Under specified growth conditions, these cell types remain unspecialized but can be triggered to become specific cell type of the body such as heart, nerve, or skin cells. This ability of embryonic stem cells for directed differentiation makes it a prominent candidate as a screening tool in revealing safer and better drugs. In addition, genetic variations and birth defects caused by mutations and teratogens affecting early human development could also be studied on this basis. Moreover, replacement of animal testing is needed because it involves ethical, legal, and cost issues. Thus, there is a strong requirement for validated and reliable, if achievable, human stem cell-based developmental assays for pharmacological and toxicological screening.

  13. Expression of CIDE proteins in clear cell renal cell carcinoma and their prognostic significance.

    Science.gov (United States)

    Yu, Ming; Wang, Hui; Zhao, Jun; Yuan, Yuan; Wang, Chao; Li, Jing; Zhang, Lijun; Zhang, Liying; Li, Qing; Ye, Jing

    2013-06-01

    Clear cell renal cell carcinoma (ccRCC) is the major and aggressive subtype of renal cell carcinoma. It is known to derive its histologic appearance from accumulation of abundant lipids and glycogens. The cell death-inducing DFF45-like effector (CIDE) family has been characterized as the lipid droplet proteins involved in the metabolism of lipid storage droplets. The purpose of this study was to evaluate the expression of CIDE proteins in ccRCC cells and to investigate their prognostic significance. We examined consecutive patients with sporadic ccRCC, who underwent nephrectomy, to measure their mRNA and protein expression of CIDE proteins. We found that Cidec and ADRP expression were significantly up-regulated in ccRCC, compared with normal kidney tissues. Cideb was down-regulated. We also found that Cideb was expressed more in low-grade ccRCC than in high-grade tumors. To further clarify the relationship between Cideb expression and patient prognosis, we evaluated 57 ccRCC patients followed up for 120 months. Reduced ccRCC Cideb expression was associated with a higher Fuhrman nuclear grade. Patients with high Cideb expression had better overall survival rate than those with low expression (p < 0.05). Cideb expression was an independent predictor of survival (p = 0.001). Although the biologic function of Cideb in ccRCC remains unknown, the expression level of Cideb might be a novel predictor of prognosis in ccRCC.

  14. Campomanesia adamantium (Myrtaceae fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity

    Directory of Open Access Journals (Sweden)

    Thaís de Oliveira Fernandes

    2015-01-01

    Full Text Available Campomanesia adamantium (Myrtaceae is an antioxidant compounds-rich Brazilian fruit popularly known as gabiroba. In view of this, it was evaluated the hepatoprotective effects of pulp (GPE or peel/seed (GPSE hydroalcoholic extracts of gabiroba on injured liver-derived HepG2 cells by CCl4 (4 mM. The results showed the presence of total phenolic in GPSE was (60% higher when compared to GPE, associated with interesting antioxidant activity using DPPH·− assay. Additionally, HPLC chromatograms and thin layer chromatography of GPE and GPSE showed the presence of flavonoids. Pretreatment of HepG2 cells with GPE or GPSE (both at 800–1000 μg/mL significantly (p < 0.0001 protected against cytotoxicity induced by CCl4. Additionally, the cells treated with both extracts (both at 1000 μg/mL showed normal morphology (general and nuclear contrasting with apoptotic characteristics in the cells only exposed to CCl4. In these experiments, GPSE also was more effective than GPE. In addition, CCl4 induced a marked increase in AST (p < 0.05 and ALT (p < 0.0001 levels, while GPE or GPSE significantly (p < 0.0001 reduced these levels, reaching values found in the control group. In conclusion, the results suggest that gabiroba fruits exert hepatoprotective effects on HepG2 cells against the CCl4-induced toxicity, probably, at least in part, associated with the presence of antioxidant compounds, especially flavonoids.

  15. Evaluation of UV radiation-induced toxicity and biophysical changes in various skin cells with photo-shielding molecules.

    Science.gov (United States)

    Bennet, Devasier; Kim, Sanghyo

    2015-09-21

    Ultraviolet radiation (UVR) triggers many complex events in different types of skin cells, including benign, malignant and normal cells. Chromophores present in these cells play a crucial role in various cellular processes. Unprecedented methods are required for the real-time monitoring of changes in an in vitro model exposed to intermittent mild and intense UVR to determine the mechanisms underlying cell degeneration and the effects of unexpected toxic, agonist and antagonist agents. This study reports the analytical application of a whole cell-based sensor platform for examining the biophysical effects of UVR. We used human keratinocyte, melanocyte and fibroblast cell lines to determine the normal, pathological and protective roles of UVR. In addition, we examined the real-time morphological, biophysical and biomechanical changes associated with cell degeneration induced by UVR at 254 and 365 nm. Information on UVR-induced changes in the cytoskeleton ultrastructure, cellular integrity, cell spreading area, actin microfilament distribution inflammation, microtubule damage, membrane damage, rupture and death was characterized by examining the loss or increase in biophysical and biomechanical properties of these cells. All cells exposed to UVR at 254 and 365 nm showed a significant increase in surface roughness and stiffness in a time-dependent manner. UVR-induced toxicity in differently pigmented skin cells was compared with that in cells pretreated with melanin, keratin and basic fibroblast growth factor to analyze the shielding efficiency of these agents. Melanin exerted a significant shielding effect compared to the other two agents. The biophysical and biomechanical information obtained in this study could advance our understanding of the UVR-induced degeneration process, and help in developing new interventions strategies.

  16. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  17. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ayaki

    2010-10-01

    Full Text Available Masahiko Ayaki1, Atsuo Iwasawa2, Yoichi Inoue31Department of Ophthalmology, Saitama National Hospital, Wako, Japan; 2Life Particle Interaction Engineering Creation, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan; 3Department of Ophthalmology, Olympia Eye Hospital, Tokyo, JapanPurpose: The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay.Methods: Primary cultures of human (H CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK. To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS.Results: After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities > 80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the

  18. Measuring the toxic effects of high gene dosage on yeast cells.

    Science.gov (United States)

    Daniel, J

    1996-12-13

    A novel method, which is rapid, reliable and quantitative, is presented for measuring the toxic effects on yeast cells of high dosage of any given gene. It is based on the possibility of monitoring the presence in cells of a plasmid carrying the ADE2 gene from Saccharomyces cerevisiae by direct observation of colonies, the construction of this particular plasmid being easily made by marked homologous recombination in yeast. Four yeast regulatory genes tested were found to result in various degrees of toxicity at high dosage. Possible implications of the measurement of gene toxicity for eukaryotic cell regulatory mechanisms and for the use of novel general approaches to gene selection, such as the gene-gene interference method, are discussed.

  19. Investigation of cadmium toxicity on renal epithelial cells using nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, Hicham E-mail: khodja@drecam.cea.fr; Avoscan, Laure; Carriere, Marie; Carrot, Francine; Gouget, Barbara

    2003-09-01

    Cadmium is a highly toxic metal that causes well-known severe renal damages. Its toxicity is frequently investigated in vitro using numerous epithelial models. The accumulation and transport of cadmium in cultured renal epithelial cells has been studied by means of nuclear microscopy (micro-PIXE coupled with micro-RBS) for cell monolayer analyses, and by ICP-MS for culture medium analyses. Cell viability, measured by biochemical tests, was used as toxicity indicator. Dependence on cadmium concentration (1-100 {mu}M) and exposure time (1-24 h) was found. Micro-PIXE reveals a strong anti-correlation of intra-cellular cadmium concentration with zinc concentration, a biological metal, suggesting substitution mechanism of both metals.

  20. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery.

    Science.gov (United States)

    Häfeli, Urs O; Riffle, Judy S; Harris-Shekhawat, Linda; Carmichael-Baranauskas, Anita; Mark, Framin; Dailey, James P; Bardenstein, David

    2009-01-01

    Magnetic targeting is useful for intravascular or intracavitary drug delivery, including tumor chemotherapy or intraocular antiangiogenic therapy. For all such in vivo applications, the magnetic drug carrier must be biocompatible and nontoxic. In this work, we investigated the toxic properties of magnetic nanoparticles coated with polyethylenoxide (PEO) triblock copolymers. Such coatings prevent the aggregation of magnetic nanoparticles and guarantee consistent magnetic and nonmagnetic flow properties. It was found that the PEO tail block length inversely correlates with toxicity. The nanoparticles with the shortest 0.75 kDa PEO tails were the most toxic, while particles coated with the 15 kDa PEO tail block copolymers were the least toxic. Toxicity responses of the tested prostate cancer cell lines (PC3 and C4-2), human umbilical vein endothelial cells (HUVECs), and human retinal pigment epithelial cells (HRPEs) were similar. Furthermore, all cell types took up the coated magnetic nanoparticles. It is concluded that magnetite nanoparticles coated with triblock copolymers containing PEO tail lengths of above 2 kDa are biocompatible and appropriate for in vivo application.

  1. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  2. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study.

    Science.gov (United States)

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Tripathy, Satyajit; Das, Balaram; Mandal, Debasis; Pramanik, Panchanan; Roy, Somenath

    2015-01-25

    The aim of this study was to find out the intracellular signaling transduction pathways involved in cobalt oxide nanoparticles (CoO NPs) mediated oxidative stress in vitro and in vivo system. Cobalt oxide nanoparticles released excess Co++ ions which could activated the NADPH oxidase and helps in generating the reactive oxygen species (ROS). Our results showed that CoO NPs elicited a significant (p<0.05) amount of ROS in lymphocytes. In vitro pretreatment with N-acetylene cystine had a protective role on lymphocytes death induced by CoO NPs. In vitro and in vivo results showed the elevated level of TNF-α after CoO NPs treatment. This TNF-α phosphorylated the p38 mitogen-activated protein kinase followed by activation of caspase 8 and caspase 3 which could induce cell death. This study showed that CoO NPs induced oxidative stress and activated the signaling pathway of TNF-α-caspase-8-p38-caspase-3 to primary immune cells. This study suggested that bare CoO NPs are a toxic for primary human immune cells that deals directly with human health. Surface modification or surface functionalization may open the gateway for further use of CoO NPs in different industrial use or in biomedical sciences.

  3. In vivo toxicity study of N-1-sulfonylcytosine derivatives and their mechanisms of action in cervical carcinoma cell line.

    Science.gov (United States)

    Kašnar-Šamprec, Jelena; Ratkaj, Ivana; Mišković, Katarina; Pavlak, Marina; Baus-Lončar, Mirela; Kraljević Pavelić, Sandra; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-06-01

    New N-1-sulfonylpyrimidines showed potent growth inhibitory activity against human and mouse tumour cells of different origin. 1-(p-toluenesulfonyl)cytosine (TsC) and 1-(p-toluenesulfonyl)cytosine hydrochloride (TsC × HCl) inhibited the growth of human cervical carcinoma cells (HeLa), and had no significant cytotoxic effects on normal human foreskin fibroblasts (BJ). TsC and TsC × HCl interfered with the HeLa cell cycle progression bringing about the accumulation of G1 phase cells and the induction of apoptosis. Antiproliferative effects of TsC and TsC × HCl were additionally confirmed by investigating de novo synthesis of RNA, DNA and proteins in HeLa cells. Monitoring gene expression using DNA Chip Analysis and quantitative PCR showed that TsC × HCl affects the expression of several cell-cycle regulating genes implying that cell cycle arrest and DNA damage-induced apoptosis might account for the observed cellular effects. In vivo experiments revealed low toxicity of TsC × HCl, as demonstrated by unaltered haematological and metabolic blood parameters. In conclusion, potent antitumour efficacy and low toxicity of new compounds in comparison with the common chemotherapy drug 5-FU make them promising anticancer agents. Additional pre-clinical and clinical studies are warranted to illuminate the mode of action of these newly synthesized compounds in vivo, which would lay the groundwork for their further optimization.

  4. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells*

    OpenAIRE

    Zhang, Da-lei; Mi, Yu-ling; Wang, Kai-Ming; Zeng, Wei-dong; Zhang, Cai-qiao

    2008-01-01

    The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and ...

  5. Impact of the composition of combustion generated fin particles on epithelial cell toxicity: influences of metals on metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Okeson, Carl D.; Riley, Mark R. [Arizona Univ., Dept. of Agricultural and Biosystems Engineering, Tucson, AZ (United States); Fernandez, Art; Wendt, Jost O.L. [Arizona Univ., Dept. of Chemical and Environmental Engineering, Tucson, AZ (United States)

    2003-06-01

    Inhaled airborne particulate matter (PM) represents a potentially significant health hazard to humans. Exposure to PM strongly correlates with pulmonary inflammation and incidences of severe respiratory distress, including increased hospital admissions for breathing disorders, asthma, emphysema, and chronic bronchitis. PM generated from the combustion of fuel oils and coals contain a number of water-soluble transition metals including Fe, V, and Zn. We have evaluated the impact of PM types with varying composition collected from the combustion of oils and coals on the health and metabolism of lung cell cultures. Three colorimetric assays (sulforhodamine B (SRB), Janus green, and MTT) have been adapted to quantify the impact of PM on rat lung alveolar type II epithelial cells (RLE-6TN cells). The PM toxicity metrics evaluated were inhibition of cell proliferation (SRB and Janus green) and inhibition of cellular metabolism (MTT). Cell proliferation is inhibited in a consistent dose-dependent manner by PM concentrations from 25 to 250 {mu}g/ml. At a level of 100 {mu}g/ml, oil-derived PM diminishes cell metabolism by as much as 40% relative to controls; the degree of inhibition is strongly dependent on PM particle size and metal content. Conversely, coal-derived PM at the same dosage diminishes cell metabolism by no more than 20% relative to controls. All three assays provide highly repeatable results and consistent toxicity rankings of the PMs evaluated. Overall, metabolic inhibition as measured by the MTT assay was deemed the most appropriate metric for PM toxicity, primarily due to its applicability with in vivo-like confluent cell monolayers. (Author)

  6. Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism.

    Science.gov (United States)

    Okeson, Carl D; Riley, Mark R; Fernandez, Art; Wendt, Jost O L

    2003-06-01

    Inhaled airborne particulate matter (PM) represents a potentially significant health hazard to humans. Exposure to PM strongly correlates with pulmonary inflammation and incidences of severe respiratory distress, including increased hospital admissions for breathing disorders, asthma, emphysema, and chronic bronchitis. PM generated from the combustion of fuel oils and coals contain a number of water-soluble transition metals including Fe, V, and Zn. We have evaluated the impact of PM types with varying composition collected from the combustion of oils and coals on the health and metabolism of lung cell cultures. Three colorimetric assays (sulforhodamine B (SRB), Janus green, and MTT) have been adapted to quantify the impact of PM on rat lung alveolar type II epithelial cells (RLE-6TN cells). The PM toxicity metrics evaluated were inhibition of cell proliferation (SRB and Janus green) and inhibition of cellular metabolism (MTT). Cell proliferation is inhibited in a consistent dose-dependent manner by PM concentrations from 25 to 250 microg/ml. At a level of 100 microg/ml, oil-derived PM diminishes cell metabolism by as much as 40% relative to controls; the degree of inhibition is strongly dependent on PM particle size and metal content. Conversely, coal-derived PM at the same dosage diminishes cell metabolism by no more than 20% relative to controls. All three assays provide highly repeatable results and consistent toxicity rankings of the PMs evaluated. Overall, metabolic inhibition as measured by the MTT assay was deemed the most appropriate metric for PM toxicity, primarily due to its applicability with in vivo-like confluent cell monolayers.

  7. Toxic effects of tributyltin and its metabolites on harbour seal (Phoca vitulina) immune cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Frouin, Heloise [Institut National de la Recherche Scientifique - Institut Armand-Frappier, Laval, Quebec H7V 1B7 (Canada); Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, Quebec G5H 3Z4 (Canada)], E-mail: heloise.frouin@iaf.inrs.ca; Lebeuf, Michel [Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, Quebec G5H 3Z4 (Canada); Saint-Louis, Richard [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, Rimouski, Quebec G5L 3A1 (Canada); Hammill, Mike [Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, Quebec G5H 3Z4 (Canada); Pelletier, Emilien [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, Rimouski, Quebec G5L 3A1 (Canada); Fournier, Michel [Institut National de la Recherche Scientifique - Institut Armand-Frappier, Laval, Quebec H7V 1B7 (Canada)

    2008-11-21

    The widespread environmental contamination, bioaccumulation and endocrine disruptor effects of butyltins (BTs) to wildlife are well documented. Although suspected, potential effects of BTs exposure on the immune system of marine mammals have been little investigated. In this study, we assessed the effects of tributyltin (TBT) and its dealkylated metabolites dibutyltin (DBT) and monobutyltin (MBT) on the immune responses of harbour seals. Peripheral blood mononuclear cells isolated from pup and adult harbour seals were exposed in vitro to varying concentrations of BTs. DBT resulted in a significant decrease at 100 and 200 nM of phagocytotic activity and reduced significantly phagocytic efficiency at 200 nM in adult seals. There was no effect in phagocytosis with TBT and MBT. In pups, the highest concentration (200 nM) of DBT inhibited phagocytic efficiency. A reduction of tumor-killing capacity of adult natural killer (NK) cells occurred when leukocytes were incubated in vitro with 50 nM DBT and 200 nM TBT for 24 h. In adult seals, T-lymphocyte proliferation was significantly suppressed when the cells were exposed to 200 nM TBT and 100 nM DBT. In pups, the proliferative response increased after an exposure to 100 nM TBT and 50 nM DBT, but decreased with 200 nM TBT and 100 nM DBT. The immune functions were more affected by BTs exposure in adults than in pups, suggesting that other unsuspected mechanisms could trigger immune parameters in pups. The toxic potential of BTs followed the order of DBT > TBT > MBT. BT concentrations of harbour seal pups from the St. Lawrence Estuary (Bic National Park) ranged between 0.1-0.4 ng Sn/g wet weight (ww) and 1.2-13.4 ng Sn/g ww in blood and blubber, respectively. For these animals, DBT concentrations were consistently below the quantification limit of 0.04 ng Sn/g ww in blood and 0.2 ng Sn/g ww in blubber. Results suggest that concentrations measured in pups are considered too low to induce toxic effects to their immune system

  8. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Inoue, Yoichi

    2010-01-01

    Purpose The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs) remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay. Methods Primary cultures of human (H) CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK). To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS). Results After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities >80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the combined effect of drug and BAK revealed that latanoprost reduced the toxicity of BAK. Conclusion Antiglaucoma eye drops produced HCEC toxicity that appeared to depend on the presence of BAK. Because dilution of the antiglaucoma solutions resulted in markedly lower HCEC toxicity, HCEC damage due to antiglaucoma medication may

  9. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Science.gov (United States)

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  10. Suppressor T cells - a sensitive target of lead toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hambach, A.; Stiller-Winkler, R.; Oberbarnscheidt, J.; Ewers, J.

    1983-01-01

    Studies were performed to investigate the effect of chronic low level lead exposure on the regulatory functions of T cells in the humoral immune response to sheep red blood cells (SRBC) in mice. Female mice were exposed to lead (as lead acetate) in the diet at 545 (group 1) and 2180 ppm (group 2) for 10 weeks. Lead exposure resulting in blood lead levels (PbB) of about 50 ..mu..g/100 g (group 1) produced a substantial increase of the number of IgG antibodies secreting spleen cells on days 3 and 4 after challenge. At the higher exposure level (group 2; PbB 60-80 ..mu..g/100 g) a suppression of the number of IgG plaque forming cells was observed. The IgM response was much smaller than the IgG response. Although differences between the group means were small, the results indicate that there also is an enhancement of the IgM response in the lower dosage group on days 3 and 4. In a second experiment the effect of in vivo lead exposure on antigenic competition was examined. Lead substantially reduced the effect of antigenic competition. Results of both experiments suggest that suppressor T cells rather than helper T cells may represent the primary target for lead. Throughout this study serum complement C3 levels were determined. Complement C3 levels tended to be reduced in the lead exposed groups before as well as after inocculation with SRBC. (orig.*.

  11. Suppressor T cells - a sensitive target of lead toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hambach, A.; Stiller-Winkler, R.; Oberbarnscheidt, J.; Ewers, U.

    1983-01-01

    Studies were performed to investigate the effect of chronic low level lead exposure on the regulatory functions of T cells in the humoral immune response to sheep red blood cells (SRBC) in mice. Female mice were exposed to lead (as lead acetate) in the diet at 545 (group 1) and 2180 ppm (group 2) for 10 weeks. Lead exposure resulting in blood lead levels (PbB) of about 50 ..mu..g/100 g (group 1) produced a substantial increase of the number of IgG antibodies secreting spleen cells on days 3 and 4 after challenge. At the higher exposure level (group 2; PbB 60-80 ..mu..m/100 g) a suppression of the number of IgG plawue forming cells was observed. The IgM response was much smaller than the IgG response. Although differences between the group means were small, the results indicate that there also is an enhancement of the IgM response in the lower dosage group on days 3 and 4. In a second experiment the effect of in vivo lead exposure on antigenic competition was examined. Lead substantially reduced the effect of antigenic competition. Results of both experiments suggest that suppressor T cells rather than helper T cells may represent the primary target for lead. Throughout this study serum complement C3 levels were determined. Complement C3 levels tended to be reduced in the lead exposed groups before as well as after inocculation with SRBC.

  12. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  13. Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells.

    Science.gov (United States)

    Feurstein, D; Holst, K; Fischer, A; Dietrich, D R

    2009-01-15

    Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brain-barrier (BBB) and blood-cerebrospinal-fluid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses, the presence of murine Oatp (mOatp) in primary murine whole brain cells (mWBC) was investigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LF) with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays. All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 microM) and BSP (50 microM). MC-Western blot analysis demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vitro data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.

  14. Making bio-sense of toxicity: new developments in whole-cell biosencors

    DEFF Research Database (Denmark)

    Sørensen, Søren Johannes; Burmølle, Mette; Hansen, Lars Hestbjerg

    2006-01-01

    Bacterial whole-cell biosensors are very useful for toxicity measurements of various samples. Semi-specific biosensors, containing fusions of stress-regulated promoters and reporter genes, have several advantages over the traditional, general biosensors that are based on constitutively expressed ....... The application of in situ inoculation and single-cell detection, combined with the introduction of new reporter genes and refined detection equipment, could lead to the extensive use of semi-specific, stress-responsive biosensors for toxicity estimations in the future.......Bacterial whole-cell biosensors are very useful for toxicity measurements of various samples. Semi-specific biosensors, containing fusions of stress-regulated promoters and reporter genes, have several advantages over the traditional, general biosensors that are based on constitutively expressed...... reporter genes. Furthermore, semi-specific biosensors are constantly being refined to lower their sensitivity and, in combination, are able to detect a wide range of toxic agents. However, the requirement for a positive response of these biosensors to toxicants can result in false-negative responses...

  15. Toxicity Study of Nanosilver (Nanocid® on Osteoblast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Somayyeh Moaddab

    2011-01-01

    Full Text Available Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of society. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. The purpose of this study was to assess the biological assay of nanosilver (Nanocid® on osteoblast (G292 cell line. The effect of nanosilver on these cells was evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. The results demonstrate a concentration-dependent toxicity for the cell tested, and IC50 was determined 3.42 µg/mL, suggest that the product is more toxic to cancerous cell comparing to other heavy metal ions.

  16. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    Science.gov (United States)

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  17. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.

    Science.gov (United States)

    Stadnicka-Michalak, Julita; Tanneberger, Katrin; Schirmer, Kristin; Ashauer, Roman

    2014-01-01

    Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data.

  18. The Kinetic Signature of Toxicity of Four Heavy Metals and Their Mixtures on MCF7 Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Isoken Tito Aighewi

    2013-10-01

    Full Text Available This study evaluated the kinetic signature of toxicity of four heavy metals known to cause severe health and environmental issues—cadmium (Cd, mercury (Hg lead (Pb arsenic (As—and the mixture of all four metals (Mix on MCF7 cancer cells, in the presence and absence of the antioxidant glutathione (GSH. The study was carried out using real time cell electronic sensing (RT-CES. RT-CES monitors in real time the electrical impedance changes at the electrode/culture medium interface due to the number of adhered cells, which is used as an index of cell viability. Cells were seeded for 24 h before exposure to the metals and their mixtures. The results showed that in the presence and absence of cellular glutathione, arsenic was the most cytotoxic of all five treatments, inducing cell death after 5 h of exposure. Lead was the least cytotoxic in both scenarios. In the presence of cellular GSH, the cytotoxic trend was As > Cd > MIX > Hg > Pb, while in the absence of GSH, the cytotoxic trend was As > Hg > MIX > Cd > Pb. The findings from this study indicate the significance of glutathione-mediated toxicity of the metals examined—particularly for mercury—and may be clinically relevant for disorders such as autism spectrum disorder where decreased glutathione-based detoxification capacity is associated with increased mercury intoxication.

  19. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  20. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar, E-mail: dr.samirmukherjee@gmail.com

    2013-09-15

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC{sub 50} value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  1. A Study of Toxic Effect of Mitomycin C on Cultured Bovine Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Fagang Jiang; Houren Wei; Yuanshu Lu; Ying Zhang; Yuanqing Zhou

    2000-01-01

    Purpose: To explore the toxicity of Mitomycin C (MMC) on trabecular meshwork cells.Methods: Bovine trabecular meshwork cells were cultured in vitro and exposed to MMC of different concentrations. The cellular morphology, ultrastructure, mortality and phagocytosis was studied with light microscopy, transmission electron microscopy and methods of Wright's stain, etc.Results: It was found that the toxic effect of MMC on the cells was in a dose-dependent mode. 1 × 10-2 and 1 × 10-3mg/ml of MMC caused a large part of cells dead, 1 × 10-4 and 1 × 10-5mg/ml of the drug had remarkable killing effect on the cells. 1 × 10-6mg/ml of MMC had still a mild toxicity, while 1 × 10-7 mg/ml of MMC had not any influence on cellular morphology, mortality, and phagocytosis, etc. The safe concentration on bovine trabecular meshwork cells was 1 × 10-7mg/ml and the LD50 was between 1 × 10-3and 1 × 10-4mg/ml.Conclusions: Refering to previous data, we conclude that conventional clinicalapplication of MMC might do harm to trabecular meshwork cells. Eye Science 2000; 16:38~ 42.

  2. Toxicity of the mycotoxin fumonisin B1 on the insect Sf9 cell line.

    Science.gov (United States)

    Zhang, He; Zhang, Liyang; Diao, Xue; Li, Na; Liu, Chenglan

    2017-04-01

    Fumonisins are a type of mycotoxin produced by Fusarium spp., mainly F. proliferatum and F. vertieilliodes, and represent a potential hazard to the health of animals and human beings. The toxicity and mechanism of action of fumonisins is ambiguous, and it is unclear whether fumonisins are toxic to insect cells. This study examines the toxicity of fumonisin B1 (FB1) and its mechanism of action in the Spodoptera frugiperda Sf9 cell line. We found that FB1 inhibited Sf9 cellular proliferation and arrested cell growth at the G2/M phase. Morphological observation showed that FB1 induced swelling, vacuole formation, and loss of adhesion in Sf9 cells. Flow cytometry analysis showed that FB1 caused depolarization of the cell membrane potential and hyperpolarization of the mitochondrial membrane potential. To uncover potential genes associated with the molecular mechanisms of FB1, 41 differentially expressed genes were identified by transcriptome analyses after FB1 treatment. These genes are putatively involved in detoxification metabolism, insect hormone regulation, cell apoptosis, and other related processes. Finally, six differentially expressed genes were chosen and validated by quantitative real-time PCR (QRT-PCR). Our test could provide a reference for other kinds of insect cells studies on FB1 stress. At the same time, our studies try to provide a possible for FB1 as a precursor compounds of biological insecticide.

  3. Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays.

    NARCIS (Netherlands)

    Tanneberger, K.; Rico Rico, A.; Kramer, N.I.; Busser, F.J.M.; Hermens, J.L.M.; Schirmer, K.

    2010-01-01

    Due to the implementation of new legislation, such as REACh, a dramatic increase of animal use for toxicity testing is expected and the search for alternatives is timely. Cell-based in vitro assays are promising alternatives. However, the behavior of chemicals in these assays is still poorly underst

  4. Ricin Toxicity in BALB/C 3T3 Cells: Peptide Biomarkers of Exposure

    Science.gov (United States)

    2011-06-01

    fibroblasts LC-MS Cell toxicity Ricin Liquid chromatography Ricinus communis Mass spectrometry Proteomics 16. SECURITY CLASSIFICATION OF: a...Preparation. Ricin communis agglutinin II (ricin, Vector Laboratories, Burlingame, CA) was dialyzed into 10 mM sodium phosphate buffer (pH 7.0, PB

  5. Methylene blue toxicity in zebrafish cell line is dependent on light exposure.

    Science.gov (United States)

    Costa, Simone Rutz da; Monteiro, Mauricio da Costa; da Silva Júnior, Flavio Manoel Rodrigues; Sandrini, Juliana Zomer

    2016-08-01

    Methylene blue (MB) has been widely applied in the clinical area and is currently being used in aquaculture as biocide. Some recent studies have emphasized the importance of understanding the action mechanism and the MB cellular targets. In this sense, zebrafish is considered a relevant model to study the intrinsic pathway of apoptosis as well as the cellular responses involving DNA damage and repair. So, the aim of the present study was to compare MB action mechanisms in a zebrafish cell line, both in the absence (MB alone; dark toxicity) and in the presence of photosynthetically active radiation (MB+PAR; phototoxicity). There was a significant increase of the levels of reactive oxygen and nitrogen species 3 h after MB treatment, whereas this increase was only observed 12 h after treatment with MB+PAR. All treatments with MB resulted in an increase in DNA damage after 3 and 6 h. However, cell death by apoptosis was observed from 6 h after treatment with MB+PAR and 12 h after treatment with MB alone. The expression of genes related to apoptosis was altered after MB and MB+PAR treatment. Therefore, this zebrafish cell line is sensitive to the photodynamic action of MB; MB is able to generate DNA damage and induce apoptosis in this cell line both alone and in the presence of PAR. However, the pathways leading to apoptosis in this model appear to be dependent on the type of MB exposure (in the presence or absence of PAR).

  6. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  7. Redox-Active Selenium Compounds—From Toxicity and Cell Death to Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Sougat Misra

    2015-05-01

    Full Text Available Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.

  8. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2014-01-01

    Full Text Available Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3. Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  9. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov [NCCT, US EPA, RTP, NC 27711 (United States); Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Weir-Hauptman, A.M. [Covance, Inc., Madison, WI 53704 (United States); Palmer, J.A. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Knudsen, T.B.; Dix, D.J. [NCCT, US EPA, RTP, NC 27711 (United States); Donley, E.L.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Cezar, G.G. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal

  10. Predictive value of cell assays for developmental toxicity and embryotoxicity of conazole fungicides.

    OpenAIRE

    Sørensen, Karin Dreisig; Taxvig, Camilla; Kjærstad, Mia Birkhøj; Nellemann, Christine Lydia; Hass, Ulla; Vinggaard, Anne Marie

    2013-01-01

    This paper evaluates in vivo predictability of a battery of in vitro tests covering developmental toxicity and embryotoxicity of five widely used conazole fungicides. The conazoles were investigated in the embryonic stem cell test, and data were compared to in vivo embryotoxicity data. The same conazoles were evaluated on the basis of data from a battery of cell assays for endocrine activity, including assays for AR, ER, AhR, and sex hormone synthesis, and data were compared to in vivo develo...

  11. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity.

