WorldWideScience

Sample records for cell throughput maximization

  1. Aspects of multiuser MIMO for cell throughput maximization

    DEFF Research Database (Denmark)

    Bauch, Gerhard; Tejera, Pedro; Guthy, Christian

    2007-01-01

    We consider a multiuser MIMO downlink scenario where the resources in time, frequency and space are allocated such that the total cell throughput is maximized. This is achieved by exploiting multiuser diversity, i.e. the physical resources are allocated to the user with the highest SNR. We assume...

  2. On Throughput Maximization in Constant Travel-Time Robotic Cells

    OpenAIRE

    Milind Dawande; Chelliah Sriskandarajah; Suresh Sethi

    2002-01-01

    We consider the problem of scheduling operations in bufferless robotic cells that produce identical parts. The objective is to find a cyclic sequence of robot moves that minimizes the long-run average time to produce a part or, equivalently, maximizes the throughput rate. The robot can be moved in simple cycles that produce one unit or, in more complicated cycles, that produce multiple units. Because one-unit cycles are the easiest to understand, implement, and control, they are widely used i...

  3. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  4. Throughput maximization of parcel sorter systems by scheduling inbound containers

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Schutten, Johannes M.J.; Fikse, K.; Clausen, Uwe; ten Hompel, Michael; Meier, J. Fabian

    2013-01-01

    This paper addresses the inbound container scheduling problem for automated sorter systems in express parcel sorting. The purpose is to analyze which container scheduling approaches maximize the throughput of sorter systems. We build on existing literature, particularly on the dynamic load balancing

  5. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.

    2015-02-13

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  7. Throughput Maximization for Cognitive Radio Networks Using Active Cooperation and Superposition Coding

    KAUST Repository

    Hamza, Doha R.; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia

    2015-01-01

    We propose a three-message superposition coding scheme in a cognitive radio relay network exploiting active cooperation between primary and secondary users. The primary user is motivated to cooperate by substantial benefits it can reap from this access scenario. Specifically, the time resource is split into three transmission phases: The first two phases are dedicated to primary communication, while the third phase is for the secondary’s transmission. We formulate two throughput maximization problems for the secondary network subject to primary user rate constraints and per-node power constraints with respect to the time durations of primary transmission and the transmit power of the primary and the secondary users. The first throughput maximization problem assumes a partial power constraint such that the secondary power dedicated to primary cooperation, i.e. for the first two communication phases, is fixed apriori. In the second throughput maximization problem, a total power constraint is assumed over the three phases of communication. The two problems are difficult to solve analytically when the relaying channel gains are strictly greater than each other and strictly greater than the direct link channel gain. However, mathematically tractable lowerbound and upperbound solutions can be attained for the two problems. For both problems, by only using the lowerbound solution, we demonstrate significant throughput gains for both the primary and the secondary users through this active cooperation scheme. We find that most of the throughput gains come from minimizing the second phase transmission time since the secondary nodes assist the primary communication during this phase. Finally, we demonstrate the superiority of our proposed scheme compared to a number of reference schemes that include best relay selection, dual-hop routing, and an interference channel model.

  8. Joint Throughput Maximization and Fair Uplink Transmission Scheduling in CDMA Systems

    Directory of Open Access Journals (Sweden)

    Symeon Papavassiliou

    2009-01-01

    Full Text Available We study the fundamental problem of optimal transmission scheduling in a code-division multiple-access wireless system in order to maximize the uplink system throughput, while satisfying the users quality-of-service (QoS requirements and maintaining fairness among them. The corresponding problem is expressed as a weighted throughput maximization problem, under certain power and QoS constraints, where the weights are the control parameters reflecting the fairness constraints. With the introduction of the power index capacity, it is shown that this optimization problem can be converted into a binary knapsack problem, where all the corresponding constraints are replaced by the power index capacities at some certain system power index. A two-step approach is followed to obtain the optimal solution. First, a simple method is proposed to find the optimal set of users to receive service for a given fixed target system load, and then the optimal solution is obtained as a global search within a certain range. Furthermore, a stochastic approximation method is presented to effectively identify the required control parameters. The performance evaluation reveals the advantages of our proposed policy over other existing ones and confirms that it achieves very high throughput while maintains fairness among the users, under different channel conditions and requirements.

  9. On Maximizing the Throughput of Packet Transmission under Energy Constraints.

    Science.gov (United States)

    Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng

    2018-06-23

    More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.

  10. Throughput maximization for buffer-aided hybrid half-/full-duplex relaying with self-interference

    KAUST Repository

    Khafagy, Mohammad Galal

    2015-06-01

    In this work, we consider a two-hop cooperative setting where a source communicates with a destination through an intermediate relay node with a buffer. Unlike the existing body of work on buffer-aided half-duplex relaying, we consider a hybrid half-/full-duplex relaying scenario with loopback interference in the full-duplex mode. Depending on the channel outage and buffer states that are assumed available at the transmitters, the source and relay may either transmit simultaneously or revert to orthogonal transmission. Specifically, a joint source/relay scheduling and relaying mode selection mechanism is proposed to maximize the end-to-end throughput. The throughput maximization problem is converted to a linear program where the exact global optimal solution is efficiently obtained via standard convex/linear numerical optimization tools. Finally, the theoretical findings are corroborated with event-based simulations to provide the necessary performance validation.

  11. Sum rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    Resource allocation in orthogonal frequency division multiple access (OFDMA) networks plays an imperative role to guarantee the system performance. However, most of the known resource allocation schemes are focused on maximizing the local throughput of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non-convex combinatorial structure and is known to be NP hard. Firstly, we investigate the upper and lower bounds to the average network throughput due to the inherent complexity of implementing the optimal solution. Later, a centralized sub-optimal resource allocation scheme is developed. We further develop less complex centralized and distributed schemes that are well-suited for practical scenarios. The computational complexity of all schemes has been analyzed and the performance is compared through numerical simulations. Simulation results demonstrate that the distributed scheme achieves comparable performance to the centralized resource allocation scheme in various scenarios. © 2011 IEEE.

  12. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  13. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  14. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  15. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    International Nuclear Information System (INIS)

    Hodzic, Jasmina; Dingjan, Ilse; Maas, Mariëlle JP; Meulen-Muileman, Ida H van der; Menezes, Renee X de; Heukelom, Stan; Verheij, Marcel; Gerritsen, Winald R; Geldof, Albert A; Triest, Baukelien van; Beusechem, Victor W van

    2015-01-01

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid

  16. Maximizing gain in high-throughput screening using conformal prediction.

    Science.gov (United States)

    Svensson, Fredrik; Afzal, Avid M; Norinder, Ulf; Bender, Andreas

    2018-02-21

    Iterative screening has emerged as a promising approach to increase the efficiency of screening campaigns compared to traditional high throughput approaches. By learning from a subset of the compound library, inferences on what compounds to screen next can be made by predictive models, resulting in more efficient screening. One way to evaluate screening is to consider the cost of screening compared to the gain associated with finding an active compound. In this work, we introduce a conformal predictor coupled with a gain-cost function with the aim to maximise gain in iterative screening. Using this setup we were able to show that by evaluating the predictions on the training data, very accurate predictions on what settings will produce the highest gain on the test data can be made. We evaluate the approach on 12 bioactivity datasets from PubChem training the models using 20% of the data. Depending on the settings of the gain-cost function, the settings generating the maximum gain were accurately identified in 8-10 out of the 12 datasets. Broadly, our approach can predict what strategy generates the highest gain based on the results of the cost-gain evaluation: to screen the compounds predicted to be active, to screen all the remaining data, or not to screen any additional compounds. When the algorithm indicates that the predicted active compounds should be screened, our approach also indicates what confidence level to apply in order to maximize gain. Hence, our approach facilitates decision-making and allocation of the resources where they deliver the most value by indicating in advance the likely outcome of a screening campaign.

  17. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  18. Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Sana Ullah Jan

    2018-03-01

    Full Text Available A framework of spectrum sensing with a multi-class hypothesis is proposed to maximize the achievable throughput in cognitive radio networks. The energy range of a sensing signal under the hypothesis that the primary user is absent (in a conventional two-class hypothesis is further divided into quantized regions, whereas the hypothesis that the primary user is present is conserved. The non-radio frequency energy harvesting-equiped secondary user transmits, when the primary user is absent, with transmission power based on the hypothesis result (the energy level of the sensed signal and the residual energy in the battery: the lower the energy of the received signal, the higher the transmission power, and vice versa. Conversely, the lower is the residual energy in the node, the lower is the transmission power. This technique increases the throughput of a secondary link by providing a higher number of transmission events, compared to the conventional two-class hypothesis. Furthermore, transmission with low power for higher energy levels in the sensed signal reduces the probability of interference with primary users if, for instance, detection was missed. The familiar machine learning algorithm known as a support vector machine (SVM is used in a one-versus-rest approach to classify the input signal into predefined classes. The input signal to the SVM is composed of three statistical features extracted from the sensed signal and a number ranging from 0 to 100 representing the percentage of residual energy in the node’s battery. To increase the generalization of the classifier, k-fold cross-validation is utilized in the training phase. The experimental results show that an SVM with the given features performs satisfactorily for all kernels, but an SVM with a polynomial kernel outperforms linear and radial-basis function kernels in terms of accuracy. Furthermore, the proposed multi-class hypothesis achieves higher throughput compared to the

  19. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    Science.gov (United States)

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  20. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  1. Patterning cell using Si-stencil for high-throughput assay

    KAUST Repository

    Wu, Jinbo

    2011-01-01

    In this communication, we report a newly developed cell pattering methodology by a silicon-based stencil, which exhibited advantages such as easy handling, reusability, hydrophilic surface and mature fabrication technologies. Cell arrays obtained by this method were used to investigate cell growth under a temperature gradient, which demonstrated the possibility of studying cell behavior in a high-throughput assay. This journal is © The Royal Society of Chemistry 2011.

  2. A multilayer microdevice for cell-based high-throughput drug screening

    International Nuclear Information System (INIS)

    Liu, Chong; Wang, Lei; Li, Jingmin; Ding, Xiping; Chunyu, Li; Xu, Zheng; Wang, Qi

    2012-01-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption. (paper)

  3. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  4. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  5. Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System

    Science.gov (United States)

    Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi

    Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.

  6. Resource allocation via sum-rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    In this paper, we consider maximizing the sum rate in the uplink of a multi-cell orthogonal frequency-division multiple access network. The problem has a non-convex combinatorial structure and is known to be NP-hard. Because of the inherent complexity of implementing the optimal solution, firstly, we derive an upper bound (UB) and a lower bound (LB) to the optimal average network throughput. Moreover, we investigate the performance of a near-optimal single cell resource allocation scheme in the presence of inter-cell interference, which leads to another easily computable LB. We then develop a centralized sub-optimal scheme that is composed of a geometric programming-based power control phase in conjunction with an iterative subcarrier allocation phase. Although the scheme is computationally complex, it provides an effective benchmark for low complexity schemes even without the power control phase. Finally, we propose less complex centralized and distributed schemes that are well suited for practical scenarios. The computational complexity of all schemes is analyzed, and the performance is compared through simulations. Simulation results demonstrate that the proposed low complexity schemes can achieve comparable performance with that of the centralized sub-optimal scheme in various scenarios. Moreover, comparisons with the UB and LB provide insight on the performance gap between the proposed schemes and the optimal solution. Copyright © 2011 John Wiley & Sons, Ltd.

  7. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging.

    Science.gov (United States)

    Zane, Linda; Chapus, Fleur; Pegoraro, Gianluca; Misteli, Tom

    2017-08-15

    We describe Hi gh-throughput Hi stone Map ping (HiHiMap), a high-throughput imaging method to measure histones and histone posttranslational modifications (PTMs) in single cells. HiHiMap uses imaging-based quantification of DNA and cyclin A to stage individual cells in the cell cycle to determine the levels of histones or histone PTMs in each stage of the cell cycle. As proof of principle, we apply HiHiMap to measure the level of 21 core histones, histone variants, and PTMs in primary, immortalized, and transformed cells. We identify several histone modifications associated with oncogenic transformation. HiHiMap allows the rapid, high-throughput study of histones and histone PTMs across the cell cycle and the study of subpopulations of cells. © 2017 Zane et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production.

    Science.gov (United States)

    Cheng, Xiaoliang; Hiras, Jennifer; Deng, Kai; Bowen, Benjamin; Simmons, Blake A; Adams, Paul D; Singer, Steven W; Northen, Trent R

    2013-01-01

    Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  9. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  10. Generalized Encoding CRDSA: Maximizing Throughput in Enhanced Random Access Schemes for Satellite

    Directory of Open Access Journals (Sweden)

    Manlio Bacco

    2014-12-01

    Full Text Available This work starts from the analysis of the literature about the Random Access protocols with contention resolution, such as Contention Resolution Diversity Slotted Aloha (CRDSA, and introduces a possible enhancement, named Generalized Encoding Contention Resolution Diversity Slotted Aloha (GE-CRDSA. The GE-CRDSA aims at improving the aggregated throughput when the system load is less than 50%, playing on the opportunity of transmitting an optimal combination of information and parity packets frame by frame. This paper shows the improvement in terms of throughput, by performing traffic estimation and adaptive choice of information and parity rates, when a satellite network undergoes a variable traffic load profile.

  11. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  12. Uplink SDMA with Limited Feedback: Throughput Scaling

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Andrews

    2008-01-01

    Full Text Available Combined space division multiple access (SDMA and scheduling exploit both spatial multiplexing and multiuser diversity, increasing throughput significantly. Both SDMA and scheduling require feedback of multiuser channel sate information (CSI. This paper focuses on uplink SDMA with limited feedback, which refers to efficient techniques for CSI quantization and feedback. To quantify the throughput of uplink SDMA and derive design guidelines, the throughput scaling with system parameters is analyzed. The specific parameters considered include the numbers of users, antennas, and feedback bits. Furthermore, different SNR regimes and beamforming methods are considered. The derived throughput scaling laws are observed to change for different SNR regimes. For instance, the throughput scales logarithmically with the number of users in the high SNR regime but double logarithmically in the low SNR regime. The analysis of throughput scaling suggests guidelines for scheduling in uplink SDMA. For example, to maximize throughput scaling, scheduling should use the criterion of minimum quantization errors for the high SNR regime and maximum channel power for the low SNR regime.

  13. High-throughput gene expression profiling of memory differentiation in primary human T cells

    Directory of Open Access Journals (Sweden)

    Russell Kate

    2008-08-01

    Full Text Available Abstract Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1 the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2 a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

  14. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems.

    Science.gov (United States)

    Gagoski, Dejan; Mureev, Sergey; Giles, Nichole; Johnston, Wayne; Dahmer-Heath, Mareike; Škalamera, Dubravka; Gonda, Thomas J; Alexandrov, Kirill

    2015-02-10

    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Optimizing the Energy and Throughput of a Water-Quality Monitoring System.

    Science.gov (United States)

    Olatinwo, Segun O; Joubert, Trudi-H

    2018-04-13

    This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  16. Novel high-throughput cell-based hybridoma screening methodology using the Celigo Image Cytometer.