    Science.gov (United States)

    Balszuweit, Frank; Menacher, Georg; Bloemeke, Brunhilde; Schmidt, Annette; Worek, Franz; Thiermann, Horst; Steinritz, Dirk

    2014-11-05

    Sulfur mustard (SM) is a chemical warfare agent causing skin blistering, ulceration and delayed wound healing. Inflammation and extrinsic apoptosis are known to have an important role in SM-induced cytotoxicity. As immune cells are involved in those processes, they may significantly modulate SM toxicity, but the extent of those effects is unknown. We adapted a co-culture model of immortalized keratinocytes (HaCaT) and immune cells (THP-1) and exposed this model to SM. Changes in necrosis, apoptosis and inflammation, depending on SM challenge, absence or presence and number of THP-1 cells were investigated. THP-1 were co-cultured for 24h prior to SM exposure in order to model SM effects on immune cells continuously present in the skin. Our results indicate that the presence of THP-1 strongly increased necrosis, apoptosis and inflammation. This effect was already significant when the ratio of THP-1 and HaCaT cells was similar to the ratio of Langerhans immune cells and keratinocytes in vivo. Any further increases in the number of THP-1 had only slight additional effects on SM-induced cytotoxicity. In order to assess the effects of immune cells migrating into skin areas damaged by SM, we added non-exposed THP-1 to SM-exposed HaCaT. Those THP-1 had only slight effects on SM-induced cytotoxicity. Notably, in HaCaT exposed to 300μM SM, necrosis and inflammation were slightly reduced by adding intact THP-1. This effect was dependent on the number of immune cells, steadily increasing with the number of unexposed THP-1 added. In summary, we have demonstrated that (a) the presented co-culture is a robust model to assess SM toxicity and can be used to test the efficacy of potential antidotes in vitro; (b) immune cells, damaged by SM strongly amplified cytotoxicity, (c) in contrast, unexposed THP-1 (simulating migration of immune cells into affected areas after exposure in vivo) had no pronounced adverse, but exhibited some protective effects. Thus, protecting immune cells

  12. Establishment of a molecular embryonic stem cell developmental toxicity assay.

    Science.gov (United States)

    Panzica-Kelly, Julieta M; Brannen, Kimberly C; Ma, Yan; Zhang, Cindy X; Flint, Oliver P; Lehman-McKeeman, Lois D; Augustine-Rauch, Karen A

    2013-02-01

    The mouse embryonic stem cell test (EST) is a 10-day screen for teratogenic potential developed to reduce animal use for embryotoxicity testing of chemicals (Spielmann, 2005; Spielmann et al., 1997). In this study, we used the cytotoxicity IC(50) values and transcriptional expression changes as primary endpoints in a shorter 4-day version of the EST, the molecular embryonic stem cell assay. Mouse D3 embryonic stem cells were used for cytotoxicity assessment (monolayers) or grown as embryoid bodies in low attachment plates for transcriptional profiling. Sixty-five compounds with known in vivo teratogenicity (33 teratogens and 32 nonteratogens) were evaluated to develop a model for classifying compounds with teratogenic potential. The expression of 12 developmentally regulated gene targets (nanog, fgf5, gsc, cd34, axin2, apln, chst7, lhx1, fgf8, sox17, foxa2, and cxcr4) was measured following exposure of embryoid bodies to a single compound concentration (0.1 × the cytotoxicity IC(20)) for 4 days. In the decision-tree model, compounds with IC(50) values teratogens, whereas compounds in the two groups with IC(50) values between 22-200 µM and > 200 µM were categorized as teratogens if ≥ 8 and 12 genes, respectively, were deregulated by at least 10%. Forty-seven of 65 compounds of the training set were correctly identified (72% total concordance). In a test set of 12 additional compounds (5 teratogens, 7 nonteratogens), 10 were correctly classified by this approach (83% concordance). The false positive rate in the training and test sets was 24 and 0%, respectively, indicating that this assay has potential to identify teratogens.

  13. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants.

    Science.gov (United States)

    Liu, F; Nordin, A N; Li, F; Voiculescu, I

    2014-04-07

    This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.

  14. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    Science.gov (United States)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  15. Protection of A549 cells against the toxic effects of sulphur mustard by hexamethylenetetramine.

    Science.gov (United States)

    Lindsay, C D; Hambrook, J L

    1997-02-01

    The A549 cell line was used as a model of the deep lung to study the toxicity and mechanism of action of sulphur mustard (HD), using the neutral red (NR) dye retention and gentian violet (GV) assays as indices of cell viability. It was found that exposure to concentrations in excess of 40 microM HD resulted in a rapid onset of toxicity. Exposure to 1000 microM HD reduced viability in A549 cell cultures to 61% after 2 h (control cultures = 100%), whereas exposure to 40 microM HD did not result in deleterious effects until 26 h at which point viability fell to only 84% (NR assay). Agarose gel electrophoresis of cell cultures exposed to 40 and 1000 microM HD and harvested at 4.5, 19 and 43 h after exposure to HD, indicated that cell death was due to necrosis, despite the observation that at the higher concentration of HD cells displayed many of the features common to cells undergoing apoptotic death. The ability of hexamethylenetetramine (HMT) to protect A549 cells against the effects of an LC50 challenge dose of HD was assessed using the GV and NR assays. It was found that HMT (15 mM) could protect cells against the effects of HD though HMT had to be present at the time of HD challenge. Cultures treated with HD only were 49% viable at 48 h after HD challenge, compared to 101% for protected cultures (NR assay) and 58% and 91% for unprotected and protected cultures respectively using the GV assay. Morphological observations of GV and NR stained cultures confirmed these findings. HMT concentrations of 2.5 to 25 mM were used. Maximal protection against the toxic effects of HD (LC50) was found at 10 to 25 mM HMT. Over this concentration range, HMT did not exert any toxic effects on A549 cells. Pretreatment of A549 cultures with HMT followed by its removal prior to HD challenge had no protective effect. Similarly, treating cultures with HD followed by addition of HMT did not increase the viability of the cultures, even if the HMT was added immediately after HD exposure

  16. Neuroprotective iridoid glycosides from Cornus officinalis fruits against glutamate-induced toxicity in HT22 hippocampal cells.

    Science.gov (United States)

    Jeong, Eun Ju; Kim, Tae Bum; Yang, Heejung; Kang, So Young; Kim, Sun Yeou; Sung, Sang Hyun; Kim, Young Choong

    2012-02-15

    The methanolic extract of the fruits of Cornus officinalis S et Z. (Cornaceae) showed the significant neuroprotective activity against glutamate-induced toxicity in HT22 hippocampal cells. Chemical profile of n-BuOH fraction of the methanolic extract of C. officinalis fruits, which showed the most potent activity, was established using HPLC-diode array detector-electrospray-MS (HPLC-DAD-ESI-MS). Through bioactivity-guided isolation, five iridoid glycosides including one new compound, 7-O-butylmorroniside (1), loganin (2), morroniside (3), 7R-O-methylmorroniside (4), 7S-O-methylmorroniside (5) were isolated from the n-BuOH fraction. The protective activities of the isolated compounds, themselves, were not statistically significant. However, the hydrolyzed products of compounds 1, 4 and 5 significantly protected glutamate-injured HT22 cells up to 78±2.2%, 60±3.2% and 59±2.5% of non-treated control, respectively.

  17. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  18. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    Science.gov (United States)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  19. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Armstead, Andrea L. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Arena, Christopher B. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Li, Bingyun, E-mail: bili@hsc.wvu.edu [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, Morgantown, WV 26506 (United States)

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  20. α-Synuclein overexpression increases dopamine toxicity in BE(2-M17 cells

    Directory of Open Access Journals (Sweden)

    Miller David W

    2010-03-01

    Full Text Available Abstract Background Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD. A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD. Results We used dopaminergic human neuroblastoma BE(2-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. Conclusions Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.

  1. Novel squamosamide derivative (compound FLZ) attenuates Aβ25-35-induced toxicity in SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Geng-tao LIU

    2008-01-01

    Aim: The aim of the present study was to investigate the protective effect of compound N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide (compound FLZ), a novel synthetic ana-logue of nature squamosamide, on Aβ25-35-induced toxicity and its active mecha-nism in human neuroblastoma SH-SY5Y cells. Methods: SH-SY5Y cells were pre-incubated with various concentrations of compound FLZ for 30 min and then cultivated with Aβ25-35 (25 μmol/L) for 48 h to induce neurotoxicity. Cell viability, lactate dehydrogenase (LDH) release, and the glutathione (GSH) level were deter-mined by a biochemical analysis. The cell apoptotic ratio and intracellular reactive oxygen species (ROS) level were measured by a flow cytometry analysis. The expression of apoptosis protein (Bcl-2 and Bax) and cytochrome c release were assayed by the Western blot method. Results: The pretreatment of SH-SY5Y cells with FLZ (1 and 10 μmol/L) markedly increased cell viability and decreased LDH release and morphological injury. Also, FLZ attenuated the Aβ25-35-induced apoptotic cell ratio, regulated the apoptosis protein (Bcl-2 and Bax) expression, and decreased the cytochrome c release from mitochondria. FLZ also signifi-cantly inhibited the generation of ROS and the depletion of GSH induced by Aβ25-35 in SH-SY5Y cells. Conclusion: FLZ has protective action against Aβ25-35-in-duced toxicity in SH-SY5Y cells, which might be mediated through its antioxi-dant property.

  2. Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

    Directory of Open Access Journals (Sweden)

    Isabella Massimi

    2015-01-01

    Full Text Available Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα. In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293 to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.

  3. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Jenny Arratia-Quijada

    2016-07-01

    Full Text Available The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range.

  4. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    KAUST Repository

    Zenger, Katharina

    2015-07-19

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  5. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells.

    Science.gov (United States)

    Zenger, Katharina; Dutta, Subhajit; Wolff, Horst; Genton, Marc G; Kraus, Birgit

    2015-10-02

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  6. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  7. Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Allyson Fry Davidson

    Full Text Available Ice-free cryopreservation, known as vitrification, is an appealing approach for banking of adherent cells and tissues because it prevents dissociation and morphological damage that may result from ice crystal formation. However, current vitrification methods are often limited by the cytotoxicity of the concentrated cryoprotective agent (CPA solutions that are required to suppress ice formation. Recently, we described a mathematical strategy for identifying minimally toxic CPA equilibration procedures based on the minimization of a toxicity cost function. Here we provide direct experimental support for the feasibility of these methods when applied to adherent endothelial cells. We first developed a concentration- and temperature-dependent toxicity cost function by exposing the cells to a range of glycerol concentrations at 21°C and 37°C, and fitting the resulting viability data to a first order cell death model. This cost function was then numerically minimized in our state constrained optimization routine to determine addition and removal procedures for 17 molal (mol/kg water glycerol solutions. Using these predicted optimal procedures, we obtained 81% recovery after exposure to vitrification solutions, as well as successful vitrification with the relatively slow cooling and warming rates of 50°C/min and 130°C/min. In comparison, conventional multistep CPA equilibration procedures resulted in much lower cell yields of about 10%. Our results demonstrate the potential for rational design of minimally toxic vitrification procedures and pave the way for extension of our optimization approach to other adherent cell types as well as more complex systems such as tissues and organs.

  8. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture

    Directory of Open Access Journals (Sweden)

    Firouz Faedmaleki

    2016-03-01

    Full Text Available Nanotechnology is a most promising field for generating new applications in medicine, although, only few nano products are currently in use for medical purposes. A most prominent nanoproduct is nanosilver. Nano-silver has biological properties which are significant for consumer products, food technology, textiles, and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging. For their antibacterial activity, silver nanoparticles (Ag NPs are largely used in various commercially available products. The use of nano-silver is becoming more and more widespread in medicine and related applications, and due to its increasing exposure, toxicological and environmental issues need to be raised. Cytotoxicity induced by silver nanoparticles (AgNPs and the role that oxidative stress plays in this process were demonstrated in human hepatoma cells AgNPs agglomerated in the cytoplasm and nuclei of treated cells, and they induced intracellular oxidative stress. AgNP reduced ATP content of the cell and caused damage to mitochondria and increased production of reactive oxygen species (ROS in a dose-dependent manner. Silymarin was known as a hepatoprotective agent that is used in the treatment of hepatic diseases including viral hepatitis, alcoholic liver diseases, Amanita mushroom poisoning, liver cirrhosis, toxic and drug-induced liver diseases. It promotes protein synthesis, helps in regenerating liver tissue, controls inflammation, enhances glucuronidation, and protects against glutathione depletion. Vitamin E is a well-known antioxidant and has hepatoprotective effect in liver diseases. In this study, we investigated the cytotoxic effects of Ag NPs on primary liver cells of mice. Cell viability (cytotoxicity was examined with MTT assay after primary liver cells of mice exposure to AgNPs at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration- dependent decrease of cell viability

  9. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation.

    Science.gov (United States)

    Pontoppidan, Peter L; Jordan, Karina; Carlsen, Anting Liu; Uhlving, Hilde Hylland; Kielsen, Katrine; Christensen, Mette; Ifversen, Marianne; Nielsen, Claus Henrik; Sangild, Per; Heegaard, Niels Henrik Helweg; Heilmann, Carsten; Sengeløv, Henrik; Müller, Klaus

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a procedure with a high risk of treatment related mortality. The primary aim of the present study was to examine associations between markers of gastrointestinal toxicity, markers of systemic inflammation, and plasma levels of microRNA (miRNA) -155 and -146a during the first month after HSCT. The secondary aim was to characterize the impact of the toxic-inflammatory response on the function of circulating leukocytes during immune recovery. Thirty HSCT patients were included. Gastrointestinal injury was monitored by toxicity scores, lactulose-mannitol test and plasma citrulline, as a measure of the enterocyte population. Nadir of citrulline and maximum of oral toxicity scores, intestinal permeability, CRP and plasma levels of IL-6 and IL-10 was seen at day +7 post-HSCT. miRNA-155 and mi-RNA-146a showed an inverse relation with significantly elevated miRNA-155 and decreased miRNA-146a levels, from day 0 to day +28 compared with pre-conditioning levels. Citrulline levels below the median at day +7 were associated with higher spontaneous production of IL-6 and TNF-α as well as higher in vitro stimulated production of IL-17A at day +21. This study is the first to demonstrate that toxic responses to chemotherapy are accompanied by differential regulation of miRNAs with opposing effects on immune regulation. We find that a proinflammatory miRNA profile is sustained during the first three weeks after the transplantation, indicating that these miRNAs may play a role in the regulation of the inflammatory environment during immune reconstitution after HSCT.

  10. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    Science.gov (United States)

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  11. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells.

    Science.gov (United States)

    Gerloff, Kirsten; Fenoglio, Ivana; Carella, Emanuele; Kolling, Julia; Albrecht, Catrin; Boots, Agnes W; Förster, Irmgard; Schins, Roel P F

    2012-03-19

    Titanium dioxide has a long-standing use as a food additive. Micrometric powders are, e.g., applied as whiteners in confectionary or dairy products. Possible hazards of ingested nanometric TiO(2) particles for humans and the potential influence of varying specific surface area (SSA) are currently under discussion. Five TiO(2)-samples were analyzed for purity, crystallinity, primary particle size, SSA, ζ potential, and aggregation/agglomeration. Their potential to induce cytotoxicity, oxidative stress, and DNA damage was evaluated in human intestinal Caco-2 cells. Only anatase-rutile containing samples, in contrast to the pure anatase samples, induced significant LDH leakage or mild DNA damage (Fpg-comet assay). Evaluation of the metabolic competence of the cells (WST-1 assay) revealed a highly significant correlation between the SSA of the anatase samples and cytotoxicity. The anatase/rutile samples showed higher toxicity per unit surface area than the pure anatase powders. However, none of the samples affected cellular markers of oxidative stress. Our findings suggest that both SSA and crystallinity are critical determinants of TiO(2)-toxicity toward intestinal cells.

  12. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity.

    Science.gov (United States)

    Mendanha, Sebastião A; Moura, Soraia S; Anjos, Jorge L V; Valadares, Marize C; Alonso, Antonio

    2013-02-01

    Terpenes are considered potent skin permeation enhancers with low toxicity. Electron paramagnetic resonance (EPR) spectroscopy of the spin label 5-doxyl stearic acid (5-DSA) was used to monitor the effect of sesquiterpene nerolidol and various monoterpenes on membrane fluidity in erythrocyte and fibroblast cells. In addition, the hemolytic levels and cytotoxic effects on cultured fibroblast cells were also measured to investigate possible relationships between the cellular irritation potentials of terpenes and the ability to modify membrane fluidity. All terpenes increased cell membrane fluidity with no significant differences between the monoterpenes, but the effect of sesquiterpene was significantly greater than that of the monoterpenes. The IC(50) values for the terpenes in the cytotoxicity assay indicated that 1,8-cineole showed lower cytotoxicity and α-terpineol and nerolidol showed higher cytotoxicity. The correlation between the hemolytic effect and the IC(50) values for fibroblast viability was low (R=0.61); however, in both tests, nerolidol was among the most aggressive of terpenes and 1,8-cineole was among the least aggressive. Obtaining information concerning the toxicity and potency of terpenes could aid in the design of topical formulations optimized to facilitate drug absorption for the treatment of many skin diseases.

  13. A prototype nonpeptidyl, hydrazone class, thrombopoietin receptor agonist, SB-559457, is toxic to primary human myeloid leukemia cells.

    Science.gov (United States)

    Kalota, Anna; Gewirtz, Alan M

    2010-01-07

    Biologic characterization of SB-559457 (SB), a nonpeptidyl hydrazone class of thrombopoietin receptor (Mpl) agonist, revealed toxicity toward human leukemia cells. Antiproliferative effects followed by significant, nonapoptotic, cell death within 72 hours occurred in 24 of 26 acute myeloid leukemia, 0 of 6 acute lymphoblastic leukemia, and 3 of 6 chronic myeloid leukemia patient samples exposed to SB, but not recombinant human thrombopoietin (rhTpo), in liquid suspension culture. Further investigation revealed increased phosphorylation of p70S6/S6 kinases in SB-, but not in rhTpo-, treated cells. Expression profiling of cells exposed to SB versus rhTpo revealed statistically significant, more than 2-fold changes in GAPDH and REDD1 gene expression, confirmed by quantitative reverse-transcribed polymerase chain reaction. These genes, induced in energy or hypoxia stressed cells, have been implicated in cell death pathways, and may provide important clues to the mechanism of SB-induced, leukemic cell death. These results suggest that nonpeptidyl, hydrazone class Mpl agonists may be clinically useful antileukemic agents by virtue of their combined thrombopoietic and antileukemic effects.

  14. Comparison of Cantharidin Toxicity in Breast Cancer Cells to Two Common Chemotherapeutics

    Directory of Open Access Journals (Sweden)

    Katie M. Kern

    2014-01-01

    Full Text Available As part of a larger study synthesizing a more directed form of chemotherapy, we have begun to assess the efficacy of different potential toxins that could be delivered locally rather than systemically. In doing so, we hope to reduce the systemic side effects commonly observed, while maintaining a high level of toxicity and eliminating the need for metabolic alterations. In a search for this more efficient method for killing cancerous cells, we have begun studying cantharidin, a toxin used in traditional Chinese medicine, as a potential chemotherapeutic. Using an MTT cell viability assay, the toxicity of cantharidin was compared to both cyclophosphamide and paclitaxel in three different breast cancer cell lines: MCF-7, MDA-MB-231, and SK-BR-3. Increasing the concentration of chemotherapy drugs did decrease cell viability in all cell lines when cantharidin and cyclophosphamide were applied; however differences for paclitaxel were cell-specific. Additionally, cantharidin exhibited the highest decrease in cell viability regardless of cell type, indicating it may be a much more potent and less specific chemotherapeutic. These results will help us move forward in developing a potentially more potent treatment for breast cancer that might eliminate the need for subtype-specific treatments.

  15. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells.

    Science.gov (United States)

    Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris

    2009-07-15

    Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.

  16. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  17. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    Science.gov (United States)

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  18. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    Science.gov (United States)

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides.

  19. Protective Effect of Alpha-Tocopherol Isomer from Vitamin E against the H2O2 Induced Toxicity on Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Fernanda da Silveira Vargas

    2014-01-01

    Full Text Available The aim of this study was to evaluate the protective effects of different concentrations of vitamin E alpha-tocopherol (α-T isomer against the toxicity of hydrogen peroxide (H2O2 on dental pulp cells. The cells (MDPC-23 were seeded in 96-well plates for 72 hours, followed by treatment with 1, 3, 5, or 10 mM α-T for 60 minutes. They were then exposed or not to H2O2 for 30 minutes. In positive and negative control groups, the cells were exposed to culture medium with or without H2O2 (0.018%, respectively. Cell viability was evaluated by MTT assay (Kruskal-Wallis and Mann-Whitney tests; α=5%. Significant reduction of cell viability (58.5% was observed in positive control compared with the negative control. Cells pretreated with α-T at 1, 3, 5, and 10 mM concentrations and exposed to H2O2 had their viability decreased by 43%, 32%, 25%, and 27.5%, respectively. These values were significantly lower than those observed in the positive control, thereby showing a protective effect of α-T against the H2O2 toxicity. Overall, the vitamin E α-T isomer protected the immortalized MDPC-23 pulp cells against the toxic effects of H2O2. The most effective cell protection was provided by 5 and 10 mM concentrations of α-T.

  20. Determination of a threshold dose to reduce or eliminate CdTe-induced toxicity in L929 cells by controlling the exposure dose.

    Directory of Open Access Journals (Sweden)

    Xiaorun Liu

    Full Text Available With the widespread use of quantum dots (QDs, the likelihood of exposure to quantum dots has increased substantially. The application of quantum dots in numerous biomedical areas requires detailed studies on their toxicity. In this study, we aimed to determine the threshold dose which reduced or eliminated CdTe-induced toxicity in L929 cells by controlling the exposure dose. We established a cellular model of acute exposure to CdTe QDs. Cells were exposed to different concentrations of CdTe QDs (2.2 nm and 3.5 nm followed by illustrative cytotoxicity analysis. The results showed that low concentrations of CdTe QDs (under 10 µg/mL promoted cell viability, caused no obvious effect on the rate of cell apoptosis, intracellular calcium levels and changes in mitochondrial membrane potential, while high concentrations significantly inhibited cell viability. In addition, reactive oxygen species in the 10 µg/mL-treated group was significantly reduced compared with the control group. In summary, the cytotoxicity of CdTe QDs on L929 cell is dose-dependent, time-dependent and size-dependent. Low concentrations of CdTe QDs (below 10 µg/mL may be nontoxic and safe in L929 cells, whereas high concentrations (above 10 µg/mL may be toxic resulting in inhibition of proliferation and induction of apoptosis in L929 cells.

  1. Developmental characteristics and response to iron toxicity of root border cells in rice seedlings.

    Science.gov (United States)

    Xing, Cheng-hua; Zhu, Mei-hong; Cai, Miao-zhen; Liu, Peng; Xu, Gen-di; Wu, Shao-hui

    2008-03-01

    To investigate the Fe2+ effects on root tips in rice plant, experiments were carried out using border cells in vitro. The border cells were pre-planted in aeroponic culture and detached from root tips. Most border cells have a long elliptical shape. The number and the viability of border cells in situ reached the maxima of 1600 and 97.5%, respectively, at 20-25 mm root length. This mortality was more pronounced at the first 1-12 h exposure to 250 mg/L Fe2+ than at the last 12-36 h. After 36 h, the cell viability exposed to 250 mg/L Fe2+ decreased to nought, whereas it was 46.5% at 0 mg/L Fe2+. Increased Fe2+ dosage stimulated the death of detached border cells from rice cultivars. After 4 h Fe2+ treatment, the cell viabilities were > or =80% at 0 and 50 mg/L Fe2+ treatment and were border cells decreased by 10% when the Fe2+ concentration increased by 100 mg/L. After 24 h Fe2+ treatment, the viabilities of border cells at all the Fe2+ levels were border cells decreased by 20% when the Fe2+ concentration increased by 100 mg/L. The decreased viabilities of border cells indicated that Fe2+ dosage and treatment time would cause deadly effect on the border cells. The increased cell death could protect the root tips from toxic harm. Therefore, it may protect root from the damage caused by harmful iron toxicity.

  2. Evaluation of Cellular Toxicity for Cisplatin, Arsenic And Acetaminophen in the Cancer and Normal Cell Line

    Directory of Open Access Journals (Sweden)

    S Saeedi Saravi

    2007-12-01

    Full Text Available Introduction: Cell culture is a process in which the cells ware isolated from original tissue, dispersed in liquid media and then placed in culture plate where the cells adhere together and propagate. Today, this method is used for assessment of cell toxicity, its mechanisms and effect of different compounds on intracellular components. Methods: Clonogenic assay was used for assessment of cell toxicity and amount of cell death after a specific time during which cells were exposed to different compounds. Thus, IC50 in caner cell lines (HePG2, SKOV3 and A549 and normal cell (LLCPK1, CHO and HGF1 was assessed after exposure to cisplatin, acetaminophen and arsenic. Results: Results showed that acetaminophen has maximum resistance and minimum sensitivity in CHO line with IC50=16.7±1.06 HePG2 with IC50=18.6±1.29. On the other hand, cisplatin showed minimum resistance and maximum sensitivity in HePG2 with IC50 = 0.87±0.07 and HGF1 with IC50 = 1.6±0.21 and lastly, arsenic showed minimum resistance and maximum sensitivity in A549 with IC50 = 4.59±0.29 and LLCPK1 with IC50= 1±0.37. Discussion: According to the evaluated IC50, there were differences between results of sensitivity of cell lines exposed to the three drugs (P<0.05. Entirely, resistance in cancer cell lines was lower than normal cells. The results showed the importance of cell defensive mechanisms encountering different substances like glutathione.

  3. Developmental characteristics and response to iron toxicity of root border cells in rice seedlings

    Institute of Scientific and Technical Information of China (English)

    Cheng-hua XING; Mei-hong ZHU; Miao-zhen CAI; Peng LIU; Gen-di XU; Shao-hui WU

    2008-01-01

    To investigate the Fe2+ effects on root tips in rice plant, experiments were carded out using border cells in vitro. The border cells were pre-planted in aeroponic culture and detached from root tips. Most border cells have a long elliptical shape. The number and the viability of border cells in situ reached the maxima of 1600 and 97.5%, respectively, at 20~25 mm root length. This mortality was more pronounced at the first 1~12 h exposure to 250 mg/L Fe2+ than at the last 12~36 h. After 36 h, the cell viability exposed to 250 mg/L Fe2+ decreased to nought, whereas it was 46.5% at 0 mg/L Fe2+. Increased Fe2+ dosage stimulated the death of detached border cells from rice cultivars. After 4 h Fe2+ treatment, the cell viabilities were≥80% at 0 and 50 mg/L Fe2+ treatment and were <62% at 150, 250 and 350 mg/L Fe2+ treatment; The viability of border cells decreased by 10% when the Fe2+ concentration increased by 100 mg/L. After 24 h Fe2+ treatment, the viabilities of border cells at all the Fe2+ levels were <65%; The viability of border cells decreased by 20% when the Fe2+ concentration increased by 100 mg/L. The decreased viabilities of border cells indicated that Fe2+ dosage and treatment time would cause deadly effect on the border cells. The increased cell death could protect the root tips from toxic harm. Therefore, it may protect root from the damage caused by harmful iron toxicity.

  4. Comparison of Acute Toxicities in Two Primary Chemoradiation Regimens in the Treatment of Advanced Head and Neck Squamous Cell Carcinoma

    Science.gov (United States)

    Fan, Katherine Y.; Gogineni, Hrishikesh; Zaboli, David; Lake, Spencer; Zahurak, Marianna L.; Best, Simon R.; Levine, Marshall A.; Tang, Mei; Zinreich, Eva S.; Saunders, John R.; Califano, Joseph A.; Blanco, Ray G.; Pai, Sara I.; Messing, Barbara; Ha, Patrick K.

    2013-01-01

    Purpose The optimal dosage and frequency of platinum-based chemoradiotherapy (CRT) regimen for treating advanced head and neck squamous cell carcinoma remains unresolved. This study aims to compare the toxicity and efficacy of weekly versus more dose-intensive cisplatin-based CRTs. Methods We reviewed 155 stage III/IV head and neck squamous cell carcinoma patients with no evidence of distant metastasis treated with one of two CRT regimens from 2000 to 2010 at Greater Baltimore Medical Center. Twice-daily radiation was provided as a split course over a 45-day period. Regimen A consisted of concomitant cisplatin (30 mg/m2/1 h) weekly for 6 cycles; regimen B consisted of concomitant cisplatin (12 mg/m2/1 h) and 5-fluorouracil (600 mg/m2/20 h) on days 1 through 5 and days 29 through 33. Main outcome measures included acute toxicities (myelosuppression, neurotoxicity, nephrotoxicity, gastrointestinal dysfunction), unplanned hospitalizations, and disease control at 12 months. Results Patients on regimen A were much less likely to experience ototoxicity due to their treatment (0% vs. 9.8%, P = 0.04). They were more likely to experience thrombocytopenia acutely (46% vs. 26%, P = 0.02), but the toxicity was not limiting (grade 1–2). No significant differences exist in the incidence of other toxicities or unplanned hospitalizations. At 1 year, 97% of patients on A vs. 86% of patients on regimen B were free of disease (P = 0.11). Conclusions With concurrent radiotherapy, low-dose, single-agent, weekly cisplatin is less likely than higher-dose daily cisplatin plus 5-fluorouracil provided at the beginning and end of treatment to be associated with ototoxicity. The preliminary data suggest at least equivalent efficacy, but longer follow-up is required. PMID:22290566

  5. Malachite green toxicity assessed on Asian catfish primary cultures of peripheral blood mononuclear cells by a proteomic analysis.

    Science.gov (United States)

    Pierrard, Marie-Aline; Kestemont, Patrick; Delaive, Edouard; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-06-15

    The potential genotoxic and carcinogenic properties reported for malachite green (MG) and the frequent detection of MG residues in fish and fish products, despite the ban of MG, have recently generated great concern. Additional toxicological data are required for a better understanding of the mechanism of action and a more comprehensive risk assessment for the exposure of fish to this fungicide. To date, the use of fish peripheral blood mononuclear cells (PBMCs) has not been exploited as a tool in the assessment of the toxicity of chemicals. However, PBMCs are exposed to toxicants and can be easily collected by blood sampling. The present study aims at better understanding the effects of MG by a proteomic analysis of primary cultured PBMC from the Asian catfish, Pangasianodon hypophthalmus, exposed to MG. The two lowest concentrations of 1 and 10 ppb were selected based on the MTS (water soluble tetrazolium salts) cytotoxicity test. Using a proteomic analysis (2D-DIGE), we showed that 109 proteins displayed significant changes in abundance in PBMC exposed during 48 h to MG. Most of these proteins were successfully identified by nano LC-MS/MS and validated through the Peptide and Protein Prophet of Scaffold™ software, but only 19 different proteins were considered corresponding to a single identification per spot. Our data suggest that low concentrations of MG could affect the mitochondrial metabolic functions, impair some signal transduction cascades and normal cell division, stimulate DNA repair and disorganize the cytoskeleton. Altogether, these results confirm that the mitochondrion is a target of MG toxicity. Further studies on the identified proteins are needed to better understand the mechanisms of MG toxicity in fish produced for human consumption.

  6. Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-10-01

    Full Text Available Microcystins (MC, cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F and tryptophan (W, respectively, have replaced arginine (R in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

  7. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells.

    Science.gov (United States)

    Vesterkvist, Pia S M; Misiorek, Julia O; Spoof, Lisa E M; Toivola, Diana M; Meriluoto, Jussi A O

    2012-10-25

    Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

  8. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    Science.gov (United States)

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure.

  9. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei, E-mail: paper_mail@126.com [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Baochun; Cai, Jing [Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Jiang, Yaodong [Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Xu, Jun [Department of Health Economy Administration, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Shan [Department of Pharmacy, Winthrop University Hospital, Mineola, NY 11501 (United States)

    2014-04-01

    Highlights: • Metal-organic frameworks (MOFs) represent a newborn family of hybrid materials. • MOFs have already shown promise in a number of biological applications. • The biological applications of MOFs raise concerns for potential cytotoxicity. • Substantial information about MOF's neurotoxicity is still quite scarce. • This study reveals for the first time the interaction of MOFs with neural cells. - Abstract: Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn{sup 2+} into the cytosol to cause increased intracellular concentration of Zn{sup 2+}. We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.

  10. Toxicity to the normal hemocytes by ALA-PDT for the ex vivo purging of hematopoietic stem cell grafts

    Institute of Scientific and Technical Information of China (English)

    Zhang Baoqin; Zhang Zhenxi; Miao Lixia; Tan Lu; Xiao Mi; Xu Xia

    2008-01-01

    Objective To study the toxic effects of 5-amionlevulinic acid-based photodynamic therapy (ALA-PDT) on human peripheral blood mononuclear cells (PBMCs), cord blood mononuclear cells (CBMCs) and peripheral blood stem cells (PBSCs), and furthermore, to understand the possible causes of this response. Methods We used MTT assay to detect the survival rate of PBMCs, CBMCs and PBSCs after treated by ALA-PDT under the optimum experiment conditions with U937 as control;Annexin V-FITC/PI was used to detect the pattern of cell death induced by ALA-PDT. By using flow cytometry, we detected intracellular PpIX fluorescence intensity. Results After ALA-PDT treatment the survival rate of PBMCs had no significant change;however in PBSCs and CBMCs, the survival rate reduced to 70%, and the survival rate of leukemia cell U937 was the lowest, about 30%. After incubation with ALA,except for PBMCs, intraceUuiar PplX fluorescence intensity of the other two kinds of normal haemocytes and U937 increased obviously. These results combined with the flow cytometry suggested that the main pattern of cell death here was apoptosts. Conclusion Under the optimum experiment conditions, ALA-PDT has a slight effect on normal haemocytes but excellent depletions of leukemia cells. Therefore, it can effectively purify autologons bone marrow or stem cell grafts.