    Science.gov (United States)

    Zhang, Haohai; Chan, Leo Li-Ying; Rice, William; Kassam, Nasim; Longhi, Maria Serena; Zhao, Haitao; Robson, Simon C; Gao, Wenda; Wu, Yan

    2017-08-01

    Hybridoma screening is a critical step for antibody discovery, which necessitates prompt identification of potential clones from hundreds to thousands of hybridoma cultures against the desired immunogen. Technical issues associated with ELISA- and flow cytometry-based screening limit accuracy and diminish high-throughput capability, increasing time and cost. Conventional ELISA screening with coated antigen is also impractical for difficult-to-express hydrophobic membrane antigens or multi-chain protein complexes. Here, we demonstrate novel high-throughput screening methodology employing the Celigo Image Cytometer, which avoids nonspecific signals by contrasting antibody binding signals directly on living cells, with and without recombinant antigen expression. The image cytometry-based high-throughput screening method was optimized by detecting the binding of hybridoma supernatants to the recombinant antigen CD39 expressed on Chinese hamster ovary (CHO) cells. Next, the sensitivity of the image cytometer was demonstrated by serial dilution of purified CD39 antibody. Celigo was used to measure antibody affinities of commercial and in-house antibodies to membrane-bound CD39. This cell-based screening procedure can be completely accomplished within one day, significantly improving throughput and efficiency of hybridoma screening. Furthermore, measuring direct antibody binding to living cells eliminated both false positive and false negative hits. The image cytometry method was highly sensitive and versatile, and could detect positive antibody in supernatants at concentrations as low as ~5ng/mL, with concurrent K d binding affinity coefficient determination. We propose that this screening method will greatly facilitate antibody discovery and screening technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  18. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  19. Optimizing the Energy and Throughput of a Water-Quality Monitoring System

    Directory of Open Access Journals (Sweden)

    Segun O. Olatinwo

    2018-04-01

    Full Text Available This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN, with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  20. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan; Durmus, Naside Gozde

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  1. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  2. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  3. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    Science.gov (United States)

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  4. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  5. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    International Nuclear Information System (INIS)

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-01-01

    Highlights: ► An endothelial cell apoptosis assay using FRET-based biosensor was developed. ► The fluorescence of the cells changed from green to blue during apoptosis. ► This method was developed into a high-throughput assay in 96-well plates. ► This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z′ factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  6. Information maximization explains the emergence of complex cell-like neurons

    Directory of Open Access Journals (Sweden)

    Takuma eTanaka

    2013-11-01

    Full Text Available We propose models and a method to qualitatively explain the receptive field properties of complex cells in the primary visual cortex. We apply a learning method based on the information maximization principle in a feedforward network, which comprises an input layer of image patches, simple cell-like first-output-layer neurons, and second-output-layer neurons (Model 1. The information maximization results in the emergence of the complex cell-like receptive field properties in the second-output-layer neurons. After learning, second-output-layer neurons receive connection weights having the same size from two first-output-layer neurons with sign-inverted receptive fields. The second-output-layer neurons replicate the phase invariance and iso-orientation suppression. Furthermore, on the basis of these results, we examine a simplified model showing the emergence of complex cell-like receptive fields (Model 2. We show that after learning, the output neurons of this model exhibit iso-orientation suppression, cross-orientation facilitation, and end stopping, which are similar to those found in complex cells. These properties of model neurons suggest that complex cells in the primary visual cortex become selective to features composed of edges to increase the variability of the output.

  7. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei

    2014-01-01

    High-throughput screening (HTS) plays an important role in the development of microbial cell factories. One of the most popular approaches is to use microplates combined with the application of robotics, liquid handling and sophisticated detection methods. However, these workstations require large...... investment, and a logarithmic increase to screen large combinatorial libraries over the decades also makes it gradually out of depth. Here, we are trying to develop a feasible high‐throughput system that uses microfluidics to compartmentalize a single cell for propagation and analysis in monodisperse...... picoliter aqueous droplets surround by an immiscible fluorinated oil phase. Our aim is to use this system to facilitate the screening process for both the biotechnology and food industry....

  8. On Throughput Improvement of Wireless Ad Hoc Networks with Hidden Nodes

    Science.gov (United States)

    Choi, Hong-Seok; Lim, Jong-Tae

    In this letter, we present the throughput analysis of the wireless ad hoc networks based on the IEEE 802.11 MAC (Medium Access Control). Especially, our analysis includes the case with the hidden node problem so that it can be applied to the multi-hop networks. In addition, we suggest a new channel access control algorithm to maximize the network throughput and show the usefulness of the proposed algorithm through simulations.

  9. web cellHTS2: A web-application for the analysis of high-throughput screening data

    Directory of Open Access Journals (Sweden)

    Boutros Michael

    2010-04-01

    Full Text Available Abstract Background The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. Results The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. Conclusions The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  10. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.

    Science.gov (United States)

    Sasagawa, Yohei; Danno, Hiroki; Takada, Hitomi; Ebisawa, Masashi; Tanaka, Kaori; Hayashi, Tetsutaro; Kurisaki, Akira; Nikaido, Itoshi

    2018-03-09

    High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30-50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.

  11. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  12. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  13. An improved single cell ultrahigh throughput screening method based on in vitro compartmentalization.

    Directory of Open Access Journals (Sweden)

    Fuqiang Ma

    Full Text Available High-throughput screening is a key technique in discovery and engineering of enzymes. In vitro compartmentalization based fluorescence-activated cell sorting (IVC-FACS has recently emerged as a powerful tool for ultrahigh-throughput screening of biocatalysts. However, the accuracy of current IVC-FACS assays is severely limited by the wide polydispersity of micro-reactors generated by homogenizing. Here, an improved protocol based on membrane-extrusion technique was reported to generate the micro-reactors in a more uniform manner. This crucial improvement enables ultrahigh-throughput screening of enzymatic activity at a speed of >10⁸ clones/day with an accuracy that could discriminate as low as two-fold differences in enzymatic activity inside the micro-reactors, which is higher than similar IVC-FACS systems ever have reported. The enzymatic reaction in the micro-reactors has very similar kinetic behavior compared to the bulk reaction system and shows wide dynamic range. By using the modified IVC-FACS, E. coli cells with esterase activity could be enriched 330-fold from large excesses of background cells through a single round of sorting. The utility of this new IVC-FACS system was further illustrated by the directed evolution of thermophilic esterase AFEST. The catalytic activity of the very efficient esterase was further improved by ∼2-fold, resulting in several improved mutants with k(cat/K(M values approaching the diffusion-limited efficiency of ∼10⁸ M⁻¹s⁻¹.

  14. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  15. DESIGN OF LOW EPI AND HIGH THROUGHPUT CORDIC CELL TO IMPROVE THE PERFORMANCE OF MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    P. VELRAJKUMAR

    2014-04-01

    Full Text Available This paper mainly focuses on pass logic based design, which gives an low Energy Per Instruction (EPI and high throughput COrdinate Rotation Digital Computer (CORDIC cell for application of robotic exploration. The basic components of CORDIC cell namely register, multiplexer and proposed adder is designed using pass transistor logic (PTL design. The proposed adder is implemented in bit-parallel iterative CORDIC circuit whereas designed using DSCH2 VLSI CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The propagation delay, area and power dissipation are calculated from the simulated results for proposed adder based CORDIC cell. The EPI, throughput and effect of temperature are calculated from generated layout. The output parameter of generated layout is analysed using BSIM4 advanced analyzer. The simulated result of the proposed adder based CORDIC circuit is compared with other adder based CORDIC circuits. From the analysis of these simulated results, it was found that the proposed adder based CORDIC circuit dissipates low power, gives faster response, low EPI and high throughput.

  16. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  17. A high-throughput assay of NK cell activity in whole blood and its clinical application

    International Nuclear Information System (INIS)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-01-01

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as 51 Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer

  18. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  19. Bidirectional User Throughput Maximization Based on Feedback Reduction in LiFi Networks

    OpenAIRE

    Soltani, Mohammad Dehghani; Wu, Xiping; Safari, Majid; Haas, Harald

    2017-01-01

    Channel adaptive signalling, which is based on feedback, can result in almost any performance metric enhancement. Unlike the radio frequency (RF) channel, the optical wireless communications (OWCs) channel is fairly static. This feature enables a potential improvement of the bidirectional user throughput by reducing the amount of feedback. Light-Fidelity (LiFi) is a subset of OWCs, and it is a bidirectional, high-speed and fully networked wireless communication technology where visible light ...

  20. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  1. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  2. 3D material cytometry (3DMaC): a very high-replicate, high-throughput analytical method using microfabricated, shape-specific, cell-material niches.

    Science.gov (United States)

    Parratt, Kirsten; Jeong, Jenny; Qiu, Peng; Roy, Krishnendu

    2017-08-08

    Studying cell behavior within 3D material niches is key to understanding cell biology in health and diseases, and developing biomaterials for regenerative medicine applications. Current approaches to studying these cell-material niches have low throughput and can only analyze a few replicates per experiment resulting in reduced measurement assurance and analytical power. Here, we report 3D material cytometry (3DMaC), a novel high-throughput method based on microfabricated, shape-specific 3D cell-material niches and imaging cytometry. 3DMaC achieves rapid and highly multiplexed analyses of very high replicate numbers ("n" of 10 4 -10 6 ) of 3D biomaterial constructs. 3DMaC overcomes current limitations of low "n", low-throughput, and "noisy" assays, to provide rapid and simultaneous analyses of potentially hundreds of parameters in 3D biomaterial cultures. The method is demonstrated here for a set of 85 000 events containing twelve distinct cell-biomaterial micro-niches along with robust, customized computational methods for high-throughput analytics with potentially unprecedented statistical power.

  3. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    Science.gov (United States)

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  4. Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men.

    Science.gov (United States)

    Hanson, Erik D; Danson, Eli; Nguyen-Robertson, Catriona V; Fyfe, Jackson J; Stepto, Nigel K; Bartlett, David B; Sakkal, Samy

    2017-11-01

    Mucosal associated invariant T (MAIT) cells have properties of the innate and acquired immune systems. While the response to vigorous exercise has been established for most leukocytes, MAIT cells have not been investigated. Therefore, the purpose was to determine if MAIT cell lymphocytosis occurs with acute maximal aerobic exercise and if this response is influenced by exercise duration, cardiovascular fitness, or body composition. Twenty healthy young males with moderate fitness levels performed an extended graded exercise test until volitional fatigue. Peripheral blood mononuclear cells were isolated from venous blood obtained prior and immediately after exercise and were labeled to identify specific T cell populations using flow cytometry. The percentage of MAIT cells relative to total T cells significantly increased from 3.0 to 3.8% and absolute MAIT cell counts increased by 2.2-fold following maximal exercise. MAIT cell subpopulation proportions were unchanged with exercise. Within cytotoxic T lymphocytes (CTL), MAIT cells consisted of 8% of these cells and this remained constant after exercise. MAIT cell counts and changes with exercise were not affected by body composition, VO 2peak , or exercise duration. Maximal exercise doubled MAIT cell numbers and showed preferential mobilization within total T cells but the response was not influenced by fitness levels, exercise duration, or body composition. These results suggest that acute exercise could be used to offset MAIT cell deficiencies observed with certain pathologies. MAIT cells also make up a substantial proportion of CTLs, which may have implications for cytotoxicity assays using these cells.

  5. Lessons we learned from high-throughput and top-down systems biology analyses about glioma stem cells.

    Science.gov (United States)

    Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel

    2014-01-01

    A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.

  6. High-throughput screening in niche-based assay identifies compounds to target preleukemic stem cells

    Science.gov (United States)

    Gerby, Bastien; Veiga, Diogo F.T.; Krosl, Jana; Nourreddine, Sami; Ouellette, Julianne; Haman, André; Lavoie, Geneviève; Fares, Iman; Tremblay, Mathieu; Litalien, Véronique; Ottoni, Elizabeth; Geoffrion, Dominique; Maddox, Paul S.; Chagraoui, Jalila; Hébert, Josée; Sauvageau, Guy; Kwok, Benjamin H.; Roux, Philippe P.

    2016-01-01

    Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state. Improving therapies for T-ALL requires the development of strategies to target pre-LSCs that are absolutely dependent on their microenvironment. Therefore, we designed a robust protocol for high-throughput screening of compounds that target primary pre-LSCs maintained in a niche-like environment, on stromal cells that were engineered for optimal NOTCH1 activation. The multiparametric readout takes into account the intrinsic complexity of primary cells in order to specifically monitor pre-LSCs, which were induced here by the SCL/TAL1 and LMO1 oncogenes. We screened a targeted library of compounds and determined that the estrogen derivative 2-methoxyestradiol (2-ME2) disrupted both cell-autonomous and non–cell-autonomous pathways. Specifically, 2-ME2 abrogated pre-LSC viability and self-renewal activity in vivo by inhibiting translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remained functional. These results illustrate how recapitulating tissue-like properties of primary cells in high-throughput screening is a promising avenue for innovation in cancer chemotherapy. PMID:27797342

  7. Alkaloids from Juglans Mandshurica maxim induce distinctive cell death in hepatocellular carcinoma cells.

    Science.gov (United States)

    Lou, Li-Li; Cheng, Zhuo-Yang; Guo, Rui; Yao, Guo-Dong; Song, Shao-Jiang

    2017-12-15

    The aim of this work was to further investigate the anticancer potential of Juglans mandshurica Maxim, including the separation of active constituents and their anti-proliferative effects with underlying mechanism of action. Five alkaloids (1-5) were isolated from the bark of J. mandshurica. Among them, 1 showed the highest cytotoxic activities against Hep3B and HepG2 cells with an IC50 values of 61.80 and 56.24 μM, respectively. Therefore, the cellular mechanism involved 1 was subsequently studied. Our results showed that 1 markedly caused apoptosis and autophagy, but without cell cycle arrest in HepG2 cells. Interestingly, only autophagic cell death was induced in 1-treated Hep3B cells. It is concluded that the isolated alkaloids exerted a certain anti-hepatoma potential, and our results may provide a basis for the further investigation of the alkaloids extracted from J. mandshurica.

  8. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  9. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening.

    Science.gov (United States)

    Tong, Zhi-Bin; Hogberg, Helena; Kuo, David; Sakamuru, Srilatha; Xia, Menghang; Smirnova, Lena; Hartung, Thomas; Gerhold, David

    2017-02-01

    More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. High throughput sample processing and automated scoring

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2014-10-01

    Full Text Available The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to high throughput are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. High throughput methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies, and automation gives more uniform sample treatment and less dependence on operator performance. The high throughput modifications now available vary largely in their versatility, capacity, complexity and costs. The bottleneck for further increase of throughput appears to be the scoring.

  11. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays

    Directory of Open Access Journals (Sweden)

    Yuyi Wang

    2018-06-01

    Full Text Available Microfluidic systems have been regarded as a potential platform for high-throughput screening technology in drug discovery due to their low sample consumption, high integration, and easy operation. The handling of small-volume liquid is an essential operation in microfluidic systems, especially in investigating large-scale combination conditions. Here, we develop a nanoliter centrifugal liquid dispenser (NanoCLD coupled with superhydrophobic microwell array chips for high-throughput cell-based assays in the nanoliter scale. The NanoCLD consists of a plastic stock block with an array of drilled through holes, a reagent microwell array chip (reagent chip, and an alignment bottom assembled together in a fixture. A simple centrifugation at 800 rpm can dispense ~160 nL reagents into microwells in 5 min. The dispensed reagents are then delivered to cells by sandwiching the reagent chip upside down with another microwell array chip (cell chip on which cells are cultured. A gradient of doxorubicin is then dispensed to the cell chip using the NanoCLD for validating the feasibility of performing drug tests on our microchip platform. This novel nanoliter-volume liquid dispensing method is simple, easy to operate, and especially suitable for repeatedly dispensing many different reagents simultaneously to microwells.

  12. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  13. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  14. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    Science.gov (United States)

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  15. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.

    Science.gov (United States)

    Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A

    2017-12-01

    Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of

  16. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  17. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  18. Throughput and Delay Analysis of HARQ with Code Combining over Double Rayleigh Fading Channels

    KAUST Repository

    Chelli, Ali

    2018-01-15

    This paper proposes the use of hybrid automatic repeat request (HARQ) with code combining (HARQ-CC) to offer reliable communications over double Rayleigh channels. The double Rayleigh fading channel is of particular interest to vehicle-to-vehicle communication systems as well as amplify-and-forward relaying and keyhole channels. This work studies the performance of HARQ-CC over double Rayleigh channels from an information theoretic perspective. Analytical approximations are derived for the $\\\\epsilon$-outage capacity, the average number of transmissions, and the throughput of HARQ-CC. Moreover, we evaluate the delay experienced by Poisson arriving packets for HARQ-CC. We provide analytical expressions for the average waiting time, the packets sojourn time, the average consumed power, and the energy efficiency. In our investigation, we take into account the impact of imperfect feedback on different performance metrics. Additionally, we explore the tradeoff between energy efficiency and the throughput. The proposed scheme is shown to maintain the outage probability below a specified threshold $\\\\epsilon$ which ensures the link reliability. Meanwhile, HARQ-CC adapts implicitly the transmission rate to the channel conditions such that the throughput is maximized. Our results demonstrate that HARQ-CC allows improving the achievable communication rate compared to fixed time diversity schemes. To maximize the throughput of HARQ-CC, the rate per HARQ round should be less than the rate required to meet the outage constraint. Our investigation of the performance of HARQ-CC over Rayleigh and double Rayleigh channels shows that double Rayleigh channels have a higher severity of fading and result in a larger degradation of the throughput. Our analysis reveals that HARQ with incremental redundancy (HARQ-IR) achieves a larger throughput compared to HARQ-CC, while HARQ-CC is simpler to implement, has a lower decoding

  19. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    Science.gov (United States)

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.