  11. Paradoxical role of 3-methyladenine in pyocyanin-induced toxicity in 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    McFarland, Amelia J; Grant, Gary D; Perkins, Anthony V; Flegg, Cameron; Davey, Andrew K; Allsopp, Tristan J; Renshaw, Gillian; Kavanagh, Justin; McDermott, Catherine M; Anoopkumar-Dukie, Shailendra

    2013-01-01

    The role of autophagy in pyocyanin (PCN)-induced toxicity in the central nervous system (CNS) remains unclear, with only evidence from our group identifying it as a mechanism underlying toxicity in 1321N1 astrocytoma cells. Therefore, the aim of this study was to further examine the role of autophagy in PCN-induced toxicity in the CNS. To achieve this, we exposed 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells to PCN (0-100 μmol/L) and tested the contribution of autophagy by measuring the impact of the autophagy inhibitor 3-methyladenine (3-MA) using a series of biochemical and molecular markers. Pretreatment of 1321N1 astrocytoma cells with 3-MA (5 mmol/L) decreased the PCN-induced acidic vesicular organelle and autophagosome formation as measured using acridine orange and green fluorescent protein-LC3 -LC3 fluorescence, respectively. Furthermore, 3-MA (5 mmol/L) significantly protected 1321N1 astrocytoma cells against PCN-induced toxicity. In contrast pretreatment with 3-MA (5 mmol/L) increased PCN-induced toxicity in SH-SY5Y neuroblastoma cells. Given the influence of autophagy in inflammatory responses, we investigated whether the observed effects in this study involved inflammatory mediators. The PCN (100 μmol/L) significantly increased the production of interleukin-8 (IL-8), prostaglandin E2 (PGE₂), and leukotriene B4 (LTB₄) in both cell lines. Consistent with its paradoxical role in modulating PCN-induced toxicity, 3-MA (5 mmol/L) significantly reduced the PCN-induced production of IL-8, PGE₂, and LTB₄ in 1321N1 astrocytoma cells but augmented their production in SH-SY5Y neuroblastoma cells. In conclusion, we show here for the first time the paradoxical role of autophagy in mediating PCN-induced toxicity in 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells and provide novel evidence that these actions may be mediated by effects on IL-8, PGE₂, and LTB₄ production.

  12. Toxic effects of xylazine on endothelial cells in combination with cocaine and 6-monoacetylmorphine.

    Science.gov (United States)

    Silva-Torres, L A; Vélez, C; Lyvia Alvarez, J; Ortiz, J G; Zayas, B

    2014-10-01

    The use of xylazine as a drug of abuse has emerged worldwide in the last 7 years, including Puerto Rico. Clinical findings reported that xylazine users present greater physiological deterioration, than heroin users. The aim of this study was to assess the xylazine toxicity on endothelial cells, as this is one of the first tissues impact upon administration. Human umbilical vein endothelial cells in culture were treated with xylazine, cocaine, 6-monoacetylmorphine (heroin metabolite) and its combinations, at concentrations of 0.10-400 μM, for periods of 24, 48 and 72 h. IC50 were calculated and the Annexin V assay implemented to determine the cell death mechanism. Results indicated IC50 values at 24h as follow: xylazine 62 μM, cocaine 210 μM, 6-monoacetylmorphine 300 μM. When these drugs were combined the IC50 value was 57 μM. Annexin V results indicated cell death by an apoptosis mechanism in cells treated with xylazine or in combination. Results demonstrated that xylazine use inhibits the endothelial cell proliferation, at lower concentrations than cocaine and 6-monoacetylmorphine. These findings contribute to the understanding of the toxicity mechanisms induced by xylazine on endothelial cells.

  13. Binding of toxic-shock-syndrome toxin-1 to human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Poindexter, N.J.; Schlievert, P.M.

    1987-07-01

    Toxic-shock-syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus and associated with toxic shock syndrome, functions in vitro as both a lymphoproliferative and immunosuppressive protein for human peripheral blood mononuclear cells (PBMs). We analyzed TSST-1-target cell interactions by receptor-ligand binding analyses. In competitive binding experiments, 2 X 10(5) human PBMs or purified cell populations were incubated in the presence of small amounts of (5-50 ng) of /sup 125/I-labeled TSST-1 and increasing amounts of unlabeled TSST-1 (25-10,000 ng). Data were analyzed by the method of Scatchard. Toxin-specific receptors were shown to exist on T lymphocytes within the PBM population. T4+ cells had 27.5 X 10(6) receptors per cell, and T8+ cells had 9 X 10(6) receptors per cell. T4+ and T8+ receptors had dissociation constants of 2.58 X 10(-8) M and 1.8 X 10(-8) M, respectively. These studies confirm earlier work showing that TSST-1 causes the functional activation of a population of T lymphocytes involved in suppression of immunoglobulin responses.

  14. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    Science.gov (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  15. Pre-clinical development as microbicide of zinc tetra-ascorbo-camphorate, a novel terpenoid derivative: Potent in vitro inhibitory activity against both R5- and X4-tropic HIV-1 strains without significant in vivo mucosal toxicity

    Directory of Open Access Journals (Sweden)

    Mannarini Aurèle

    2008-06-01

    Full Text Available Abstract Background Terpenoid derivatives originating from many plants species, are interesting compounds with numerous biological effects, such as anti-HIV-1 activity. The zinc tetra-ascorbo-camphorate complex (or "C14", a new monoterpenoid derivative was evaluated in vitro for its anti-HIV-1 activity on both R5- and X4-HIV-1 infection of primary target cells (macrophages, dendritic cells and T cells and on HIV-1 transfer from dendritic cells to T cells. Results The toxicity study was carried out in vitro and also with the New Zealand White rabbit vaginal irritation model. C14 was found to be no cytotoxic at high concentrations (CC50 > 10 μM and showed to be a potential HIV-1 inhibitor of infection of all the primary cells tested (EC50 = 1 μM. No significant changes could be observed in cervicovaginal tissue of rabbit exposed during 10 consecutive days to formulations containing up to 20 μM of C14. Conclusion Overall, these preclinical studies suggest that zinc tetra-ascorbo-camphorate derivative is suitable for further testing as a candidate microbicide to prevent male-to-female heterosexual acquisition of HIV-1.

  16. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Linares, Daniel M; Ladero, Victor; Fernandez, Maria; Martin, Maria Cruz; Ruas-Madiedo, Patricia; Alvarez, Miguel A

    2017-03-01

    Tyramine and histamine are the biogenic amines (BA) most commonly found at high concentrations in food; they may even appear together at toxic concentrations. The present work examines, via real-time cell analysis, whether histamine and tyramine show synergistic toxicity towards intestinal cell cultures. Employing a constant equipotency ratio, their interaction was examined via the combination index (CI) method of Chou & Talalay. Co-treatment with tyramine and histamine was associated with a stronger cytotoxic effect than was treatment with either BA or on its own. Indeed, a synergistic interaction (CIhistamine, at concentrations below the legal limit, increases the cytotoxicity of tyramine at concentrations frequently reached in some foods. The synergistic cytotoxicity of tyramine and histamine should be taken into account when establishing legal limits designed to ensure consumer safety.

  17. Tolerability and toxicity of adjuvant cisplatin and gemcitabine for treating non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; LI Xiao; CHEN Ke-zhong; JIANG Guan-chao; WANG Jun

    2013-01-01

    Background The combination of cisplatin and vinorelbine is an evidence-supported regimen for adjuvant chemotherapy for treating non-small cell lung cancer (NSCLC).But this doublet has considerable toxicity and unfavorable tolerability,and results in poor compliance.The cisplatin and gemcitabine regimen is one of the most active and well-tolerated regimens against advanced NSCLC,but its toxicity and tolerability has not been adequately evaluated in the adjuvant setting.Methods From a lung cancer database we retrospectively reviewed NSCLC patients receiving adjuvant chemotherapy of cisplatin (75 mg/m2) and gemcitabine (1250 mg/m2) between January 2005 and December 2011.Postoperative demographics,compliance to adjuvant therapy and toxicity were retrieved from medical records.Results A total of 132 patients met the criteria and were included in the study,96 were male (72.7%) and 36 were female (27.3%).Median age was 60.5 years old,range 29-75 years,and 41.7% of patients were ≥65 years old.Overall,68.2%patients received all four planned cycles,and the cumulative dose delivered for gemcitabine was 8333 mg (83.3% of the planned dose) and cisplatin 248 mg (82.7% of the planned dose).There were no treatment-related deaths.Grade 3/4neutropenia developed in 47 patients (35.6%) and was the predominant hematologic toxicity.Common grade 3/4 nonhematologic toxicities were nausea/vomiting (22.0%),infection (12.3%),and febrile neutropenia (11.4%).Conclusion Cisplatin and gemcitabine are feasible for use in the adjuvant setting with a favorable toxicity profile and superior tolerability compared with published data on cisplatin and vinorelbine.

  18. Exposure to Chlorinated Biphenyls Causes Polymorphonucleocytes to Induce Progenitor Cell Toxicity in Culture

    Directory of Open Access Journals (Sweden)

    Tanika V. Martin

    2006-03-01

    Full Text Available Progenitor cells (PC are the precursors for many developmental structures and are sensitive to a variety of toxic agents including the environmental contaminants, polychlorinated biphenyls (PCBs. The mechanism(s that contributes to the development of PCB-induced progenitor cell-related fetotoxicities are not completely understood. However, several studies have demonstrated an important role for neutrophils (polymorphonucleocytes in the development of PCB induced toxicities. Our recent findings have indicated that conditioned medium collected from PC (CMPC exposed to a single dose of the PCB mixture, Aroclor 1248, can activate isolated neutrophil populations. Because of our recent findings, this study was conducted to determine if conditioned medium from PC treated with a PCB mixture causes neutrophils to injure PC in culture. Isolated PC were cultured and treated with different concentrations of Aroclor 1248 for 24 hours. The resulting PC-derived conditioned media was collected and its affect on neutrophil activity was analyzed. Conditioned medium from PC treated with Aroclor 1248 was chemotactic for neutrophils. The conditioned medium from Aroclor 1248 treated-PC also stimulated neutrophils to release super oxide anion, cathepsin G and elastase into culture medium. Furthermore, the conditioned medium from Aroclor 1248 treated- PC was able to stimulate neutrophils to cause progenitor cell toxicity in co-cultures. The conditioned medium from Aroclor 1248 treated-PC was not toxic to individual neutrophil cultures or PC cultures. Moreover, the addition of a protease inhibitor to the co-cultures containing neutrophils and PC, afforded protection against neutrophil-induced cytotoxicity of PC. These data suggest that a PCB mixture can cause progenitor cells to produce a factor(s that activates neutrophils and stimulates them to damage PC populations in culture.

  19. Toxicity of various mycotoxins to immune cells in vitro, with focus on morphological and phenotypic changes

    OpenAIRE

    2013-01-01

    Mycotoxins is a unwanted contaminant on grain, corn and fruits and are reported to be found in increasing amounts also in processed food. There is an increasing focus on mycotoxins worldwide regarding their deleterious effects alone or in combinations, towards humans and production animals. Mycotoxin exposure occurs via food and air. Several mycotoxins have been reported to be toxic towards immune cells and it is questioned whether they can alter immune responses. This study is conducted to i...

  20. γδ T cells and Foxp3(+) Treg cells infiltration in children with biliary atresia and its significance.

    Science.gov (United States)

    Li, Kang; Zhang, Xi; Tang, Shao-Tao; Yang, Li; Cao, Guo-Qing; Li, Shuai; Yang, De-Hua

    2015-01-01

    To investigate the changes in the proportion of γδ T cells and Foxp3(+) Treg cells in children with BA (biliary atresia). The distribution of γδ T cells in the liver tissues and the proportion of γδ T cells and Foxp3(+) Treg cells were observed and detected in BA Group (32 cases) and control group (CG) (12 cases) by using immunohistochemical methods and flow cytometry. The periportal bile duct of liver in BA Group was surrounded by a large number of γδ T cells and a certain degree of Foxp3(+) Treg cells infiltration. Additionally, the proportion of γδ T cells and Foxp3(+) Treg cells was significantly higher than that in CG (PTreg cells (PTreg cell proliferation in liver tissues of patients with biliary atresia exacerbated the progressive inflammatory injury of bile ducts.

  1. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells

    Directory of Open Access Journals (Sweden)

    Kaba SI

    2015-03-01

    Full Text Available Said I Kaba, Elena M Egorova Institute of General Pathology and Pathophysiology, Moscow, Russia Abstract: In the last decade, much attention has been paid to studies of the effect of silver nanoparticles (Ag NPs on tumor cells. Apart from elucidation of the mechanism of NPs’ interaction with mammalian cells, these studies are aimed at discovering new effective antitumor drugs. In this work, we report about the toxic effects of Ag NPs observed on two types of tumor cells: HeLa (adhesive cells and U937 (suspension cells. The Ag NPs were obtained by an original method of biochemical synthesis. Particle size was 13.2±4.72 nm, and zeta potential was -61.9±3.2 mV. The toxicity of Ag NPs in the concentration range 0.5–8.0 µg Ag/mL was determined by means of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and cytofluorometry after 4 and 24 hours' incubation. It was found that Ag NPs had high toxicity toward both cell types. The minimal concentrations where a toxicity effect was registered (toxicity thresholds lied in the range 0.5–2.0 µg Ag/mL. In parallel with the Ag NP solution, cells were incubated with water solutions of the NP stabilizer (aerosol-OT and Ag+ ions (as silver nitrate. It was shown that aerosol-OT had no effect on the viability on HeLa cells, but was moderately toxic toward U937, though less dangerous for these cells than Ag NPs. With Ag+ ions, for HeLa no toxic effect was observed, while for U937 they were as toxic as the Ag NPs. The data obtained indicate that Ag NPs as used in this study may prove to be useful for the creation of medicines for cancer therapy. Keywords: silver nanoparticles, cell viability, apoptosis, tumor cells

  2. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity.

    Science.gov (United States)

    Langelueddecke, Christian; Lee, Wing-Kee; Thévenod, Frank

    2014-04-21

    The environmental toxicant cadmium (Cd) enters the food chain. A substantial proportion of Cd in nutrients of plant origin is present as Cd-metallothionein (CdMT) and Cd-phytochelatin (CdPC) complexes, which may be absorbed and transcytosed intact by colonic enterocytes following bacterial fermentation and contribute to systemic Cd toxicity, e.g. in liver and kidneys. We have recently demonstrated that the receptor for human neutrophil gelatinase-associated lipocalin (hNGAL) is expressed in human colon and colon-like Caco-2 BBE cells where it mediates transcytosis of MT and PC. Here we show in colon-like Caco-2 BBE cells that hNGAL receptor (hNGAL-R) dependent toxicity is significantly higher with CdMT than with CdPC3 (2.5-50μM Cd(2+) complexed to MT or PC3 for ≤24h), using MTT assay. Fluorescence-labelled A546-MT, but not A488-PC3 (both 700nM), co-localizes with the lysosomal marker cathepsin-B, as determined by confocal microscopy. In transwell experiments with confluent monolayers, transcytosis efficiency (i.e. the ratio of basal delivery to apical decrease) of A546-MT is decreased compared to A488-PC3 (both 700nM). The tubulin polymerization disruptor nocodazole (16.7μM) almost abolished CdMT and CdPC3 toxicity, reduced apical uptake of both A546-MT and A488-PC3, but increased transcytosis efficiency of A546-MT compared to that of A488-PC3 by preventing trafficking of A546-MT to lysosomes. Hence, following hNGAL-R dependent endocytosis of CdMT/CdPC3 in colonic epithelia, a nocodazole-sensitive trafficking pathway may preferentially target CdMT, but not CdPC3, to lysosomes, causing increased colonic epithelial toxicity but reduced systemic toxicity.

  3. Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

    Science.gov (United States)

    Van den Eede, Nele; Cuykx, Matthias; Rodrigues, Robim M; Laukens, Kris; Neels, Hugo; Covaci, Adrian; Vanhaecke, Tamara

    2015-12-01

    Since the publication of REACH guidelines, the need for in vitro tools for toxicity testing has increased. We present here the development of a hepatotoxicity testing tool using human HepaRG cell cultures and metabolomics. HepaRG cells were exposed to either 4mM acetaminophen (APAP) as reference toxicant for oxidative stress or 50 μM triphenyl phosphate (TPHP) as toxicant with unknown toxicity pathways (TPs). After 72 h exposure, cells were subjected to quenching and liquid-liquid extraction which resulted in a polar and an apolar fraction. Analysis of fractions was performed by ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-QTOF-MS). Significantly up or down regulated metabolites were selected by univariate statistics prior to identification. In order to obtain robust and specific TP biomarkers, the experiment was also repeated using a different culture medium composition to assess which metabolites show consistent changes. Potential biomarkers belonging to different TPs were found for APAP and TPHP. For APAP, the biomarkers were related to a decrease in unsaturated phospholipids, and for TPHP to an accumulation of phosphoglycerolipids and increase of palmitoyl lysophosphatidylcholine. This first proof-of-concept opens new perspectives for the analysis of other (reference) toxicants with different TPs and it can be used to expand the in vitro tool for hepatotoxicity screening of various compounds.

  4. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    NARCIS (Netherlands)

    Theunissen, P.T.; Robinson, J.F.; Pennings, J.L.A.; van Herwijnen, M.; Kleinjans, J.C.S.; Piersma, A.H.

    2012-01-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may fur

  5. Clinical Significance of Langerhans Cells in Squamous Cell Carcinoma of the Larynx

    Directory of Open Access Journals (Sweden)

    Francisco Esteban

    2012-01-01

    Full Text Available Langerhans cells (LCs may be involved in the immunosurveillance against tumors as antigen-presenting cells. Our objective has been to determine the relevance of LC in progression of larynx squamous cell carcinomas and their relationship with different subpopulations of tumor-infiltrating cells. LCs were investigated by immunohistochemical methods using anti-CD1 antibody. LCs were detected in most of the primary tumors studied (44 out of 50 and also in metastases (6 out of 10 and recurrences (2 out of 3, but we did not find any statistical association between number of LCs and clinical-pathological parameters or survival. However, the number of LCs was increased in patients with evident infiltration of lymphocytes, mainly cytotoxic T cells. We can conclude that although LCs did not show clinical utility as prognostic marker, they may play a role in releasing an active immune response in larynx carcinomas, according to their ability to present antigens to sensitized T cells.

  6. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro.

    Science.gov (United States)

    Ren, Fei; Yang, Baochun; Cai, Jing; Jiang, Yaodong; Xu, Jun; Wang, Shan

    2014-04-30

    Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn(2+) into the cytosol to cause increased intracellular concentration of Zn(2+). We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.

  7. Fungicidal activity of AKWATON and in vitro assessment of its toxic effects on animal cells.

    Science.gov (United States)

    Oulé, Mathias Kégnon; Staines, Kenton; Lightly, Tasia; Roberts, Loren; Traoré, Yannick Léandre; Dickman, Michael; Bernier, Anne-Marie; Diop, Lamine

    2015-01-01

    Acquired superficial fungal infections are among the most common infections. It is necessary to create new effective and non-toxic disinfectants. AKWATON is a new disinfectant of the polymeric guanidine family. Its fungicidal activity against Trichophyton mentagrophytes and its in vitro toxicity assessment were determined in this study. The MIC, minimum fungicidal concentration (MFC) and time required for its fungicidal activity at the MFC were evaluated using the official methods of analysis of the Association of Official Analytical Chemists, with modifications as recommended by the Canadian General Standards Board. The toxic effects of AKWATON and of four commercial disinfectants were evaluated on rat pancreatic (C2C12) and muscle (RnM5F) cells, using the trypan blue and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] methods. The MIC, MFC and time required for the fungicidal activity of AKWATON at the MFC were 0.025 % (w/v), 0.045 % (w/v) and 2.5 min, respectively. Cell cultures and the different tests carried out showed that the AKWATON-based disinfectant killed fewer cells than the commercial disinfectants, sparing 80 % of C2C12 cells and 65 % of RnM5F cells, whilst some of the well-known disinfectants currently on the market killed 85-100 % of cells. This study demonstrates that AKWATON has great potential as an odourless, colourless, non-corrosive and safe disinfectant for use in hospitals, the agriculture industry, farming and household facilities.

  8. ERK1/2 activation modulates pyocyanin-induced toxicity in A549 respiratory epithelial cells.

    Science.gov (United States)

    Forbes, Amanda; Davey, Andrew K; Perkins, Anthony V; Grant, Gary D; McFarland, Amelia J; McDermott, Catherine M; Anoopkumar-Dukie, Shailendra

    2014-02-01

    Pyocyanin (PCN), a virulence factor produced by Pseudomonas aeruginosa, has many damaging effects on mammalian cells. Several lines of evidence suggest that this damage is primarily mediated by its ability to generate oxidative stress. However mechanisms underlying PCN-induced oxidative injury remain unclear. Although oxidative stress and subsequent MAPK signaling has been shown to modulate cell death in other models, its role in PCN-induced cytotoxicity remains unknown. Therefore the aim of this study was to investigate the role of redox-sensitive MAPK in PCN-induced toxicity in A549 cells. Here we show that PCN (50μM) rapidly increased ERK1/2 phosphorylation after 5min. Pre-treatment of A549 cells with the MEK1/2 inhibitor U0126 (10μM) decreased PCN-induced ERK1/2 phosphorylation and protected cells against apoptosis and cell injury suggesting a role for ERK signalling. In contrast, JNK and p38 MAPK phosphorylation remained unchanged following exposure to PCN and pretreatment with either the JNK or p38 MAPK inhibitors (10μM SP600125 and 10μM SB203580, respectively) did not afford protection against PCN toxicity. This would suggest that PCN-induced cytotoxicity appears to occur independently of JNK and p38 MAPK signaling pathways. Finally, although we confirm that oxidative stress contributes to PCN-induced toxicity, our data suggest the contribution of oxidative stress is independent of ERK1/2 signaling. These findings may provide insight for novel targeted therapies to reduce PCN-mediated lung injury in patients with chronic P. aeruginosa respiratory infections.

  9. The clinical significance of breast cancer stem cells (review of literature

    Directory of Open Access Journals (Sweden)

    I. B. Schepotin

    2014-01-01

    Full Text Available For a long time, in oncology dominated the stochastic theory of onset and progression of tumors, which postulated that any cell malignanttumor has tumorogenesis properties. However, currently there are more data indicating that the malignant tumors like normal tissues consistof several subpopulations of cells of various degree of differentiation, including stem. Thus, the alternative stochastic theory became a hierarchical theory of carcinogenesis. Like normal stem cells, cancer stem cells have natural resistance to radiation and systemic drug therapy, and may become the reason of occurrence of relapses and metastases. In this review analysed data regarding the clinical significance of breast cancer stem cells.

  10. Sunitinib in metastatic renal cell carcinoma: recommendations for management of noncardiovascular toxicities.

    Science.gov (United States)

    Kollmannsberger, Christian; Bjarnason, Georg; Burnett, Patrick; Creel, Patricia; Davis, Mellar; Dawson, Nancy; Feldman, Darren; George, Suzanne; Hershman, Jerome; Lechner, Thomas; Potter, Amy; Raymond, Eric; Treister, Nathaniel; Wood, Laura; Wu, Shenhong; Bukowski, Ronald

    2011-01-01

    The multitargeted tyrosine-kinase inhibitor sunitinib has emerged as one of the standards of care for good- and intermediate-risk metastatic renal cell carcinoma. Although generally associated with acceptable toxicity, sunitinib exhibits a novel and distinct toxicity profile that requires monitoring and management. Fatigue, diarrhea, anorexia, oral changes, hand-foot syndrome and other skin toxicity, thyroid dysfunction, myelotoxicity, and hypertension seem to be the most common and clinically relevant toxicities of sunitinib. Drug dosing and treatment duration are correlated with response to treatment and survival. Treatment recommendations for hypertension have been published but, currently, no standard guidelines exist for the management of noncardiovascular side effects. To discuss the optimal management of noncardiovascular side effects, an international, interdisciplinary panel of experts gathered in November 2009. Existing literature on incidence, severity, and underlying mechanisms of side effects as well as on potential treatment options were carefully reviewed and discussed. On the basis of these proceedings and the thorough review of the existing literature, recommendations were made for the monitoring, prevention, and treatment of the most common noncardiovascular side effects and are summarized in this review. The proactive assessment and consistent and timely management of sunitinib-related side effects are critical to ensure optimal treatment benefit by allowing appropriate drug dosing and prolonged treatment periods.

  11. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.

    Science.gov (United States)

    Kühnel, Dana; Busch, Wibke; Meissner, Tobias; Springer, Armin; Potthoff, Annegret; Richter, Volkmar; Gelinsky, Michael; Scholz, Stefan; Schirmer, Kristin

    2009-06-28

    Due to their increased production and use, engineered nanoparticles are expected to be released into the aquatic environment where particles may agglomerate. The aim of this study was to explore the role of agglomeration of nanoparticles in the uptake and expression of toxicity in the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1. This cell line was chosen as model because it is known to be amenable to culture in complete as well as greatly simplified exposure media. Nano-sized tungsten carbide (WC) with or without cobalt doping (WC-Co), two materials relevant in the heavy metal industry, were applied as model particles. These particles were suspended in culture media with decreasing complexity from L15 with 10% fetal bovine serum (FBS) to L15 to L15/ex, containing only salts, galactose and pyruvate of the complete medium L15. Whereas the serum supplement in L15 retained primary nanoparticle suspensions, agglomerates were formed quickly in L15 and L15/ex. Nevertheless, scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) elemental analysis revealed an uptake of both WC and WC-Co nanoparticles into RTgill-W1 cells irrespective of the state of agglomeration of nanoparticles. The localisation seemed to be restricted to the cytoplasm, as no particles were observed in the nucleus of cells. Moreover, reduction in cell viability between 10 and 50% compared to controls were observed upon particle exposure in all media although the pattern of impact varied depending on the medium and exposure time. Short-term exposure of cells led to significant cytotoxicity at the highest nominal particle concentrations, irrespective of the particle type or exposure medium. In contrast, long-term exposures led to preferential toxicity in the simplest medium, L15/ex, and an enhanced toxicity by the cobalt-containing WC nanoparticles in all exposure media. The composition of the exposure media also influenced the toxicity of the cobalt ions, which may

  12. High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells: GFPT2 protects cells against peroxide.

    Science.gov (United States)

    Zitzler, Jürgen; Link, Dieter; Schäfer, Rolf; Liebetrau, Wolfgang; Kazinski, Michael; Bonin-Debs, Angelika; Behl, Christian; Buckel, Peter; Brinkmann, Ulrich

    2004-08-01

    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression clone collection into a separate population of cells in a high-throughput mode. We combined high-throughput functional genomics with experimental validation to discover human genes that ameliorate cytotoxic responses of neuronal HT-22 cells upon exposure to oxidative stress. A collection of 5,000 human cDNAs in mammalian expression vectors were individually transfected into HT-22 cells, which were then exposed to H(2)O(2). Five genes were found that are known to be involved in pathways of detoxification of peroxide (catalase, glutathione peroxidase-1, peroxiredoxin-1, peroxiredoxin-5, and nuclear factor erythroid-derived 2-like 2). The presence of those genes in our "hit list" validates our screening platform. In addition, a set of candidate genes was found that has not been previously described as involved in detoxification of peroxide. One of these genes, which was consistently found to reduce H(2)O(2) -induced toxicity in HT-22, was GFPT2. This gene is expressed at significant levels in the central nervous system (CNS) and encodes glutamine-fructose-6-phosphate transaminase (GFPT) 2, a rate-limiting enzyme in hexosamine biosynthesis. GFPT has recently also been shown to ameliorate the toxicity of methylmercury in Saccharomyces cerevisiae. Methylmercury causes neuronal cell death in part by protein modification as well as enhancing the production of reactive oxygen species (ROS). The protective effect of GFPT2 against H(2)O(2) toxicity in neuronal HT-22 cells may be similar to its protection against methylmercury in yeast. Thus, GFPT appears to be conserved among yeast and men as a critical target of methylmercury and ROS-induced cytotoxicity.

  13. Assay of Peripheral Regulatory Vδ1 T Cells in Ankylosing Spondylitis and its Significance

    Science.gov (United States)

    Wang, Hongliang; Sun, Na; Li, Ka; Tian, Jiguang; Li, Jianmin

    2016-01-01

    Background Ankylosing spondylitis (AS) involves inflammation at the sacroiliac joint and spine attachment site. This study aimed to observe the ratio and function of peripheral regulatory Vδ1 T cells in AS patients to investigate their roles in AS pathogenesis. Material/Methods Peripheral blood mononuclear cells (PBMC) were separated by density-gradient centrifugation from AS patients and healthy controls. Flow cytometry was used to determine the ratio between Vδ1 and CD4 T cells of PBMC in AS patients and controls. Flow cytometry sorting (FCS) was used to obtain Vδ1 and naïve CD4 T cells with purity higher than 90%. CFSE staining method was used to detect the effect of Vδ1 T cells on proliferation of naïve CD4 T cells. The effect of Vδ1 T cells on secretion of IFN-γ from naïve CD4 T cells and the ability to secrete IL-10 from Vδ1 T cells were determined by flow cytometry. Results AS patients had significantly lower Vδ1 T cell ratio in PBMC compared to controls (p<0.05), but their CD4 T cell ratio was significantly elevated (p<0.05). Functional assay showed suppression of naïve CD4 T cell proliferation and IFN-γ secretion by peripheral Vδ1 T cells in AS patients (p<0.01). AS patients also had lower IL-10 secreting level from peripheral derived Vδ1 T cells (p<0.01). Conclusions The immune suppression of peripheral Vδ1 T cell in AS patient increases the ratio of peripheral CD4 T cells and IFN-γ level, leading to AS pathogenesis. This immune suppression is mainly due to suppressed IL-10 secretion. PMID:27598263

  14. Toxic effect of the glycoalkaloids solanine and tomatine on cultured neonatal rat heart cells.

    Science.gov (United States)

    Bergers, W W; Alink, G M

    1980-06-01

    The toxic effects of the glycoalkaloids, alpha-solanine and tomatine, were studied in beating heart cell cultures from 1--2-day-old rats. After addition of alpha-solanine (80 microgram/ml) and tomatine (40 microgram/ml) to the culture medium, the cells ceased beating within a few minutes. At a concentration of 40 microgram/ml alpha-solanine and 20 microgram/ml tomatine, both compounds caused a pronounced increase of the contraction frequency, lasting for at least 2h. K-strophantin, a reference heart glycoside, caused arrhythmic beating at 20 microgram/ml and complete cessation of contractions at 160 microgram/ml.

  15. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles.

    Science.gov (United States)

    Cai, Boyuan; Li, Xiangping; Zhang, Yinan; Jia, Baohua

    2016-05-13

    Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells.

  16. Circulating clonotypic B cells in multiple myeloma and monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Thiago, Leandro S; Perez-Andres, Martin; Balanzategui, Ana; Sarasquete, Maria E; Paiva, Bruno; Jara-Acevedo, Maria; Barcena, Paloma; Sanchez, Maria Luz; Almeida, Julia; González, Marcos; San Miguel, Jesus F; Garcia-Sanz, Ramón; Orfao, Alberto

    2014-01-01

    The B-cell compartment in which multiple myeloma stem cells reside remains unclear. We investigated the potential presence of mature, surface-membrane immunoglobulin-positive B lymphocytes clonally related to the tumor bone marrow plasma cells among different subsets of peripheral blood B cells from ten patients (7 with multiple myeloma and 3 with monoclonal gammopathies of undetermined significance). The presence of clonotypic immunoglobulin heavy chain gene rearrangements was determined in multiple highly-purified fractions of peripheral blood B-lymphocytes including surface-membrane IgM(+) CD27(-) naïve B-lymphocytes, plus surface-membrane IgG(+), IgA(+) and IgM(+) memory CD27(+) B cells, and normal circulating plasma cells, in addition to (mono)clonal plasma cells, by a highly-specific and sensitive allele-specific oligonucleotide polymerase chain reaction directed to the CDR3 sequence of the rearranged IGH gene of tumor plasma cells from individual patients. Our results showed systematic absence of clonotypic rearrangements in all the different B-cell subsets analyzed, including M-component isotype-matched memory B-lymphocytes, at frequencies undetermined significance are usually devoid of clonotypic B cells while the presence of immunophenotypically aberrant myeloma plasma cells in peripheral blood of myeloma patients is a relatively frequent finding.

  17. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress.

    Science.gov (United States)

    Cifelli, Jessica L; Chung, Tim S; Liu, Haiyan; Prangkio, Panchika; Mayer, Michael; Yang, Jerry

    2016-06-15

    Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.

  18. Toxicity study of water transferred graphene-based nanostructures for cell culture substrate

    Science.gov (United States)

    Borghi, Fabricio; van der Laan, Tim; Ishaq, Musarat; Kumar, Shailesh; Ostrikov, Kostya

    2014-10-01

    Graphene has attracted enormous attention due to its unique physical and chemical properties. Early researches had focused on it electrical properties for device applications. Nowadays graphene has attracted increased interest in bio-medical applications, such as cell culture substrates. Substrates are critical for: investigating early stage development of cells, new drugs tests and tissue engineering. Benefits of graphene for this application are: it can be produced with desired structural morphology, its surface properties can be modified via plasma or chemical treatment (decorated with specific functional groups), and it can be transferred to a plethora of substrates (high influence of cells fate). Successful applications of graphene-based materials for bio-med applications are predominantly produced via chemical methods. When produced via Thermal CVD, the transfer to the desired substrate involves chemical treatment, potentially contaminating the graphene. In this work, we use a unique plasma produced graphene, transferred to glass via a chemical-free process, as cell culture substrates. This work aims graphene's bio-toxicity. Our results show that our material is non toxic, and cells morphology and proliferation indicates similar growth among all samples and the control.