    Science.gov (United States)

    Jiang, Rongzhong; Rong, Charles; Chu, Deryn

    2005-01-01

    A 40-member array of direct methanol fuel cells (with stationary fuel and convective air supplies) was generated by electrically connecting the fuel cells in series. High-throughput analysis of these fuel cells was realized by fast screening of voltages between the two terminals of a fuel cell at constant current discharge. A large number of voltage-current curves (200) were obtained by screening the voltages through multiple small-current steps. Gaussian distribution was used to statistically analyze the large number of experimental data. The standard deviation (sigma) of voltages of these fuel cells increased linearly with discharge current. The voltage-current curves at various fuel concentrations were simulated with an empirical equation of voltage versus current and a linear equation of sigma versus current. The simulated voltage-current curves fitted the experimental data well. With increasing methanol concentration from 0.5 to 4.0 M, the Tafel slope of the voltage-current curves (at sigma=0.0), changed from 28 to 91 mV.dec-1, the cell resistance from 2.91 to 0.18 Omega, and the power output from 3 to 18 mW.cm-2.

  1. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells.

    Science.gov (United States)

    Massey, Andrew J

    2018-01-01

    Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.

  2. Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Philippe Renaud

    2012-08-01

    Full Text Available Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (108 yeast cells per ml with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical lysis. The goal of this work is to develop a sample preparation module that can act as a stand-alone device or be integrated to other functions already demonstrated in miniaturized devices, including sorting and analysis, towards a true lab-on-a-chip.

  3. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Sørensen, Iben; Bernal Giraldo, Adriana Jimena

    2007-01-01

    We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from...... analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant...

  4. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    Science.gov (United States)

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    Science.gov (United States)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  6. High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates

    OpenAIRE

    Neto, Ana I.; Custódio, Catarina A.; Wenlong Song; Mano, J. F.

    2011-01-01

    We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation. This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) under project PTDC/FIS/68517/2006.

  7. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping.

    Science.gov (United States)

    Deng, Yanxiang; Davis, Steven P; Yang, Fan; Paulsen, Kevin S; Kumar, Maneesh; Sinnott DeVaux, Rebecca; Wang, Xianhui; Conklin, Douglas S; Oberai, Assad; Herschkowitz, Jason I; Chung, Aram J

    2017-07-01

    Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Resource allocation via sum-rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher

    2012-01-01

    In this paper, we consider maximizing the sum rate in the uplink of a multi-cell orthogonal frequency-division multiple access network. The problem has a non-convex combinatorial structure and is known to be NP-hard. Because of the inherent

  9. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting.

    Science.gov (United States)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-04

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell's natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  10. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Directory of Open Access Journals (Sweden)

    Andrew R Schwendeman

    Full Text Available Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  11. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Liao, Chi-Ren; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Wang, Ching-Ying; Yang, Chang-Syun; Lin, Cheng-Wen; Chang, Yuan-Shiun

    2014-07-04

    Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1), 3-O-(Z)-coumaroyl oleanolic acid (2), 3-O-(E)-coumaroyl oleanolic acid (3), 3-O-caffeoyl oleanolic acid (4), ursolic acid (5), 3-O-(Z)-coumaroyl ursolic acid (6), 3-O-(E)-coumaroyl ursolic acid (7), 3-O-caffeoyl ursolic acid (8), 3β, 13β-dihydroxyolean-11-en-28-oic acid (9), 3β, 13β-dihydroxyurs-11-en-28-oic acid (10), uvaol (11), betulin (12), lupeol (13), kaempferol (14), aromadendrin (15), epigallocatechin (16), cis-tiliroside (17), trans-tiliroside (18), isoamericanol B (19), trans-p-coumaric acid (20), protocatechuic acid (21), salicylic acid (22), trans-ferulic acid (23), syringic acid (24) and 3-O-methylgallic acid (25). Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8-25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50=8.56±0.57 μg/mL, at 48 h of MTT asssay). Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87±1.94 μg/mL, at 48 h of MTT asssay). The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect.

  12. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    2009-11-01

    Full Text Available Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides.For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility.In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  13. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  14. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  15. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    Science.gov (United States)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  16. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.; Liu, D.; Shagoshtasbi, H.; Shukla, A.; Nugroho, E. S.; Zohar, Y.; Lee, Y.-K.

    2013-01-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  17. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.

    2013-04-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  18. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    Druwe, Ingrid; Freudenrich, Theresa M.; Wallace, Kathleen; Shafer, Timothy J.; Mundy, William R.

    2015-01-01

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  19. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h−1) immunomagnetic sorting†

    Science.gov (United States)

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal

    2016-01-01

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h−1) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h−1) and specifically sort rare tumor cells from white blood cells. PMID:27170379

  20. Increasing Throughput and Fairness for Users in Heterogeneous Semi Coordinated Deployments

    DEFF Research Database (Denmark)

    Semov, Plamen; Poulkov, Vladimir; Mihovska, Albena D.

    2014-01-01

    Incorporation of the geographical positions of mobile users into the resource assignment process in uncoordinated heterogeneous cell deployments, can lead to significant improvements of cell and user throughputs. This paper proposes a novel algorithm that combines the knowledge of the users......’ positions with a Q-learning and game-theoretic approaches to enhance the dynamic physical resource allocation during carrier aggregation (CA) in a semi-and uncoordinated deployment of Heterogeneous Networks (HetNet). The algorithm is evaluated through MATLAB simulation setup and in terms of macro-and pico......- cell and user throughputs. It has been shown that regardless of the approach chosen for physical resource assignment, positioning information increases the system and user performances. Use of Q-learning and positioning information leads to increased cell throughput without degrading the user...

  1. Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.

    Science.gov (United States)

    Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza

    2017-10-01

    An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.

  2. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Directory of Open Access Journals (Sweden)

    Baoshan Guo

    Full Text Available The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary and nitrogen-deficient (lipid-accumulated E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  3. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.

    Science.gov (United States)

    Bray, Mark-Anthony; Carpenter, Anne E

    2015-11-04

    Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.

  4. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts

    Directory of Open Access Journals (Sweden)

    Stefanie Hoffmann

    2018-02-01

    Full Text Available The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU. In contrast, the virtual colony count (VCC method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays.

  5. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    Science.gov (United States)

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  6. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  7. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  8. Numerical Model of Streaming DEP for Stem Cell Sorting

    Directory of Open Access Journals (Sweden)

    Rucha Natu

    2016-11-01

    Full Text Available Neural stem cells are of special interest due to their potential in neurogenesis to treat spinal cord injuries and other nervous disorders. Flow cytometry, a common technique used for cell sorting, is limited due to the lack of antigens and labels that are specific enough to stem cells of interest. Dielectrophoresis (DEP is a label-free separation technique that has been recently demonstrated for the enrichment of neural stem/progenitor cells. Here we use numerical simulation to investigate the use of streaming DEP for the continuous sorting of neural stem/progenitor cells. Streaming DEP refers to the focusing of cells into streams by equilibrating the dielectrophoresis and drag forces acting on them. The width of the stream should be maximized to increase throughput while the separation between streams must be widened to increase efficiency during retrieval. The aim is to understand how device geometry and experimental variables affect the throughput and efficiency of continuous sorting of SC27 stem cells, a neurogenic progenitor, from SC23 cells, an astrogenic progenitor. We define efficiency as the ratio between the number of SC27 cells over total number of cells retrieved in the streams, and throughput as the number of SC27 cells retrieved in the streams compared to their total number introduced to the device. The use of cylindrical electrodes as tall as the channel yields streams featuring >98% of SC27 cells and width up to 80 µm when using a flow rate of 10 µL/min and sample cell concentration up to 105 cells/mL.

  9. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    Science.gov (United States)

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  10. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  11. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  12. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  13. The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).

    Science.gov (United States)

    Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi

    2018-01-01

    Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.

  14. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    Directory of Open Access Journals (Sweden)

    Thiago M Pais

    2013-06-01

    Full Text Available The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

  15. High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    Energy Technology Data Exchange (ETDEWEB)

    Kopola, P.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. [VTT, Kaitovaeylae 1, FIN-90571 Oulu (Finland); Aernouts, T. [IMEC, Organic PhotoVoltaics, Polymer and Molecular Electronics, Kapeldreef 75, B-3001 Leuven (Belgium); Guillerez, S. [CEA-INES RDI, 50 Avenue Du Lac Leman, 73370 Le Bourget Du Lac (France)

    2010-10-15

    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (author)

  16. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  17. Automated profiling of individual cell-cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING).

    Science.gov (United States)

    Merouane, Amine; Rey-Villamizar, Nicolas; Lu, Yanbin; Liadi, Ivan; Romain, Gabrielle; Lu, Jennifer; Singh, Harjeet; Cooper, Laurence J N; Varadarajan, Navin; Roysam, Badrinath

    2015-10-01

    There is a need for effective automated methods for profiling dynamic cell-cell interactions with single-cell resolution from high-throughput time-lapse imaging data, especially, the interactions between immune effector cells and tumor cells in adoptive immunotherapy. Fluorescently labeled human T cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4) were co-incubated on polydimethylsiloxane arrays of sub-nanoliter wells (nanowells), and imaged using multi-channel time-lapse microscopy. The proposed cell segmentation and tracking algorithms account for cell variability and exploit the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading. Automated analysis of recordings from 12 different experiments demonstrated automated nanowell delineation accuracy >99%, automated cell segmentation accuracy >95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering. An example analysis revealed that NK cells efficiently discriminate between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells display higher motility than non-killers, both before and during contact. broysam@central.uh.edu or nvaradar@central.uh.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    Science.gov (United States)

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  19. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides.

    Science.gov (United States)

    de Masson, Adele; O'Malley, John T; Elco, Christopher P; Garcia, Sarah S; Divito, Sherrie J; Lowry, Elizabeth L; Tawa, Marianne; Fisher, David C; Devlin, Phillip M; Teague, Jessica E; Leboeuf, Nicole R; Kirsch, Ilan R; Robins, Harlan; Clark, Rachael A; Kupper, Thomas S

    2018-05-09

    Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course. However, a small subset of early-stage cases develop progressive and fatal disease. Because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. We evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene ( TCRB ) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. We compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF). The tumor clone frequency (TCF) in lesional skin, measured by high-throughput sequencing of the TCRB gene, was an independent prognostic factor of both progression-free and overall survival in patients with CTCL and MF in particular. In early-stage patients, a TCF of >25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF. Early identification of patients at high risk for progression could help identify candidates who may benefit from allogeneic hematopoietic stem cell transplantation before their disease becomes treatment-refractory. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  1. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....

  2. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    Science.gov (United States)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  3. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  4. Tri-maximal vs. bi-maximal neutrino mixing

    International Nuclear Information System (INIS)

    Scott, W.G

    2000-01-01

    It is argued that data from atmospheric and solar neutrino experiments point strongly to tri-maximal or bi-maximal lepton mixing. While ('optimised') bi-maximal mixing gives an excellent a posteriori fit to the data, tri-maximal mixing is an a priori hypothesis, which is not excluded, taking account of terrestrial matter effects

  5. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-05-01

    The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO 2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single-cell resolution in a non-invasive and interference-free manner. Here high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen-sufficient and nitrogen-deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae-based biofuel production. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  6. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    Science.gov (United States)

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2018-06-01

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  7. Reverse Phase Protein Arrays for High-throughput Toxicity Screening

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    High-throughput screening is extensively applied for identification of drug targets and drug discovery and recently it found entry into toxicity testing. Reverse phase protein arrays (RPPAs) are used widespread for quantification of protein markers. We reasoned that RPPAs also can be utilized...... beneficially in automated high-throughput toxicity testing. An advantage of using RPPAs is that, in addition to the baseline toxicity readout, they allow testing of multiple markers of toxicity, such as inflammatory responses, which do not necessarily cumulate in cell death. We used transfection of si......RNAs with known killing effects as a model system to demonstrate that RPPA-based protein quantification can serve as substitute readout of cell viability, hereby reliably reflecting toxicity. In terms of automation, cell exposure, protein harvest, serial dilution and sample reformatting were performed using...

  8. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    Science.gov (United States)

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  9. Effects of eye drops of Buddleja officinalis Maxim. extract on lacrimal gland cell apoptosis in castrated rats with dry eye.

    Science.gov (United States)

    Peng, Qing-hua; Yao, Xiao-lei; Wu, Quan-long; Tan, Han-yu; Zhang, Jing-rong

    2010-03-01

    To explore the possible mechanism of eye drops of Buddleja officinalis extract in treating dry eye of castrated rats by analyzing the expressions of Bax and Bcl-2 proteins. Forty-five Wistar male rats were randomly divided into sham-operated group, untreated group and eye drops of Buddleja officinalis Maxim. extract (treatment) group. The dry eye model was established with orchiectomy in the untreated group and treatment group. Rats in the treatment group were treated with eye drops of Buddleja officinalis Maxim. extract, one drop once, three times daily. Eyes of rats in the sham-operated group and untreated group were instilled with normal saline. After one-, two-, or three-month treatment, five rats in each group were scarified respectively. Then samples were taken to detect related indices. Expressions of Bax and Bcl-2 of lacrimal gland were checked by immunohistochemical method and quantity of apoptotic cells was counted. After one-, two- or three-month treatment, the quantities of expressions of Bax in acinar epithelial cells and glandular tube cells were significantly lower, and those of Bcl-2 were significantly higher in the treatment group than in the untreated group, and the quantities of apoptotic cells of the treatment group were significantly lower than those of the untreated group (PBuddleja officinalis Maxim. are flavonoids, which can significantly inhibit cell apoptosis in lacrimal gland.

  10. Optimization and high-throughput screening of antimicrobial peptides.

    Science.gov (United States)

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  11. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  12. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Directory of Open Access Journals (Sweden)

    Du Peige

    2008-10-01

    Full Text Available Abstract Background Estrogen receptor α (ERα is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131 as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE. In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.

  13. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    Science.gov (United States)

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Coding for Parallel Links to Maximize the Expected Value of Decodable Messages

    Science.gov (United States)

    Klimesh, Matthew A.; Chang, Christopher S.

    2011-01-01

    When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from

  15. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  16. A High-Throughput Oxidative Stress Biosensor Based on Escherichia coli roGFP2 Cells Immobilized in a k-Carrageenan Matrix

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days, narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10−3–1.0 × 101 mg·L−1, LOD: 2.0 × 10−4 mg·L−1; selenite: 1.0 × 10−5–1.0 × 102 mg·L−1, LOD: 5.8 × 10−6 mg·L−1, short response times (0–9 min, high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.

  17. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

    Science.gov (United States)

    Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A

    2017-06-01

    The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.

  18. Maximal frustration as an immunological principle.

    Science.gov (United States)

    de Abreu, F Vistulo; Mostardinha, P

    2009-03-06

    A fundamental problem in immunology is that of understanding how the immune system selects promptly which cells to kill without harming the body. This problem poses an apparent paradox. Strong reactivity against pathogens seems incompatible with perfect tolerance towards self. We propose a different view on cellular reactivity to overcome this paradox: effector functions should be seen as the outcome of cellular decisions which can be in conflict with other cells' decisions. We argue that if cellular systems are frustrated, then extensive cross-reactivity among the elements in the system can decrease the reactivity of the system as a whole and induce perfect tolerance. Using numerical and mathematical analyses, we discuss two simple models that perform optimal pathogenic detection with no autoimmunity if cells are maximally frustrated. This study strongly suggests that a principle of maximal frustration could be used to build artificial immune systems. It would be interesting to test this principle in the real adaptive immune system.

  19. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  1. High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.