  19. The significance of change of Th22 cells in patients with acute lymphoblastic leukemia

    Institute of Scientific and Technical Information of China (English)

    刘立民

    2013-01-01

    Objective To investigate the proportion of Th22 cells in peripheral blood of patients with acute lympho-blastic leukemia(ALL) and evaluate its significance.Methods The proportions of Th22 cells in peripheral blood of B-ALL and T-ALL patients before therapy(group 1),

  20. Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Majoral

    2013-09-01

    Full Text Available A new class of viologen-phosphorus dendrimers (VPDs has been recently shown to possess the ability to inhibit neurodegenerative processes in vitro. Nevertheless, in the Central Nervous Systems domain, there is little information on their impact on cell functions, especially on neuronal cells. In this work, we examined the influence of two VPD (VPD1 and VPD3 of zero generation (G0 on murine hippocampal cell line (named mHippoE-18. Extended analyses of cell responses to these nanomolecules comprised cytotoxicity test, reactive oxygen species (ROS generation studies, mitochondrial membrane potential (ΔΨm assay, cell death detection, cell morphology assessment, cell cycle studies, as well as measurements of catalase (CAT activity and glutathione (GSH level. The results indicate that VPD1 is more toxic than VPD3. However, these two tested dendrimers did not cause a strong cellular response, and induced a low level of apoptosis. Interestingly, VPD1 and VPD3 treatment led to a small decline in ROS level compared to untreated cells, which correlated with slightly increased catalase activity. This result indicates that the VPDs can indirectly lower the level of ROS in cells. Summarising, low-cytotoxicity on mHippoE-18 cells together with their ability to quench ROS, make the VPDs very promising nanodevices for future applications in the biomedical field as nanocarriers and/or drugs per se.

  1. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuan [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Wang, Hui [The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping SE-58185 (Sweden); Wang, Cong [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Qiu, Xuefeng [Department of Urology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008 (China); Benson, Mikael [The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping SE-58185 (Sweden); Yin, Xiaoqin [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Xiang, Zou [Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg (Sweden); Li, Dongmei, E-mail: lidm@nju.edu.cn [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); and others

    2015-08-15

    Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through the regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.

  2. Regimen-related toxicity following reduced-intensity stem-cell transplantation (RIST): comparison between Seattle criteria and National Cancer Center Common Toxicity Criteria (NCI-CTC) version 2.0.

    Science.gov (United States)

    Sakiyama, M; Kami, M; Hori, A; Imataki, O; Hamaki, T; Murashige, N; Kobayashi, K; Kishi, Y; Kojima, R; Kim, S-W; Kusumi, E; Yuji, K; Miyakoshi, S; Mori, S; Tanosaki, R; Taniguchi, S; Takaue, Y

    2004-11-01

    Acute regimen-related toxicity (RRT) is minimal in reduced-intensity stem-cell transplantation (RIST). However, the Seattle RRT grading (Bearman et al), developed in the context of conventional-intensity transplantation, is frequently applied to RIST. We compared the National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 2.0 with the Seattle criteria after RIST in 86 patients. RRT within 30 days of transplant graded by both sets of criteria were significantly associated with the outcome confirming the predictive value of both the systems. A total of 15 patients died of disease progression, and 12 of transplant-related mortality: RRT (n = 2), graft-versus-host disease (GVHD) (n = 7), infection (n = 1), and others (n = 2). GVHD-related deaths primarily resulted from infections after steroid treatment (n = 6) and bronchiolitis obliterans (n = 1). This study shows that NCI-CTC is appropriate in toxicity evaluation of RIST, and that its application to RIST enables a toxicity comparison between RIST and other types of cancer treatments. Since GVHD is a significant problem in RIST, modifications are required to evaluate immunological complications following RIST.

  3. Antioxidant compounds in the seaweed Gelidiella acerosa protects human Peripheral Blood Mononuclear Cells against TCDD induced toxicity.

    Science.gov (United States)

    Ilavarasi, K; Chermakani, P; Arif Nisha, S; Sheeja Malar, D; Pandima Devi, K

    2015-04-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxin formed as an unintentional by-product of incomplete combustion. Several therapeutic approaches have evolved to combat its toxicity since it elicits immunotoxicity, neurotoxicity, hepatotoxicity, carcinogenicity and lethality. Search for drugs from natural resources especially from seaweeds has become intense due to their enormous pharmacological potential. Hence, the present study aims at revealing the protective effect of methanolic extract of G. acerosa (MEGA) in Peripheral Blood Mononuclear Cells (PBMC) against TCDD induced toxicity, by assessing the antioxidant, anti-apoptotic and cytoprotective activities. The results of antioxidant assays suggests that MEGA reverted TCDD induced toxicity by causing an alteration in the levels of antioxidant enzymes (Catalase [CAT], Superoxide dismutase [SOD], Glutathione peroxidase [GPx], Glutathione-S-transferase [GST]) and Glutathione [GSH]. The results of lipid peroxidation assay and protein carbonyl content reveal that MEGA protects PBMC from TCDD induced macromolecular damage. MEGA was found to exhibit significant (p TCDD induced oxidative DNA damage. Levels of phase-I detoxification enzymes determined by EROD assay and semi-quantitative RT-PCR showed that TCDD up-regulates the expression of CYP1A1 and upon co-treatment with MEGA, the expression got slightly decreased suggesting its protective role. Preliminary phytochemical analysis demonstrates that the extract is rich in cardiac glycosides and terpenoids. LC-MS analysis revealed the presence of antioxidants including caffeic acid, phytol and mannoheptulose in MEGA, which could be attributed for the observed protective effect against TCDD induced toxicity.

  4. Effect of Bacterial Lipopolysaccharide Contamination on Gutta Percha- versus Resilon-Induced Human Monocyte Cell Line Toxicity.

    Directory of Open Access Journals (Sweden)

    Jamshid Hadjati

    2015-04-01

    Full Text Available Cytotoxic effects of obturation materials were tested in presence and absence of endotoxin on human monocytes in vitro.Human monocytes from THP-1 cell line were cultured. Three millimeters from the tip of each Resilon and gutta percha points were cut and directly placed at the bottom of the culture wells. Cultured cells were exposed to gutta percha (groups G1 and G2 and Resilon (R1 and R2. Ten μg/ml bacterial lipopolysaccharide (LPS was added to the culture wells in groups G1 and R1. Positive control included the bacterial LPS without the root canal filling material and the negative control contained the cells in culture medium only. Viability of cells was tested in all groups after 24, 48, and 72 hours using the methylthiazolyldiphenyl-tetrazolium bromide (MTT assay for at least 3 times to obtain reproducible results. Optical density values were read and the data were analyzed using three-way ANOVA and post hoc statistical test.The results showed that cells in G2 had the lowest rate of viability at 24 hours, but the lowest rate of viable cells was recorded in G1 at 48 and 72 hours. The effect of LPS treatment was not statistically significant. Resilon groups showed cell viability values higher than those of gutta percha groups, although statistically non-significant (P=0.105. Cell viability values were lower in gutta percha than Resilon groups when LPS-treated and LPS-untreated groups were compared independently at each time point.It could be concluded that none of the tested root canal filling materials had toxic effects on cultured human monocyte cells whether in presence or absence of LPS contamination.

  5. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  6. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  7. Toxicity of cetuximab versus cisplatin concurrent with radiotherapy in locally advanced head and neck squamous cell cancer (LAHNSCC).

    LENUS (Irish Health Repository)

    Walsh, Lorraine

    2011-01-01

    We retrospectively reviewed acute toxicity with cetuximab and radiotherapy, comparing it with a matched cisplatin group. The cetuximab group experienced significantly more toxicity--grade ≥3 oral mucositis (p=0.014), skin dermatitis (p=0.0004), ≥10% weight loss (p=0.03), and enteral feeding requirement (p=0.05). This finding of enhanced toxicity is similar to recent publications.

  8. Suppression of starvation-induced autophagy by recombinant toxic shock syndrome toxin-1 in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krisana Asano

    Full Text Available Toxic shock syndrome toxin-1 (TSST-1, a superantigen produced from Staphylococcus aureus, has been reported to bind directly to unknown receptor(s and penetrate into non-immune cells but its function is unclear. In this study, we demonstrated that recombinant TSST-1 suppresses autophagosomal accumulation in the autophagic-induced HeLa 229 cells. This suppression is shared by a superantigenic-deficient mutant of TSST-1 but not by staphylococcal enterotoxins, suggesting that autophagic suppression of TSST-1 is superantigenic-independent. Furthermore, we showed that TSST-1-producing S. aureus suppresses autophagy in the response of infected cells. Our data provides a novel function of TSST-1 in autophagic suppression which may contribute in staphylococcal persistence in host cells.

  9. TOXICOLOGY STUDIES OF LEWISITE AND SULFUR MUSTARD AGENTS:GENETIC TOXICITY OF LEWISITE (L) IN CHINESE HAMSTER OVARY CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Jostes,R.F. Jr.; Sasser, LB; Rausch, R.J.

    1989-05-31

    The cytotoxic clastogenic and mutagenic effects of the arsenic containing vesicant, Lewisite (L) [dichloro(2-chlorovinyl) arsine], have been investigated using Chinese hamster ovary cells. One hour exposures to Lewisite were cytotoxic in uM amounts. The cell survival response yields a D37 of 0.6 uM and an extrapolation number of 2.5. The mutagenic response at the hypoxantnine-guanine phosporibosyl transferase (HGPRT) locus was sporadic and not significantly greater than control values when cells were exposed over a range of 0.125 to2.0 uM. Sister chromatid exchange (SCE) induction, a measure of chromosomal rearrangement, was weakly positive over a range of 0.25 to 1.0 uM but the values were not significantly greater than the control response. Chromosomal aberrations were induced at 0.75 and 1.0 UMin one experiment and 0.5 and 0.75 uM in another experiment. The Induced values were significantly greater than the control values. Lewisite appears to be cytotoxic and clastogenic in our investigations but SCE and mutation at the HGPRT locus are not significantly greater than control values. Lewisita toxicity was in some ways similar to radiomimetic chemicals such as bleomycin.

  10. Toxic effects of apomorphine on rat cultured neurons and glial C6 cells, and protection with antioxidants.

    Science.gov (United States)

    dos Santos El-Bachá, R; Daval, J; Koziel, V; Netter, P; Minn, A

    2001-01-01

    Many catechol derivatives are currently used as drugs, even if they produce reactive oxygen species that may cause tissue damage. Among them, apomorphine, a potent dopamine agonist, displays efficient anti-parkinsonian properties, but the consequences of its oxidant and toxic properties have been poorly investigated on in vitro models. In the present work, we investigated apomorphine cytotoxicity by incubating cultures of rat glioma C6 cells and primary cultures of neurons with different concentrations of the drug. Apomorphine-promoted cell death was proportional to its concentration and was time-dependent. The ED(50) of apomorphine on C6 cell death after 48 hr was about 200 microM. The cytotoxic effects induced by apomorphine were correlated to its autoxidation, which leads to the formation of reactive oxygen species, semiquinones, quinones, and a melanin-like pigment. C6 cells that underwent treatment with 400 microM apomorphine for 6 hr displayed features of necrosis, including loss of membrane integrity, degeneration of mitochondria, and DNA fragmentation. Thiols, such as cysteine, N-acetyl-L-cysteine, and glutathione, significantly protected cultured neurons and C6 cells against apomorphine-induced cytotoxicity. Thiols also inhibited apomorphine autoxidation. These data strongly suggest that apomorphine cytotoxicity towards neurons and C6 cells results from an intracellular oxidative stress.

  11. Renal impairment and late toxicity in germ-cell cancer survivors

    DEFF Research Database (Denmark)

    Lauritsen, J.; Mortensen, M. S.; Kier, M. G. G.

    2015-01-01

    Background Treatment with bleomycin–etoposide–cisplatin (BEP) impairs renal function and increases the risk of late cardiovascular disease (CVD) and death. We investigated the influence of BEP on glomerular filtration rate (GFR) and assessed the importance of GFR changes on CVD and death in a large...... cohort of germ-cell cancer survivors. Patients and methods BEP-treated patients (N = 1206) were identified in the Danish DaTeCa database, and merged with national registers to identify late toxicity. GFR were measured (51Cr-EDTA clearance) before and after treatment and at 1, 3 and 5-year follow......-up. The influence of BEP on GFR was evaluated with a linear mixed model. Risk factors for late toxicity were identified by a landmark analysis adjusting for covariates. The cohort was compared with the background population with standardized hospitalization/mortality rates. Results GFR changed (ΔGFR) −11.3%, −15...

  12. Influence of coefficient of variation in determining significant difference of quantitative values obtained from 28-day repeated-dose toxicity studies in rats.

    Science.gov (United States)

    Kobayashi, Katsumi; Sakuratani, Yuki; Abe, Takemaru; Yamazaki, Kazuko; Nishikawa, Satoshi; Yamada, Jun; Hirose, Akihiko; Kamata, Eiichi; Hayashi, Makoto

    2011-01-01

    In order to understand the influence of coefficient of variation (CV) in determining significant difference of quantitative values of 28-day repeated-dose toxicity studies, we examined 59 parameters of 153 studies conducted in accordance with Chemical Substance Control Law in 12 test facilities. Sex difference was observed in 12 parameters and 10 parameters showed large CV in females. The minimum CV was 0.74% for sodium. CV of electrolytes was comparatively small, whereas enzymes had large CV. Large differences in CV were observed for major parameters among 7-8 test facilities. The changes in CV were grossly classified into 11. Our study revealed that a statistical significant difference is usually detected if there is a difference of 7% in mean values between the groups and the groups have a CV of about 7%. A parameter with a CV as high as 30% may be significantly different, if the difference of the mean between the groups is 30%. It would be ideal to use median value to assess the treatment-related effect, rather than mean, when the CV is very high. We recommend using CV of the body weight as a standard to judge the adverse effect level.

  13. Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules.

    Science.gov (United States)

    Nobre, Lígia S; Jeremias, Hélia; Romão, Carlos C; Saraiva, Lígia M

    2016-01-28

    Transition metal carbonyl complexes used as CO-releasing molecules (CORMs) for biological and therapeutic applications may exhibit interesting antimicrobial activity. However, understanding the chemical traits and mechanisms of action that rule this activity is required to establish a rationale for the development of CORMs into useful antibiotics. In this work the bactericidal activity, the toxicity to eukaryotic cells, and the ability of CORMs to deliver CO to bacterial and eukaryotic cells were analysed for a set of seven CORMs that differ in the transition metal, ancillary ligands and the CO release profile. Most of these CORMs exhibited bactericidal properties that decrease in the following order: CORM-2 > CORM-3 > ALF062 > ALF850 > ALF186 > ALF153 > [Fe(SBPy3)(CO)](BF4)2. A similar yet not entirely coincident decreasing order was found for their induction of intracellular reactive oxygen species (ROS) in E. coli. In contrast, studies in model animal cells showed that for any given CORM, the level of intracellular ROS generated was negligible when compared with that measured inside bacteria. Importantly, these CORMs were in general not toxic to eukaryotic cells, namely murine macrophages, kidney LLC-PK1 epithelial cells, and liver cell line HepG2. CORM-2 and CORM-3 delivered CO to the intracellular space of both E. coli and the two types of tested eukaryotic cells, yet toxicity was only elicited in the case of E. coli. CO delivered by ALF186 into the intercellular space did not enter E. coli cells and the compound was not toxic to either bacteria or to eukaryotic cells. The Fe(ii) carbonyl complex [Fe(SBPy3)(CO)](2+) had the reverse, undesirable toxicity profile, being unexpectedly toxic to eukaryotic cells and non-toxic to E. coli. ALF153, the most stable complex in the whole set, was essentially devoid of toxicity or ROS induction ability in all cells. These results suggest that CORMs have a relevant therapeutic potential as antimicrobial drugs since (i) they

  14. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells.

    Science.gov (United States)

    Gray, Lachlan R; On, Hung; Roberts, Emma; Lu, Hao K; Moso, Michael A; Raison, Jacqueline A; Papaioannou, Catherine; Cheng, Wan-Jung; Ellett, Anne M; Jacobson, Jonathan C; Purcell, Damian F J; Wesselingh, Steve L; Gorry, Paul R; Lewin, Sharon R; Churchill, Melissa J

    2016-08-01

    Despite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages. We show that most LRA are non-toxic in these cells at therapeutic concentrations. Additionally, romidepsin, JQ-1, and panobinostat were the most potent at inducing viral transcription, with greater magnitude observed in PFA. In contrast, vorinostat, chaetocin, disulfiram, and HMBA all demonstrated little or no induction of viral transcription. Together, these data suggest that some LRA could potentially activate transcription in latently infected cells in the CNS. We recommend that future trials of LRA also examine the effects of these agents on the CNS via examination of cerebrospinal fluid.

  15. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.

    Science.gov (United States)

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S; Choubey, Divaker; Shertzer, Howard G; Genter, Mary Beth

    2016-09-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200μM ZG for 0-24h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons.

  16. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  17. Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144 cells

    Directory of Open Access Journals (Sweden)

    Syeda Arooj

    2015-02-01

    Full Text Available The use of photoactive nanoparticles (NPs such as zinc oxide (ZnO and its nanocomposites has become a promising anticancer strategy. However, ZnO has a low photocatalytic decomposition rate and the incorporation of metal ions such as silver (Ag improves their activity. Here different formulations of ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag were synthesized by a simple co-precipitation method and characterized by powder X-ray diffraction, scanning electron microscopy, Rutherford back scattering and diffuse reflectance spectroscopy for their structure, morphology, composition and optical band gap. The NPs were investigated with regard to their different photocatalytic cytotoxic effects in human malignant melanoma (HT144 and normal (HCEC cells. The ZnO:Ag nanocomposites killed cancer cells more efficiently than normal cells under daylight exposure. Nanocomposites having higher Ag content (10, 20 and 30% were more toxic compared to low Ag content (1, 3 and 5%. For HT144, under daylight exposure, the IC50 values were ZnO:Ag (10%: 23.37 μg/mL, ZnO:Ag (20%: 19.95 μg/mL, and ZnO:Ag (30%: 15.78 μg/mL. ZnO:Ag (30% was toxic to HT144 (IC50: 23.34 μg/mL in dark as well. The three nanocomposites were further analyzed with regard to their ability to generate reactive oxygen species (ROS and induce lipid peroxidation. The particles led to an increase in levels of ROS at cytotoxic concentrations, but only HT144 showed strongly induced MDA level. Finally, NPs were investigated for the ROS species they generated in vitro. A highly significant increase of 1O2 in the samples exposed to daylight was observed. Hydroxyl radical species, HO•, were also generated to a lesser extent. Thus, the incorporation of Ag into ZnO NPs significantly improves their photo-oxidation capabilities. ZnO:Ag nanocomposites could provide a new therapeutic option to selectively target cancer cells.

  18. Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    T. Robak

    1992-01-01

    Full Text Available DENDRITIC cells are a complex group of mainly bone-marrow-derived leukocytes that play a role in autoimmune diseases. The total number of circulating dendritic cells (tDC, and their plasmacytoid dendritic cell (pDC and myeloid dendritic cell (mDC1 and mDC2 subpopulations were assessed using flow cytometry. The number of tDC and their subsets were significantly lower in systemic lupus erythematosus patients than in the control group. The count of tDC and their subsets correlated with the number of T cells. The number of tDC and pDC subpopulation were lower in the patients with lymphopenia and leucopoenia than in the patients without these symptoms. Our data suggest that fluctuations in blood dendritic cell count in systemic lupus erythematosus patients are much more significant in pDC than in mDC, what may be caused by their migration to the sites of inflammation including skin lesions. Positive correlation between dendritic cell number and TCD4+, TCD8+ and CD19+ B cells, testify of their interactions and influence on SLE pathogenesis. The association between dendritic cell number and clinical features seems to be less clear.

  19. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  20. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    Science.gov (United States)

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  1. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application.

    Science.gov (United States)

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-12-05

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.

  2. Secondary monoclonal gammopathy of undetermined significance after allogeneic stem cell transplantation in multiple myeloma.

    Science.gov (United States)

    Schmitz, Marian F; Otten, Henny G; Franssen, Laurens E; van Dorp, Suzanne; Strooisma, Theo; Lokhorst, Henk M; van de Donk, Niels W C J

    2014-12-01

    In the course of multiple myeloma, patients may develop a M-protein band different from the original: secondary monoclonal gammopathy of undetermined significance. In this retrospective single center analysis, we describe the occurrence and clinical relevance of secondary monoclonal gammopathy of undetermined significance after allogeneic stem cell transplantation (post-transplant monoclonal gammopathy of undetermined significance). A total of 138 patients who had undergone 139 allogeneic stem cell transplantations (39.6% in the upfront setting and 60.4% for relapsed multiple myeloma) were included in the study. Sixty-seven (48.2%) patients developed secondary monoclonal gammopathy of undetermined significance, after a median latency of 6.9 months. Secondary monoclonal gammopathy of undetermined significance occurred more often in patients who achieved at least very good partial response after allogeneic stem cell transplantation, compared to partial response or less (54.8% vs. 26.5%; P=0.005). The incidence was also higher in the upfront setting as compared to relapsed disease, or with a sibling donor compared to matched unrelated donor, but less often after T-cell depletion. Importantly, development of post-transplant monoclonal gammopathy of undetermined significance as a time-dependent variable independently predicted for superior progression-free and overall survival (median progression-free survival 37.5 vs. 6.3 months, Pundetermined significance should not be confused with relapse or progression of disease. (Trial registered with trialregister.nl; HOVON 108: NTR 2958.).

  3. Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1.

    Science.gov (United States)

    Telke, Amar A; Kim, Seon-Won; Govindwar, Sanjay P

    2012-03-01

    The 16S rRNA sequence analysis and biochemical characteristics were confirmed that the isolated bacterium is Pseudomonas sp. LBC1. The commonly used textile dye, Direct Brown MR has been used to study the fate of biodegradation. Pseudomonas sp. LBC1 showed 90% decolorization of Direct Brown MR (100 mg/L) and textile industry effluent with significant reduction in COD and BOD. The optimum condition for decolorization was 7.0 pH and 40°C. Significant increase in a activity of extracellular laccase suggested their possible involvement in decolorization of Direct Brown MR. Biodegradation metabolites viz. 3,6-dihydroxy benzoic acid, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and p-dihydroperoxybenzene were identified on the basis of mass spectra and using the 1.10 beta Shimadzu NIST GC-MS library. The Direct Brown MR and textile industry effluent were toxic to Sorghum bicolor and Vigna radiata plants as compared to metabolites obtained after decolorization. The Pseudomonas sp. LBC1 could be useful strain for decolorization and detoxification of textile dyes as well as textile industry effluent.

  4. Expression and clinical significance of sulfiredoxin expression in cervical squamous cell carcinoma tissue

    Directory of Open Access Journals (Sweden)

    Xiao-yan CHEN

    2015-10-01

    Full Text Available Objective To inquire into the expression and its clinical significance of sulfiredoxin (Srx in cervical squamous cell carcinoma tissue. Methods SABC immunohistochemical method was used to detect the expression levels of Srx in specimens of 104 cervical squamous cell carcinoma and the corresponding adjacent tissues, 15 cervical intraepithelial neoplasm (CIN Ⅲ, and 20 normal cervical squamous cell epithelium tissue. The relationship between the expression of Srx protein and clinical pathological parameters of the cancer was also analyzed. Results The positive expression rates of Srx in CIN Ⅲ and cervical squamous cell carcinoma [73.3%(11/15 and 82.7%(86/104, respectively] were significantly higher than that in normal cervical tissue [35.0%(7/20, χ2=17.778, P=0.000]. Meanwhile, Srx expression in cervical cancer specimens was significantly higher than that in normal adjacent tissues (χ2=56.224, P=0.000. The positive expression of Srx in cervical squamous cell carcinoma was significantly correlated with lymph node metastasis, the depth of cancer invasion, and the infiltration of blood vessels (P0.05. Conclusion The higher expression of Srx protein might be a valuable marker for the early diagnosis and evaluation of prognosis in patients with cervical squamous cell carcinoma. DOI: 10.11855/j.issn.0577-7402.2015.08.11

  5. Functional significance of vitamin D receptor FokI polymorphism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    Full Text Available BACKGROUND: The FokI vitamin D receptor (VDR polymorphism results in different translation initiation sites on VDR. In the VDRff variant, initiation of translation occurs at the first ATG site, giving rise to a full length VDR protein of 427 amino acids. Conversely, in the VDRFF variant, translation begins at the second ATG site, resulting in a truncated protein with three less amino acids. Epidemiological studies have paradoxically implicated this polymorphism with increased breast cancer risk. 1α,25 (OH(2D(3, the active metabolite of vitamin D, is known to inhibit cell proliferation, induce apoptosis and potentiate differentiation in human breast cancer cells. It is well documented that 1α,25 (OH(2D(3 downregulates estrogen receptor α expression and inhibits estrogen mediated signaling in these cells. The functional significance of the VDR FokI polymorphism in vitamin D action is undefined. METHODS/FINDINGS: To elucidate the functional role of FokI polymorphism in breast cancer, MCF-7-Vector, MCF-7-VDRff and MCF-7-VDRFF stable cell lines were established from parental MCF-7 cells as single-cell clones. In response to 1α,25 (OH(2D(3 treatments, cell growth was inhibited by 60% in VDRFF cells compared to 28% in VDRff cells. The induction of the vitamin D target gene CYP24A1 mRNA was 1.8 fold higher in VDRFF cells than in VDRff cells. Estrogen receptor-α protein expression was downregulated by 62% in VDRFF cells compared to 25% in VDRff cells. VDR protein stability was greater in MCF-7-VDRFF cells in the presence of cycloheximide. PCR array analyses of VDRff and VDRFF cells revealed increased basal expression levels of pro-inflammatory genes Cyclooxygenase-2, Interleukin-8 and Chemokine (C-C Motif Ligand 2 in MCF-7-VDRff cells by 14, 52.7 and 5 fold, respectively. CONCLUSIONS/SIGNIFICANCE: These results suggest that a VDRff genotype may play a role in amplifying aggressive breast cancer, paving the way for understanding why some breast

  6. Toxicity of trastuzumab labeled {sup 177}Lu on MCF7 and SKBr3 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Rajabi, Hossein, E-mail: hrajabi@modares.ac.i [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Hossein Babaei, Mohammad; Johari Daha, Fariba [Department of Radioisotope, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2010-10-15

    In this study, we labeled trastuzumab with {sup 177}Lu to synthesize a new radiopharmaceutical for therapy of breast cancer and at the first stage investigated its therapeutic effects on SKBr3 and MCF7 breast cancer cell lines. Trastuzumab-{sup 177}Lu showed very good in-vitro characteristics such as high radiochemical purity (91{+-}0.9%), good stability in PBS buffer (86{+-}2.3%) and blood serum (81{+-}2.7%) up to 96 h, appropriate immunoreactivity (85.4{+-}1.1%) and high cytotoxicity in HER2 expression cells. 5 fold increase in toxicity of trastuzumab-{sup 177}Lu was observed when compared with unlabeled trastuzumab on SKBr3 cells.

  7. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  8. Asymmetric dimethylarginine exacerbates Aβ-induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease.

    Science.gov (United States)

    Luo, Yunfeng; Yue, Wenhui; Quan, Xin; Wang, Yue; Zhao, Baolu; Lu, Zhongbing

    2015-02-01

    Growing evidence suggests a strong association between cardiovascular risk factors and incidence of Alzheimer disease (AD). Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, has been identified as an independent cardiovascular risk factor and is also increased in plasma of patients with AD. However, whether ADMA is involved in the pathogenesis of AD is unknown. In this study, we found that ADMA content was increased in a transgenic Caenorhabditis elegans β-amyloid (Aβ) overexpression model, strain CL2006, and in human SH-SY5Y cells overexpressing the Swedish mutant form of human Aβ precursor protein (APPsw). Moreover, ADMA treatment exacerbated Aβ-induced paralysis and oxidative stress in CL2006 worms and further elevated oxidative stress and Aβ secretion in APPsw cells. Knockdown of type 1 protein arginine N-methyltransferase to reduce ADMA production failed to show a protective effect against Aβ toxicity, but resulted in more paralysis in CL2006 worms as well as increased oxidative stress and Aβ secretion in APPsw cells. However, overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) to promote ADMA degradation significantly attenuated oxidative stress and Aβ secretion in APPsw cells. Collectively, our data support the hypothesis that elevated ADMA contributes to the pathogenesis of AD. Our findings suggest that strategies to increase DDAH1 activity in neuronal cells may be a novel approach to attenuating AD development.

  9. Significance of Micrometastases: Circulating Tumor Cells and Disseminated Tumor Cells in Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Catherine Oakman

    2010-06-01

    Full Text Available Adjuvant systemic therapy targets minimal residual disease. Our current clinical approach in the adjuvant setting is to presume, rather than confirm, the presence of minimal residual disease. Based on assessment of the primary tumor, we estimate an individual’s recurrence risk. Subsequent treatment decisions are based on characteristics of the primary tumor, with the presumption of consistent biology and treatment sensitivity between micrometastases and the primary lesion. An alternative approach is to identify micrometastatic disease. Detection of disseminated tumor cells (DTC in the bone marrow and circulating tumor cells (CTC from peripheral blood collection may offer quantification and biocharacterization of residual disease. This paper will review the prognostic and predictive potential of micrometastatic disease in early breast cancer.

  10. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals

    Directory of Open Access Journals (Sweden)

    Greta Jarockyte

    2016-08-01

    Full Text Available The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4 nanoparticles (SPIONs in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.

  11. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants.

    Science.gov (United States)

    Jäger, M; Zilkens, C; Zanger, K; Krauspe, R

    2007-01-01

    Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti), cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically.

  12. Biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) selective toxicity towards melanoma cell lines

    OpenAIRE

    Kudugunti, Shashi K.; Vad, Nikhil M.; Whiteside, Amanda J.; Naik, Bhakti U.; Yusuf, Mohd. A.; Srivenugopal, Kalkunte S.; Moridani, Majid Y.

    2010-01-01

    In the current work, we investigated the in-vitro biochemical mechanism of caffeic acid phenylethyl ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in-vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O2 and HRP/H2O2 were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress ...

  13. Olive oil and its phenolic constituent tyrosol attenuates dioxin-induced toxicity in peripheral blood mononuclear cells via an antioxidant-dependent mechanism.

    Science.gov (United States)

    Kalaiselvan, Ilavarasi; Dicson, Sheeja Malar; Kasi, Pandima Devi

    2015-01-01

    Olive oil (OO) and its phenolic compounds are reported to possess many potential biological effects, which are ascribed to its powerful antioxidant property. In this study, we have assessed whether OO and its phenolic compound tyrosol (TY) could mitigate 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced oxidative damages in peripheral blood mononuclear cells (PBMC). The results showed that exposure of PBMC to 10 nM TCDD caused significant cell death and elevated cellular concentrations of reactive oxygen species and lipid peroxidation. Comet assay indicated that OO and TY protected DNA damage against dioxin toxicity. In addition, alterations in levels of antioxidant enzymes were substantially prevented by OO and TY. TCDD-induced CYP1A1 activity and loss of mitochondrial membrane potential were significantly reduced by the administration of OO and TY. The results suggested that dietary modifications incorporating diets rich in OO and associated phenolics could prove beneficial in protecting individuals against toxicity induced by dioxins.

  14. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  15. Brachytherapy for stage IIIB squamous cell carcinoma of the uterine cervix: survival and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zuliani, Antonio Carlos; Cunha, Maercio de Oliveira, E-mail: aczo.rt@gmail.co [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Esteves, Sergio C.B. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Ciencias Medicas. Secao de Radioterapia; Teixeira, Julio Cesar [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Tocoginecologia

    2010-07-01

    Objective: to compare survival and toxicity of three different treatments for stage IIIB cervix cancer: low-dose-rate (LDR), high-dose-rate (HDR) brachytherapy and association of HDR and chemotherapy. Methods: between 1985 and 2005, 230 patients with FIGO stage IIIB squamous cell carcinoma of the uterine cervix received 4-field pelvic teletherapy at doses between 40 and 50.4 Gy, with a different complementation in each group. The LDRB group, with 42 patients, received one or two insertions of LDR, with Cesium-137, in a total dose of 80 to 100Gy at point A. The HDR group, 155 patients received HDR in 4 weekly 7 Gy fractions and 9 Gy to 14.4 Gy applied to the involved parametria. The CHT group, 33 patients, were given the same treatment as the HDR group and received 5 or 6 weekly cycles of cisplatin, 40 mg per m2. Results: the five-year progression-free survival (PFS) was 60% for the HDR group and 45% for the LDR group, and the two-year PFS for the CHT group was 65% (p = 0.02). The five-year Overall Survival (OS) was 65% for the HDR group and 49% for the LDR group. The two-year OS was 86% for the CHT group (p 0.02). Rectum toxicity grade II was 7% for the LDR group, 4% for the HDR group and 7% for the CHT group that had one case of rectum toxicity grade IV. Conclusion: patients that received HDR had better OS and PFS. The Chemotherapy-HDR association showed no benefit when compared to HDR only. Toxicity rates showed no difference between the three groups. (author)

  16. Evolution of microscopic colitis to giant cell colitis without significant intraepithelial lymphocytosis or thickened collagen plate.