    Science.gov (United States)

    Bhargava, Rohit; Fernandez, Daniel C; Hewitt, Stephen M; Levin, Ira W

    2006-07-01

    Vibrational spectroscopy allows a visualization of tissue constituents based on intrinsic chemical composition and provides a potential route to obtaining diagnostic markers of diseases. Characterizations utilizing infrared vibrational spectroscopy, in particular, are conventionally low throughput in data acquisition, generally lacking in spatial resolution with the resulting data requiring intensive numerical computations to extract information. These factors impair the ability of infrared spectroscopic measurements to represent accurately the spatial heterogeneity in tissue, to incorporate robustly the diversity introduced by patient cohorts or preparative artifacts and to validate developed protocols in large population studies. In this manuscript, we demonstrate a combination of Fourier transform infrared (FTIR) spectroscopic imaging, tissue microarrays (TMAs) and fast numerical analysis as a paradigm for the rapid analysis, development and validation of high throughput spectroscopic characterization protocols. We provide an extended description of the data treatment algorithm and a discussion of various factors that may influence decision-making using this approach. Finally, a number of prostate tissue biopsies, arranged in an array modality, are employed to examine the efficacy of this approach in histologic recognition of epithelial cell polarization in patients displaying a variety of normal, malignant and hyperplastic conditions. An index of epithelial cell polarization, derived from a combined spectral and morphological analysis, is determined to be a potentially useful diagnostic marker.

  2. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  3. Quantification of rapid Myosin regulatory light chain phosphorylation using high-throughput in-cell Western assays: comparison to Western immunoblots.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    2010-04-01

    Full Text Available Quantification of phospho-proteins (PPs is crucial when studying cellular signaling pathways. Western immunoblotting (WB is commonly used for the measurement of relative levels of signaling intermediates in experimental samples. However, WB is in general a labour-intensive and low-throughput technique. Because of variability in protein yield and phospho-signal preservation during protein harvesting, and potential loss of antigen during protein transfer, WB provides only semi-quantitative data. By comparison, the "in-cell western" (ICW technique has high-throughput capacity and requires less extensive sample preparation. Thus, we compared the ICW technique to WB for measuring phosphorylated myosin regulatory light chain (PMLC(20 in primary cultures of uterine myocytes to assess their relative specificity, sensitivity, precision, and quantification of biologically relevant responses.ICWs are cell-based microplate assays for quantification of protein targets in their cellular context. ICWs utilize a two-channel infrared (IR scanner (Odyssey(R to quantify signals arising from near-infrared (NIR fluorophores conjugated to secondary antibodies. One channel is dedicated to measuring the protein of interest and the second is used for data normalization of the signal in each well of the microplate. Using uterine myocytes, we assessed oxytocin (OT-stimulated MLC(20 phosphorylation measured by ICW and WB, both using NIR fluorescence. ICW and WB data were comparable regarding signal linearity, signal specificity, and time course of phosphorylation response to OT.ICW and WB yield comparable biological data. The advantages of ICW over WB are its high-throughput capacity, improved precision, and reduced sample preparation requirements. ICW might provide better sensitivity and precision with low-quantity samples or for protocols requiring large numbers of samples. These features make the ICW technique an excellent tool for the study of phosphorylation endpoints

  4. Phenomenology of maximal and near-maximal lepton mixing

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M. C.; Pena-Garay, Carlos; Nir, Yosef; Smirnov, Alexei Yu.

    2001-01-01

    The possible existence of maximal or near-maximal lepton mixing constitutes an intriguing challenge for fundamental theories of flavor. We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other (x=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter ε(equivalent to)1-2sin 2 θ ex and quantify the present experimental status for |ε| e mixing comes from solar neutrino experiments. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for 10 -8 eV 2 ∼ 2 ∼ -7 eV 2 . In the mass ranges Δm 2 ∼>1.5x10 -5 eV 2 and 4x10 -10 eV 2 ∼ 2 ∼ -7 eV 2 the full interval |ε| e mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay

  5. Subnuclear foci quantification using high-throughput 3D image cytometry

    Science.gov (United States)

    Wadduwage, Dushan N.; Parrish, Marcus; Choi, Heejin; Engelward, Bevin P.; Matsudaira, Paul; So, Peter T. C.

    2015-07-01

    Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques.

  6. High-throughput Sequencing Based Immune Repertoire Study during Infectious Disease

    Directory of Open Access Journals (Sweden)

    Dongni Hou

    2016-08-01

    Full Text Available The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases that achieved by traditional techniques and high-throughput sequencing techniques. High-throughput sequencing techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge, and also provides a basis for further development of novel diagnostic markers, immunotherapies and vaccines.

  7. Use of flow cytometry for high-throughput cell population estimates in fixed brain tissue

    Directory of Open Access Journals (Sweden)

    Nicole A Young

    2012-07-01

    Full Text Available The numbers and types of cells in an area of cortex define its function. Therefore it is essential to characterize the numbers and distributions of total cells in areas of the cortex, as well as to identify numbers of subclasses of neurons and glial cells. To date, the large size of the primate brain and the lack of innovation in cell counting methods have been a roadblock to obtaining high-resolution maps of cell and neuron density across the cortex in humans and non-human primates. Stereological counting methods and the isotropic fractionator are valuable tools for estimating cell numbers, but are better suited to smaller, well-defined brain structures or to cortex as a whole. In the present study, we have extended our flow-cytometry based counting method, the flow fractionator (Collins et al., 2010a, to include high-throughput total cell population estimates in homogenized cortical samples. We demonstrate that our method produces consistent, accurate and repeatable cell estimates quickly. The estimates we report are in excellent agreement with estimates for the same samples obtained using a Neubauer chamber and a fluorescence microscope. We show that our flow cytometry-based method for total cell estimation in homogenized brain tissue is more efficient and more precise than manual counting methods. The addition of automated nuclei counting to our flow fractionator method allows for a fully automated, rapid characterization of total cells and neuronal and non-neuronal populations in human and non-human primate brains, providing valuable data to further our understanding of the functional organization of normal, aging and diseased brains.

  8. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  9. High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application

    Science.gov (United States)

    Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang

    2018-06-01

    Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.

  10. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening.

    Science.gov (United States)

    Wagner, Bridget K; Carrinski, Hyman A; Ahn, Young-Hoon; Kim, Yun Kyung; Gilbert, Tamara J; Fomina, Dina A; Schreiber, Stuart L; Chang, Young-Tae; Clemons, Paul A

    2008-04-02

    A small molecule capable of distinguishing the distinct states resulting from cellular differentiation would be of enormous value, for example, in efforts aimed at regenerative medicine. We screened a collection of fluorescent small molecules for the ability to distinguish the differentiated state of a mouse skeletal muscle cell line. High-throughput fluorescence-based screening of C2C12 myoblasts and myotubes resulted in the identification of six compounds with the desired selectivity, which was confirmed by high-content screening in the same cell states. The compound that resulted in the greatest fluorescence intensity difference between the cell states was used as the screening agent in a pilot screen of 84 kinase inhibitors, each present in four doses, for inhibition of myogenesis. Of the kinase inhibitors, 17 resulted in reduction of fluorescence at one or more concentrations; among the "hits" included known inhibitors of myogenesis, confirming that this compound is capable of detecting the differentiated myotube state. We suggest that the strategy of screening for screening agents reported here may be extended more broadly in the future.

  11. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  12. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    Science.gov (United States)

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  13. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

    International Nuclear Information System (INIS)

    Worley, Bradley; Sisco, Nicholas J.; Powers, Robert

    2015-01-01

    NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1 H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1 H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction

  14. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    Science.gov (United States)

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.

  15. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    Science.gov (United States)

    Gibbs, David L; Shmulevich, Ilya

    2017-06-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  16. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle

    Science.gov (United States)

    Shmulevich, Ilya

    2017-01-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf. PMID:28628618

  17. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    David L Gibbs

    2017-06-01

    Full Text Available The Influence Maximization Problem (IMP aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  18. The anti-tumor effect and biological activities of the extract JMM6 from the stem-barks of the Chinese Juglans mandshurica Maxim on human hepatoma cell line BEL-7402.

    Science.gov (United States)

    Zhang, Yongli; Cui, Yuqiang; Zhu, Jiayong; Li, Hongzhi; Mao, Jianwen; Jin, Xiaobao; Wang, Xiangsheng; Du, Yifan; Lu, Jiazheng

    2013-01-01

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the extracted compound JMM6 were studied in BEL-7402 cells by MTT, Cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay and Detection of mitochondrial membrane potential (ΔΨm). After treatment with the JMM6, the growth of BEL-7402 cells was inhibited and cells displayed typical morphological apoptotic characteristics. Further investigations revealed that treatment with JMM6 mainly caused G2/M cell cycle arrest and induced apoptosis in BEL-7402 cells. To evaluate the alteration of mitochondria in JMM6 induced apoptosis. The data showed that JMM6 decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Our results show that the JMM6 will have a potential advantage of anti-tumor, less harmful to normal cells. This paper not only summarized the JMM6 pick-up technology from Juglans mandshurica Maxim and biological characteristic, but also may provide further evidence to exploit the potential medicine compounds from the stem-barks of the Chinese Juglans mandshurica Maxim.

  19. Design and Performance Analysis of Multi-tier Heterogeneous Network through Coverage, Throughput and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    A. Shabbir,

    2017-12-01

    Full Text Available The unprecedented acceleration in wireless industry strongly compels wireless operators to increase their data network throughput, capacity and coverage on emergent basis. In upcoming 5G heterogeneous networks inclusion of low power nodes (LPNs like pico cells and femto cells for increasing network’s throughput, capacity and coverage are getting momentum. Addition of LPNs in such a massive level will eventually make a network populated in terms of base stations (BSs.The dense deployments of BSs will leads towards high operating expenditures (Op-Ex, capital expenditure (Cap-Ex and most importantly high energy consumption in future generation networks. Recognizing theses networks issues this research work investigates data throughput and energy efficiency of 5G multi-tier heterogeneous network. The network is modeled using tools from stochastic geometry. Monte Carlo results confirmed that rational deployment of LPNs can contribute towards increased throughput along with better energy efficiency of overall network.

  20. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  1. Crystal Symmetry Algorithms in a High-Throughput Framework for Materials

    Science.gov (United States)

    Taylor, Richard

    The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.

  2. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  3. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  4. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  5. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning.

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Wu, Yi; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-09-29

    In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free method for evaluating cellular drug responses only by high-throughput bright-field imaging with the aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from different experiments can be inferred from the classification accuracy of a single classification model. Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.

  6. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    Science.gov (United States)

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.

  7. Maximal Bell's inequality violation for non-maximal entanglement

    International Nuclear Information System (INIS)

    Kobayashi, M.; Khanna, F.; Mann, A.; Revzen, M.; Santana, A.

    2004-01-01

    Bell's inequality violation (BIQV) for correlations of polarization is studied for a product state of two two-mode squeezed vacuum (TMSV) states. The violation allowed is shown to attain its maximal limit for all values of the squeezing parameter, ζ. We show via an explicit example that a state whose entanglement is not maximal allow maximal BIQV. The Wigner function of the state is non-negative and the average value of either polarization is nil

  8. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    Science.gov (United States)

    Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.

    2017-05-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.

  9. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    International Nuclear Information System (INIS)

    Shaik, F Azam; Cathcart, G; Toshiyoshi, H; Tixier-Mita, A; Ihida, S; Sakai, Y; Lereau-Bernier, M; Leclerc, E

    2017-01-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis. (paper)

  10. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  11. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience

    Science.gov (United States)

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992

  12. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience.

    Science.gov (United States)

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

  13. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available The C1a isoenzyme of horseradish peroxidase (HRP is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT and inactive mutant (MUT genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.

  15. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types.

    Science.gov (United States)

    Plessy, Charles; Desbois, Linda; Fujii, Teruo; Carninci, Piero

    2013-02-01

    Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. Copyright © 2013 WILEY Periodicals, Inc.

  16. Blood group genotyping: from patient to high-throughput donor screening.

    Science.gov (United States)

    Veldhuisen, B; van der Schoot, C E; de Haas, M

    2009-10-01

    Blood group antigens, present on the cell membrane of red blood cells and platelets, can be defined either serologically or predicted based on the genotypes of genes encoding for blood group antigens. At present, the molecular basis of many antigens of the 30 blood group systems and 17 human platelet antigens is known. In many laboratories, blood group genotyping assays are routinely used for diagnostics in cases where patient red cells cannot be used for serological typing due to the presence of auto-antibodies or after recent transfusions. In addition, DNA genotyping is used to support (un)-expected serological findings. Fetal genotyping is routinely performed when there is a risk of alloimmune-mediated red cell or platelet destruction. In case of patient blood group antigen typing, it is important that a genotyping result is quickly available to support the selection of donor blood, and high-throughput of the genotyping method is not a prerequisite. In addition, genotyping of blood donors will be extremely useful to obtain donor blood with rare phenotypes, for example lacking a high-frequency antigen, and to obtain a fully typed donor database to be used for a better matching between recipient and donor to prevent adverse transfusion reactions. Serological typing of large cohorts of donors is a labour-intensive and expensive exercise and hampered by the lack of sufficient amounts of approved typing reagents for all blood group systems of interest. Currently, high-throughput genotyping based on DNA micro-arrays is a very feasible method to obtain a large pool of well-typed blood donors. Several systems for high-throughput blood group genotyping are developed and will be discussed in this review.

  17. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    Science.gov (United States)

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  18. Maximizing and customer loyalty: Are maximizers less loyal?

    Directory of Open Access Journals (Sweden)

    Linda Lai

    2011-06-01

    Full Text Available Despite their efforts to choose the best of all available solutions, maximizers seem to be more inclined than satisficers to regret their choices and to experience post-decisional dissonance. Maximizers may therefore be expected to change their decisions more frequently and hence exhibit lower customer loyalty to providers of products and services compared to satisficers. Findings from the study reported here (N = 1978 support this prediction. Maximizers reported significantly higher intentions to switch to another service provider (television provider than satisficers. Maximizers' intentions to switch appear to be intensified and mediated by higher proneness to regret, increased desire to discuss relevant choices with others, higher levels of perceived knowledge of alternatives, and higher ego involvement in the end product, compared to satisficers. Opportunities for future research are suggested.

  19. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    Science.gov (United States)

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  20. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  1. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells

    KAUST Repository

    Call, Douglas F.

    2011-07-01

    There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical research using multiple inexpensive microbial electrolysis cells (MECs) built with commercially available materials and operated using a single power source. MECs were small crimp top serum bottles (5mL) with a graphite plate anode (92m 2/m 3) and a cathode of stainless steel (SS) mesh (86m 2/m 3), graphite plate, SS wire, or platinum wire. The highest volumetric current density (240A/m 3, applied potential of 0.7V) was obtained using a SS mesh cathode and a wastewater inoculum (acetate electron donor). Parallel operated MECs (single power source) did not lead to differences in performance compared to non-parallel operated MECs, which can allow for high throughput reactor operation (>1000 reactors) using a single power supply. The utility of this method for cultivating exoelectrogenic microorganisms was demonstrated through comparison of buffer effects on pure (Geobacter sulfurreducens and Geobacter metallireducens) and mixed cultures. Mixed cultures produced current densities equal to or higher than pure cultures in the different media, and current densities for all cultures were higher using a 50mM phosphate buffer than a 30mM bicarbonate buffer. Only the mixed culture was capable of sustained current generation with a 200mM phosphate buffer. These results demonstrate the usefulness of this inexpensive method for conducting in-depth examinations of pure and mixed exoelectrogenic cultures. © 2011 Elsevier B.V.

  2. Optimizing transformations for automated, high throughput analysis of flow cytometry data.

    Science.gov (United States)

    Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael

    2010-11-04

    In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce

  3. Optimizing transformations for automated, high throughput analysis of flow cytometry data

    Directory of Open Access Journals (Sweden)

    Weng Andrew

    2010-11-01

    Full Text Available Abstract Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter

  4. TNFR2 expression on CD25hiFOXP3+ T cells induced upon TCR stimulation of CD4 T cells identifies maximal cytokine-producing effectors.

    Directory of Open Access Journals (Sweden)

    Chindu eGovindaraj

    2013-08-01

    Full Text Available In this study, we show that CD25hiTNFR2+ cells can be rapidly generated in vitro from circulating CD4 lymphocytes by polyclonal stimuli anti-CD3 in the presence of anti-CD28. The in vitro induced CD25hiTNFR2+ T cells express a conventional Treg phenotype FOXP3+CTLA4+CD127lo/-, but produce effector and immunoregulatory cytokines including IL-2, IL-10 and IFN-g. These induced CD25hiTNFR2+ T cells do not suppress target cell proliferation, but enhance it instead. Thus the CD25hiTNFR2+ phenotype induced rapidly following CD3/28 cross linking of CD4 T cells identifies cells with maximal proliferative and effector cytokine producing capability. The in vivo counterpart of this cell population may play an important role in immune response initiation.

  5. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Duan

    2009-10-01

    Full Text Available Multidrug resistance (MDR is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1 but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.

  6. Maximized Inter-Class Weighted Mean for Fast and Accurate Mitosis Cells Detection in Breast Cancer Histopathology Images.

    Science.gov (United States)

    Nateghi, Ramin; Danyali, Habibollah; Helfroush, Mohammad Sadegh

    2017-08-14

    Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.

  7. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    Science.gov (United States)

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  8. Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells

    Science.gov (United States)

    Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam

    2016-03-01

    This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.

  9. Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution

    Science.gov (United States)

    Downey, Mike J.; Jeziorska, Danuta M.; Ott, Sascha; Tamai, T. Katherine; Koentges, Georgy; Vance, Keith W.; Bretschneider, Till

    2011-01-01

    The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted to different cell

  10. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution.

    Directory of Open Access Journals (Sweden)

    Mike J Downey

    Full Text Available The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted

  11. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  12. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality.

    Science.gov (United States)

    Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle

    2018-01-01

    Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.

  13. High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers.

    Directory of Open Access Journals (Sweden)

    Heather L Martin

    Full Text Available Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays.

  14. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen

    2015-07-01

    : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.

  15. Principles of maximally classical and maximally realistic quantum ...

    Indian Academy of Sciences (India)

    Principles of maximally classical and maximally realistic quantum mechanics. S M ROY. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2N-dimensional phase space, ...

  16. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Westerink, Remco H.S.

    2011-01-01

    Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca 2+ concentration ([Ca 2+ ] i ) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca 2+ ] i , e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca 2+ ] i are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca 2+ ] i in plate reader systems, though the results of such plate reader-based measurements have been questioned. In view of the increasing use of plate reader systems for measurements of [Ca 2+ ] i a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca 2+ ] i . Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with caveats and limitations that require further investigation. - Research highlights: → The use of plate readers for high-throughput screening of intracellular Ca 2+ is associated with many pitfalls and limitations. → Single cell

  17. Profit maximization mitigates competition

    DEFF Research Database (Denmark)

    Dierker, Egbert; Grodal, Birgit

    1996-01-01

    We consider oligopolistic markets in which the notion of shareholders' utility is well-defined and compare the Bertrand-Nash equilibria in case of utility maximization with those under the usual profit maximization hypothesis. Our main result states that profit maximization leads to less price...... competition than utility maximization. Since profit maximization tends to raise prices, it may be regarded as beneficial for the owners as a whole. Moreover, if profit maximization is a good proxy for utility maximization, then there is no need for a general equilibrium analysis that takes the distribution...... of profits among consumers fully into account and partial equilibrium analysis suffices...

  18. Implications of maximal Jarlskog invariant and maximal CP violation

    International Nuclear Information System (INIS)

    Rodriguez-Jauregui, E.; Universidad Nacional Autonoma de Mexico

    2001-04-01

    We argue here why CP violating phase Φ in the quark mixing matrix is maximal, that is, Φ=90 . In the Standard Model CP violation is related to the Jarlskog invariant J, which can be obtained from non commuting Hermitian mass matrices. In this article we derive the conditions to have Hermitian mass matrices which give maximal Jarlskog invariant J and maximal CP violating phase Φ. We find that all squared moduli of the quark mixing elements have a singular point when the CP violation phase Φ takes the value Φ=90 . This special feature of the Jarlskog invariant J and the quark mixing matrix is a clear and precise indication that CP violating Phase Φ is maximal in order to let nature treat democratically all of the quark mixing matrix moduli. (orig.)

  19. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.

    Directory of Open Access Journals (Sweden)

    Guangbo Liu

    Full Text Available Saccharomyces cerevisiae (budding yeast is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids or genome mutation (e.g., gene mutation, deletion, epitope tagging is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.

  20. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL.

    Directory of Open Access Journals (Sweden)

    Theodoros Kelesidis

    Full Text Available Current cell-based assays for determining the functional properties of high-density lipoproteins (HDL have limitations. We report here the development of a new, robust fluorometric cell-free biochemical assay that measures HDL lipid peroxidation (HDLox based on the oxidation of the fluorochrome Amplex Red. HDLox correlated with previously validated cell-based (r = 0.47, p<0.001 and cell-free assays (r = 0.46, p<0.001. HDLox distinguished dysfunctional HDL in established animal models of atherosclerosis and Human Immunodeficiency Virus (HIV patients. Using an immunoaffinity method for capturing HDL, we demonstrate the utility of this novel assay for measuring HDLox in a high throughput format. Furthermore, HDLox correlated significantly with measures of cardiovascular diseases including carotid intima media thickness (r = 0.35, p<0.01 and subendocardial viability ratio (r = -0.21, p = 0.05 and physiological parameters such as metabolic and anthropometric parameters (p<0.05. In conclusion, we report the development of a new fluorometric method that offers a reproducible and rapid means for determining HDL function/quality that is suitable for high throughput implementation.

  1. Reverse Phase Protein Arrays for High-Throughput Protein Measurements in Mammospheres

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    Protein Array (RPPA)-based readout format integrated into robotic siRNA screening. This technique would allow post-screening high-throughput quantification of protein changes. Recently, breast cancer stem cells (BCSCs) have attracted much attention, as a tumor- and metastasis-driving subpopulation...

  2. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    Science.gov (United States)

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  3. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    Science.gov (United States)

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  4. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  5. Nonlinear mixed effects dose response modeling in high throughput drug screens: application to melanoma cell line analysis.

    Science.gov (United States)

    Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren; Yin, Hongwei; Hendricks, William P D; Sereduk, Chris; Kiefer, Jeffrey; Sekulic, Aleksandar; LoRusso, Patricia M; Vuori, Kristiina; Trent, Jeffrey M; Schork, Nicholas J

    2018-01-12

    Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC 50 ). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC 50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC 50 -based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.

  6. Development of a STAT3 reporter prostate cancer cell line for high throughput screening of STAT3 activators and inhibitors

    International Nuclear Information System (INIS)

    Chau, My N.; Banerjee, Partha P.

    2008-01-01

    STAT3 is constitutively activated in several cancers, including prostate cancer, and is therefore, a potential target for cancer therapy. DU-145 prostate cancer cells were stably co-transfected with STAT3 reporter and puromycin resistant plasmids to create a stable STAT3 reporter cell line that can be used for high throughput screening of STAT3 modulators. The applicability of this cell line was tested with two known activators and inhibitors of STAT3. As expected, EGF and IL-6 increased STAT3 reporter activity and enhanced the nuclear localization of phosphorylated STAT3 (pSTAT3); whereas Cucurbitacin I and AG490 decreased STAT3 reporter activity dose and time-dependently and reduced the localization of pSTAT3 in the nuclei of prostate cancer cells. Given the importance of STAT3 in cancer initiation and progression, the development of a stable STAT3 reporter cell line in prostate cancer cells provides a rapid, sensitive, and cost effective method for the screening of potential STAT3 modulators.

  7. Impact of Base Station Cooperation on Cell Planning

    Directory of Open Access Journals (Sweden)

    Ian Dexter Garcia

    2010-01-01

    Full Text Available Base station cooperation (BSC has been identified as a key radio access technology for next-generation cellular networks such as LTE-Advanced. BSC impacts cell planning, which is the methodical selection of base station (BS sites, and BS equipment configuration for cost-effective cellular networks. In this paper, the impact of BSC on cell plan parameters (coverage, traffic, handover, and cost, as well as additional cell planning steps required for BSC are discussed. Results show that BSC maximizes its gains over noncooperation (NC in a network wherein interference from cooperating BSs is the main limitation. Locations exist where NC may produce higher throughputs, therefore dynamic or semistatic switching between BSC and NC, called fractional BSC, is recommended. Because of interference from noncooperating BSs, the gains of BSC over NC are upper bounded, and diminishes at greater intersite distances because of noise. This encourages smaller cell sizes, higher transmit powers, and dynamic clustering of cooperative BSs.

  8. Maximizers versus satisficers

    Directory of Open Access Journals (Sweden)

    Andrew M. Parker

    2007-12-01

    Full Text Available Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007. Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002, we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions, more avoidance of decision making, and greater tendency to experience regret. Contrary to predictions, self-reported maximizers were more likely to report spontaneous decision making. However, the relationship between self-reported maximizing and worse life outcomes is largely unaffected by controls for measures of other decision-making styles, decision-making competence, and demographic variables.

  9. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  10. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    Science.gov (United States)

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  11. Determination of optimized oxygen partial pressure to maximize the liver regenerative potential of the secretome obtained from adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang Chul; Kim, Kee-Hwan; Kim, Ok-Hee; Lee, Sang Kuon; Hong, Ha-Eun; Won, Seong Su; Jeon, Sang-Jin; Choi, Byung Jo; Jeong, Wonjun; Kim, Say-June

    2017-08-03

    A hypoxic-preconditioned secretome from stem cells reportedly promotes the functional and regenerative capacity of the liver more effectively than a control secretome. However, the optimum oxygen partial pressure (pO 2 ) in the cell culture system that maximizes the therapeutic potential of the secretome has not yet been determined. We first determined the cellular alterations in adipose tissue-derived stem cells (ASCs) cultured under different pO 2 (21%, 10%, 5%, and 1%). Subsequently, partially hepatectomized mice were injected with the secretome of ASCs cultured under different pO 2 , and then sera and liver specimens were obtained for analyses. Of all AML12 cells cultured under different pO 2 , the AML12 cells cultured under 1% pO 2 showed the highest mRNA expression of proliferation-associated markers (IL-6, HGF, and VEGF). In the cell proliferation assay, the AML12 cells cultured with the secretome of 1% pO 2 showed the highest cell proliferation, followed by the cells cultured with the secretome of 21%, 10%, and 5% pO 2 , in that order. When injected into the partially hepatectomized mice, the 1% pO 2 secretome most significantly increased the number of Ki67-positive cells, reduced serum levels of proinflammatory mediators (IL-6 and TNF-α), and reduced serum levels of liver transaminases. In addition, analysis of the liver specimens indicated that injection with the 1% pO 2 secretome maximized the expression of the intermediate molecules of the PIP3/Akt and IL-6/STAT3 signaling pathways, all of which are known to promote liver regeneration. The data of this study suggest that the secretome of ASCs cultured under 1% pO 2 has the highest liver reparative and regenerative potential of all the secretomes tested here.

  12. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  13. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  14. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

    Science.gov (United States)

    Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S

    2018-05-15

    Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography.

    Science.gov (United States)

    Ghose, Sanchayita; Nagrath, Deepak; Hubbard, Brian; Brooks, Clayton; Cramer, Steven M

    2004-01-01

    The effect of an alternate strategy employing two different flowrates during loading was explored as a means of increasing system productivity in Protein-A chromatography. The effect of such a loading strategy was evaluated using a chromatographic model that was able to accurately predict experimental breakthrough curves for this Protein-A system. A gradient-based optimization routine is carried out to establish the optimal loading conditions (initial and final flowrates and switching time). The two-step loading strategy (using a higher flowrate during the initial stages followed by a lower flowrate) was evaluated for an Fc-fusion protein and was found to result in significant improvements in process throughput. In an extension of this optimization routine, dynamic loading capacity and productivity were simultaneously optimized using a weighted objective function, and this result was compared to that obtained with the single flowrate. Again, the dual-flowrate strategy was found to be superior.

  16. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  17. High-throughput continuous cryopump

    International Nuclear Information System (INIS)

    Foster, C.A.

    1986-01-01

    A cryopump with a unique method of regeneration which allows continuous operation at high throughput has been constructed and tested. Deuterium was pumped continuously at a throughput of 30 Torr.L/s at a speed of 2000 L/s and a compression ratio of 200. Argon was pumped at a throughput of 60 Torr.L/s at a speed of 1275 L/s. To produce continuous operation of the pump, a method of regeneration that does not thermally cycle the pump is employed. A small chamber (the ''snail'') passes over the pumping surface and removes the frost from it either by mechanical action with a scraper or by local heating. The material removed is topologically in a secondary vacuum system with low conductance into the primary vacuum; thus, the exhaust can be pumped at pressures up to an effective compression ratio determined by the ratio of the pumping speed to the leakage conductance of the snail. The pump, which is all-metal-sealed and dry and which regenerates every 60 s, would be an ideal system for pumping tritium. Potential fusion applications are for mpmp limiters, for repeating pneumatic pellet injection lines, and for the centrifuge pellet injector spin tank, all of which will require pumping tritium at high throughput. Industrial applications requiring ultraclean pumping of corrosive gases at high throughput, such as the reactive ion etch semiconductor process, may also be feasible

  18. Mammogram segmentation using maximal cell strength updation in cellular automata.

    Science.gov (United States)

    Anitha, J; Peter, J Dinesh

    2015-08-01

    Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.

  19. Computational and statistical methods for high-throughput mass spectrometry-based PTM analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Vaudel, Marc

    2017-01-01

    Cell signaling and functions heavily rely on post-translational modifications (PTMs) of proteins. Their high-throughput characterization is thus of utmost interest for multiple biological and medical investigations. In combination with efficient enrichment methods, peptide mass spectrometry analy...

  20. Applications of high-throughput sequencing to chromatin structure and function in mammals

    OpenAIRE

    Dunham, Ian

    2009-01-01

    High-throughput DNA sequencing approaches have enabled direct interrogation of chromatin samples from mammalian cells. We are beginning to develop a genome-wide description of nuclear function during development, but further data collection, refinement, and integration are needed.

  1. Quality control methodology for high-throughput protein-protein interaction screening.

    Science.gov (United States)

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  2. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    Science.gov (United States)

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  3. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    Science.gov (United States)

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-01-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.

  5. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses.

    Science.gov (United States)

    Almeida, Coral-Ann M; Roberts, Steven G; Laird, Rebecca; McKinnon, Elizabeth; Ahmed, Imran; Pfafferott, Katja; Turley, Joanne; Keane, Niamh M; Lucas, Andrew; Rushton, Ben; Chopra, Abha; Mallal, Simon; John, Mina

    2009-05-15

    The enzyme linked immunospot (ELISpot) assay is a fundamental tool in cellular immunology, providing both quantitative and qualitative information on cellular cytokine responses to defined antigens. It enables the comprehensive screening of patient derived peripheral blood mononuclear cells to reveal the antigenic restriction of T-cell responses and is an emerging technique in clinical laboratory investigation of certain infectious diseases. As with all cellular-based assays, the final results of the assay are dependent on a number of technical variables that may impact precision if not highly standardised between operators. When studies that are large scale or using multiple antigens are set up manually, these assays may be labour intensive, have many manual handling steps, are subject to data and sample integrity failure and may show large inter-operator variability. Here we describe the successful automated performance of the interferon (IFN)-gamma ELISpot assay from cell counting through to electronic capture of cytokine quantitation and present the results of a comparison between automated and manual performance of the ELISpot assay. The mean number of spot forming units enumerated by both methods for limiting dilutions of CMV, EBV and influenza (CEF)-derived peptides in six healthy individuals were highly correlated (r>0.83, pautomated system compared favourably with the manual ELISpot and further ensured electronic tracking, increased through-put and reduced turnaround time.

  6. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Science.gov (United States)

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  7. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M.; Logan, Bruce E.

    2013-01-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  8. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  9. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analy...

  10. Novel method for the high-throughput processing of slides for the comet assay.

    Science.gov (United States)

    Karbaschi, Mahsa; Cooke, Marcus S

    2014-11-26

    Single cell gel electrophoresis (the comet assay), continues to gain popularity as a means of assessing DNA damage. However, the assay's low sample throughput and laborious sample workup procedure are limiting factors to its application. "Scoring", or individually determining DNA damage levels in 50 cells per treatment, is time-consuming, but with the advent of high-throughput scoring, the limitation is now the ability to process significant numbers of comet slides. We have developed a novel method by which multiple slides may be manipulated, and undergo electrophoresis, in batches of 25 rather than individually and, importantly, retains the use of standard microscope comet slides, which are the assay convention. This decreases assay time by 60%, and benefits from an electrophoresis tank with a substantially smaller footprint, and more uniform orientation of gels during electrophoresis. Our high-throughput variant of the comet assay greatly increases the number of samples analysed, decreases assay time, number of individual slide manipulations, reagent requirements and risk of damage to slides. The compact nature of the electrophoresis tank is of particular benefit to laboratories where bench space is at a premium. This novel approach is a significant advance on the current comet assay procedure.