    Science.gov (United States)

    De Petris, Giovanni; Chen, Longwen

    2015-05-01

    Microscopic colitis (MC) is an umbrella term that encompasses lymphocytic colitis (LC) and collagenous colitis (CC). Several histological variants of these 2 entities exist; among them is the uncommon giant cell colitis (GCC), in which histiocytic giant cells (GCs) are present in background of CC or LC. We report the case of a 71-year-old woman complaining of watery diarrhea for several years that was diagnosed with CC. At follow-up, she developed giant cell colitis (GCC). Nine years later, a colectomy revealed a form of microscopic colitis in which significant intraepithelial lymphocytosis and collagen plate thickening have disappeared while GCs persisted with diffuse mononuclear cells inflammation of the lamina propria. Thinning of the collagen plate in association with GCs has been described previously. The case contributes the possibility of further evolution of MC into a pure giant cell colitis in which the prototypical manifestations of MC have all but disappeared.

  17. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells.

    Science.gov (United States)

    Muthusamy, Sasikumar; Peng, Cheng; Ng, Jack C

    2016-12-01

    Mixed contamination of benzo[a]pyrene (B[a]P), arsenic (As), cadmium (Cd), and lead (Pb) is a major environmental and human health concern. The mixture toxicity data on these co-contaminants are important for their risk assessment. In this study, we have determined the mixture toxicity of As, Cd and Pb, and B[a]P with As, Cd or Pb in HepG2 cells. The binary mixtures of Cd + As, Cd + Pb and As + Pb and B[a]P + metals (B[a]P + As, B[a]P + Cd and B[a]P + Pb) were evaluated for their interaction on the cytotoxicity using the MTS assay. A full factorial design (4 × 5) was used to determine the interaction toxicity and all the six mixtures showed significant interaction on the cytotoxicity. We further investigated the role of oxidative stress (reactive oxygen species (ROS) generation) and antioxidant defense mechanism (total glutathione (GSH) level) with the observed cytotoxicity. The mixtures of metals reduced the total GSH level and increased the ROS generation, respectively. In the case of mixtures of B[a]P and metals, both total GSH level and ROS generation were increased. Overall, the binary mixtures of metals and B[a]P with metals caused a dose dependent toxicity to HepG2 cells. The results also showed a significant contribution of oxidative stress to the observed toxicity and the potential protective role of the total GSH level against this mixture toxicity. The findings of interaction between B[a]P and metals might have an impact on the potential human health risk of this mixtures at contaminated sites.

  18. Clinical significance of mast cells and IL-9 in B-NHL

    Institute of Scientific and Technical Information of China (English)

    封丽丽

    2013-01-01

    Objective To investigate the role of mast cells and interleukin-9 (IL-9) in B-cell non-Hodgkin lymphoma (B-NHL) development and its clinical significance.Methods The expression level of CD117 in tumor tissues of 32 B-NHL patients was determined by Western blot.The infiltration of CD117+mast cells (MCs) in human B-NHL tumor tissues was observed by immunohistochemistry staining.To evaluate the correlations between the data from CD117+MCs and biological markers of human B-NHL,a Spearman correlation coefficient (rs) was cal-

  19. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  20. Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Pascal Gelebart

    Full Text Available Fatty acid synthase (FASN, a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL, an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL.

  1. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  2. Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells.

    Science.gov (United States)

    Park, Eun-Jung; Zahari, Nur Elida M; Kang, Min-Sung; Lee, Sang jin; Lee, Kyuhong; Lee, Byoung-Seok; Yoon, Cheolho; Cho, Myung-Haing; Kim, Younghun; Kim, Jae-Ho

    2014-08-17

    In this study, we identified the toxic response of pristine single-walled carbon nanotubes (P-SWCNTs) synthesized by HIPCO method in mice and RAW264.7 cells, a murine peritoneal macrophage cell line. P-SWCNT contained a large amount of Fe ion (36 wt%). In the lungs of mice 24 h after intratracheal administration, P-SWCNTs increased the secretion of IL-6 and MCP-1, and the number of total cells, the portion of neutrophils, lymphocytes, and eosinophils, also significantly increased at a 100 μg/mL of concentration. In RAW264.7 cells, cell viability and ATP production decreased in a dose-dependent manner at 24 h after exposure, whereas the generations of ROS and NO were enhanced at all concentrations together with the activation of the MAP kinase pathway. Moreover, the levels of both apoptosis- and autophagy-related proteins and ER stress-related proteins clearly increased, and the concentrations of Fe, Cu, and Zn ions, but not of Mn ions, increased in a dose-dependent manner. TEM images also revealed that P-SWCNTs induced the formation of autophagosome-like vacuoles, the dilatation of the ER, the generation of mitochondrial flocculent densities, and the separation of organelle by disappearance of the cell membrane. Taken together, we suggest that P-SWCNTs cause acute inflammatory response in the lungs of mice, and induce autophagy accompanied with apoptosis through mitochondrial dysfunction and ER stress in RAW264.7 cells. Furthermore, further study is required to elucidate how the physicochemical properties of SWCNTs determine the cell death pathway and an immune response.

  3. Cultured rat vascular smooth muscle cells are resistant to methylamine toxicity: no correlation to semicarbazide-sensitive amine oxidase

    Science.gov (United States)

    Langford, S. D.; Trent, M. B.; Boor, P. J.

    2001-01-01

    Methylamine (MA), a component of serum and a metabolite of nicotine and certain insecticides and herbicides, is metabolized by semicarbazide-sensitive amine oxidase (SSAO). MA is toxic to cultured human umbilical vein and calf pulmonary artery endothelial cells. Endothelial cells, which do not exhibit endogenous SSAO activity, are exposed to SSAO circulating in serum. In contrast, vascular smooth muscle cells (VSMC) do exhibit innate SSAO activity both in vivo and in vitro. This property, together with the critical localization of VSMC within the arterial wall, led us to investigate the potential toxicity of MA to VSMC. Cultured rat VSMC were treated with MA (10-5 to 1 M). In some cultures, SSAO was selectively inhibited with semicarbazide or MDL-72145 [(E)-2-(3,4-dimethoxyphenyl)-3-fluoroallylamine]. Cytotoxicity was measured via MTT, vital dye exclusion, and clonogenic assays. MA proved to be toxic to VSMC only at relatively high concentrations (LC(50) of 0.1 M). The inhibition of SSAO with semicarbazide or MDL-72145 did not increase MA toxicity, suggesting that the production of formaldehyde via tissue-bound, SSAO-mediated MA metabolism does not play a role in the minimal toxicity observed in isolated rat VSMC. The omission of fetal calf serum (FCS), which contains high SSAO activity, from media similarly showed little effect on cytotoxicity. We conclude that VSMC--in contrast to previous results in endothelial cells--are relatively resistant to MA toxicity, and SSAO does not play a role in VSMC injury by MA.

  4. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Katsumiti, A. [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain); Gilliland, D. [EU Commission–Joint Research Centre, Institute of Health and Consumer Protection, NSB Unit, Ispra (Italy); Arostegui, I. [Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa (Spain); Cajaraville, M.P., E-mail: mirenp.cajaraville@ehu.es [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain)

    2014-08-15

    Highlights: • CdS QDs were cytotoxic for mussel hemocytes and gill cells in vitro. • Ionic Cd was the most toxic form, followed by CdS QDs and bulk CdS. • CdS QDs altered oxidative balance and caused DNA damage in mussel cells. • CdS QDs caused a particle-specific immunostimulation on phagocytosis of hemocytes. • Conceptual models for cellular handling and toxicity of CdS QDs are proposed. - Abstract: CdS quantum dots (QDs) show a great promise for treatment and diagnosis of cancer and for targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. In spite of their advantages it is important to determine if CdS QDs can exert toxicity on biological systems. In the present work, cytotoxicity of CdS QDs (5 nm) at a wide range of concentrations (0.001–100 mg Cd/L) was screened using neutral red (NR) and thiazolyl blue tetrazolium bromide (MTT) assays in isolated hemocytes and gill cells of mussels (Mytilus galloprovincialis). The mechanisms of action of CdS QDs were assessed at sublethal concentrations (0.31–5 mg Cd/L) in the same cell types through a series of functional in vitro assays: production of reactive oxygen species (ROS), catalase (CAT) activity, DNA damage, lysosomal acid phosphatase (AcP) activity, multixenobiotic resistance (MXR) transport activity, Na-K-ATPase activity (only in gill cells) and phagocytic activity and damage to actin cytoskeleton (only in hemocytes). Exposures to CdS QDs lasted for 24 h and were performed in parallel with exposures to bulk CdS and ionic Cd. Ionic Cd was the most toxic form to both cell types, followed by CdS QDs and bulk CdS. ROS production, DNA damage, AcP activity and MXR transport were significantly increased in both cell types exposed to the 3 forms of Cd. CAT activity increased in hemocytes exposed to the three forms of Cd while in gill cells only in those exposed to ionic Cd. No effects were found on hemocytes cytoskeleton integrity. Effects on

  5. Protective effects of essential oil of Citrus limon against aspirin- induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2016-12-15

    Aspirin, one of the widely used non-steroidal anti-inflammatory drugs, is the most highly consumed pharmaceutical product in the world. However, it has several side effects in cells. This study was designed to investigate the antioxidative activity and cytoprotective effects of essential oil of Citrus limon (EOC) extracted from leaves against aspirin-induced damages in the rat small intestine epithelial cells (IEC-6). Biochemical indicators were used to assess cytotoxicity and oxidative damages caused by aspirin treatment on IEC-6. Our results showed that the chemical characterization of EOC identified twenty five compounds representing 98.19% of the total oil. The major compounds from this oil were: z-citral (53.21%), neryl acetate (13.06%), geranyl acetate (10.33%) and limonene (4.23%). Aspirin induced a decrease in cell viability as well as an increase in superoxide dismutase (SOD) and catalase (CAT) activities. Contrariwise, the co-exposure of cells to aspirin and EOC alleviated every above syndrome by an increased in cell survival and decreased in SOD and CAT activities. In conclusion, the essential oil of Citrus limon has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  6. Prefoldin Protects Neuronal Cells from Polyglutamine Toxicity by Preventing Aggregation Formation*

    Science.gov (United States)

    Tashiro, Erika; Zako, Tamotsu; Muto, Hideki; Itoo, Yoshinori; Sörgjerd, Karin; Terada, Naofumi; Abe, Akira; Miyazawa, Makoto; Kitamura, Akira; Kitaura, Hirotake; Kubota, Hiroshi; Maeda, Mizuo; Momoi, Takashi; Iguchi-Ariga, Sanae M. M.; Kinjo, Masataka; Ariga, Hiroyoshi

    2013-01-01

    Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells. PMID:23720755

  7. A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells

    Science.gov (United States)

    Noble, Philip W.; Young, Melissa R.; Bernatsky, Sasha; Weisbart, Richard H.; Hansen, James E.

    2014-01-01

    Cancer cells with defects in DNA repair are highly susceptible to DNA-damaging agents, but delivery of therapeutic agents into cell nuclei can be challenging. A subset of lupus autoantibodies is associated with nucleolytic activity, and some of these antibodies are capable of nuclear penetration. We hypothesized that such antibodies might have potential as therapeutic agents targeted towards DNA repair-deficient malignancies. We identified the lupus autoantibody 5C6 as a cell-penetrating nucleolytic antibody and found that 5C6 has a differential effect on a matched pair of BRCA2-proficient and deficient DLD1 colon cancer cells. 5C6 selectively induced γH2AX in, and suppressed the growth of, the BRCA2-deficient cells. These findings demonstrate the potential utility of 5C6 in targeted therapy for DNA repair-deficient malignancies and strengthen the rationale for studies of additional lupus autoantibodies in order to identify the best candidates for development as therapeutic agents. In addition, the toxic effect of 5C6 on BRCA2-deficient cells provides further support for the hypothesis that some lupus autoantibodies contribute to the lower risk of specific cancers associated with systemic lupus erythematosus. PMID:25091037

  8. Expression and significance of clusterin in Anip973/NVB cell lines

    Directory of Open Access Journals (Sweden)

    Wei LIU

    2008-10-01

    Full Text Available Background and objective To detect clusterin expression in Anip973/Navelbine (Anip973/NVB and wild type Anip973, the last one as a control, so as to conform that clusterin be association with the resistance to NVB of NSCLC. We detect the expression of clusterin, p53 and Bax in normal lung tissues and cancer tissues so that toinvestigate its relationship with lung cancer formation and development. Methods Western blot was used to compare thedifferences in protein levels of clusterin in Anip973/NVB and wild type Anip973 cell lines; Flow cytometry was used to detect the clusterin positive rate, to analyze the relationship between clusterin and cell cycle, p53 or Bax. Results The expression levels of clusterin and p53 in non-small cell lung cancer were significantly higher in Anip973/NVB, than wild type Anip973. It indicated that clusterin might be associated with resistance to NVB in NSCLC. As to drug resistant lung cancer cell lines, Anip973/NVB was more cells in G0-G1 stage while less cells in S stage or G2-M stage than non-resistant cell line. Conclusion The expression levels of clusterin were higher in drug-resistant NSCLC cell lines indicating that clusterin be associated with resistance to NVB in NSCLC.

  9. Hyperspectral microscopy for characterization of gold nanoparticles in biological media and cells for toxicity assessment.

    Science.gov (United States)

    Grabinski, Christin; Schlager, John; Hussain, Saber

    2013-01-01

    Nanoparticles (NPs) are being implemented in a wide range of applications, and it is critical to proactively investigate their toxicity. Due to the extensive range of NPs being produced, in vitro studies are a valuable approach for toxicity screening. Key information required to support in vitro toxicity assessments include NP stability in biologically relevant media and fate once exposed to cells. Hyperspectral microscopy is a sensitive, real-time technique that combines the use of microscopy and spectroscopy for the measurement of the reflectance spectrum at individual pixels in a micrograph. This method has been used extensively for molecular imaging with plasmonic NPs as contrast agents (Aaron et al., Opt Express 16:2153-2167, 2008; Kumar et al., Nano Lett 7:1338-1343, 2007; Wax and Sokolov, Laser Photon Rev 3:146-158, 2009; Curry et al., Opt Express 14:6535-6542, 2006; Curry et al., J Biomed Opt 13:014022, 2008; Cognet et al., Proc Natl Acad Sci U S A 100:11350-11355, 2003; Sokolov et al., Cancer Res 63:1999-2004, 2003; Sönnichsen et al., Nat Biotechnol 23:741-745, 2005; Nusz et al., Anal Chem 80:984-989, 2008) and/or sensors (Nusz et al., Anal Chem 80:984-989, 2008; Ungureanu et al., Sens Actuators B 150:529-536, 2010; McFarland and Van Duyne, Nano Lett 3:1057-1062, 2003; Galush et al., Nano Lett 9:2077-2082, 2009; El-Sayed et al., Nano Lett 5:829-834, 2005). Here we describe an approach for using hyperspectral microscopy to characterize the agglomeration and stability of plasmonic NPs in biological media and their interactions with cells.

  10. PRSS8 methylation and its significance in esophageal squamous cell carcinoma

    Science.gov (United States)

    Bao, Yonghua; Wang, Qian; Guo, Yongchen; Chen, Zhiguo; Li, Kai; Yang, Yiqiong; Zhang, Huijuan; Dong, Huali; Shen, Kui; Yang, Wancai

    2016-01-01

    Esophageal cancer is one of the most common cancers worldwide, and the incidence and mortality is increasing rapidly in recent years in China, but the underlying mechanisms are largely unclear. Herein we found that the expression of PRSS8, a serine protease prostasin, is significantly decreased in esophageal squamous cell carcinomas (ESCC) at mRNA and protein levels. The reduction of PRSS8 was well correlated with poor differentiation and shorter survival time. Interestingly, ESCC stromal expression of PRSS8 was significantly correlated with stromal lymphocyte infiltration and cancer progression. Methylation specific PCR showed that PRSS8 was hypermethylated in ESCC tissues and ESCC cell lines, which was linked to the downregulation of PRSS8 expression and decreased activities of PRSS8 promoter. De-methylation agent decitabine was able to restore PRSS8 expression, leading to the inhibition of cancer cell proliferation, motility, migration and cell cycle arrest. However, the restored PRSS8 and its tumor inhibition could be reversed by small interfering RNA targeting PRSS8. Mechanistic study showed that tumor inhibition of PRSS8 may be associated with proliferation- and epithelial mesenchymal transition - related proteins in ESCC cells. In conclusion, our finding showed that PRSS8 methylation and its stromal expression had important clinical significance in ESCC. PMID:27081034

  11. Tributyltin chloride induced testicular toxicity by JNK and p38 activation, redox imbalance and cell death in sertoli-germ cell co-culture.

    Science.gov (United States)

    Mitra, Sumonto; Srivastava, Ankit; Khandelwal, Shashi

    2013-12-06

    The widespread use of tributyltin (TBT) as biocides in antifouling paints and agricultural chemicals has led to environmental and marine pollution. Human exposure occurs mainly through TBT contaminated seafood and drinking water. It is a well known endocrine disruptor in mammals, but its molecular mechanism in testicular damage is largely unexplored. This study was therefore, designed to ascertain effects of tributyltin chloride (TBTC) on sertoli-germ cell co-culture in ex-vivo and in the testicular tissue in-vivo conditions. An initial Ca(2+) rise followed by ROS generation and glutathione depletion resulted in oxidative damage and cell death. We observed p38 and JNK phosphorylation, stress proteins (Nrf2, MT and GST) induction and mitochondrial depolarization leading to caspase-3 activation. Prevention of TBTC reduced cell survival and cell death by Ca(2+) inhibitors and free radical scavengers specify definitive role of Ca(2+) and ROS. Sertoli cells were found to be more severely affected which in turn can hamper germ cells functionality. TBTC exposure in-vivo resulted in increased tin content in the testis with enhanced Evans blue leakage into the testicular tissue indicating blood-testis barrier disruption. Tesmin levels were significantly diminished and histopathological studies revealed marked tissue damage. Our data collectively indicates the toxic manifestations of TBTC on the male reproductive system and the mechanisms involved.

  12. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells

    Directory of Open Access Journals (Sweden)

    Mura S

    2011-10-01

    Full Text Available Simona Mura1,2, Herve Hillaireau1,2, Julien Nicolas1,2, Benjamin Le Droumaguet1,2, Claire Gueutin1,2, Sandrine Zanna3, Nicolas Tsapis1,2, Elias Fattal1,2 1Univ Paris-Sud, UMR 8612, Châtenay Malabry, F-92296; 2CNRS, Châtenay Malabry, F-92296; 3Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045, Ecole Nationale Superiore de Chimie de Paris, France Background: Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide (PLGA nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods: Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol, respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results: Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion: These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. Keywords: nanoparticles, PLGA, surface properties, Calu-3, toxicity, inflammation

  13. Experimental study on central nervous toxicity of 'misonidazole' a hypoxic cell radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, I. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1981-11-01

    'Misonidazole', a radiosensitizer for hypoxic cells is expected to be applied to the treatment of malignant tumors, but its side effect becomes a subject of study, because its effective dose is close to its lethal dose. The author performed experiments with mice on the central nervous toxicity, which is the most lethal of the side effects of Misonidazole, with the following results; 1. The abrupt death seen after the administration of a large dose of Misonidazole was attributable to the central nervous toxicity. LD/sub 50/ for d.d. strain mouse was 1.55 mg per body weight g. 2. The used mice always developed convulsion before death. But the administration of anticonvulsant failed to free them from death. 3. Autopsy findings were such abnormal ones as the degeneration and exfoliation of nerve cells and diapedetic focus. After sacrifice, however, no findings indicative of disturbance of central nerve could be detected. 4. Misonidazole, even in a small divided dose, left intracerebral retention, though slightly, indicating that its accumulation in the brain would be increased with increase in the dose. 5. The disturbance of central nerve was not exacerbated by the whole brain irradiation with Misonidazole.

  14. Protective role of metabolism by intestinal microflora in butyl paraben-induced toxicity in HepG2 cell cultures.

    Science.gov (United States)

    Khanal, Tilak; Kim, Hyung Gyun; Jin, Sun Woo; Shim, Eol; Han, Hwa Jeong; Noh, Keumhan; Park, Sunkyoung; Lee, Dae Hun; Kang, Wonku; Yeo, Hee Kyung; Kim, Dong Hyun; Jeong, Tae Cheon; Jeong, Hye Gwang

    2012-09-03

    Parabens are alkyl esters of p-hydroxybenzoic acid (BA), including methyl paraben (MP), ethyl paraben, propyl paraben (PP), and butyl paraben (BP). In the present study, possible role of metabolism by fecalase in BP-induced cytotoxicity was investigated in HepG2 cell cultures. As an intestinal bacterial metabolic system, a human fecalase prepared from human fecal specimen was employed. Among the parabens tested, cytotoxicity of BP was most severe. BA, the de-esterified metabolite, did not induce cytotoxicity when compared to other parabens. When BP was incubated with fecalase, it rapidly disappeared, in association with reduced cytotoxicity in HepG2 cells. In addition, BP incubated with fecalase significantly caused an increase in Bcl-2 expression together with a decrease in Bax expression and cleaved caspase-3. Moreover, anti-apoptotic effect by the incubation of BP with fecalase was also confirmed by the TUNEL assay. Furthermore, BP induced a sustained activation of the phosphorylation of JNK only when it was treated alone. Meanwhile, BP-induced cell death was reversed by the pre-incubation of BP with either fecalase or SP600125. Taken together, the findings suggested that metabolism of BP by human fecalase might have protective effects against BP-induced toxicity in HepG2 cells.

  15. Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts.

    Science.gov (United States)

    Sucontphunt, Apirada; De-Eknamkul, Wanchai; Nimmannit, Ubonthip; Dan Dimitrijevich, S; Gracy, Robert W

    2011-01-01

    Neuronal degeneration is known to be due to oxidative stress acting through a pathway involving the excessive activation of glutamate receptors. We studied the neuroprotection potential of an ethyl acetate-ethanol extract of Pueraria mirifica (P. candollei var. mirifica) root (PM extract). PM extract was evaluated for its antioxidant and neuroprotective activities against glutamate toxicity in mouse hippocampal HT22 neuronal cells. The extract at concentrations of 10 and 50 μg/ml exhibited considerable antioxidant activity with significant neuroprotection, based on the microscopic observations of cell morphology and the determination of cell viability and cell number. Studies of the possible mechanisms of action indicated that the neuroprotection exerted by PM extract was related to its scavenging activity against H(2)O(2) and related reactive oxygen species. High-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) analyses showed that the extract contained daidzein and genistein as identified constituents, as well as additional components with antioxidant activity. While daidzein and genistein individually and in combination were observed not to be neuroprotective, we propose that the antioxidant and neuroprotective activities of PM extract are derived from the combined properties of its constituents.

  16. Toxic effects of Litsea elliptica Blume essential oil on red blood cells of Sprague-Dawley rats

    Institute of Scientific and Technical Information of China (English)

    Izatus Shima TAIB; Siti Balkis BUDIN; Seri Maseran SITI NOR AIN; Jamaludin MOHAMED; Santhana Raj LOUIS; Srijit DAS; Sulaiman SALLEHUDIN; Nor Fadilah RAJAB; Othman HIDAYATULFATHI

    2009-01-01

    Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity, che-mopreventative and insecticidal properties. In this study, the toxic effects of L. elliptica essential oil against Sprague-Dawley rat's red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125, 250, and 500 mg/(kg body weight), respectively, and the control group received distilled water. Full blood count, RBC osmotic fragility, RBC morphological changes, and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb), mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage.

  17. Optimum dose of 2-hydroxyethyl methacrylate based bonding material on pulp cells toxicity

    Directory of Open Access Journals (Sweden)

    Widya Saraswati

    2010-06-01

    Full Text Available Background: 2-hydroxyethyl methacrylate (HEMA, one type of resins commonly used as bonding base material, is commonly used due to its advantageous chemical characteristics. Several preliminary studies indicated that resin is a material capable to induce damage in dentin-pulp complex. It is necessary to perform further investigation related with its biological safety for hard and soft tissues in oral cavity. Purpose: The author performed an in vitro test to find optimum dose of HEMA resin monomer that may induce toxicity in pulp fibroblast cells. Method: The method of this study was experimental laboratory with post test control group design. Primary cell culture was made from dental pulp fibroblast cells, and was given with HEMA resin bonding material in various concentrations (5 µg/ml–2560 µg/ml, and then subjected to toxicity test (MTT assay. Result: HEMA optimum concentration was 320 µg/ml to induce cytotoxicity in pulp fibroblast cells. Conclusion: The used of HEMA - base bonding material with the concentration of 200 µg/ml may induced pulp fibroblas cell toxicity.Latar belakang: Keberhasilan suatu bahan bonding secara klinis tergantung pada kandungan fisik, kimia dan keamanan secara biologis. HEMA (2-hydroxyethyl methacrylate adalah bahan resin yang paling banyak digunakan karena memiliki sifat fisik-kimia yang baik. Beberapa penelitian pendahuluan menyebutkan bahwa resin merupakan bahan yang mampu menyebabkan gangguan pada kompleks dentin pulpa sehingga perlu dilakukan penelitian lebih lanjut menyangkut segi keamanan secara biologis bagi jaringan keras dan jaringan lunak di rongga mulut. Tujuan: Penelitian ini akan menguji secara in vitro (pada kultur sel fibroblas pulpa gigi untuk mengetahui dosis optimal monomer resin HEMA yang dapat menyebabkan toksisitas pada sel fibroblas pulpa. Metode: Metode penelitian ini adalah eksperimental laboratoris dengan rancangan penelitian post test control group design. Kultur sel primer dibuat dari

  18. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress

    Science.gov (United States)

    Mittal, Sandeep; Kumar, Veeresh; Dhiman, Nitesh; Chauhan, Lalit Kumar Singh; Pasricha, Renu; Pandey, Alok Kumar

    2016-12-01

    Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications.

  19. The predictive significance of CD20 expression in B-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Horvat Mateja

    2011-04-01

    Full Text Available Abstract Background In our recent study, we determined the cut-off value of CD20 expression at the level of 25 000 molecules of equivalent soluble fluorochrome (MESF to be the predictor of response to rituximab containing treatment in patients with B-cell lymphomas. In 17.5% of patients, who had the level of CD20 expression below the cut-off value, the response to rituximab containing treatment was significantly worse than in the rest of the patients with the level of CD20 expression above the cut-off value. The proportion of patients with low CD20 expression who might not benefit from rituximab containing treatment was not necessarily representative. Therefore the aim of this study was to quantify the CD20 expression in a larger series of patients with B-cell lymphomas which might allow us to determine more reliably the proportion of patients with the CD20 expression below the cut-off. Methods Cytological samples of 64 diffuse large B-cell lymphomas (DLBCL, 56 follicular lymphomas (FL, 31 chronic lymphocytic leukemias (CLL, 34 mantle cell lymphomas (MCL, 18 marginal zone lymphomas (MZL and 15 B-cell lymphomas unclassified were analyzed for CD20 expression by quantitative four-color flow cytometric measurements using FACSCalibur flow cytometer (BD Biosciences. Results The range of CD20 expression in different B-cell lymphomas was very broad, varying from 2 737 to 115 623 MESF in CLL and 3 549 to 679 577 MESF in DLBCL. However, when we compared the CD20 expression in the groups of patients with DLBCL, FL, MCL, MZL, CLL and B-cell lymphomas unclassified, it was found to be significantly lower (p = 0.002 only in CLL but did not significantly differ in other lymphoma types (p = NS. Fifty-three out of 218 (24.3% patients with B-cell lymphomas had the CD20 expression below the cut-off value. Conclusions The CD20 expression in CLL is significantly lower than in most histological types of mature B-cell lymphomas in which it appears to be comparable

  20. Potato crop as a source of emetic Bacillus cereus and cereulide-induced mammalian cell toxicity.

    Science.gov (United States)

    Hoornstra, Douwe; Andersson, Maria A; Teplova, Vera V; Mikkola, Raimo; Uotila, Liisa M; Andersson, Leif C; Roivainen, Merja; Gahmberg, Carl G; Salkinoja-Salonen, Mirja S

    2013-06-01

    Bacillus cereus, aseptically isolated from potato tubers, were screened for cereulide production and for toxicity on human and other mammalian cells. The cereulide-producing isolates grew slowly, the colonies remained small (~1 mm), tested negative for starch hydrolysis, and varied in productivity from 1 to 100 ng of cereulide mg (wet weight)(-1) (~0.01 to 1 ng per 10(5) CFU). By DNA-fingerprint analysis, the isolates matched B. cereus F5881/94, connected to human food-borne illness, but were distinct from cereulide-producing endophytes of spruce tree (Picea abies). Exposure to cell extracts (1 to 10 μg of bacterial biomass ml(-1)) and to purified cereulide (0.4 to 7 ng ml(-1)) from the potato isolates caused mitochondrial depolarization (loss of ΔΨm) in human peripheral blood mononuclear cells (PBMC) and keratinocytes (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine fibroblasts (L-929), and pancreatic insulin-producing cells (MIN-6). Cereulide (10 to 20 ng ml(-1)) exposed pancreatic islets (MIN-6) disintegrated into small pyknotic cells, followed by necrotic death. Necrotic death in other test cells was observed only after a 2-log-higher exposure. Exposure to 30 to 60 ng of cereulide ml(-1) induced K(+) translocation in intact, live PBMC, keratinocytes, and sperm cells within seconds of exposure, depleting 2 to 10% of the cellular K(+) stores within 10 min. The ability of cereulide to transfer K(+) ions across biological membranes may benefit the producer bacterium in K(+)-deficient environments such as extracellular spaces inside plant tissue but is a pathogenic trait when in contact with mammalian cells.

  1. MBL2 polymorphisms in women with atypical squamous cells of undetermined significance.

    Science.gov (United States)

    Zupin, Luisa; Polesello, Vania; Casalicchio, Giorgia; Freato, Nadia; Maestri, Iva; Comar, Manola; Crovella, Sergio; Segat, Ludovica

    2015-05-01

    Infection with high risk Human papillomavirus (HPV) is the main known cause of cervical cancer. HPV induces different grades of lesions: among them, Atypical squamous cells of undetermined significance are abnormal lesions that could evolve in pre-cancer lesions or spontaneously regress. The mannose binding lectin (MBL) is an innate immunity serum protein also found in cervico-vaginal mucosa, whose expression is known to be affected by polymorphisms in exon 1 and promoter of the MBL2 gene. In the present study the possible association between MBL2 functional polymorphisms and susceptibility to develop atypical squamous cells of undetermined significance was investigated in a group of women from North-East of Italy, stratified for HPV infection status. The MBL2 D and O alleles and the deficient producer combined genotypes, responsible for low MBL production, were more represented among atypical squamous cells of undetermined significance positive women than healthy controls and the results were confirmed when only HPV negative samples were considered. These results suggest a possible involvement of MBL2 functional polymorphisms in atypical squamous cells of undetermined significance susceptibility.

  2. Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance.

    Directory of Open Access Journals (Sweden)

    Hai-long Wang

    Full Text Available Prostate-specific membrane antigen (PSMA has been found in tumor neovasculature endothelial cells (NECs of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC and small cell lung cancer (SCLC tissues and its relationship with clinicopathology were investigated in the current study.Immunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses.The percentages of NSCLC patients who had PSMA (+ tumor cells and PSMA (+ NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+ tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05. A significant difference was observed in the percentage of NSCLC patients with PMSA (+ NECs and stage I or II cancer (92.98% and those patients with stage III or IV cancer (76.77%. In the SCLC tissues, NEC PSMA expression (70.00% did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+ NECs in SCLC patients and the observed clinicopathological parameters.PSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+ tumor cells and PSMA (+ NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.

  3. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Science.gov (United States)

    McGovern, Gillian; Jeffrey, Martin

    2013-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are associated with accumulations of disease specific PrP (PrP(d)) in the central nervous system (CNS) and often the lymphoreticular system (LRS). Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d) in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d) were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d) accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d) from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d) accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d) is at the level of plasma membranes. However, the precise nature of PrP(d)-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d) with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  4. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are associated with accumulations of disease specific PrP (PrP(d in the central nervous system (CNS and often the lymphoreticular system (LRS. Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d is at the level of plasma membranes. However, the precise nature of PrP(d-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  5. Effect of fexofenadine,a mast cell blocker,in infertile men with significantly increased testicular mast cells

    Institute of Scientific and Technical Information of China (English)

    CayaS; ApaDD

    2002-01-01

    Aim:To investigate the role of fexofenadine,a mast cell blocker,on semen quality in the treatment of infertile men.Methods:The study included 16 Turkish idiopathic infertile men with azoospermia or oligozoospermia who underwent testicular biopsy to examine maxt cells containing tryptase.In all patients,a complete metical history,clinical examination,semen analysis and serum hormone assay were carried out.The biopsy specimens were immunohistochemically stained with antihuman tryptase for mast cells.The number of total mast cells per seminiferous tubule was calculated and recorded as mast cell index.The patients were divided into two groups according to their mast cell index:the higher (≥1,n=9) and the lower (<1,n=7) index groups.Fexofenadine was administered orally at a dose of 180mg/day for 4 to 9 months.Pre-and post-treatment semen parameters,including total motile sperm counts(TMC) were recorded and compared.spontaneous pregnancies after the treatment were registered.Results:There was no statistically significant difference in TMC between the pre-treatment and post-treatment values in patients with higher and lower mast cell index(P≥0.05).In both groups,nobody had a significant response to the treatment and there was no spontaneous pregnancy after the treatment.Conclusion:Althought testicular dysfunction is closely associated with increased number of testicular mast cells,fexofenadine,a mast cell blocker,appears not having any benefit in the treatment of Turkish infertile men with a significant increase in testicular mast cells.