  11. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    into automated robotic high-throughput screens, which allows subsequent protein quantification. In this integrated solution, samples are directly forwarded to automated cell lysate preparation and preparation of dilution series, including reformatting to a protein spotter-compatible format after the high......-throughput screening. Tracking of huge sample numbers and data analysis from a high-content screen to RPPAs is accomplished via MIRACLE, a custom made software suite developed by us. To this end, we demonstrate that the RPPAs generated in this manner deliver reliable protein readouts and that GAPDH and TFR levels can...

  12. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  13. Throughput rate study

    International Nuclear Information System (INIS)

    Ford, L.; Bailey, W.; Gottlieb, P.; Emami, F.; Fleming, M.; Robertson, D.

    1993-01-01

    The Civilian Radioactive Waste Management System (CRWMS) Management and Operating (M ampersand O) Contractor, has completed a study to analyze system wide impacts of operating the CRWMS at varying throughput rates, including the 3000 MTU/year rate which has been assumed in the past. Impacts of throughput rate on all phases of the CRWMS operations (acceptance, transportation, storage and disposal) were evaluated. The results of the study indicate that a range from 3000 to 5000 MTU/year is preferred, based on system cost per MTU of SNF emplaced and logistics constraints

  14. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    Science.gov (United States)

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  15. Online Self-Organizing Network Control with Time Averaged Weighted Throughput Objective

    Directory of Open Access Journals (Sweden)

    Zhicong Zhang

    2018-01-01

    Full Text Available We study an online multisource multisink queueing network control problem characterized with self-organizing network structure and self-organizing job routing. We decompose the self-organizing queueing network control problem into a series of interrelated Markov Decision Processes and construct a control decision model for them based on the coupled reinforcement learning (RL architecture. To maximize the mean time averaged weighted throughput of the jobs through the network, we propose a reinforcement learning algorithm with time averaged reward to deal with the control decision model and obtain a control policy integrating the jobs routing selection strategy and the jobs sequencing strategy. Computational experiments verify the learning ability and the effectiveness of the proposed reinforcement learning algorithm applied in the investigated self-organizing network control problem.

  16. Can Full Duplex Boost Throughput and Delay of 5G Ultra-Dense Small Cell Networks?

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    Given the recent advances in system and antenna design, practical implementation of full duplex (FD) communication is becoming increasingly feasible. In this paper, the potential of FD in enhancing the performance of 5th generation (5G) ultra-dense small cell networks is investigated. The goal...... is to understand whether FD is able to boost the system performance from a throughput and delay perspective. The impact of having symmetric and asymmetric finite buffer traffic is studied for two types of FD: when only the base station is FD capable, and when both the user equipment and base station are FD nodes....... System level results indicate that there is a trade-off between multiple-input multiple-output (MIMO) spatial multiplexing and FD in achieving the optimal system performance. Moreover, results show that FD may be useful for asymmetric traffic applications where the lightly loaded link requires high level...

  17. A Functional High-Throughput Assay of Myelination in Vitro

    Science.gov (United States)

    2014-07-01

    Human induced pluripotent stem cells, hydrogels, 3D culture, electrophysiology, high-throughput assay 16. SECURITY CLASSIFICATION OF: 17...image the 3D rat dorsal root ganglion ( DRG ) cultures with sufficiently low background as to detect electrically-evoked depolarization events, as...of voltage-sensitive dyes. 8    We have made substantial progress in Task 4.1. We have fabricated neural fiber tracts from DRG explants and

  18. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    Science.gov (United States)

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  19. Maximizers versus satisficers

    OpenAIRE

    Andrew M. Parker; Wandi Bruine de Bruin; Baruch Fischhoff

    2007-01-01

    Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007). Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002), we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions...

  20. High-throughput sequencing of the B-cell receptor in African Burkitt lymphoma reveals clues to pathogenesis.

    Science.gov (United States)

    Lombardo, Katharine A; Coffey, David G; Morales, Alicia J; Carlson, Christopher S; Towlerton, Andrea M H; Gerdts, Sarah E; Nkrumah, Francis K; Neequaye, Janet; Biggar, Robert J; Orem, Jackson; Casper, Corey; Mbulaiteye, Sam M; Bhatia, Kishor G; Warren, Edus H

    2017-03-28

    Burkitt lymphoma (BL), the most common pediatric cancer in sub-Saharan Africa, is a malignancy of antigen-experienced B lymphocytes. High-throughput sequencing (HTS) of the immunoglobulin heavy ( IGH ) and light chain ( IGK / IGL ) loci was performed on genomic DNA from 51 primary BL tumors: 19 from Uganda and 32 from Ghana. Reverse transcription polymerase chain reaction analysis and tumor RNA sequencing (RNAseq) was performed on the Ugandan tumors to confirm and extend the findings from the HTS of tumor DNA. Clonal IGH and IGK / IGL rearrangements were identified in 41 and 46 tumors, respectively. Evidence for rearrangement of the second IGH allele was observed in only 6 of 41 tumor samples with a clonal IGH rearrangement, suggesting that the normal process of biallelic IGHD to IGHJ diversity-joining (DJ) rearrangement is often disrupted in BL progenitor cells. Most tumors, including those with a sole dominant, nonexpressed DJ rearrangement, contained many IGH and IGK / IGL sequences that differed from the dominant rearrangement by < 10 nucleotides, suggesting that the target of ongoing mutagenesis of these loci in BL tumor cells is not limited to expressed alleles. IGHV usage in both BL tumor cohorts revealed enrichment for IGHV genes that are infrequently used in memory B cells from healthy subjects. Analysis of publicly available DNA sequencing and RNAseq data revealed that these same IGHV genes were overrepresented in dominant tumor-associated IGH rearrangements in several independent BL tumor cohorts. These data suggest that BL derives from an abnormal B-cell progenitor and that aberrant mutational processes are active on the immunoglobulin loci in BL cells.

  1. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond

    2004-01-01

    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  2. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    Science.gov (United States)

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  3. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α......-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host...

  4. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells

    KAUST Repository

    Call, Douglas F.; Logan, Bruce E.

    2011-01-01

    There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical

  5. High-throughput selection for cellulase catalysts using chemical complementation.

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  6. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.

    Science.gov (United States)

    Davidson, Edgar; Doranz, Benjamin J

    2014-09-01

    Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.

  7. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1.

    Science.gov (United States)

    Osada, Takuya; Patel, Sandip P; Hammond, Scott A; Osada, Koya; Morse, Michael A; Lyerly, H Kim

    2015-06-01

    Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

  8. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Science.gov (United States)

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  9. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    International Nuclear Information System (INIS)

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-01-01

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  10. MAXIMIZATION OF DNA DAMAGE TO MGMT(+ EGFR(+ GBM CELLS USING OPTIMAL COMBINATION OF TEMOZOLOMIDE-ANTI EGFR MONOCLONAL ANTIBODY NIMOTUZUMAB

    Directory of Open Access Journals (Sweden)

    M. A. M. Inggas

    2015-09-01

    Full Text Available Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor in adultswith dismal prognosis due to the unavailability of an effective therapy. Up to now, there had been no definitive studies published on EGFR inhibition therapy as a chemosensitizer for GBM therapy using Temozolomide (TMZ. This study aims to reveal the most effective method and timing to administer TMZ-anti EGFR targeted therapy which causes maximal DNA damage on GBM cells.Methods: Various regimens of anti EGFR monoclonal antibody Nimotuzumab (NMZ was administered in different combinations with TMZ, performed on U87MG MGMT(+ EGFR(+ cells. The effectiveness of the combinations were evaluated by measuring yH2AX levels which reflects the degree of DNA damage. One-way Anova and LSD tests were performed to determine the effects of each treatment with p<0.05. Results and discussion: the mean SD of yH2AX of each treatment was: 11,90±1,25 for the control group; 29.33±1.91 for NMZ alone; 28.13±1.58 for TMZ alone; 41.53±3.51 for concurrent use; 35.67 ±2.65 for NMZ after 24 hours TMZ; 31.87±2.94 for NMZ after 48 hours TMZ; 39.57±4.2 for TMZ after 24 hours NMZ; and 35.93 ±3.56 for TMZ after 48 hours NMZ. The administration of TMZ concurrent with or after 24 hours NMZ gives the highest amount of DNA damage to GBM cells. Conclusion: The administration of Nimotuzumab targeted therapy up to 24 hours before Temozolomide chemotherapy has been proven to be effective in maximizing the amount of DNA damage done to GBM cells in vitro. 

  11. Entropy maximization

    Indian Academy of Sciences (India)

    Abstract. It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy. ∫ fhi dμ = λi for i = 1, 2,...,...k the maximizer of entropy is an f0 that is pro- portional to exp(. ∑ ci hi ) for some choice of ci . An extension of this to a continuum of.

  12. Selective anti-proliferation of HER2-positive breast cancer cells by anthocyanins identified by high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    Full Text Available Overexpressed Human epidermal growth factor receptor 2 (HER2 drives the biology of 20% breast cancer and is a prediction of a poor prognosis for patients. HER2-targeted therapies significantly improve outcomes for HER2-positive patients. Traditional Chinese herbs/medicines have been used to treat breast cancer patients including HER2-positive patients in Asia for decades. Although the traditional medicines demonstrate efficacy in clinics for HER2-positive patients, the mechanism is largely unknown. In this article, we screened a 10,000 natural product library in 6 different cell lines representing breast cancer, and assessed the ability of each drug to cause cytotoxicity through a high-throughput screening approach. We have identified eight natural compounds that selectively inhibit the proliferation of HER2-positive cells. Two of the hit compounds, peonidin-3-glucoside and cyaniding-3-glucoside, are both extracts from black rice. They inhibit the phospho-HER2 and phospho-AKT and were confirmed to induce HER2-psotive breast cancer cells apoptosis both in vitro and in vivo. Peonidin-3-glucoside and cyaniding-3-glucoside treatments significantly reduced the tumor size and volume in vivo compared to the control group. There is no significant difference of antitumorgenic effects between peonidin-3-glucoside and cyaniding-3-glucoside treatments.

  13. Green throughput taxation

    International Nuclear Information System (INIS)

    Bruvoll, A.; Ibenholt, K.

    1998-01-01

    According to optimal taxation theory, raw materials should be taxed to capture the embedded scarcity rent in their value. To reduce both natural resource use and the corresponding emissions, or the throughput in the economic system, the best policy may be a tax on material inputs. As a first approach to throughput taxation, this paper considers a tax on intermediates in the framework of a dynamic computable general equilibrium model with environmental feedbacks. To balance the budget, payroll taxes are reduced. As a result, welfare indicators as material consumption and leisure time consumption are reduced, while on the other hand all the environmental indicators improve. 27 refs

  14. High-throughput characterization methods for lithium batteries

    Directory of Open Access Journals (Sweden)

    Yingchun Lyu

    2017-09-01

    Full Text Available The development of high-performance lithium ion batteries requires the discovery of new materials and the optimization of key components. By contrast with traditional one-by-one method, high-throughput method can synthesize and characterize a large number of compositionally varying samples, which is able to accelerate the pace of discovery, development and optimization process of materials. Because of rapid progress in thin film and automatic control technologies, thousands of compounds with different compositions could be synthesized rapidly right now, even in a single experiment. However, the lack of rapid or combinatorial characterization technologies to match with high-throughput synthesis methods, limit the application of high-throughput technology. Here, we review a series of representative high-throughput characterization methods used in lithium batteries, including high-throughput structural and electrochemical characterization methods and rapid measuring technologies based on synchrotron light sources.

  15. Student throughput variables and properties: Varying cohort sizes

    Directory of Open Access Journals (Sweden)

    Lucas C.A. Stoop

    2017-11-01

    Full Text Available A recent research paper described how student throughput variables and properties combine to explain the behaviour of stationary or simplified throughput systems. Such behaviour can be understood in terms of the locus of a point in the triangular admissible region of the H-S plane, where H represents headcounts and S successful credits, each depending on the system properties at that point. The efficiency of the student throughput process is given by the ratio S/H. Simplified throughput systems are characterised by stationary graduation and dropout patterns of students as well as by annual intakes of student cohorts of equal size. The effect of varying the size of the annual intakes of student cohorts is reported on here. The observations made lead to the establishment of a more generalised student throughput theory which includes the simplified theory as a special case. The generalised theory still retains the notion of a triangular admissible region in the H-S plane but with the size and shape of the triangle depending on the size of the student cohorts. The ratio S/H again emerges as the process efficiency measure for throughput systems in general with unchanged roles assigned to important system properties. This theory provides for a more fundamental understanding of student throughput systems encountered in real life. Significance: A generalised stationary student throughput theory through varying cohort sizes allows for a far better understanding of real student throughput systems.

  16. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    Science.gov (United States)

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  17. Entropy Maximization

    Indian Academy of Sciences (India)

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy ∫ f h i d = i for i = 1 , 2 , … , … k the maximizer of entropy is an f 0 that is proportional to exp ⁡ ( ∑ c i h i ) for some choice of c i . An extension of this to a continuum of ...

  18. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  19. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  20. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  1. Maximizing Benefits from Maintenance Pemetrexed with Stereotactic Ablative Radiotherapy in Oligoprogressive Non-Squamous Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shao-Lun Lu

    2016-08-01

    Full Text Available Maintenance pemetrexed offers survival benefit with well-tolerated toxicities for advanced non-squamous non-small cell lung cancer (NSCLC. We present 3 consecutively enrolled patients with advanced non-squamous NSCLC, receiving stereotactic ablative radiotherapy (SABR for oligoprogressive disease during maintenance pemetrexed. All of them had sustained local control of thoracic oligoprogression after the SABR, while maintenance pemetrexed were kept for additionally long progression-free interval. SABR targeting oligoprogression with continued pemetrexed is an effective and safe approach to extend exposure of maintenance pemetrexed, thus maximizing the benefit from it.

  2. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  3. Throughput capacity of the Asbestos Conversion Unit

    International Nuclear Information System (INIS)

    Hyman, M.H.

    1996-10-01

    An engineering assessment is presented for factors that could significantly limit the throughput capacity of the Asbestos Conversion Unit. The assessment focuses mainly on volumetric throughput capacity (and related mass rate and feed density), and energy input. Important conclusions that were reached during this assessment are that the throughput is limited by feed densification capability and that the design energy input rating appears to be adequate

  4. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  5. Maximally incompatible quantum observables

    Energy Technology Data Exchange (ETDEWEB)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)

    2014-05-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  6. Maximally incompatible quantum observables

    International Nuclear Information System (INIS)

    Heinosaari, Teiko; Schultz, Jussi; Toigo, Alessandro; Ziman, Mario

    2014-01-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  7. TCP Throughput Profiles Using Measurements over Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Towsley, Don [University of Massachusetts, Amherst; Vardoyan, Gayane [University of Massachusetts, Amherst; Kettimuthu, R. [Argonne National Laboratory (ANL); Foster, Ian [University of Chicago

    2017-06-01

    Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, in stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.

  8. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    Science.gov (United States)

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  9. Preparation of collagen-coated gels that maximize in vitro myogenesis of stem cells by matching the lateral elasticity of in vivo muscle.

    Science.gov (United States)

    Chaudhuri, Tathagata; Rehfeldt, Florian; Sweeney, H Lee; Discher, Dennis E

    2010-01-01

    The physical nature of a cell's microenvironment--including the elasticity of the surrounding tissue--appears to exert a significant influence on cell morphology, cytoskeleton, and gene expression. We have previously shown that committed muscle cells will develop sarcomeric striations of skeletal muscle myosin II only when the cells are grown on a compliant gel that closely matches the passive compliance of skeletal muscle. We have more recently shown with the same types of elastic gels that mesenchymal stem cells (MSCs) maximally express myogenic genes, even in the absence of tailored soluble factors. Here, we provide detailed methods not only for how we make and nanomechanically characterize hydrogels of muscle-like elasticity, but also how we culture MSCs and characterize their myogenic induction by whole human genome transcript analysis.

  10. High-throughput characterization for solar fuels materials discovery

    Science.gov (United States)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  11. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  12. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.

    Science.gov (United States)

    Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang

    2014-03-05

    RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.

  13. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  14. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-02-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and

  15. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens

    2015-01-01

    -stringency in-solution hybridization method enables detection of discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral...... sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer...

  16. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium.

    Science.gov (United States)

    Li, Ye; Cassone, Vincent M

    2015-09-01

    A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Antiproliferative Activity of Phenylpropanoids Isolated from Lagotis brevituba Maxim.

    Science.gov (United States)

    Xiang, Yuan; Jing, Zhao; Haixia, Wang; Ruitao, Yu; Huaixiu, Wen; Zenggen, Liu; Lijuan, Mei; Yiping, Wang; Yanduo, Tao

    2017-10-01

    The aim of the present study was to evaluate the antiproliferative effect of phenylpropanoids isolated from the n-BuOH-soluble fraction of an ethanolic extract of Lagotis brevituba Maxim. The phenylpropanoids were identified as echinacoside, lagotioside, glucopyranosyl(1-6)martynoside, plantamoside, and verbascoside. Three of the compounds, lagotioside, glucopyranosyl(1-6)martynoside, and plantamoside, were isolated from L. brevituba for the first time. The antiproliferative activity of the isolates was evaluated in human gastric carcinoma (MGC-803), human colorectal carcinoma (HCT116), human hepatocellar carcinoma (HepG2), and human lung cancer (HCT116) cells using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Plantamoside showed promising activity against MGC-803 cells, with a half maximal inhibitory concentration value of 37.09 μM. The mechanism of the pro-apoptosis effect of plantamoside was then evaluated in MGC-803 cells. Changes in cell morphology, including disorganization of the architecture of actin microfilaments and formation of apoptotic bodies, together with cell cycle arrest in G2/M phases, were observed after treatment of plantamoside. The antiproliferative and pro-apoptotic effects were associated with a decrease in the ratio of Bcl-2/Bax and reduced mitochondrial membrane potential, which was accompanied by the release of reactive oxygen species and Ca 2+ into the cytoplasm. Taken together, the results indicated that plantamoside promotes apoptosis via a mitochondria-dependent mechanism. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    New improvements to mass spectrometry include increased sensitivity, improvements in analyzing the collected data, and most important, from the standpoint of this review, a much higher throughput allowing analysis of many samples in a single day. This short review describes how host-pathogen interactions can be dissected by mass spectrometry using Salmonella as a model system. The approach allowed direct identification of the majority of annotate Salmonella proteins, how expression changed under various in vitro growth conditions, and how this relates to virulence and expression within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions suggesting additional functions of the regulator in coordinating virulence expression. Overall high throughput mass spectrometer provides a new view of pathogen-host interaction emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  19. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    Science.gov (United States)

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  20. High-throughput screening of effective siRNAs using luciferase-linked chimeric mRNA.

    Directory of Open Access Journals (Sweden)

    Shen Pang

    Full Text Available The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.

  1. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    KAUST Repository

    Shi, Yang

    2013-02-28

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  2. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    KAUST Repository

    Shi, Yang; Gao, Xinghua; Chen, Longqing; Zhang, Min; Ma, Jingyun; Zhang, Xixiang; Qin, Jianhua

    2013-01-01

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Optimal Thawing of Cryopreserved Peripheral Blood Mononuclear Cells for Use in High-Throughput Human Immune Monitoring Studies

    Directory of Open Access Journals (Sweden)

    Ramu A. Subbramanian

    2012-07-01

    Full Text Available Cryopreserved peripheral blood mononuclear cells (PBMC constitute an important component of immune monitoring studies as they allow for efficient batch- testing of samples as well as for the validation and extension of original studies in the future. In this study, we systematically test the permutations of PBMC thawing practices commonly employed in the field and identify conditions that are high and low risk for the viability of PBMC and their functionality in downstream ELISPOT assays. The study identifies the addition of ice-chilled washing media to thawed cells at the same temperature as being a high risk practice, as it yields significantly lower viability and functionality of recovered PBMC when compared to warming the cryovials to 37 °C and adding a warm washing medium. We found thawed PBMC in cryovials could be kept up to 30 minutes at 37 °C in the presence of DMSO before commencement of washing, which surprisingly identifies exposure to DMSO as a low risk step during the thawing process. This latter finding is of considerable practical relevance since it permits batch-thawing of PBMC in high-throughput immune monitoring environments.

  4. Tissue P Systems With Channel States Working in the Flat Maximally Parallel Way.

    Science.gov (United States)

    Song, Bosheng; Perez-Jimenez, Mario J; Paun, Gheorghe; Pan, Linqiang

    2016-10-01

    Tissue P systems with channel states are a class of bio-inspired parallel computational models, where rules are used in a sequential manner (on each channel, at most one rule can be used at each step). In this work, tissue P systems with channel states working in a flat maximally parallel way are considered, where at each step, on each channel, a maximal set of applicable rules that pass from a given state to a unique next state, is chosen and each rule in the set is applied once. The computational power of such P systems is investigated. Specifically, it is proved that tissue P systems with channel states and antiport rules of length two are able to compute Parikh sets of finite languages, and such P systems with one cell and noncooperative symport rules can compute at least all Parikh sets of matrix languages. Some Turing universality results are also provided. Moreover, the NP-complete problem SAT is solved by tissue P systems with channel states, cell division and noncooperative symport rules working in the flat maximally parallel way; nevertheless, if channel states are not used, then such P systems working in the flat maximally parallel way can solve only tractable problems. These results show that channel states provide a frontier of tractability between efficiency and non-efficiency in the framework of tissue P systems with cell division (assuming P ≠ NP ).

  5. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    Science.gov (United States)

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established

  6. Correction of Microplate Data from High-Throughput Screening.

    Science.gov (United States)

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  7. Modeling Steroidogenesis Disruption Using High-Throughput ...

    Science.gov (United States)

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  8. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Zapata, Pedro; Basak, Pratyay; Carson Meredith, J.

    2009-01-01

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  9. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  10. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    Science.gov (United States)

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  11. SeqAPASS to evaluate conservation of high-throughput screening targets across non-mammalian species

    Science.gov (United States)

    Cell-based high-throughput screening (HTS) and computational technologies are being applied as tools for toxicity testing in the 21st century. The U.S. Environmental Protection Agency (EPA) embraced these technologies and created the ToxCast Program in 2007, which has served as a...

  12. AUC-Maximizing Ensembles through Metalearning.

    Science.gov (United States)

    LeDell, Erin; van der Laan, Mark J; Petersen, Maya

    2016-05-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.

  13. Optimal resource allocation in downlink CDMA wireless networks

    NARCIS (Netherlands)

    Endrayanto, A.I.

    2013-01-01

    This thesis presents a full analytical characterization of the optimal joint downlink rate and power assignment for maximal total system throughput in a multi cell CDMA network. In Chapter 2, we analyze the feasibility of downlink power assignment in a linear model of two CDMA cell, under the

  14. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  15. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by

  16. Is CP violation maximal

    International Nuclear Information System (INIS)

    Gronau, M.

    1984-01-01

    Two ambiguities are noted in the definition of the concept of maximal CP violation. The phase convention ambiguity is overcome by introducing a CP violating phase in the quark mixing matrix U which is invariant under rephasing transformations. The second ambiguity, related to the parametrization of U, is resolved by finding a single empirically viable definition of maximal CP violation when assuming that U does not single out one generation. Considerable improvement in the calculation of nonleptonic weak amplitudes is required to test the conjecture of maximal CP violation. 21 references

  17. Identifying genes that extend life span using a high-throughput screening system.

    Science.gov (United States)

    Chen, Cuiying; Contreras, Roland

    2007-01-01

    We developed a high-throughput functional genomic screening system that allows identification of genes prolonging lifespan in the baker's yeast Saccharomyces cerevisiae. The method is based on isolating yeast mother cells with a higher than average number of cell divisions as indicated by the number of bud scars on their surface. Fluorescently labeled wheat germ agglutinin (WGA) was used for specific staining of chitin, a major component of bud scars. The critical new steps in our bud-scar-sorting system are the use of small microbeads, which allows successive rounds of purification and regrowth of the mother cells (M-cell), and utilization of flow cytometry to sort and isolate cells with a longer lifespan based on the number of bud scars specifically labeled with WGA.

  18. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  19. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  20. Shareholder, stakeholder-owner or broad stakeholder maximization

    OpenAIRE

    Mygind, Niels

    2004-01-01

    With reference to the discussion about shareholder versus stakeholder maximization it is argued that the normal type of maximization is in fact stakeholder-owner maxi-mization. This means maximization of the sum of the value of the shares and stake-holder benefits belonging to the dominating stakeholder-owner. Maximization of shareholder value is a special case of owner-maximization, and only under quite re-strictive assumptions shareholder maximization is larger or equal to stakeholder-owner...

  1. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.

    Science.gov (United States)

    Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang

    2009-11-21

    We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.

  2. Scaling down the size and increasing the throughput of glycosyltransferase assays: activity changes on stem cell differentiation.

    Science.gov (United States)

    Patil, Shilpa A; Chandrasekaran, E V; Matta, Khushi L; Parikh, Abhirath; Tzanakakis, Emmanuel S; Neelamegham, Sriram

    2012-06-15

    Glycosyltransferases (glycoTs) catalyze the transfer of monosaccharides from nucleotide-sugars to carbohydrate-, lipid-, and protein-based acceptors. We examined strategies to scale down and increase the throughput of glycoT enzymatic assays because traditional methods require large reaction volumes and complex chromatography. Approaches tested used (i) microarray pin printing, an appropriate method when glycoT activity was high; (ii) microwells and microcentrifuge tubes, a suitable method for studies with cell lysates when enzyme activity was moderate; and (iii) C(18) pipette tips and solvent extraction, a method that enriched reaction product when the extent of reaction was low. In all cases, reverse-phase thin layer chromatography (RP-TLC) coupled with phosphorimaging quantified the reaction rate. Studies with mouse embryonic stem cells (mESCs) demonstrated an increase in overall β(1,3)galactosyltransferase and α(2,3)sialyltransferase activity and a decrease in α(1,3)fucosyltransferases when these cells differentiate toward cardiomyocytes. Enzymatic and lectin binding data suggest a transition from Lewis(x)-type structures in mESCs to sialylated Galβ1,3GalNAc-type glycans on differentiation, with more prominent changes in enzyme activity occurring at later stages when embryoid bodies differentiated toward cardiomyocytes. Overall, simple, rapid, quantitative, and scalable glycoT activity analysis methods are presented. These use a range of natural and synthetic acceptors for the analysis of complex biological specimens that have limited availability. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Task-oriented maximally entangled states

    International Nuclear Information System (INIS)

    Agrawal, Pankaj; Pradhan, B

    2010-01-01

    We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.

  5. Functional characterisation of homomeric ionotropic glutamate receptors GluR1-GluR6 in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Strange, Mette; Bräuner-Osborne, Hans; Jensen, Anders A.

    2006-01-01

    We have constructed stable HEK293 cell lines expressing the rat ionotropic glutamate receptor subtypes GluR1(i), GluR2Q(i), GluR3(i), GluR4(i), GluR5Q and GluR6Q and characterised the pharmacological profiles of the six homomeric receptors in a fluorescence-based high throughput screening assay...... assay reported to date. We propose that high throughput screening of compound libraries at the six GluR-HEK293 cell lines could be helpful in the search for structurally and pharmacologically novel ligands acting at the receptors....

  6. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  7. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    Science.gov (United States)

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  8. Maximum Throughput in a C-RAN Cluster with Limited Fronthaul Capacity

    OpenAIRE

    Duan , Jialong; Lagrange , Xavier; Guilloud , Frédéric

    2016-01-01

    International audience; Centralized/Cloud Radio Access Network (C-RAN) is a promising future mobile network architecture which can ease the cooperation between different cells to manage interference. However, the feasibility of C-RAN is limited by the large bit rate requirement in the fronthaul. This paper study the maximum throughput of different transmission strategies in a C-RAN cluster with transmission power constraints and fronthaul capacity constraints. Both transmission strategies wit...

  9. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  10. Robust Throughput Boosting for Low Latency Dynamic Partial Reconfiguration

    DEFF Research Database (Denmark)

    Nannarelli, Alberto; Re, M.; Cardarilli, Gian Carlo

    2017-01-01

    Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over-clocking th......Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over...

  11. PFP total process throughput calculation and basis of estimate

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The PFP Process Throughput Calculation and Basis of Estimate document provides the calculated value and basis of estimate for process throughput associated with material stabilization operations conducted in 234-52 Building. The process throughput data provided reflects the best estimates of material processing rates consistent with experience at the Plutonium Finishing Plant (PFP) and other U.S. Department of Energy (DOE) sites. The rates shown reflect demonstrated capacity during ''full'' operation. They do not reflect impacts of building down time. Therefore, these throughput rates need to have a Total Operating Efficiency (TOE) factor applied

  12. FLOUTING MAXIMS IN INDONESIA LAWAK KLUB CONVERSATION

    Directory of Open Access Journals (Sweden)

    Rahmawati Sukmaningrum

    2017-04-01

    Full Text Available This study aims to identify the types of maxims flouted in the conversation in famous comedy show, Indonesia Lawak Club. Likewise, it also tries to reveal the speakers‘ intention of flouting the maxim in the conversation during the show. The writers use descriptive qualitative method in conducting this research. The data is taken from the dialogue of Indonesia Lawak club and then analyzed based on Grice‘s cooperative principles. The researchers read the dialogue‘s transcripts, identify the maxims, and interpret the data to find the speakers‘ intention for flouting the maxims in the communication. The results show that there are four types of maxims flouted in the dialogue. Those are maxim of quality (23%, maxim of quantity (11%, maxim of manner (31%, and maxim of relevance (35. Flouting the maxims in the conversations is intended to make the speakers feel uncomfortable with the conversation, show arrogances, show disagreement or agreement, and ridicule other speakers.

  13. VIOLATION OF CONVERSATION MAXIM ON TV ADVERTISEMENTS

    Directory of Open Access Journals (Sweden)

    Desak Putu Eka Pratiwi

    2015-07-01

    Full Text Available Maxim is a principle that must be obeyed by all participants textually and interpersonally in order to have a smooth communication process. Conversation maxim is divided into four namely maxim of quality, maxim of quantity, maxim of relevance, and maxim of manner of speaking. Violation of the maxim may occur in a conversation in which the information the speaker has is not delivered well to his speaking partner. Violation of the maxim in a conversation will result in an awkward impression. The example of violation is the given information that is redundant, untrue, irrelevant, or convoluted. Advertisers often deliberately violate the maxim to create unique and controversial advertisements. This study aims to examine the violation of maxims in conversations of TV ads. The source of data in this research is food advertisements aired on TV media. Documentation and observation methods are applied to obtain qualitative data. The theory used in this study is a maxim theory proposed by Grice (1975. The results of the data analysis are presented with informal method. The results of this study show an interesting fact that the violation of maxim in a conversation found in the advertisement exactly makes the advertisements very attractive and have a high value.

  14. Finding Maximal Quasiperiodicities in Strings

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Pedersen, Christian N. S.

    2000-01-01

    of length n in time O(n log n) and space O(n). Our algorithm uses the suffix tree as the fundamental data structure combined with efficient methods for merging and performing multiple searches in search trees. Besides finding all maximal quasiperiodic substrings, our algorithm also marks the nodes......Apostolico and Ehrenfeucht defined the notion of a maximal quasiperiodic substring and gave an algorithm that finds all maximal quasiperiodic substrings in a string of length n in time O(n log2 n). In this paper we give an algorithm that finds all maximal quasiperiodic substrings in a string...... in the suffix tree that have a superprimitive path-label....

  15. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  16. A pocket device for high-throughput optofluidic holographic microscopy

    Science.gov (United States)

    Mandracchia, B.; Bianco, V.; Wang, Z.; Paturzo, M.; Bramanti, A.; Pioggia, G.; Ferraro, P.