  6. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  7. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  8. Clinical significance of occult metastatic cells in bone marrow of breast cancer patients.

    Science.gov (United States)

    Braun, S; Pantel, K

    2001-01-01

    The early and clinically occult spread of viable tumor cells to the organism is increasingly considered a hallmark in cancer progression, as emerging data suggest that these cells are precursors of subsequent distant relapse. Using monoclonal antibodies to epithelial cytokeratins or tumor-associated cell membrane glycoproteins, individual carcinoma cells can be detected on cytologic bone marrow preparations at frequencies of 10(-5) to 10(-6). Prospective clinical studies have shown that the presence of these immunostained cells in bone marrow, as a frequent site of overt metastases, is prognostically relevant with regard to relapse-free and overall survival. This screening approach may be, therefore, used to improve tumor staging and guide the stratification of patients for adjuvant therapy in clinical trials. Another promising application is monitoring the response of micrometastatic cells to adjuvant therapies, which, at present, can only be assessed retrospectively after an extended period of clinical follow-up. The present review summarizes the current data on the clinical significance of occult metastatic breast cancer cells in bone marrow.

  9. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Science.gov (United States)

    Che, Keying; Zhao, Yang; Qu, Xiao; Pang, Zhaofei; Ni, Yang; Zhang, Tiehong; Du, Jiajun; Shen, Hongchang

    2017-01-01

    Purpose Gastric carcinoma (GC) is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. Materials and methods Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS) was statistically analyzed. Results Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145) of them. Single cell invasion and large cell invasion were observed in 62.8% (186) and 16.9% (50) of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, Ptumor budding and single cell invasion were observed to be independent risk factors for gastric adenocarcinoma (PTumor budding and single cell invasion in gastric adenocarcinoma are associated with an unfavorable prognosis.

  10. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    Science.gov (United States)

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (pcells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (pcells that received only Control astro-CM (GPX⁺/GDNF⁻) (pcell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (pcells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both enhanced cell protection and diminished levels of activated caspase-3. Our data collectively indicate that GDNF is capable of inducing anti-oxidant activities of intra-cellular GPX-1 and that growth-promoting potential of GDNF and anti-oxidant properties of GPX-1 can, in concert, maximize survival of dopaminergic neurons.

  11. Conductive polymer as a controlled microenvironment for the potentiometric high-throughput evaluation of ionic liquid cell toxicity.

    Science.gov (United States)

    Qiu, Weilian; Zeng, Xiangqun

    2008-09-01

    This paper presents both biological and potentiometric evaluations of the cell toxicity of a widely used ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF(4)), to Chinese hamster lung fibroblast cells (V79 cell line). The innovative potentiometric study takes advantage of the unique properties of conductive polymer polypyrrole (PPY) for the potentiometric evaluation of cell toxicity of [bmim]BF(4) to the V79 cells in a real-time, noninvasive and high-throughput manner. The conductive polymer PPY provides a controlled microenvironment that allows the quantitative release of the anions of the ionic liquids into the cells being monitored in real time and noninvasively. Parallel biological assay results showed that V79 cells exposed to [bmim]BF(4) usually grew in clusters, and that many small vacuoles could be seen in the cytoplasm. At the 24th hour after the V79 cells had been exposed to the ionic liquid (IL), the half inhibition concentration (EC(50)) of [bmim]BF(4) was around 5 mM. From a cell cycle study performed using a FACScan flow cytometer, it was found that the V79 cells could be partially locked to the G(1) phase by [bmim]BF(4), which extended the doubling time for cell growth. Comparing with the EC(50) values of cadmium chloride and mercury chloride, [bmim]BF(4) is not very toxic, but it may have a long-term toxic effect on mammalian cells. Compared to traditional biological in vitro assays, the use of a conductive polymer substrate in combination with a potentiometric sensor array is much more sensitive, faster, and enables a simpler evaluation of chemical cell toxicity. Additionally, it simplifies the study of the reversibility of cell toxicity, i.e., cell recovery, because there is no need to refresh the culture medium since a finite amount of chemicals can be doped and released. We found that the cytotoxicity of [bmim]BF(4) at a concentration of less than 6 mM was reversible for the V79 cell line, because cell morphology and

  12. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Science.gov (United States)

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  13. The toxicity of silver and silica nanoparticles in comparable human and mouse cell lines

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Beer, Christiane; Sutherland, Duncan S

    The toxicity of silica (SiO2) and PVP-coated silver (Ag) nanoparticles (NPs) was investigated in two pairs of human or mouse cell lines originating from lung epithelium (A549 and ASB-XIV) and macrophages (THP-1 and J744A.1). Both NPs were characterized in H2O and cell media and demonstrated...... the question whether increased ROS were caused by the NPs or as a consequence of cell death. Induction of ROS was also assessed by the comet assay and modifications of DNA. In both human and murine epithelial lung cells, the EC50 NP concentrations from the WST-8 assay correlated well with results from...... the annexin V/PI assay. Death at EC50 in the lung cells was equally due to apoptosis and necrosis after exposure to either NP. However, large discrepancies were found when comparing EC50 values from the WST-8 assay in macrophages to results from the Annexin V/PI assay. The WST-8 assay appeared to overestimate...

  14. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  15. Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell

    Science.gov (United States)

    Wang, Lianlian; Luo, Xiaofang; Li, Cong; Huang, Yubing; Xu, Ping; Lloyd-Davies, Laetitia H.; Delplancke, Thibaut; Peng, Chuan; Qi, Hongbo; Baker, Philip

    2017-01-01

    Breast cancer is characterized by overexpression of superoxide dismutase (SOD) and downregulation of catalase and more resistance to hydrogen peroxide (H2O2) than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc) is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA) enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.

  16. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.

  17. The Significance Application of Indigenous Phytohemagglutinin (PHA) Mitogen on Metaphase and Cell Culture Procedure.

    Science.gov (United States)

    Movafagh, Abolfazl; Heydary, Hassan; Mortazavi-Tabatabaei, Seyed Abdolreza; Azargashb, Eznollah

    2011-01-01

    Phytohemagglutinin (PHA) is a lectin, obtained from the red kidney bean that binds to the membranes of T-cells and stimulates metabolic activity, cell division, etc. The object of this research was the comparison between self made PHA (Indigenous) and imported commercial one, following conventional and High Resolution Cell Synchronization technique (HRCS) .From each blood sample of healthy individual donor replicate cell culture with two different PHA (self-made and commercial imported) with same concentration were cultured simultaneously. For culture cells, 3-5 × 106(6) cells were cultured in 4 mL medium( RPMI 1640 supplemented with 15 per cent heat inactivated fetal bovine serum, 0.1 mL Phytohemagglutinin was added and kept at 37°C in an atmosphere containing 5% CO2. The processing of mitotic division from 48 h and 72 h cultures was performed according to the standard and High Resolution Cell Synchronization technique. Cytogenetic studies were performed in 100 normal healthy blood donor individuals. Statistical analysis was performed by SPSS (version 16, Inc.USA) software.Our results indicate that the preparation of fresh Phytohemagglutinin at the time of cell division and cell culture procedure reveals satisfactory score. The overall frequency of mitotic index in our study was better when compared with commercial imported Phytohemagglutinin (p < 0.001).The significant differences in the results may be due to fresh preparation. However, cost effective, easy and nearest approach of this indigenous product and high demand for this product among health care services can be considered.

  18. The Expression and Significance of RKIP in Lung Squamous Cell Carcinoma Tissues

    Directory of Open Access Journals (Sweden)

    Haiyuan XU

    2011-03-01

    Full Text Available Background and objective Raf kinase inhibitory protein (RKIP belongs to the phosphatidylethanolamine binding protein (PEBP family. RKIP is an endogenous inhibitor of the Raf-1-MEK1/2-ERK1/2 signaling pathway, NFkappaB signaling pathway and G protein coupled receptors signaling pathway. The aim of this study is to explore the expression of RKIP in lung squamous cell carcinoma, and the relationship between RKIP expression and clinical pathology of lung squamous cell carcinoma. Methods The expression of RKIP mRNA was detected in 56 lung squamous cell carcinoma tissues and adjacent cancer tissues by RT-PCR. The expression level of RKIP protein was detected by Western blot. The positive rates of RKIP expression in cancer tissues and adjacent cancer tissues were analyzed. Results RKIP mRNA positive expression rate in cancer tissues was significantly lower than that in adjacent cancer tissues (P < 0.05. The positive rate of RKIP mRNA expression in the cancer tissues with lymph node metastasis was significantly lower than that without lymph node metastasis (P < 0.05. RKIP mRNA expression has no remarkable correlation with age, sex, tumor differentiation and size (P > 0.05. RKIP protein expression in the cancer tissues was significantly lower than that in adjacent cancer tissues (P < 0.05. Conclusion The deficiency of RKIP expression is positively correlated with carcinogenesis and invasion metastasis of lung squamous cell carcinoma.

  19. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  20. A novel reagentless glutamate microband biosensor for real-time cell toxicity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Pemberton, R.M. [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom); Fielden, P.R. [Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB (United Kingdom); Hart, J.P., E-mail: john.hart@uwe.ac.uk [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom)

    2016-08-24

    A reagentless glutamate biosensor was applied to the determination of glutamate released from liver hepatocellular carcinoma cells (HepG2) in response to toxic challenge from various concentrations of paracetamol. A screen printed carbon electrode (SPCE) containing the electrocatalyst Meldola's Blue (MB-SPCE) served as the electron mediator for the oxidation of NADH. A mixture of the enzyme glutamate dehydrogenase (GLDH), cofactor nicotinamide adenine dinucleotide (NAD{sup +}) and the biopolymer chitosan (CHIT) were drop-coated onto the surface of the transducer (MB-SPCE) in a simple one step fabrication process. The reagentless biosensor was used with amperometry in stirred solution at an applied potential of +0.1 V (vs. Ag/AgCl). All experiments were carried out at the following conditions: pH 7, temperature 37 °C, atmosphere 5% CO{sub 2}. The linear range of the device was found to be 25–125 μM in phosphate buffer (75 mM, containing 0.05 M NaCl) and 25–150 μM in cell culture medium. The limits of detection (LOD) were found to be 1.2 μM and 4.2 μM based on three times signal to noise, using PBS and culture medium respectively. The sensitivity was calculated to be 106 nA μM{sup −1} cm{sup −2} and 210 nA μM{sup −1} cm{sup −2} in PBS and cell medium respectively. The response time was ∼60 s in an agitated solution. HepG2 cells were exposed to various concentrations of paracetamol (1 mM, 5 mM and 10 mM) in order to investigate the drug-induced release of glutamate into the culture medium in real time. Two toxicity studies were investigated using different methods of exposure and analysis. The first method consisted of a single measurement of the glutamate concentration, using the method of standard addition, after 24 h incubation. The concentrations of glutamate were found to be 52 μM, 93 μM and 177 μM, released on exposure to 1 mM, 5 mM and 10 mM paracetamol respectively. The second method involved the

  1. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    Science.gov (United States)

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups NDandante or amine NDamine, carboxyl NDvox or hydroxyl groups NDH and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. NDandante and NDH showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on NDandante and NDH and reduced on NDamine and NDvox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions.

  2. [Clinical significance of cyclin Dl expression in non-small cell lung cancer].

    Science.gov (United States)

    Dworakowska, Dorota

    2005-01-01

    Lung cancer remains interdisciplinary problem. The genetic alterations in non-small cell lung cancer (NSCLC) are related to tumor suppressor genes and proto-oncogenes. CCND1 gene, coding cyclin DI, in correlation with pRb is involved in regulation of cell cycle arrest in G1 phase. Amplification of CCND1 gene and cyclin D1 over-expression was found in several cancers including head and neck cancers or colorectal cancer, where these alterations were correlated with worse prognosis. The literature addressing the clinical significance of CCND1 gene amplification/expression in NSCLC remains poor and prognostic value of these alterations in that cancer is still controversial.

  3. Toxic Markers of Matrine Determined Using 1H-NMR-Based Metabolomics in Cultured Cells In Vitro and Rats In Vivo

    Directory of Open Access Journals (Sweden)

    Zhonghuang Li

    2015-01-01

    Full Text Available Matrine is one of the main bioactive alkaloids of Sophora flavescens Aiton, which has been widely used to treat various diseases in China. These diseases include viral hepatitis, liver fibrosis, cardiac arrhythmia, skin diseases, and tumors. However, matrine is also the main toxic compound of this herb, and the available biomarkers are not reliable in detecting or quantifying matrine risk. Metabolomics is a powerful tool used to identify early toxicity biomarkers that are specific indicators of damage to biosystems. This study aimed to find the potential biomarkers of the matrine-induced toxic effects in rats and HepG2 cells. The toxicological effects of rats induced by matrine could be derived from the elevated taurine and trimethylamine N-oxide levels and the depletion in hippurate and tricarboxylic acid cycle intermediates, such as 2-oxoglutarate, citrate, and succinate in the urine. Cell metabolomics revealed that the levels of alanine, choline, glutathione, lactate, phosphocholine, and cholesterol showed dose-dependent decreases, whereas the levels of taurine, fatty acid, and unsaturated fatty acid showed dose-dependent increases. Overall, a significant perturbation of metabolites in response to high dose of matrine was observed both in vivo and in vitro, and the selected metabolites particularly represent an attractive marker for matrine-induced toxicity.

  4. Toxic Markers of Matrine Determined Using (1) H-NMR-Based Metabolomics in Cultured Cells In Vitro and Rats In Vivo.

    Science.gov (United States)

    Li, Zhonghuang; Zheng, Liang; Shi, Jian; Zhang, Guiyu; Lu, Linlin; Zhu, Lijun; Zhang, Jiajie; Liu, Zhongqiu

    2015-01-01

    Matrine is one of the main bioactive alkaloids of Sophora flavescens Aiton, which has been widely used to treat various diseases in China. These diseases include viral hepatitis, liver fibrosis, cardiac arrhythmia, skin diseases, and tumors. However, matrine is also the main toxic compound of this herb, and the available biomarkers are not reliable in detecting or quantifying matrine risk. Metabolomics is a powerful tool used to identify early toxicity biomarkers that are specific indicators of damage to biosystems. This study aimed to find the potential biomarkers of the matrine-induced toxic effects in rats and HepG2 cells. The toxicological effects of rats induced by matrine could be derived from the elevated taurine and trimethylamine N-oxide levels and the depletion in hippurate and tricarboxylic acid cycle intermediates, such as 2-oxoglutarate, citrate, and succinate in the urine. Cell metabolomics revealed that the levels of alanine, choline, glutathione, lactate, phosphocholine, and cholesterol showed dose-dependent decreases, whereas the levels of taurine, fatty acid, and unsaturated fatty acid showed dose-dependent increases. Overall, a significant perturbation of metabolites in response to high dose of matrine was observed both in vivo and in vitro, and the selected metabolites particularly represent an attractive marker for matrine-induced toxicity.

  5. Optimal initial dose of oral cyclosporine in relation to its toxicities for graft-versus-host disease prophylaxis following reduced-intensity stem cell transplantation in Japanese patients.

    Science.gov (United States)

    Kishi, Y; Murashige, N; Kami, M; Miyakoshi, S; Shibagaki, Y; Hamaki, T; Takaue, Y; Taniguchi, S

    2005-06-01

    Since the introduction of reduced-intensity stem-cell transplantation (RIST), allogeneic stem-cell transplantation has become available for elderly patients. While pharmacokinetics of cyclosporine might differ according to age or other factors, cyclosporine is uniformly started at an oral dose of 6 mg/kg/day. We retrospectively reviewed medical records of 35 patients aged between 32 and 65 (median 52) years who had undergone RIST. Doses of cyclosporine were adjusted to the target blood trough level of 150-250 ng/ml. Cyclosporine dosages were changed in 33 patients (94%). Dose reduction was required in 32 patients because of high blood levels (n=25), renal dysfunction (n=3), hepatic dysfunction (n=2), and hypertension (n=2). Cyclosporine doses were increased in one because of the suboptimal level. The median of the achieved stable doses was 3.1 mg/kg/day (range, 1.0-7.4). Five patients sustained Grade III toxicities according to NCI-CTC version 2.0: renal dysfunction (n=4), hyperbilirubinemia (n=2), and hypertension (n=2). No patients developed grade IV toxicity. There was no statistically significant difference in the frequency and severity of cyclosporine toxicities between patients aged 50 years and above and those below 50 years. The initial oral cyclosporine dose of 6 mg/kg/day was unnecessarily high irrespective of age. The possible overdose of cyclosporine might have aggravated regimen-related toxicities.

  6. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  7. Expression of midkine and its clinical significance in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ying-Jia Ren; Qing-Yun Zhang

    2006-01-01

    AIM: To investigate the expression of midkine in esophageal squamous cell carcinoma (ESCC) and analyze its relationship with clinicopathological features.METHODS: RT-PCR and immunocytochemical staining were used to detect the expression of midkine mRNA and protein in EC109 cells, respectively. Then the expression of midkine in 66 cases of ESCC samples were detected by immunohistochemistry using monoclonal antibodies against human midkine. RESULTS: Midkine was expressed in EC109 cell by RTPCR and immunocytochemistry. The immunoreactivity was detected in 56.1% (37/66) of the ESCC samples.The expression of midkine was found in cytoplasm of tumor cells. Notably, the intensity of midkine was stronger at the area abundant in vessels and the invading border of the tumors. Midkine was more intensely expressed in well differentiated tumors (76.9%)than in moderately and poorly differentiated tumors (43.1% and 41.2%, respectively) (P<0.05). There was no statistically significant correlation between midkine expression and gender, age, clinical stage, lymph node metastasis or survival in ESCC.CONCLUSION: Midkine is overexpressed in ESCC. It may play a role in tumor angiogenesis and invasion.The expression of midkine is correlated with tumor cell differentiation in ESCC. The more poorly tumor cells differentiate, the weaker midkine expresses.

  8. Prognostic significance of CD44s expression in resected non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Ko Yoon

    2011-08-01

    Full Text Available Abstract Background CD44s is a cell adhesion molecule known to mediate cellular adhesion to the extracellular matrix, a prerequisite for tumor cell migration. CD44s plays an important role in invasion and metastasis of various cancers. In the present study, we sought to determine whether CD44s is involved in clinical outcomes of patients with resected non-small cell lung cancer (NSCLC. Methods Using immunohistochemical staining, we investigated CD44s protein expression using tissue array specimens from 159 patients with resected NSCLC (adenocarcinoma (AC; n = 82 and squamous cell carcinoma (SCC; n = 77. Additionally, the immunoreactivity of cyclooxygenase (COX-2 was also studied. The clinicopathological implications of these molecules were analyzed statistically. Results High CD44s expression was detected more frequently in NSCLC patients with SCC (66/72; 91.7% than in those with AC histology (P 0.001. Additionally, high CD44s expression was significant correlated with more advanced regional lymph node metastasis (P = 0.021. In multivariate analysis of survival in NSCLC patients with AC histology, significant predictors were lymph node metastasis status (P P = 0.046, and high CD44s expression (P = 0.014. For NSCLC patients with SCC histology, the significant predictor was a more advanced tumor stage (P = 0.015. No significant association was found between CD44s and clinical outcome (P = 0.311. Conclusions High CD44s expression was a negative prognostic marker with significance in patients with resected NSCLC, particularly those with AC histology, and was independent of tumor stage.

  9. Effects of red wine on ochratoxin A toxicity in intestinal Caco-2/TC7 cells.

    Science.gov (United States)

    Ranaldi, G; Mancini, E; Ferruzza, S; Sambuy, Y; Perozzi, G

    2007-03-01

    Ochratoxin A (OTA) is found in a variety of foods and beverages, including red wine. OTA was reported to be nephrotoxic, immunotoxic, hepatotoxic and a potential carcinogen, with yet uncharacterized mechanisms. Consumption of contaminated wines might contribute up to 13% of OTA daily human intake. Potentially chronic exposure has therefore raised public health concern. OTA toxicity in the presence of de-alcoholated red wine was investigated in human intestinal Caco-2/TC7 cells, differentiated on filter supports, by measuring tight junction (TJ) permeability, morphological alterations of TJ proteins and occurrence of apoptosis. Cells were treated with OTA, in the presence of de-alcoholated red wine, for 48h and the ability to recover from the effects of OTA was evaluated after 24h in complete medium. OTA treatment increased TJ permeability and caused intracellular redistribution of claudin-4. However, cells were able to restore permeability and correct localization of claudin-4 following 24h recovery. Conversely, in the presence of red wine, OTA produced faster and irreversible increase in TJ permeability, intracellular delocalization of claudin-4 and extensive apoptosis. Our results point at a possible synergy between OTA and some red wine components, such as polyphenols, in the induction of apoptotic cell death.

  10. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2013-01-01

    Full Text Available Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease’s complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds’ anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures.

  11. Radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor

    Energy Technology Data Exchange (ETDEWEB)

    Chaplin, D.J.; Durand, R.E.; Stratford, I.J.; Jenkins, T.C.

    1986-07-01

    RSU-1069 is one of a group of compounds of particular interest in radiobiology, since it combines the nitroimidazole ring with a side chain bearing a monofunctional alkylating agent. This compound has been shown to be a potent radiosensitizer both in vitro and in vivo. Furthermore, it has recently been shown to be an effective hypoxic cell cytotoxin in vitro. Our studies have been carried out using the SCCVII squamous carcinoma implanted subcutaneously in C/sub 3/H mice, using a technique we recently developed which facilitates isolation of tumor cell subpopulations from known locations relative to the tumor blood supply. The response of the separated tumor subpopulations was assessed using a soft agar clonogenic assay. For radiosensitization studies, RSU-1069 was administered i.p. at 0.5 mumol/g 20 min before irradiation and the tumors excised 20 min after irradiation. For toxicity studies, tumors were excised 16-18 hr after RSU-1069 administration. The results obtained to date clearly demonstrate that RSU-1069 is an efficient hypoxic cell radiosensitizer and cytotoxin in this murine tumor and has little effect on well perfused (i.e., oxic) cells.

  12. Identification and significance of differential proteins in A549 cells transfected with HLCDG1

    Institute of Scientific and Technical Information of China (English)

    ZOU Fei-yan; HU Wei; YU Yan-hui; OUYANG Yong-mei; XIE Hai-long; ZENG Ping-yao; CHEN Zhu-chu; LI Feng; XIAO Zhi-qiang; FENG Xue-ping; ZHANG Peng-fei; YANG Hai-yan

    2005-01-01

    HLCDG1, which locates in chromosome 5q33, is a novel gene cloned recently. The HLCDG1 expression was significantly down regulated in the primary lung carcinoma. It was previously studied that HLCDG1 acted like a tumor suppressor gene. In this paper, proteomics studies were performed to analyze the proteomic expression patterns in the HLCDG1-transfected human lung carcinoma cell line (A549-HLCDG1) and in the control vector-transfecred human lung carcinoma cell line (A549-vector). Employing two dimensional gel eleetrophoresis (2DE), the global pattern of protein expressions in A549-HLCDG1 human lung adenocarcinoma cell line expressing stably HL-CDG1 gene were compared with those of control A549-vector cell line to generate a differential protein expression catalog. Forty-two differentially expressed proteins were screened. Thirteen differential proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), which were 6 upregulated (MSH5, MOD, MDH precursor, ETFβ, Prxd Ⅵ and JM23) and 7 downregulated (PLC-δ1, hnRNPA2,hnRNPB1, TIM, TCTP, nm23H-1 and PrxdⅤ) proteins in A549-HLCDG1 cells compared to control A549-vector cells. The above identified proteins were involved in energy metabolism, transcription regulation, antioxidation,cell cycle, metastasis, DNA methylation and mismatch repair. Therefore, these differential expression proteins by HLCDG1 transfection may play some important roles for investigation of the biochemical basis of growth suppression of HLCDG1 gene in lung carcinoma cells A549. Further understanding of this data base may provide valuable resources for the developing novel diagnostic markers and therapeutic targets of lung cancer.

  13. Preliminary evaluation of the toxicity of some synthetic furan derivatives in two cell lines and Artemia salina.

    Science.gov (United States)

    Amaro, María I; Monasterios, Melina; Avendaño, Milagros; Charris, Jaime

    2009-01-01

    This study describes the preliminary toxicity evaluation of five new furan derivatives, 2-[2-acetylamino-2-[(benzothiazolyl-substituted)aminocarbonyl]vinyl]-5-nitro furane (compounds A, B, D and E) and 2-[2-phenylamino-2-[benzothiazolylaminocarbonyl]vinyl]furane (compound C). Cytotoxicity was determined using the MTT (tetrazolium salt) method over BHK21 (Syrian baby hamster kidney) and Hep-2 (human larynx carcinoma) cells, which had previously been used to evaluate the cytotoxicity of the 5-nitrofuran derivatives. The lethal concentration 50 (LC(50)) was determined using brine shrimp (Artemia salina) bioassay. Nitrofurantoin was used as reference compound. The results demonstrate that BHK21 cells are more sensitive than Hep-2 cells. This structurally related serial of compounds shows a differential toxicity, which is an indication that the toxicity naturally arising from the nitro group can be modulated by the substituents over the furan ring. Additionally, compound C, the only derivative with no nitro group, was least toxic to Hep-2, but exhibits toxicity to BHK21 cells and brine shrimp. The LC(50 )brine shrimp test (BST) bioassay results were as follows: A, 654.2 microg ml(-1); B, 50.0 microg ml(-1); C, 533.4 microg ml(-1); D, 172.1 microg ml(-1); E, 76.4 microg ml(-1), and NF, >1000 microg ml(-1).

  14. Focal toxicity of oxysterols in vascular smooth muscle cell culture. A model of the atherosclerotic core region.

    Science.gov (United States)

    Guyton, J. R.; Black, B. L.; Seidel, C. L.

    1990-01-01

    Cell necrosis and reactive cellular processes in and near the atherosclerotic core region might result from short-range interactions with toxic lipids. To model these interactions in cell culture, focal crystalline deposits of cholestane-3 beta,5 alpha,6 beta-triol, 25-OH cholesterol, and cholesterol were overlaid by a collagen gel, on which canine aortic smooth muscle cells were seeded. Oxysterols, but not cholesterol, caused focally decreased plating efficiency and cell death, leading to the formation of a persistent circular gap in the cell culture. Cholestanetriol was largely removed from the culture dishes over 3 to 4 weeks, whereas cholesterol and 25-OH cholesterol were largely retained. Smooth muscle cells were motile even in proximity to oxysterol crystals, with occasional suicidal migration toward the crystals. Chemoattraction, however, could not be demonstrated. Despite toxicity, cholestanetriol did not appear to alter the fraction of cells exhibiting 3H-thymidine uptake, even in areas close to the crystals. Thus, oxysterols may be toxic to some cells, without causing major impairment of the migration and proliferation of nearby cells. This would allow the simultaneous occurrence of cell death and proliferation evident in atherosclerosis. Images Figure 2 Figure 4 Figure 5 PMID:2201200

  15. Efficacy and toxicity management of CAR-T cell immunotherapy: A matter of responsiveness control or tumor-specificity?

    DEFF Research Database (Denmark)

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Alvarez-Méndez, Ana M;

    2016-01-01

    Chimeric antigen receptor (CAR)-expressing T cells have demonstrated potent clinical efficacy in patients with hematological malignancies. However, the use of CAR-T cells targeting solid tumor-associated antigens (TAAs) has been limited by organ toxicities related to activation of T cell effector...... functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen...... responsiveness of CAR-T cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues...

  16. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  17. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  18. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiuwei, E-mail: qiuwei_xu@merck.com; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H. [Merck Research Laboratories (United States)

    2011-04-15

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid {beta}-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  19. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-05

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  20. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  1. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  2. Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay

    NARCIS (Netherlands)

    Schulpen, Sjors H. W.; Pennings, Jeroen L. A.; Piersma, Aldert H.

    2015-01-01

    Differentiating pluripotent stem cells in vitro have proven useful for the study of developmental toxicity. Here, we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC)-based neurodevelopmental toxicity test (hESTn). During neural differentiation the cells were

  3. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  4. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702).

    Science.gov (United States)

    Aziz, Rukhsanda; Rafiq, Muhammad Tariq; Li, Tingqiang; Liu, Di; He, Zhenli; Stoffella, P J; Sun, Kewang; Xiaoe, Yang

    2015-04-01

    Cadmium (Cd) enters the food chain from polluted soils via contaminated cereals and vegetables; therefore, an understanding of Cd bioaccessibility, bioavailability, and toxicity in humans through rice grain is needed. This study assessed the Cd bioaccessibility, bioavailability, and toxicity to humans from rice grown on Cd-contaminated soils using an in vitro digestion method combined with a Caco-2/HL-7702 cell model. Cadmium bioaccessibility (18.45-30.41%) and bioavailability (4.04-8.62%) were found to be significantly higher in yellow soil (YS) rice than calcareous soil (CS) rice with the corresponding values of 6.89-11.43 and 1.77-2.25%, respectively. Toxicity assays showed an initial toxicity in YS rice at 6 mg kg(-1) Cd, whereas CS rice did not show any significant change due to low Cd concentrations. The acidic soils of Cd-contaminated areas can contribute to a higher dietary intake of Cd. Therefore, it is imperative to monitor Cd concentration in rice to minimize human health risk.

  5. Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Huberman Joel

    2006-08-01

    Full Text Available Abstract Background Uncontrolled proliferation and increased motility are hallmarks of neoplastic cells, therefore markers of proliferation and motility may be valuable in assessing tumor progression and prognosis. MCM2 is a member of the minichromosome maintenance (MCM protein family. It plays critical roles in the initiation of DNA replication and in replication fork movement, and is intimately related to cell proliferation. Ki-67 is a proliferation antigen that is expressed during all but G0 phases of the cell cycle. Gelsolin is an actin-binding protein that regulates the integrity of the actin cytoskeletal structure and facilitates cell motility. In this study, we assessed the prognostic significance of MCM2 and Ki-67, two markers of proliferation, and gelsolin, a marker of motility, in non-small cell lung cancer (NSCLC. Methods 128 patients with pathologically confirmed, resectable NSCLC (stage I-IIIA were included. Immunohistochemistry was utilized to measure the expressions of these markers in formalin-fixed, paraffin-embedded tumor tissues. Staining and scoring of MCM2, Ki-67 and gelsolin was independently performed. Analyses were performed to evaluate the prognostic significance of single expression of each marker, as well as the prognostic significance of composite expressions of MCM2 and gelsolin. Cox regression and Kaplan-Meier survival analysis were used for statistical analysis. Results Of the three markers, higher levels of gelsolin were significantly associated with an increased risk of death (adjusted RR = 1.89, 95% CI = 1.17–3.05, p = 0.01, and higher levels of MCM2 were associated with a non-significant increased risk of death (adjusted RR = 1.36, 95% CI = 0.84–2.20, p = 0.22. Combined, adjusted analyses revealed a significantly poor prognostic effect for higher expression of MCM2 and gelsolin compared to low expression of both biomarkers (RR = 2.32, 95% CI = 1.21–4.45, p = 0.01. Ki-67 did not display apparent prognostic

  6. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Sinisa, E-mail: sinisa.stanic@carle.com [Carle Cancer Center and University of Illinois College of Medicine, Urbana, Illinois (United States); Paulus, Rebecca [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Timmerman, Robert D. [University of Texas Southwestern, Dallas, Texas (United States); Michalski, Jeff M. [Washington University, St. Louis, Missouri (United States); Barriger, Robert B. [Indiana University, Indianapolis, Indiana (United States); Bezjak, Andrea [Princess Margaret Cancer Center, Toronto, Ontario (Canada); Videtic, Gregory M.M. [Cleveland Clinic Foundation, Cleveland, Ohio (United States); Bradley, Jeffrey [Washington University, St. Louis, Missouri (United States)

    2014-04-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.

  7. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  8. Expression and significance of neuroligins in myenteric cells of Cajal in Hirschsprung's disease.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available PURPOSE: The aim of this study was to investigate the expression and significance of neuroligins in myenteric cells of Cajal (ICC-MY in Hirschsprung's disease (HSCR. METHODS: Longitudinal muscle with adherent myenteric plexus (LMMP from surgical excision waste colon of HSCR children were prepared by peeling off the mucous layer, sub-mucosal layer and circular muscle. Neuroligins, c-Kit (c-Kit-immunoreactivity representing ICC and their relationship were assessed by double labeling immunofluorescence staining. ICC-MY were dissociated and cultured from LMMP by enzymolysis method, and were purified and analyzed using a combination of magnetic-activated cell sorting (MACS and flow cytometry (FCM. Western-blot analysis was applied to compare and evaluate the expression levels of neuroligins in ICC-MY which were dissociated from different segments of HSCR (ganglionic colonic segment, transitional colonic segment and aganglionic colonic segment. RESULTS: Neuroligins and c-Kit were expressed on the same cells (ICC-MY; ICC-MY were dissociated, cultured and purified. For HSCR, neuroligins were expressed significantly in ICC-MY from ganglionic colonic segments, moderately in those from transitional colonic segments and down-regulated significantly in those from aganglionic colonic segments. CONCLUSIONS: Neuroligins were expressed in ICC-MY of human beings, and the expression varies from different segments of HSCR. This abnormal expression might play an important role in the pathogenesis of this disease through affecting the synaptic function of ICC-MY.

  9. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via "differentiation-based nano-therapy".

    Science.gov (United States)

    Fiorillo, Marco; Verre, Andrea F; Iliut, Maria; Peiris-Pagés, Maria; Ozsvari, Bela; Gandara, Ricardo; Cappello, Anna Rita; Sotgia, Federica; Vijayaraghavan, Aravind; Lisanti, Michael P

    2015-02-28

    Tumor-initiating cells (TICs), a.k.a. cancer stem cells (CSCs), are difficult to eradicate with conventional approaches to cancer treatment, such as chemo-therapy and radiation. As a consequence, the survival of residual CSCs is thought to drive the onset of tumor recurrence, distant metastasis, and drug-resistance, which is a significant clinical problem for the effective treatment of cancer. Thus, novel approaches to cancer therapy are needed urgently, to address this clinical need. Towards this end, here we have investigated the therapeutic potential of graphene oxide to target cancer stem cells. Graphene and its derivatives are well-known, relatively inert and potentially non-toxic nano-materials that form stable dispersions in a variety of solvents. Here, we show that graphene oxide (of both big and small flake sizes) can be used to selectively inhibit the proliferative expansion of cancer stem cells, across multiple tumor types. For this purpose, we employed the tumor-sphere assay, which functionally measures the clonal expansion of single cancer stem cells under anchorage-independent conditions. More specifically, we show that graphene oxide effectively inhibits tumor-sphere formation in multiple cell lines, across 6 different cancer types, including breast, ovarian, prostate, lung and pancreatic cancers, as well as glioblastoma (brain). In striking contrast, graphene oxide is non-toxic for "bulk" cancer cells (non-stem) and normal fibroblasts. Mechanistically, we present evidence that GO exerts its striking effects on CSCs by inhibiting several key signal transduction pathways (WNT, Notch and STAT-signaling) and thereby inducing CSC differentiation. Thus, graphene oxide may be an effective non-toxic therapeutic strategy for the eradication of cancer stem cells, via differentiation-based nano-therapy.

  10. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation

    DEFF Research Database (Denmark)

    Pontoppidan, Peter Erik Lotko; Jordan, Karina Kwi Im; Carlsen, Anting Liu

    2015-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a procedure with a high risk of treatment related mortality. The primary aim of the present study was to examine associations between markers of gastrointestinal toxicity, markers of systemic inflammation, and plasma levels of microRNA...... (miRNA) -155 and -146a during the first month after HSCT. The secondary aim was to characterize the impact of the toxic-inflammatory response on the function of circulating leukocytes during immune recovery. Thirty HSCT patients were included. Gastrointestinal injury was monitored by toxicity scores......, lactulose-mannitol test and plasma citrulline, as a measure of the enterocyte population. Nadir of citrulline and maximum of oral toxicity scores, intestinal permeability, CRP and plasma levels of IL-6 and IL-10 was seen at day +7 post-HSCT. miRNA-155 and mi-RNA-146a showed an inverse relation...

  11. EFFECT SIGNIFICANCE ASSESSMENT OF THE THERMODYNAMICAL FACTORS ON THE SOLID OXIDE FUEL CELL OPERATION

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2015-01-01

    Full Text Available Technologies of direct conversion of the fuel energy into electrical power are an upcoming trend in power economy. Over the last decades a number of countries have created industrial prototypes of power plants on fuel elements (cells, while fuel cells themselves became a commercial product on the world energy market. High electrical efficiency of the fuel cells allows predictting their further spread as part of hybrid installations jointly with gas and steam turbines which specifically enables achieving the electrical efficiency greater than 70 %. Nevertheless, investigations in the area of increasing efficiency and reliability of the fuel cells continue. Inter alia, research into the effects of oxidizing reaction thermodynamic parameters, fuel composition and oxidation reaction products on effectiveness of the solid oxide fuel cells (SOFC is of specific scientific interest. The article presents a concise analysis of the fuel type effects on the SOFC efficiency. Based on the open publications experimental data and the data of numerical model studies, the authors adduce results of the statistical analysis of the SOFC thermodynamic parameters effect on the effectiveness of its functioning as well as of the reciprocative factors of these parameters and gas composition at the inlet and at the outlet of the cell. The presented diagrams reflect dimension of the indicated parameters on the SOFC operation effectiveness. The significance levels of the above listed factors are ascertained. Statistical analysis of the effects of the SOFC functionning process thermodynamical, consumption and concentration parameters demonstrates quintessential influence of the reciprocative factors (temperature – flow-rate and pressure – flow-rate and the nitrogen N2 and oxygen O2 concentrations on the operation efficiency in the researched range of its functioning. These are the parameters to be considered on a first-priority basis while developing mathematical models

  12. Polymer coated liposomes for use in the oral cavity - A study of the in vitro toxicity, effect on cell permeability and interaction with mucin

    DEFF Research Database (Denmark)

    Klemetsrud, Therese; Kjøniksen, Anna-Lena; Hiorth, Marianne

    2016-01-01

    (NIPAAM-co-MAA)), hydrophobically modified hydroxyethyl cellulose (HM-HEC), and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). With chitosan as an exception, all the systems exhibited no significant effect on cell viability and permeability at the considered concentrations. Additionally, all the formulations...... formulations promising for oromucosal administration. Although the chitosan coated liposomes affected the cell viability, this formulation also influenced the cell permeability, which makes it an interesting candidate for systemic drug delivery from the oral cavity.......In this study we investigated the in vitro toxicity, impact on cell permeability and mucoadhesive potential of polymer coated liposomes intended for use in the oral cavity. A TR146 cell line was used as a model. The overall aim was to end up with a selection of safe polymer coated liposomes...

  13. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    Science.gov (United States)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  14. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells.

    Directory of Open Access Journals (Sweden)

    Jia-Mei Jiang

    Full Text Available Formaldehyde (FA is a common environmental contaminant that has toxic effects on the central nervous system (CNS. Our previous data demonstrated that hydrogen sulfide (H2S, the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF, a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB. Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS, 4-hydroxy-2-trans-nonenal (4-HNE, and malondialdehyde (MDA. We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.

  15. Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants.

    Science.gov (United States)

    Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel

    2017-01-01

    Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.

  16. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells.

    Science.gov (United States)

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

  17. Activity and toxicity of 2-CDA in Langerhans cell histiocytosis: A single institutional experience

    Directory of Open Access Journals (Sweden)

    Biswas G

    2007-01-01

    Full Text Available Background : Langerhans cell histiocytosis (LCH is a rare disorder characterized by clonal proliferation of immature and abnormal bone marrow derived langerhans cells. Treatment is usually multimodal. Potent anti-monocyte as well as immunomodulatory activity of 2-CDA and its proven efficacy in many lymphoproliferative disorders has made 2-CDA a rational choice in treatment of LCH. Aim : To evaluate the efficacy and toxicity profile of 2-CDA in children with relapsed or refractory LCH. Setting and Design : This is a pilot study and we present the initial data of the first seven patients treated at our institution. Materials and Methods : Seven patients of relapsed and refractory LCH were enrolled from July 2000 to June 2004. The cohort of seven patients included six males and one female with a median age at initiation of cladribine was 2.25 years (range, 1.67 to 7.0 years. Three patients had received one prior chemotherapy regimen while the rest were heavily pretreated. Cladribine was administered over two hours IV daily for five days and repeated every four weeks. Results : After a median of six courses of cladribine (range, 2 to 9, two (33% patients achieved PR and two (33% patients have SD on imaging but are clinically better. None experienced grade 3 or 4 hematologic toxicity. At a median follow-up of 19 months (range, 8 to 52 months, five patients remain alive and one patient has died. Conclusion : Our study shows that single agent 2-CDA is active and well-tolerated in children with relapsed or refractory LCH.

  18. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Rosenstein, Barry S; Kerns, Sarah L

    2016-01-01

    PURPOSE: Several small studies have indicated that the ATM rs1801516 SNP is associated with risk of normal tissue toxicity after radiotherapy. However, the findings have not been consistent. In order to test this SNP in a well-powered study, an individual patient data meta-analysis was carried ou...

  19. Generally applicable limits on intakes of uranium based on its chemical toxicity and the radiological significance of intakes at those limits.

    Science.gov (United States)

    Thorne, M C; Wilson, J

    2015-12-01

    Uranium is chemically toxic and radioactive, and both considerations have to be taken into account when limiting intakes of the element, in the context of both occupational and public exposures. Herein, the most recent information available on the chemical toxicity and biokinetics of uranium is used to propose new standards for limiting intakes of the element. The approach adopted allows coherent standards to be set for ingestion and inhalation of different chemical forms of the element by various age groups. It also allows coherent standards to be set for occupational and public exposures (including exposures of different age groups) and for various exposure regimes (including short-term and chronic exposures). The proposed standards are more restrictive than those used previously, but are less restrictive than the Minimal Risk Levels proposed recently by the US Agency for Toxic Substances and Disease Registry. Having developed a set of proposed limits based solely on chemical toxicity considerations, the radiological implications of exposure at those proposed limits are investigated for natural, depleted and enriched uranium.

  20. The prognostic significance of fibroblast growth factor receptor 4 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-05-01

    Full Text Available Hong-ping Huang, Hui Feng, Hong-bo Qiao, Ze-xiang Ren, Ge-dong ZhuDepartment of General Medicine, Linyi Hospital Affiliated to Shandong University, Linyi City, People’s Republic of China Background: Fibroblast growth factor receptor 4 (FGFR4 has been proved to be correlated with progression and prognosis in many cancers. However, the significance of FGFR4 in non-small-cell lung cancer (NSCLC is still not well elucidated.Methods: In our experiment, we detected FGFR4 expression in 237 samples of NSCLC with immunohistochemistry, and further analyzed the correlation between FGFR4 and clinicopathologic features of NSCLC with chi-square test. Moreover, we evaluated the prognostic value of FGFR4 by Kaplan–Meier survival curve and Cox regression model. By regulating the expression of FGFR4 by overexpression or knockdown, we assessed the role of FGFR4 on NSCLC cell proliferation.Results: FGFR4 expression was high in NSCLC (46.8%, 111/237. FGFR4 expression was significantly associated with tumor diameter (P=0.039. With univariate (P=0.009 and multivariate (P=0.002 analysis, FGFR4 was identified as an independent prognostic factor in NSCLC (P=0.009. Moreover, FGFR4 can promote the proliferation of NSCLC cell lines.Conclusion: FGFR4 is an independent prognostic biomarker in NSCLC. FGFR4 can accelerate the proliferation of NSCLC cell lines, indicating FGFR4 could be a potential drug target of NSCLC.Keywords: fibroblast growth factor 4, non-small-cell lung cancer, prognosis, proliferation

  1. Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo

    Institute of Scientific and Technical Information of China (English)

    Adarsh Shankar; Robert A. Knight; Stephen Brown; Ali S. Arbab; Sanath Kumar; Asm Iskander; Nadimpalli RS Varma; Branislava Janic; Ana deCarvalho; Tom Mikkelsen; Joseph A. Frank; Meser M. Ali

    2014-01-01

    Tumor cellproliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM). The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline) after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n= 8), or underwent no radiation (n= 8). Brain tissues were obtained on day 112 (nonirradiated) or day 133 (irradiated). Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67) and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2) and cell migration marker (CD44). Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF) staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71 ± 15)%compared with (25 ± 12)%in the nonirradiated group (P=0.02). The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance fol owing radiation therapy for GBM.

  2. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    Science.gov (United States)

    Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela

    2015-01-01

    Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases. PMID:25962124

  3. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    Directory of Open Access Journals (Sweden)

    Philippe Régnier

    2015-05-01

    Full Text Available Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI+/ion trap-MS characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM. No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  4. Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yinzhi Zhao

    2012-02-01

    Full Text Available To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As3+ on microtubule (MT assembly in vitro (0–40 µM, in cultured rat lung fibroblasts (RFL6, 0–20 µM for 24 h and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks. As3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin of [3H]N-ethylmaleimide (NEM, an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT suggesting As3+ action upon tubulin through -SH groups. In response to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs essential for the MT stability were markedly suppressed in As3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to the lung triggering MT disassembly cascades.

  5. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity.

    Science.gov (United States)

    Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela

    2015-05-07

    Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  6. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    Directory of Open Access Journals (Sweden)

    Didik Priyandoko

    Full Text Available The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera leaf extract on methoxyacetic acid (MAA induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  7. Inflammatory Cytokine Secretion Status of Bone Marrow Cells and Clinical Significance in Immune-related Hematocytopenia

    Institute of Scientific and Technical Information of China (English)

    Li-fei Sun; Qiang-qiang Wu; Zhi-hong Sun; Bing Han; Hong-feng Hao; Gui-chen Wang; Ming Li; Jin-biao Zhang

    2013-01-01

    Objective To observe the expression of inlfammatory molecules in bone marrow immune cells of patients with immune-related hematocytopenia (IRH), and to investigate the immune mechanism and clinical signiifcance of the disease. Methods Total of 36 IRH patients were selected as observation group and 30 healthy people were taken as control group. Serum cytokines levels, activity of immunocytes and expression of HLA-DR were detected. Immune lfuorescence was applied to observe the expression state of immunologic molecules and cytokines in IRH patients. Results Serum cytokines were elevated in various degrees in observation group. Compared with the control group, the cytokines levels were significantly higher (P Conclusions It is demonstrated that antibodies or self-reactive lymphocytes were produced in IRH marrow, which would cause lesions of hemocytes, and lead to pathological process ifnally. Structure of hematopoietic cells mutated and these cells might be acted as target cells of immunocytes in the pathological process. Immunocytes could secrete inlfammatory factors and lead to immunologic injury of hemocyte.

  8. The clinical significance of circulating tumor cells in non-metastatic colorectal cancer - A review

    DEFF Research Database (Denmark)

    Thorsteinsson, M; Jess, Per

    2011-01-01

    with metastatic disease, but the prognostic role of CTC in non-metastatic colorectal cancer is less clear. The aim of this review is to examine the possible clinical significance of circulating tumor cells in non-metastatic colorectal cancer (TNM-stage I-III) with the primary focus on detection methods......BACKGROUND: Finding a clinical tool to improve the risk stratification and identifying those colorectal cancer patients with an increased risk of recurrence is of great importance. The presence of circulating tumor cells (CTC) in peripheral blood can be a strong marker of poor prognosis in patients...... and prognosis. METHODS: The PubMed and Cochrane database and reference lists of relevant articles were searched for scientific literature published in English from January 2000 to June 2010. We included studies with non-metastatic colorectal cancer (TNM-stage I-III) and CTC detected pre- and/or post...

  9. Cytological evaluation and significance of cell cannibalism in effusions and urine cytology.

    Science.gov (United States)

    Ahmed Wani, Farooq; Bhardwaj, Subhash

    2015-12-01

    Cell cannibalism is believed to be an indicator of high-grade aggressive cancers with increased metastatic potential. It denotes both anaplastic grade and invasiveness and is valuable in assessing tumor behavior. The present study was a 2-year retrospective and 1-year prospective study conducted in the Department of Pathology, Government Medical College, Jammu. PAP and MGG stained smears of effusions and urinary cytology were evaluated for cannibalism. Cannibalism was assessed by parameters like cellularity of cannibalism, diameter of cannibalistic cells, chromatin pattern and background of the smears. Of 350 cases evaluated, 260 (74.2%) were benign and 90 (25.8%) were malignant. Cannibalism was absent in all benign cases. Cannibalism was present in 14 ascitic fluids, 7 pleural fluids, 1 pericardial fluid and 3 cases of urine cytology. Comparison of distribution of cannibalism in effusions and urine did not yield statistically significant result (X2=0.8678 and p>0.05). Comparison of other parameters between effusions and urine samples also did not yield significant results. We conclude that cytological parameters of cellular cannibalism are better observed in malignant effusions than in urine cytology but did not reach statistical significance. Cannibalism can be assessed morphologically in malignant body fluids and is an indicator of increased tumour growth.

  10. NKT cell modulates NAFLD potentiation of metabolic oxidative stress-induced mesangial cell activation and proximal tubular toxicity

    Science.gov (United States)

    Alhasson, Firas; Dattaroy, Diptadip; Das, Suvarthi; Chandrashekaran, Varun; Seth, Ratanesh Kumar; Schnellmann, Rick G.

    2015-01-01

    Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42–54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291–303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1β, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-β, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling

  11. Elimination of toxicity and enhanced detection of lumpy skin disease virus on cell culture from experimentally infected bovine semen samples.

    Science.gov (United States)

    Bagla, V P; Osuagwuh, U I; Annandale, C H; Irons, P C; Venter, E H

    2006-12-01

    Lumpy skin disease virus (LSDV), a poxvirus of the genus Capripoxvirus, is shed in the semen of infected bulls. The screening of semen for infectious virus requires a sensitive diagnostic method. The isolation of the virus on cell cultures and/or the polymerase chain reaction (PCR) are sensitive diagnostic tests which may be used to screen semen for LSD viral DNA prior to artificial insemination. Although cell culture detects infectious virus and is a sensitive method, there are major difficulties in using this method due to the toxic effect of semen on the cells. The aim of this study was to find a method that decreases the toxic effect of semen and enhances the isolation of LSDV on cell culture. Semen samples from LSDV sero-negative bulls were collected and infected with a field isolate of LSDV, strain V248/93, with a titre of 6.5 log TCID50. The semen samples were treated with one of four different methods: centrifugation, serial dilution, filtration and chemical treatment with kaolin. The samples subjected to centrifugation, serial dilution and filtration were supplemented with gentamycin. Semen toxicity on cell cultures was eliminated when supernatants of semen samples centrifuged at 2000 rpm for 1, 3 and 5 min and serially diluted were used to inoculate confluent monolayer bovine dermis cells. The toxicity recorded when the pellet fractions of semen samples centrifuged for 5 min at 2000 rpm was comparable to results obtained from serially diluted samples supplemented with gentamycin. Filtration and kaolin treatment of semen samples did not remove the toxic effect.

  12. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  13. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca(2+) generation.

    Science.gov (United States)

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2016-03-11

    Lycium chinensis Mill is a famous traditional Chinese medicine which displays several medicinal activities including antioxidant and neuroprotective activities. However, the mechanism of action towards the neuroprotective action has not been fully elucidated. This work was aimed at investigating the neuroprotective effects of L. chinensis Mill against glutamate-induced oxidative neurotoxicity in PC12 cells. Oxidative cell death was induced with 5mM glutamate in PC12 cells. Cell viability, LDH release, intracellular Ca(2+) concentration, reactive oxygen species (ROS) accumulation, GSH-Px, CAT and SOD antioxidant enzyme levels were measured. Our results indicated that pretreatment of PC12 cells with L. chinensis Mill extracts markedly attenuated the loss of cell viability, the release of lactate dehydrogenase (LDH), Ca(2+) overload, ROS generation, and cell apoptosis induced by glutamate toxicity. Furthermore, L. chinensis Mill extracts also significantly increased the levels of innate antioxidant enzymes GSH-Px, SOD and CAT in glutamate-induced PC12 cells. Conclusively, our results provided substantial evidence that L. chinensis Mill protected PC12 cells against glutamate-induced cell death by attenuating ROS generation, Ca(2+) influx, and increased the antioxidant defense capacity of PC12 cells against oxidative stress damages, suggesting the possible potential of extracts from the plant as sources of bioactive molecules in the treatment of neurodegenerative disorders.

  14. Significance of the resting angles of hair-cell bundles for Hopf bifurcation criticality

    Science.gov (United States)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2016-08-01

    We investigate the significance of the inclined angle of a hair bundle at equilibrium. We find that, while the angle gives a geometrical conversion factor between the bundle deflection and the ion channel displacement, it also controls the dynamics of the bundle. We show that a Hopf bifurcation, which enhances sensitivity, can be driven by the geometrical factor. However, existing experimental data indicate that mammalian auditory hair-cell bundles are located far away from the Hopf bifurcation point, suggesting that the high sensitivity of mammalian hearing might come from other mechanisms.

  15. Efficacy and toxicity management of CAR-T-cell immunotherapy: a matter of responsiveness control or tumour-specificity?

    Science.gov (United States)

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Álvarez-Méndez, Ana; Alvarez-Vallina, Luis

    2016-04-15

    Chimaeric antigen receptor (CAR)-expressing T-cells have demonstrated potent clinical efficacy in patients with haematological malignancies. However, the use of CAR-T-cells targeting solid tumour-associated antigens (TAAs) has been limited by organ toxicities related to activation of T-cell effector functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T-cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T-cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen responsiveness of CAR-T-cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In contrast, the development of CARs targeting truly tumour-specific antigens might circumvent on-target/off-tumour toxicities without adding additional complexity to CAR-T-cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery.

  16. In vitro immunopotentiating properties and tumour cell toxicity induced by Lophophora williamsii (peyote) cactus methanolic extract.

    Science.gov (United States)

    Franco-Molina, M; Gomez-Flores, R; Tamez-Guerra, P; Tamez-Guerra, R; Castillo-Leon, L; Rodríguez-Padilla, C

    2003-11-01

    Lophophora williamsii, also known as peyote, is found primarily in dry regions from Central Mexico, including the Mexican States of Nayarit, San Luis Potosí, Zacatecas, Nuevo León, Chihuahua, Coahuila and Tamaulipas, to Texas particularly in regions along Rio Grande. Peyote extracts have been associated with stimulating the central nervous system and regulating blood pressure, sleep, hunger and thirst. However, there is no evidence of any effect of peyote on the immune system or against tumour cell growth. The present study was designed to evaluate the in vitro effects of peyote methanolic extracts on some parameters of mouse and human leukocyte immunocompetence and tumour cell growth. Peyote extract (0.18-18 micro g/mL) activated nitric oxide production by murine macrophages, and stimulated up to 2.4-fold proliferation of murine thymic lymphocytes. In addition, peyote extract induced up to 1.85-, 2.29- and 1.89-fold increases in mRNA signal of IL-1, IL-6 and IL-8 by human leukocytes. Also examined were the effects of peyote extracts on murine lymphoma L5178Y-R and fi broblastoma L929, and human myeloid U937 and mammary gland MCF7 tumour cell growth using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Peyote extracts were toxic for MCF7, L5178Y-R, U937 and L929 (18 mg/mL peyote extract caused 1.3%, 8%, 45% and 60% viability respectively) cell lines.

  17. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moosakhani, S. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sabbagh Alvani, A.A., E-mail: sabbagh_alvani@aut.ac.ir [Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO{sub 2}. • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO{sub 2}) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO{sub 2} nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption–desorption measurements, and UV–vis spectroscopy. TiO{sub 2} powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m{sup 2}/g. Afterwards, the QDs were grown on mesoporous TiO{sub 2} surface to fabricate a TiO{sub 2}/AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO{sub 2} matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm{sup 2} under one sun illumination.

  18. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  19. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    Science.gov (United States)

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  20. Evaluation of 1066 ToxCast Chemicals in a human stem cell assay for developmental toxicity (SOT)

    Science.gov (United States)

    To increase the diversity of assays used to assess potential developmental toxicity, the ToxCast chemical library was screened in the Stemina devTOX quickPREDICT assay using human embryonic stem (hES) cells. A model for predicting teratogenicity was based on a training set of 23 ...

  1. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Ling Shing Wong

    2013-01-01

    Full Text Available A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd, 2,4-dichlorophenoxyacetate (2,4-D, and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0 µg/L, 0.5–5.0 µg/L, and 0.5–10.0 µg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 µg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195 µg/L, 0.100 µg/L, 0.027 µg/L, 0.025 µg/L, and 0.025 µg/L, respectively. The overall reproducibility of the biosensor (n=3 was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides.

  2. Expression and significance of PTEN and PCNA in human laryngeal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    李长青; 文莲姬; 金春顺; 崔树勋

    2004-01-01

    Objective: To elucidate the expression and significance of PTEN and PCNA in human laryngeal squamous cell carcinoma. Methods: Immunochemical method was used to study 60 cases of laryngeal carcinoma, 20 cases of normal laryngeal tissues which were closely adjacent to carcinoma and 10 cases of normal laryngeal tissues. Results: It was showed that PTEN gene was expressed in 85 % laryngeal carcinoma tissues. The percentage of lymph node metastasis of laryngeal carcinoma which were negative or positive of PTEN protein was 77.8 % and 33.3 % respectively, and the difference was significance ( P < 0.05). Conclusion: Expression of PTEN in laryngeal carcinoma was different from that of normal laryngeal tissues. It may play a role but not important in the tumorigenesis and development of laryngeal carcinoma.

  3. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion

    Directory of Open Access Journals (Sweden)

    Kjellström Johan

    2012-05-01

    Full Text Available Abstract Background Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO or the polyamine analogue N1,N11-diethylnorspermine (DENSPM. Methods A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment. Results The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre

  4. Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells.

    Directory of Open Access Journals (Sweden)

    Ourania N Kostopoulou

    Full Text Available As fight against antibiotic resistance must be strengthened, improving old drugs that have fallen in reduced clinical use because of toxic side effects and/or frequently reported resistance, like chloramphenicol (CAM, is of special interest. Chloramphenicol (CAM, a prototypical wide-spectrum antibiotic has been shown to obstruct protein synthesis via binding to the bacterial ribosome. In this study we sought to identify features intensifying the bacteriostatic action of CAM. Accordingly, we synthesized a series of CAM-dimers with various linker lengths and functionalities and compared their efficiency in inhibiting peptide-bond formation in an Escherichia coli cell-free system. Several CAM-dimers exhibited higher activity, when compared to CAM. The most potent of them, compound 5, containing two CAM bases conjugated via a dicarboxyl aromatic linker of six successive carbon-bonds, was found to simultaneously bind both the ribosomal catalytic center and the exit-tunnel, thus revealing a second, kinetically cryptic binding site for CAM. Compared to CAM, compound 5 exhibited comparable antibacterial activity against MRSA or wild-type strains of Staphylococcus aureus, Enterococcus faecium and E. coli, but intriguingly superior activity against some CAM-resistant E. coli and Pseudomonas aeruginosa strains. Furthermore, it was almost twice as active in inhibiting the growth of T-leukemic cells, without affecting the viability of normal human lymphocytes. The observed effects were rationalized by footprinting tests, crosslinking analysis, and MD-simulations.

  5. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Carmen Bellas

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is an aggressive non-Hodgkin lymphoma with marked biologic heterogeneity. We analyzed 100 cases of DLBCL to evaluate the prognostic value of immunohistochemical markers derived from the gene expression profiling-defined cell origin signature, including MYC, BCL2, BCL6, and FOXP1 protein expression. We also investigated genetic alterations in BCL2, BCL6, MYC and FOXP1 using fluorescence in situ hybridization and assessed their prognostic significance. BCL6 rearrangements were detected in 29% of cases, and BCL6 gene alteration (rearrangement and/or amplification was associated with the non-germinal center B subtype (non-GCB. BCL2 translocation was associated with the GCB phenotype, and BCL2 protein expression was associated with the translocation and/or amplification of 18q21. MYC rearrangements were detected in 15% of cases, and MYC protein expression was observed in 29% of cases. FOXP1 expression, mainly of the non-GCB subtype, was demonstrated in 37% of cases. Co-expression of the MYC and BCL2 proteins, with non-GCB subtype predominance, was observed in 21% of cases. We detected an association between high FOXP1 expression and a high proliferation rate as well as a significant positive correlation between MYC overexpression and FOXP1 overexpression. MYC, BCL2 and FOXP1 expression were significant predictors of overall survival. The co-expression of MYC and BCL2 confers a poorer clinical outcome than MYC or BCL2 expression alone, whereas cases negative for both markers had the best outcomes. Our study confirms that DLBCL, characterized by the co-expression of MYC and BCL2 proteins, has a poor prognosis and establishes a significant positive correlation with MYC and FOXP1 over-expression in this entity.

  6. Significance of DEK overexpression for the prognostic evaluation of non-small cell lung carcinoma.

    Science.gov (United States)

    Liu, Xin; Qi, Dongdong; Qi, Jujie; Mao, Zeshu; Li, Xiangdan; Zhang, Jinhui; Li, Jinzi; Gao, Wenbin

    2016-01-01

    In the present study, we explored the role of DEK expression for the prognostic evaluation of non-small cell lung carcinoma (NSCLC). DEK protein and mRNA expression levels were detected in NSCLC cells and fresh tissue samples of NSCLC paired with adjacent non-tumor tissues, respectively. NSCLC cases (n=196) meeting strict follow-up criteria were selected for immunohistochemical staining of DEK protein. Correlations between DEK expression and clinicopathological features of the NSCLC cases were evaluated using Chi-square tests. Survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient overall survival was analyzed using Cox proportional hazard analysis. Based on the results, the levels of DEK protein and mRNA were significantly upregulated in 6 fresh tissue samples of NSCLC. Immunohistochemical analysis showed that the DEK expression rate was significantly higher in the NSCLC samples compared with either the adjacent non-tumor tissues or normal lung tissues. DEK expression was correlated with poor differentiation and late pathological stage of NSCLC. DEK expression was also correlated with low disease-free survival and overall survival rates. In the early-stage group, disease-free and overall survival rates of patients with DEK expression were significantly lower than those of patients without DEK expression. Further analysis using a Cox proportional hazard regression model revealed that DEK expression emerged as a significant independent hazard factor for the overall survival rate of patients with NSCLC. Consequently, DEK plays an important role in the progression of NSCLC. DEK may potentially be used as an independent biomarker for the prognostic evaluation of NSCLC.

  7. ESP-102, a combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, protects against glutamate-induced toxicity in primary cultures of rat cortical cells.

    Science.gov (United States)

    Ma, Choong Je; Kim, Seung Hyun; Lee, Ki Yong; Oh, Taehwan; Kim, Sun Yeou; Sung, Sang Hyun; Kim, Young Choong

    2009-11-01

    It was reported previously that ESP-102, a combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice and protected primary cultured rat cortical cells against glutamate-induced toxicity. To corroborate this effect, the action patterns of ESP-102 were elucidated using the same in vitro system. ESP-102 decreased the cellular calcium concentration increased by glutamate, and inhibited the subsequent overproduction of cellular nitric oxide and reactive oxygen species to the level of control cells. It also preserved cellular activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase reduced in the glutamate-injured neuronal cells. While a loss of mitochondrial membrane potential was observed in glutamate treated cells, the mitochondrial membrane potential was maintained by ESP-102. These results support that the actual mechanism of neuroprotective activity of ESP-102 against glutamate-induced oxidative stress might be its antioxidative activity.

  8. Association of POLK polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell lung cancer patients.

    Science.gov (United States)

    Shao, Minhua; Jin, Bo; Niu, Yanjie; Ye, Junyi; Lu, Daru; Han, Baohui

    2014-11-01

    Lung cancer is the leading cause of tumor-derived death. Although target therapy is proven very efficient, traditionally platinum-based chemotherapies are still primary treatment for most patients. Platinum can suppress the tumor growth and impair normal cells together. The primary aim of the present study was to study the potential role of translesion synthesis (TLS) that might play in platinum-chemotherapy tolerance and side-effect. In present study, a total of 663 patients who were newly histologically diagnosed with advanced NSCLC (aNSCLC) were enrolled. Treatment response was classified into four categories: complete response, partial response, stable disease, and progressive disease. Incidence of gastrointestinal and hematological toxicities was assessed twice a week during the whole first-line treatment. Eleven SNPs of POLK were genotyped. The associations between SNPs and treatment response or toxicity were analyzed with logistic regression model. Cox regression was used for survival analysis between SNPs and progression-free survival or overall survival. We identified that rs3213801 and rs5744533 showed complete linkage in the present study, and they were significantly associated with treatment response (adjusted P = 0.044), together with rs5744655 (adjusted P = 0.039). rs1018119 was correlated with gastrointestinal toxicity in smokers specially (adjusted P = 0.041). Besides, rs3756558 was associated with hematological toxicity and overall toxicity in smokers and combined cohort with additive model. We also identified the significant association between two SNPs, rs10077427 and rs5744545, and PFS. The polymorphism of POLK, an important gene in TLS, participates in platinum-chemotherapy tolerance and side-effect.

  9. Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos

    Science.gov (United States)

    Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong

    2017-02-01

    Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.

  10. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  11. Clinicopathological significance of fascin-1 expression in patients with non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Ling XL

    2015-06-01

    Full Text Available Xiao-Ling Ling,* Tao Zhang,* Xiao-Ming Hou, Da Zhao Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang, Lanzhou, Gansu Province, People’s Republic of China *These authors contributed equally to this work Purpose: Fascin-1 promotes the formation of filopodia, lamellipodia, and microspikes of cell membrane after its cross-linking with F-actin, thereby enhancing the cell movement and metastasis and invasion of tumor cells. This study explored the fascin-1 protein’s expression in non-small cell lung cancer (NSCLC tissues and its relationship with clinical pathology and prognostic indicators.Methods: Immunohistochemical analysis was used to determine the expression of fascin-1 in NSCLC tissues. We used quantitative real-time polymerase chain reaction and western blot analysis to further verify the results. The fascin-1 expression and statistical method for clinical pathological parameters are examined by χ2. Kaplan–Meier method is used for survival analysis. Cox’s Proportional Hazard Model was used to conduct a combined-effect analysis for each covariate.Results: In 73 of the 128 cases, NSCLC cancer tissues (57.0% were found with high expression of fascin-1, which was significantly higher than the adjacent tissues (35/128, 27.3%. The results suggested that the high expression of fascin-1 was significantly correlated with lymph node metastasis (P=0.022 and TNM stage (P=0.042. The high fascin-1 expression patients survived shorter than those NSCLC patients with low fascin-1 expression (P<0.05. Univariate analysis revealed that lymph node metastasis, TNM stage, and fascin-1 expression status were correlated with the overall survival. Similarly, lymph node metastasis, TNM stage, and fascin-1 expression status were significantly associated with the overall survival in multivariate analyses by using the Cox regression model.Conclusion: The fascin-1 protein may be a useful prognostic indicator and

  12. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    王晓丽; 王梅; 李明众; 宋天保; 任娟; 尚菊战

    2002-01-01

    Objective To investigate the significance of ov erexpresson of cyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods Fifty cases of in vasive cervical squamous cell carcinomas and 10 cases of normal cervical squamou s epithelia were investigated with immunihistochemical technique. Results The overexpression of cyclin D1 and P53 in invasive cer vical carcinomas was 70% and 50 %, respectively. There was no overexpression of them in the control group. The o verexpression of cyclin D1 in grade Ⅱ and Ⅲ was much higher than that in grad eⅠ(P<0.05). The overexpresson of cyclin D1 in stage Ⅲ of cervical carcinom a was significantly higher than that in stage Ⅱ (P<0.05). The overexpress ion of P53 in grade Ⅱ and grade Ⅲ of cervical carcinoma was remarkably higher than that in grade Ⅰ (P<0.05).Conclusion The action point of both cyclin D1 and P53 may be at G1/S transition. The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and differen t pathways.

  13. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the significance of overexpresson of eyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods:Fifty cases of invasive cervical squamous cell carcinomas and 10 Cases of normal cervical squamous epithelia were investigated with immunihistochemical technique.Results:The overexpressioin of cyclin D1 and P53 in invasive cervical carcinomas was 70% and 50%,respectively,There was no overexpression of them in the control group.The overexpression of cyclin D1 in grade Ⅱand Ⅲ was much higher than that in grade I(P<0.05),The overexpresson of cyclin D1 in stage Ⅲof cervical carcinoma was significantly higher than that in stage Ⅱ(P<0.05).The overexpression of P53 in grade -Ⅱand gradeⅢ of cervical carcinoma was remarkably higher than that in grade I(P<0.05),Conclusion:The action point of both cyclin D1 and P53 may be at G1/S transtition.The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and different pathways.

  14. Changes in peripheral blood immune cells: their prognostic significance in metastatic renal cell carcinoma patients treated with molecular targeted therapy.

    Science.gov (United States)

    Kobayashi, Minoru; Kubo, Taro; Komatsu, Kenji; Fujisaki, Akira; Terauchi, Fumihito; Natsui, Shinsuke; Nukui, Akinori; Kurokawa, Shinsuke; Morita, Tatsuo

    2013-06-01

    Recently, novel molecular targeted agents markedly changed the treatment of renal cell carcinoma (RCC), with promising results. However, there is little understanding of how these agents affect immune cell populations in RCC, an immunogenic tumor. Therefore, we investigated the changes in the peripheral blood immune cells in 58 RCC patients during the first 4 weeks of treatment with sorafenib, sunitinib, everolimus, or temsirolimus and evaluated whether these changes were associated with clinical outcomes. The immunological parameters were the proportion of type-1 (Th1) and type-2 (Th2) T cells, regulatory T cells (Treg), mature dendritic cells, and the neutrophil-to-lymphocyte ratio (NLR). The changes in these immune cells varied with the agents and the clinical response, dichotomized by the median progression-free survival (PFS) time (PFS-short or PFS-long). A significant decrease in the Th1/Th2 ratio was seen after sunitinib treatment only in the PFS-short group, suggesting a shift toward Th2 that down-regulates host immunity. The NLRs indicative of the balance between host immunity and cancer-related inflammation were consistently lower in the PFS-long group than in the PFS-short group, suggesting that lower NLR is associated with better clinical response. Only sunitinib decreased NLR remarkably regardless of PFS status, which may favor anti-tumor immunity. When patients were dichotomized by the cutoff values, Th1/Th2 ratio was not associated with PFS in any targeted therapy, while lower pre-treatment NLR was associated with longer PFS in each targeted therapy. In addition, in RCC patients given sequential targeted therapy, those with a lower baseline NLR survived significantly longer compared with the counterparts. Moreover, those whose baseline NLR was sustained low during the initial therapy survived the longest. Our results suggest the diverse changes in host immune cells in RCC patients during targeted therapy. The changes in NLR during the early phase of

  15. Clinical significance of Keap1 and Nrf2 in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Cong-Fa Huang

    Full Text Available Oxidative stress has been reported to play an important role in progression and prognostication in various kinds of cancers. However, the role and clinical significance of oxidative stress markers Keap1 and Nrf2 in oral squamous cell carcinoma (OSCC has not been elucidated. This study aimed to investigate the correlation of oxidative stress markers Keap1 and Nrf2 expression and pathological features in OSCC by using tissue microarray. Tissue microarrays containing 17 normal oral mucosa, 7 oral epithelial dysplasia and 43 OSCC specimens were studied by immunohistochemistry. The association among these proteins and pathological features were analyzed. Expression of oxidative stress markers Keap1, Nrf2, and antioxidants PPIA, Prdx6, as well as CD147 was found to increase consecutively from normal oral mucosa to OSCC, and the Keap1, Nrf2, PPIA, Prdx6, CD147 expression in OSCC were significantly higher when compared to normal oral mucosa. Expression of Keap1, Nrf2 in tumors was not found to be significantly associated with T category, lymph node metastases, and pathological grade. Furthermore, we checked the relationship among these oxidative stress markers and found that Keap1 was significantly correlated with Nrf2, Prdx6 and CD147. Significant relationship between Nrf2 and Prdx6 was also detected. Finally, we found patients with overexpression of Keap1 and Nrf2 had not significantly worse overall survival by Kaplan-Meier analysis. These findings suggest that ROS markers are associated with carcinogenesis and progression of OSCC, which may have prognostic value and could be regarded as potential therapeutic targets in OSCC.

  16. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury.

    Science.gov (United States)

    Jin, Yichao; Lin, Yingying; Feng, Jun-feng; Jia, Feng; Gao, Guo-yi; Jiang, Ji-yao

    2015-07-15

    Here, we evaluated changes in autophagy after post-traumatic brain injury (TBI) followed by moderate hypothermia in rats. Adult male Sprague-Dawley rats were randomly divided into four groups: sham injury with normothermia group (37 °C); sham injury with hypothermia group (32 °C); TBI with normothermia group (TNG; 37 °C); and TBI with hypothermia group (THG; 32 °C). Injury was induced by a fluid percussion TBI device. Moderate hypothermia (32 °C) was achieved by partial immersion in a water bath (0 °C) under general anesthesia for 4 h. All rats were killed at 24 h after fluid percussion TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin and eosin staining; terminal deoxynucleoitidyl transferase-mediated nick end labeling staining was used to determine cell death in ipsilateral hippocampus. Immunohistochemistry and western blotting of microtubule-associated protein light chain 3 (LC3), Beclin-1, as well as transmission electron microscopy performed to assess changes in autophagy. At 24 h after TBI, the cell death index was 27.90 ± 2.36% in TNG and 14.90 ± 1.52% in THG. Expression level of LC3 and Beclin-1 were significantly increased after TBI and were further up-regulated after post-TBI hypothermia. Further, ultrastructural observations showed that there was a marked increase of autophagosomes and autolysosomes in ipsilateral hippocampus after post-TBI hypothermia. Our data demonstrated that moderate hypothermia significantly attenuated cell death and increased autophagy in ipsilateral hippocampus after fluid percussion TBI. In conclusion, autophagy pathway may participate in the neuroprotective effect of post-TBI hypothermia.

  17. Expression of Rab25 in non-small cell lung cancer and its clinical significance

    Directory of Open Access Journals (Sweden)

    Pu ZHOU

    2014-03-01

    Full Text Available Objective To assess the expression of Rab25 protein in non-small cell lung cancer (NSCLC, and explore the correlation of its expression with tumor proliferation and metastasis. Methods Sixty-one cases of NSCLC specimens (31 cases of squamous cell carcinoma, 26 cases of adenocarcinoma, and 4 cases of adenosquamous carcinoma undergone surgical treatment, and 40 specimens of adjacent normal lung tissues were obtained from Jan. 2009 to Jun. 2010 at Xingqiao Hospital of Third Military Medical University. Immunochemistry method of MaxVision was used to detect the expression of Rab25 in the specimens, and then the correlation of the expression with the clinicopathological parameters (patients' sex, age, smoking history, tumor type, differentiation, volume, TNM stage, lymph metastasis, etc. was analyzed using statistical software SPSS 21.0. Results  Rab25 protein was mainly expressed in cytoplasm and cell membrane. The positive rate of Rab25 in NSCLC was 93.4%, which was significantly higher than that in adjacent normal tissues (27.5%, P<0.01. The expression of Rab25 protein was significantly associated with the TNM stage and tumor size (P<0.05. Conclusions The expression of Rab25 is obviously higher in NSCLC than in the adjacent normal tissues, and the expression is associated with TNM stage and tumor size. Moreover, the later of the NSCLC stage, the larger of tumor size, and the higher of Rab25 expression will be in the NSCLC tissue. DOI: 10.11855/j.issn.0577-7402.2014.02.16

  18. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  19. Target or barrier? The cell wall of early- and later- diverging plants vs cadmium toxicity: differences in the response mechanisms

    Directory of Open Access Journals (Sweden)

    Luigi eParrotta

    2015-03-01

    Full Text Available Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e. barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering.

  20. Alpha -tocopherol supplementation on chromium toxicity : a study on rat liver and kidney cell membrane

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Membrane damage is one of the important consequence of chromium, an environmental toxicant, to produce cytotoxicity. α-tocopherol, a membrane protectant can be used to reduce the chromium-induced membrane damage. In the present study, the impact of chromium in presence and absence of α-tocopherol was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100g body weight). Significant increase in membrane cholesterol level as well as significant decrease in membrane phospholipid level in chromium exposed ( 0.8 mg /100g body weight/d, i.p., for 4 weeks) animals suggest structural alteration of both liver and kidney plasma memebrane. The alkaline phosphatase, total ATPase and Na+-K+-ATPase activities of plasma membrane were significantly decreased in both liver and kidney after chromium treatment. However, α-tocopherol (30 mg / 100g diet) supplementation can restrict the changes in these membrane-bound enzyme activities. Thus, the usefulness of dietary supplementation of α-tocopherol to restrain the chromium-induced membrane damage is suggested.

  1. Toxicity and cytopathogenic properties toward human melanoma cells of activated cancer therapeutics in zebra fish.

    Science.gov (United States)

    Lewis, Thomas J

    2010-03-01

    There is an increasing body of data showing that activated cancer therapy--the synergistic effect of "preloaded" molecules and a tuned energy source to produce cytopathogenic moieties--is a promising new modality for cancer treatment. The key activated therapies are photodynamic therapy (PDT), which involves the synergy between light and photosensitizer molecules, and ultrasound activated therapy (USAT; also referred to as sonodynamic therapy), which involves the synergy between ultrasound and sonosensitizer molecules. PDT is a well-known activated therapy with roots dating back to 1900. However, minimal data exist on USAT. One reason is the lack of suitable sonosensitizers for clinical USAT use. The authors present both LC(50) toxicity and cancer cell cytotoxicity studies on 2 dual activation agents. These compounds function as both sonosensitizers and photosensitizers, and are referred to as SonneLux agents, designated SF1 and SF2. The sensitizers are derived from chlorophyll and are metal centered porphyrins known to specifically accumulate in hyperproliferating tissue. LC(50) studies on both SF1 and SF2 as determined in zebra fish reveal that both are essentially nontoxic to zebra fish. In the worst case, 5% zebra fish death is noted at the maximum soluble concentration of the sensitizer. In the cytotoxicity studies, melanoma cell line WM-266-4, derived from a metastatic site of a malignant melanoma, was tested against SF1 and SF2. Both sensitizer systems showed marked efficacy in the destruction of the implanted melanoma cells. They show great promise for clinical use in the future.

  2. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2007-02-01

    Full Text Available Recombinant adenoviral (rAd vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5 vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs was independent of the coxsackievirus and adenovirus receptor (CAR, its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.

  3. Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo.

    Science.gov (United States)

    Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2012-02-01

    To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As³⁺) on microtubule (MT) assembly in vitro (0-40 µM), in cultured rat lung fibroblasts (RFL6, 0-20 µM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As³⁺ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As³⁺ were concomitant with chromosomal disorientations. As³⁺ reduced the binding to tubulin of [³H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As³⁺ action upon tubulin through -SH groups. In response to As³⁺, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As³⁺ and NEM induced MT depolymerization. MT-associated proteins (MAPs) essential for the MT stability were markedly suppressed in As³⁺-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As³⁺ damage to the lung triggering MT disassembly cascades.

  4. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    OpenAIRE

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had...

  5. [Toxic complications of high-dose polychemotherapy in the transplantation of bone marrow and of peripheral blood stem cells].

    Science.gov (United States)

    Uss, A L; Milanovich, N F; Skriagin, A E; Zmachinskiĭ, V A; Snegir', V M; Batan, Z E; Komarovskaia, M E; Mitskevich, P B; Levin, V I

    1997-01-01

    The authors propose their own system of assessment of high-dose polychemotherapy toxicity. The system was applied to toxic complications of high-dose polychemotherapy in 31 patients with hematological malignancies subjected to allogenic, autologous bone marrow transplantation and transplantation of stem cells from peripheral blood within the scope of different protocols of high-dose polychemotherapy in conditioning regimen. A special scale developed in the Belarus Center for Bone Marrow Transplantation basing on the above system provides prediction of survival in early post-transplantation period.

  6. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R.

    2012-07-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (approx1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, several issues have to be approached. Among these are more environmentally friendly processing and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding to several GW{sub peek}, this is not a suitable approach from neither a production nor environmental point of view. As a consequence new materials, which can be processed from more environmentally friendly solvents (preferably water), need to be developed. In this thesis, the issue has been approached through synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are processed from aqueous or semi-aqueous solution. As previously mentioned many advantages can be achieved by use of thermocleavable materials. Unfortunately the cleavage temperatures are too

  7. Avascular necrosis significantly impairs quality of life in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Samuel Kolawole Mosaku

    2015-01-01

    Full Text Available Introduction: Quality of life (QoL assessment has become an integral component of the assessment of the holistic care of patients with chronic diseases, including sickle cell disease (SCD. Objective: To evaluate the quality of life in patients with SCD managed in our centre. Patients and Methods: Eighty consecutive patients with confirmed hemoglobin SS or SC were recruited. Age and sex-matched volunteers served as controls. Ethical approval was obtained from the Institutional Review Board and all participants gave informed consent. Information on socio-demographic, quality of life and clinical variables, including the presence of complications were recorded in a modified version of the WHO Quality of Life Brief version (WHOQOL-BREF questionnaire. Data was analyzed using Microsoft Excel and SPSS 17 computer softwares. Descriptive statistics were used to represent socio-demographic variables while the Student t-test was used to explore relationship between the variables and the quality of life domains. Results: Significantly fewer participants with SCD are married compared to their age- and sex-matched controls (P = 0.01. Similarly, participants with SCD scored significantly lower in the physical and psychological domains as well as in overall QoL and general health domains compared to controls (P = 0.001. Avascular necrosis of the femur significantly affected the overall QoL and general health of participants with SCD, respectively while the means of the QoL assessment domains were not significantly different in participants with SCD with and without complications, except in the general health domain (P < 0.001. Conclusion: Avascular necrosis of the femoral head significantly affects overall QoL in participants with SCD.

  8. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  9. Significant Improvement in Survival after Unrelated Donor Hematopoietic Cell Transplantation in the Recent Era

    Science.gov (United States)

    Majhail, Navneet S; Chitphakdithai, Pintip; Logan, Brent; King, Roberta; Devine, Steven; Rossmann, Susan N; Hale, Gregory; Hartzman, Robert J; Karanes, Chatchada; Laport, Ginna G; Nemecek, Eneida; Snyder, Edward L; Switzer, Galen E; Miller, John; Navarro, Willis; Confer, Dennis L; Levine, John E

    2014-01-01

    Patients and physicians may defer unrelated donor hematopoietic cell transplantation (HCT) as curative therapy due to mortality risk associated with the procedure. Therefore, it is important for physicians to know the current outcomes data when counseling potential candidates. To provide this information, we evaluated 15,059 unrelated donor HCT recipients between 2000-2009. We compared outcomes before and after 2005 for four cohorts: age <18 years with malignant diseases (N=1,920), 18-59 years with malignant diseases (N=9,575), ≥60 years with malignant diseases (N=2,194), and non-malignant diseases (N=1,370). Three-year overall survival in 2005-2009 was significantly better in all four cohorts (<18 years: 55% vs. 45%, 18-59 years: 42% vs. 35%, ≥60 years: 35% vs. 25%, non-malignant diseases: 69% vs. 60%, P<0.001 for all comparisons). Multivariate analyses in leukemia patients receiving HLA 7-8/8 matched transplants showed significant reduction in overall and non-relapse mortality in the first 1-year after HCT among patients transplanted in 2005-2009; however, risks for relapse did not change over time. Significant survival improvements after unrelated donor HCT have occurred over the recent decade and can be partly explained by better patient selection (e.g., HCT earlier in the disease course and lower disease risk), improved donor selection (e.g., more precise allele-level matched unrelated donors) and changes in transplant practices. PMID:25445638

  10. Preoperative sorting of circulating T lymphocytes in patients with esophageal squamous cell carcinoma: Its prognostic significance

    Institute of Scientific and Technical Information of China (English)

    Tadahiro Nozoe; Yoshihiko Maehara; Keizo Sugimachi

    2005-01-01

    AIM: To elucidate the immunologic parameters for the outcome of patients with malignant tumors, especially esophageal squamous cell carcinoma (ESCC) associated with high malignant potential.METHODS: Clinicopathologic features were compared between patients with lower and higher CD4 and CD8values as well as CD4/CD8 ratio in peripheral blood.RESULTS: The survival rate of patients with higher CD4 value was significantly better than that in patients with lower CD4 value (P = 0.039). The survival rate of patients with higher CD8 value was significantly worse than that of patients with lower CD8 value (P = 0.026).Similarly, the survival rate of patients with higher CD4/CD8 ratio was significantly better than that of patients with lower CD4/CD8 ratio (P = 0.042). Additionally,multivariate analysis demonstrated that lower CD8and lower CD4/CD8 ratio were factors independently associated with worse prognosis of patients.CONCLUSION: All the immunologic parameters can predict the outcome of patients with ESCC.

  11. Clinical significance and prognostic value of TRIM24 expression in esophageal squamous cell carcinoma

    Science.gov (United States)

    Chi, Jun; Yang, Qing; Xie, Xiao-Feng; Yang, Xian-Zi; Zhang, Mei-Yin; Wang, Hui-Yun; Xu, Guo-Liang

    2016-01-01

    Tripartite motif-containing 24 (TRIM24), a member of the transcription intermediary factor 1 family, is defined as a co-regulator with several nuclear receptors, such as RARα. TRIM24 has been reported to be involved in many cancers. In this study, we aimed to investigate the expression pattern and prognostic significance of TRIM24 and its relationship with RARα in esophageal squamous cell cancer (ESCC). Both mRNA and protein expression levels of TRIM24 were found to be significantly decreased in ESCC, as judged by qRT-PCR and western blot. Immunohistochemistry staining shows that the reduced TRIM24 protein is associated with lymph node metastasis (P=0.024), advance pathological TNM (pTNM) stage (P=0.046) and recurrence/metastasis (P=0.001). Upregulated TRIM24 protein predicts longer overall survival and disease-free survival (both P<0.001) and is an independent predictor for good prognosis (HR, 0.519; 95%CI, 0.341-0.788; P=0.002). TRIM24 expression has been proven remarkably to improve prediction of survival of pTNM stage in ESCC patients, especially in stage I and II. However, no significant relationship was found between TRIM24 and RARα expression levels. In conclusion, reduced TRIM24 protein is associated with poor survival in ESCC patients, suggesting TRIM24 protein is a potential prognostic biomarker for ESCC. PMID:27689360

  12. Alkyltransferase-mediated toxicity of bis-electrophiles in mammalian cells.

    Science.gov (United States)

    Kalapila, Aley G; Pegg, Anthony E

    2010-02-03

    The primary function of O(6)-alkylguanine-DNA alkyltransferase (AGT) is to maintain genomic integrity in the face of damage by both endogenous and exogenous alkylating agents. However, paradoxically, bacterial and mammalian AGTs have been shown to increase cytotoxicity and mutagenicity of dihaloalkanes and other bis-electrophiles when expressed in bacterial cells. We have extended these studies to mammalian cells using CHO cells that lack AGT expression and CHO cells stably transfected with a plasmid that expresses human AGT. The cytotoxicity of 1,2-dibromoethane, dibromomethane and epibromohydrin was significantly increased by the presence of AGT but cytotoxicity of butadiene diepoxide was not affected. Mutations caused by these agents were assessed using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as a reporter gene. There was a small (c. 2-3-fold) but statistically significant AGT-mediated increase in mutations caused by 1,2-dibromoethane, dibromomethane and epibromohydrin. Analysis of the mutation spectrum induced by 1,2-dibromoethane showed that the presence of AGT also altered the types of mutations with an increase in total base substitution mutants due to a rise in transversions at both G:C and A:T sites. AGT expression also led to mutations arising from the transcribed strand, which were not seen in cells lacking AGT. Although the frequency of deletion mutations was decreased by AGT expression, the formation of large deletions (> or = 3 exons) was increased. This work demonstrates that interaction of AGT with some bis-electrophiles can cause mutagenicity and diminished cell survival in mammalian cells. It is consistent with the hypothesis that DNA-AGT cross-links, which have been characterized in experiments with purified AGT protein and such bis-electrophiles, can be formed in mammalian cells.

  13. Capparis spinosa reduces Doxorubicin-induced cardio-toxicity in cardiomyoblast cells

    Directory of Open Access Journals (Sweden)

    Seyed Hadi Mousavi

    2016-08-01

    Full Text Available Objective: Doxorubicin (DOX is an effective anticancer drug but its clinical application is limited because it induces apoptosis in cardiomyocytes and leads to permanent degenerative cardiomyopathy and heart failure possibly due to oxidative stress. Recent studies showed that Capparis spinosa (C. spinoseexhibits potent antioxidant activity. So, in this study, we explored the protective effect of hydro-alcoholic extract of C. spinosa against DOX-induced cytotoxicity in H9c2 cells. Materials and Methods: Cell viability was quantified by MTT assay. Apoptotic cells were determined using flow cytometry (sub-G1 peak evaluation of DNA fragmentation following PI staining. Cells were cultured with 5 μM DOX for 24 hr to induce cell damage. H9c2 cells were pretreated with different concentrations (6-200 μg/ml of C. spinosa extract for 4 hr before DOX treatment in all trials. Results:  Pretreatment with 25, 50, 100 and 200 µg/ml of C. spinosa could increase the viability of H9C2 cells to 72.63 ± 2.8% (p< 0.05, 77.37 ± 1.8% (p< 0.05, 83.56 ± 2.6% (p< 0.001 and 90.9 ± 0.5% (p< 0.001 of control, respectively. Also, C. spinosa decreased apoptotic induction significantly, at the doses of 50 µg/ml (p

  14. NADH-generating substrates reduce peroxyl radical toxicity in RL-34 cells.

    Science.gov (United States)

    Antosiewicz, J; Spodnik, J H; Teranishi, M; Herman-Antosiewicz, A; Kurono, Ch; Soji, T; Woźniak, M; Borkowska, A; Wakabayashi, T

    2009-11-01

    There is general agreement that oxidative stress may induce apoptotic and necrotic cell death. Recently it has been shown that NADH can be considered an important antioxidant as it reacts with peroxyl and alkoxyl radicals under in vitro conditions. Therefore, in the present study we hypothesized that an increase in intracellular NADH using specific substrates will protect RL-34 cells against cytotoxicity of 2'-azobis (2-amidinopropane) dihydrochloride (AAPH), which is a peroxyl radical generating compound. Cells treated for 24 hours with 6.0 mM AAPH were severely damaged: mitochondria were vacuolated, and the level of free radicals significantly increased. Both apoptotic and necrotic cells were detected (11.1% and 11.4%, respectively) even after 5 hours of treatment. Pretreatment of the cells with substrates which increase the intracellular level of NADH, such as lactate, beta-hydroxybutyrate, and ethanol, distinctly inhibited AAPH-induced reactive oxygen species (ROS) formation and cell death. On the other hand, acetoacetate (AcA), which decrease the intracellular level of NADH, had opposite effects. Interestingly, NADH-generating substrates augment, while AcA reduced superoxide radical formation induced by AAPH. These results may suggest that although NADH generating substrates may exert some deleterious effects within a cell by inducing reductive stress, they diminish alkoxyl or peroxyl radical cytotoxicity. The protection is associated with a decrease in ROS formation measured by dichlorofluorescein, but with an increase in superoxide radical formation.

  15. Toxicity assessment of organochlorine compounds detected in water environment using cultured human cell lines; Hito yurai saibo baiyokei wo mochiita suikankyo shiryochu no yuki enso kagobutsu no dokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kunimoto, M.; Yonemoto, J.; Soma, Y.; Nakasugi, O. [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    As part of validation processes of in vitro toxicity assays for the risk assessment of environmental hazards, we applied an in vitro toxicity test using two human cell lines, neuroblastoma NB-1 cells and glioblastoma U-87 MG cells, to the assessment of organochlorine compounds detected in the water environment. The in vitro toxicity assay using NB-1 cells was calibrated by testing reference chemicals proposed by MEIC (Multicenter Evaluation of In Vitro Cytotoxicity), an international program for the validation of in vitro cytotoxicity assays. Beforehand, an assay using cells in frozen stock without subcultivation was examined by comparing IC50 values with the ordinary assay using subcultured cells. IC50 values for MEIC reference chemicals from the former assay showed good correlation with those from the latter assay, suggesting that the assay using cells in frozen stock can be used at least for the assessment of basal cytotoxicity. IC50 values for ten organochlorine compounds frequently detected in the sediment samples from contaminated rivers, p-chloroaniline, 3,4-dichloroaniline, p-dichlorobenzene, o-dichlorobenzene, Tris (2-chloroethyl)-phosphate, 2,5-dichlorophenol, 2,5-dichloroanisol, Triclosan and Triclocarban, were obtained with the in vitro assays and compared with their LD50 values in rats. No significant correlation, however, was seen between the IC50 and LD50 values, indicating that further improvement of in vitro toxicity assays is necessary for the application to the risk assessment of environmental hazards. 7 refs., 4 figs., 1 tab.

  16. Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress.

    Science.gov (United States)

    Rodríguez-Ramiro, Ildefonso; Martín, María Ángeles; Ramos, Sonia; Bravo, Laura; Goya, Luis

    2011-10-09

    Humans are exposed to dietary acrylamide (AA) during their lifetime, it is therefore necessary to investigate the mechanisms associated with AA-induced toxic effects. Accumulating evidence indicates that oxidative stress contributes to AA cytotoxicity, thus, dietary antioxidants might have a protective role in colonic cells against AA toxicity. We have recently reported that hydroxytyrosol (HTy), a natural antioxidant abundant in olive oil, is able to enhance the cellular antioxidant defence capacity, thereby protecting cells from oxidative stress. In this study, we evaluate the protective role of HTy on alterations of the redox balance induced by AA in Caco-2 intestinal cells. AA cytotoxicity was counteracted by HTy by powerfully reducing ROS generation, recovering the excited enzyme antioxidant defences and decreasing phospho-Jun kinase concentration and caspase-3 activity induced by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells and the olive oil natural dietary antioxidant HTy was able to contain AA toxicity by improving the redox status of Caco-2 cells and by partly restraining the apoptotic pathway activated by AA.

  17. Significance of lutein in red blood cells of Alzheimer's disease patients.

    Science.gov (United States)

    Kiko, Takehiro; Nakagawa, Kiyotaka; Tsuduki, Tsuyoshi; Suzuki, Toshihide; Arai, Hiroyuki; Miyazawa, Teruo

    2012-01-01

    Red blood cells (RBC) of Alzheimer's disease (AD) patients are known to be in an excessively oxidized state (i.e., with a high accumulation of peroxidized phospholipids (PLOOH)). Previously we confirmed in vitro, in vivo murine, and in human studies that carotenoids can effectively inhibit accumulation of RBC PLOOH. Thus, the relationship between RBC carotenoids and PLOOH concentrations in AD patients is of interest. In this study, RBC carotenoids and PLOOH were evaluated in 28 normal control subjects (age: 74.1 ± 1.3 years) and 28 patients with AD (age: 72.5 ± 1.4 years). The concentrations of RBC carotenoids, especially lutein, in AD patients were significantly lower than in control subjects. An inverse relationship was seen between RBC carotenoids, especially lutein, and PLOOH concentrations in AD patients. These results suggest that RBC lutein, in particular, may contribute to suppression of PLOOH accumulation in RBC of AD patients.

  18. Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Yu; Wan-Shou Guo; Li-Ming Cheng; Yu-Feng Lu; Jian-Ying Shen; Ping Li

    2015-01-01

    Background:Appropriate expression and regulation of the transcriptome,which mainly comprise ofmRNAs and lncRNAs,are important for all biological and cellular processes including the physiological activities of bone microvascular endothelial cells (BMECs).Through an intricate intracellular signaling systems,the transcriptome regulates the pharmacological response of the cells.Although studies have elucidated the impact of glucocorticoids (GCs) cell-specific gene expression signatures,it remains necessary to comprehensively characterize the impact of lncRNAs to transcriptional changes.Methods:BMECs were divided into two groups.One was treated with GCs and the other left untreated as a paired control.Differential expression was analyzed with GeneSpring software V12.0 (Agilent,Santa Clara,CA,USA) and hierarchical clustering was conducted using Cluster 3.0 software.The Gene Ontology (GO) analysis was performed with Molecular Annotation System provided by CapitalBio Corporation.Results:Our results highlight the involvement of genes implicated in development,differentiation and apoptosis following GC stimulation.Elucidation of differential gene expression emphasizes the importance of regulatory gene networks induced by GCs.We identified 73 up-regulated and 166 down-regulated long noncoding RNAs,the expression of 107 of which significantly correlated with 172 mRNAs induced by hydrocortisone.Conclusions:Transcriptome analysis of BMECs from human samples was performed to identify specific gene networks induced by GCs.Our results identified complex RNA crosstalk underlying the pathogenesis of steroid-induced necrosis of femoral head.

  19. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hong; WANG Sheng-fa; YU Liang; WANG Ju; CHANG Hao; YAN Wei-li; FU Kai; ZHANG Jian

    2008-01-01

    Background Transcription factor Pokemon,a central regulation gene of the important tumor suppressor ARF gene,exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes.Its expression in non-small cell lung cancer (NSCLC)and its clinical significance remains unclear.The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients'prognosis.Methods Fifty-five cases of NSCLC were involved in this study.The expression of Pokemon in the tumor tissue,the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction(RT-PCR)and Western blotting,with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinicaI pathological characteristics.Moreover,a prognostic analysis was carried out based upon the immunohistochemical(IHC)detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC.Results Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue,the tumor adjacent tissue and the surrounding tissue (P<0.05).The expression of Pokemon was determined not to be associated with the patients'sex,age,smoking condition,tumor differentiation degree,histology and lymph node metastasis condition.However,its relationship with TNM staging was established(P<0.05).Furthermore,it was shown that the suwival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.004),therefore,the expression of Pokemon is believed to be an independent factor affectinq prognosis (P=0.034).Concluaion Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  20. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application

    OpenAIRE

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-01-01

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung c...

  1. Expression and prognostic significance of zinc fingers and homeoboxes family members in renal cell carcinoma

    Science.gov (United States)

    Jeong, Dae Cheon; Han, Myoung-Eun; Kim, Ji-Young; Liu, Liangwen; Jung, Jin-Sup; Oh, Sae-Ock

    2017-01-01

    Zinc fingers and homeoboxes (ZHX) is a transcription repressor family that contains three members; ZHX1, ZHX2, and ZHX3. Although ZHX family members have been associated with the progression of cancer, their values as prognostic factors in cancer patients have been poorly examined. Renal cell carcinoma (RCC) is a highly heterogeneous, aggressive cancer that responds variably to treatment. Thus, prognostic molecular markers are required to evaluate disease progression and to improve the survival. In clear cell RCC (ccRCC), ZHX1 and ZHX3 expression were found to be down-regulated but ZHX2 was up-regulated, and the expressions of ZHX1 and ZHX3 were significantly associated with pathological stage. Furthermore, Kaplan-Meier and multivariate regression analysis showed that reduction in the mRNA expression of ZHX1 was associated with poorer survival. Taken together, the present study shows loss of ZHX1 is correlated with ccRCC progression and suggests it is an independent prognostic marker in ccRCC. PMID:28152006

  2. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    Science.gov (United States)

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage sim