    2017-06-01

    Here we introduce a compact holographic microscope embedded onboard a Lab-on-a-Chip (LoC) platform. A wavefront division interferometer is realized by writing a polymer grating onto the channel to extract a reference wave from the object wave impinging the LoC. A portion of the beam reaches the samples flowing along the channel path, carrying their information content to the recording device, while one of the diffraction orders from the grating acts as an off-axis reference wave. Polymeric micro-lenses are delivered forward the chip by Pyro-ElectroHydroDynamic (Pyro-EHD) inkjet printing techniques. Thus, all the required optical components are embedded onboard a pocket device, and fast, non-iterative, reconstruction algorithms can be used. We use our device in combination with a novel high-throughput technique, named Space-Time Digital Holography (STDH). STDH exploits the samples motion inside microfluidic channels to obtain a synthetic hologram, mapped in a hybrid space-time domain, and with intrinsic useful features. Indeed, a single Linear Sensor Array (LSA) is sufficient to build up a synthetic representation of the entire experiment (i.e. the STDH) with unlimited Field of View (FoV) along the scanning direction, independently from the magnification factor. The throughput of the imaging system is dramatically increased as STDH provides unlimited FoV, refocusable imaging of samples inside the liquid volume with no need for hologram stitching. To test our embedded STDH microscopy module, we counted, imaged and tracked in 3D with high-throughput red blood cells moving inside the channel volume under non ideal flow conditions.

  17. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    Science.gov (United States)

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  18. From Classical to High Throughput Screening Methods for Feruloyl Esterases: A Review.

    Science.gov (United States)

    Ramírez-Velasco, Lorena; Armendáriz-Ruiz, Mariana; Rodríguez-González, Jorge Alberto; Müller-Santos, Marcelo; Asaff-Torres, Ali; Mateos-Díaz, Juan Carlos

    2016-01-01

    Feruloyl esterases (FAEs) are a diverse group of hydrolases widely distributed in plants and microorganisms which catalyzes the cleavage and formation of ester bonds between plant cell wall polysaccharides and phenolic acids. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing highadded value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production, characterization and classification of FAEs, however only a few reports of suitable High Throughput Screening assays for this kind of enzymes have been reported. This review is focused on a concise but complete revision of classical to High Throughput Screening methods for FAEs, highlighting its advantages and disadvantages, and finally suggesting future perspectives for this important research field.

  19. Ratiometric fluorescent pH-sensitive polymers for high-throughput monitoring of extracellular pH†

    OpenAIRE

    Zhang, Liqiang; Su, Fengyu; Kong, Xiangxing; Lee, Fred; Day, Kevin; Gao, Weimin; Vecera, Mary E.; Sohr, Jeremy M.; Buizer, Sean; Tian, Yanqing; Meldrum, Deirdre R

    2016-01-01

    Extracellular pH has a strong effect on cell metabolism and growth. Precisely detecting extracellular pH with high throughput is critical for cell metabolism research and fermentation applications. In this research, a series of ratiometric fluorescent pH sensitive polymers are developed and the ps-pH-neutral is characterized as the best one for exculsive detection of extracellular pH. Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) is used as the host polymer to increase the water solubility ...

  20. Shareholder, stakeholder-owner or broad stakeholder maximization

    DEFF Research Database (Denmark)

    Mygind, Niels

    2004-01-01

    With reference to the discussion about shareholder versus stakeholder maximization it is argued that the normal type of maximization is in fact stakeholder-owner maxi-mization. This means maximization of the sum of the value of the shares and stake-holder benefits belonging to the dominating...... including the shareholders of a company. Although it may be the ultimate goal for Corporate Social Responsibility to achieve this kind of maximization, broad stakeholder maximization is quite difficult to give a precise definition. There is no one-dimensional measure to add different stakeholder benefits...... not traded on the mar-ket, and therefore there is no possibility for practical application. Broad stakeholder maximization instead in practical applications becomes satisfying certain stakeholder demands, so that the practical application will be stakeholder-owner maximization un-der constraints defined...

  1. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Hong Kezhu

    2007-01-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  2. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Kezhu Hong

    2007-04-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  3. A High Throughput Model of Post-Traumatic Osteoarthritis using Engineered Cartilage Tissue Analogs

    Science.gov (United States)

    Mohanraj, Bhavana; Meloni, Gregory R.; Mauck, Robert L.; Dodge, George R.

    2014-01-01

    (1) Objective A number of in vitro models of post-traumatic osteoarthritis (PTOA) have been developed to study the effect of mechanical overload on the processes that regulate cartilage degeneration. While such frameworks are critical for the identification therapeutic targets, existing technologies are limited in their throughput capacity. Here, we validate a test platform for high-throughput mechanical injury incorporating engineered cartilage. (2) Method We utilized a high throughput mechanical testing platform to apply injurious compression to engineered cartilage and determined their strain and strain rate dependent responses to injury. Next, we validated this response by applying the same injury conditions to cartilage explants. Finally, we conducted a pilot screen of putative PTOA therapeutic compounds. (3) Results Engineered cartilage response to injury was strain dependent, with a 2-fold increase in GAG loss at 75% compared to 50% strain. Extensive cell death was observed adjacent to fissures, with membrane rupture corroborated by marked increases in LDH release. Testing of established PTOA therapeutics showed that pan-caspase inhibitor (ZVF) was effective at reducing cell death, while the amphiphilic polymer (P188) and the free-radical scavenger (NAC) reduced GAG loss as compared to injury alone. (4) Conclusions The injury response in this engineered cartilage model replicated key features of the response from cartilage explants, validating this system for application of physiologically relevant injurious compression. This study establishes a novel tool for the discovery of mechanisms governing cartilage injury, as well as a screening platform for the identification of new molecules for the treatment of PTOA. PMID:24999113

  4. On the maximal superalgebras of supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan

    2009-01-01

    In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.

  5. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.

    Science.gov (United States)

    Lin, Lin; Zheng, Jiaxin; Yu, Quan; Chen, Wendong; Xing, Jinchun; Chen, Chenxi; Tian, Ruijun

    2018-03-01

    Mass spectrometry (MS)-based serum proteome analysis is extremely challenging due to its high complexity and dynamic range of protein abundances. Developing high throughput and accurate serum proteomic profiling approach capable of analyzing large cohorts is urgently needed for biomarker discovery. Herein, we report a streamlined workflow for fast and accurate proteomic profiling from 1μL of blood serum. The workflow combined an integrated technique for highly sensitive and reproducible sample preparation and a new data-independent acquisition (DIA)-based MS method. Comparing with standard data dependent acquisition (DDA) approach, the optimized DIA method doubled the number of detected peptides and proteins with better reproducibility. Without protein immunodepletion and prefractionation, the single-run DIA analysis enables quantitative profiling of over 300 proteins with 50min gradient time. The quantified proteins span more than five orders of magnitude of abundance range and contain over 50 FDA-approved disease markers. The workflow allowed us to analyze 20 serum samples per day, with about 358 protein groups per sample being identified. A proof-of-concept study on renal cell carcinoma (RCC) serum samples confirmed the feasibility of the workflow for large scale serum proteomic profiling and disease-related biomarker discovery. Blood serum or plasma is the predominant specimen for clinical proteomic studies while the analysis is extremely challenging for its high complexity. Many efforts had been made in the past for serum proteomics for maximizing protein identifications, whereas few have been concerned with throughput and reproducibility. Here, we establish a rapid, robust and high reproducible DIA-based workflow for streamlined serum proteomic profiling from 1μL serum. The workflow doesn't need protein depletion and pre-fractionation, while still being able to detect disease-relevant proteins accurately. The workflow is promising in clinical application

  6. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    Directory of Open Access Journals (Sweden)

    Marco Straccia

    Full Text Available A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

  7. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    Science.gov (United States)

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  8. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    Science.gov (United States)

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Setting up a Bioluminescence Resonance Energy Transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Cyril eCouturier

    2012-09-01

    Full Text Available Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed interactome. Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET technique was primarily developed to allow the dynamic monitoring of protein-protein interactions in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of protein-protein interactions and here is described why and how to set up and optimize a High Throughput Screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence substrate concentration, number of cells and medium composition used on the Z’ factor, and expected interferences for colored or fluorescent compounds.

  10. High throughput imaging cytometer with acoustic focussing† †Electronic supplementary information (ESI) available: High throughput imaging cytometer with acoustic focussing. See DOI: 10.1039/c5ra19497k Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S.; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn

    2015-01-01

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint. PMID:29456838

  11. Application of ToxCast High-Throughput Screening and ...

    Science.gov (United States)

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  12. Maximally multipartite entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  13. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  14. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  15. Maximizing opto‐mechanical interaction using topology optimization

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund; Sigmund, Ole

    2011-01-01

    is performed on a periodic cell and the periodic modeling of the optical and mechanical fields have been carried out using transverse electric Bloch waves and homogenization theory in a plane stress setting, respectively. Two coupling effects are included being the photoelastic effect and the geometric effect......This paper studies topology optimization of a coupled opto‐mechanical problem with the goal of finding the material layout which maximizes the optical modulation, i.e. the difference between the optical response for the mechanically deformed and undeformed configuration. The optimization...

  16. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  17. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  18. Oleanane-type triterpenoid saponins from Lysimachia fortunei Maxim.

    Science.gov (United States)

    Zhang, Shu-Lin; Yang, Zi-Ni; He, Cui; Liao, Hai-Bing; Wang, Heng-Shan; Chen, Zhen-Feng; Liang, Dong

    2018-03-01

    Six previously undescribed oleanane-type triterpenoid saponins, fortunosides A-F, together with six known ones, were isolated from the aerial parts of Lysimachia fortunei Maxim. Their structures were established by spectroscopic data analyses (1D, 2D-NMR and HRESIMS) and chemical methods. All isolated triterpenoid saponins were evaluated for their cytotoxicity against four human liver cancer cell lines (SMMC-7721, Hep3B, HuH7, and SK-Hep-1). Three saponins with the aglycone protoprimulagenin A exhibited moderate cytotoxicity against all of the tested human cancer cell lines, with IC 50 values ranging from 4.76 to 15.12 μM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  20. High-throughput ultra high performance liquid chromatography combined with mass spectrometry approach for the rapid analysis and characterization of multiple constituents of the fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms.

    Science.gov (United States)

    Han, Yue; Zhang, Aihua; Sun, Hui; Zhang, Yingzhi; Meng, Xiangcai; Yan, Guangli; Liu, Liang; Wang, Xijun

    2017-05-01

    Acanthopanax senticosus (Rupr. et Maxim.) Harms, a traditional Chinese medicine, has been widely used to improve the function of skeleton, heart, spleen and kidney. This fruit is rich in nutrients, but the chemical constituents of Acanthopanax senticosus fruit are still unclear. A rapid method based on ultra high performance liquid chromatography with time-of-flight mass spectrometry was developed for the compound analysis of Acanthopanax senticosus fruit in vitro and in vivo. In this study, the Acanthopanax senticosus fruit could significantly increase the weight of immune organs, promote the proliferation of lymphatic T cells, regulate the lymphatic B cell function, and decrease the ability of natural killer cells. A total of 104 compounds of Acanthopanax senticosus fruit including lignans, flavones, triterpenoidsaponins, phenolic acids, and other constituents were identified. Among them, seven chemical compounds were reported for the first time in the Acanthopanax senticosus fruit. Compared with the serum sample of blank and dosed samples, 24 prototype compositions were characterized. The results of our experiment could be helpful to understand the complex compounds of Acanthopanax senticosus fruit in vitro and in vivo for further pharmacological activity studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.

    Science.gov (United States)

    Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue

    2017-08-18

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.

  2. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer

    Science.gov (United States)

    Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue

    2017-01-01

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496

  3. Maximal quantum Fisher information matrix

    International Nuclear Information System (INIS)

    Chen, Yu; Yuan, Haidong

    2017-01-01

    We study the existence of the maximal quantum Fisher information matrix in the multi-parameter quantum estimation, which bounds the ultimate precision limit. We show that when the maximal quantum Fisher information matrix exists, it can be directly obtained from the underlying dynamics. Examples are then provided to demonstrate the usefulness of the maximal quantum Fisher information matrix by deriving various trade-off relations in multi-parameter quantum estimation and obtaining the bounds for the scalings of the precision limit. (paper)

  4. Understanding Violations of Gricean Maxims in Preschoolers and Adults

    Directory of Open Access Journals (Sweden)

    Mako eOkanda

    2015-07-01

    Full Text Available This study used a revised Conversational Violations Test to examine Gricean maxim violations in 4- to 6-year-old Japanese children and adults. Participants’ understanding of the following maxims was assessed: be informative (first maxim of quantity, avoid redundancy (second maxim of quantity, be truthful (maxim of quality, be relevant (maxim of relation, avoid ambiguity (second maxim of manner, and be polite (maxim of politeness. Sensitivity to violations of Gricean maxims increased with age: 4-year-olds’ understanding of maxims was near chance, 5-year-olds understood some maxims (first maxim of quantity and maxims of quality, relation, and manner, and 6-year-olds and adults understood all maxims. Preschoolers acquired the maxim of relation first and had the greatest difficulty understanding the second maxim of quantity. Children and adults differed in their comprehension of the maxim of politeness. The development of the pragmatic understanding of Gricean maxims and implications for the construction of developmental tasks from early childhood to adulthood are discussed.

  5. Combinatorial Strategies and High Throughput Screening in Drug Discovery Targeted to the Channel of Botulinum Neurotoxin

    National Research Council Canada - National Science Library

    Montal, Mauricio

    2006-01-01

    .... The major focus thus far has been the implementation of a reliable and robust high-throughput screen for blockers specific for BoNT using Neuro 2A cells in which BoNTA forms channels with similar properties to those previously characterized in lipid bilayers. The immediate task during the present reporting period involved the detailed characterization of the channel and chaperone activity of BoNTA on Neuro2A cells.

  6. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  7. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  8. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  9. A New Tetrahydrofuran Lignan Diglycoside from Viola tianshanica Maxim

    Directory of Open Access Journals (Sweden)

    Yan Qin

    2013-11-01

    Full Text Available A new lignan glycoside, tianshanoside A (1, together with a known phenylpropanoid glycoside, syringin (2 and two known lignan glycosides, picraquassioside C (3, and aketrilignoside B (4, were isolated from the whole plant of Viola tianshanica Maxim. The structure of the new compound was elucidated by extensive NMR (1H, 13C, COSY, HSQC, HMBC and ROESY and high resolution mass spectrometry analysis. The three lignans 1, 3, and 4 did not exhibit significant cytotoxicity against human gastric cancer Ags cells or HepG2 liver cancer cells. This is the first report of the isolation of a lignan skeleton from the genus Viola L.

  10. High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays

    DEFF Research Database (Denmark)

    Tiendrebeogo, Regis W; Adu, Bright; Singh, Susheel K

    2014-01-01

    BACKGROUND: Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent...... distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS: Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45...... for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis...

  11. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    Science.gov (United States)

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  12. Establishment of IL-7 Expression Reporter Human Cell Lines, and Their Feasibility for High-Throughput Screening of IL-7-Upregulating Chemicals.

    Directory of Open Access Journals (Sweden)

    Yeon Sook Cho

    Full Text Available Interleukin-7 (IL-7 is a cytokine essential for T cell homeostasis, and is clinically important. However, the regulatory mechanism of IL-7 gene expression is not well known, and a systematic approach to screen chemicals that regulate IL-7 expression has not yet been developed. In this study, we attempted to develop human reporter cell lines using CRISPR/Cas9-mediated genome editing technology. For this purpose, we designed donor DNA that contains an enhanced green fluorescent protein (eGFP gene, drug selection cassette, and modified homologous arms which are considered to enhance the translation of the eGFP reporter transcript, and also a highly efficient single-guide RNA with a minimal off-target effect to target the IL-7 start codon region. By applying this system, we established IL-7 eGFP reporter cell lines that could report IL-7 gene transcription based on the eGFP protein signal. Furthermore, we utilized the cells to run a pilot screen campaign for IL-7-upregulating chemicals in a high-throughput format, and identified a chemical that can up-regulate IL-7 gene transcription. Collectively, these results suggest that our IL-7 reporter system can be utilized in large-scale chemical library screening to reveal novel IL-7 regulatory pathways and to identify potential drugs for development of new treatments in immunodeficiency disease.

  13. A flow cytometry-based method for a high-throughput analysis of drug-stabilized topoisomerase II cleavage complexes in human cells.

    Science.gov (United States)

    de Campos-Nebel, Marcelo; Palmitelli, Micaela; González-Cid, Marcela

    2016-09-01

    Topoisomerase II (Top2) is an important target for anticancer therapy. A variety of drugs that poison Top2, including several epipodophyllotoxins, anthracyclines, and anthracenediones, are widely used in the clinic for both hematologic and solid tumors. The poisoning of Top2 involves the formation of a reaction intermediate Top2-DNA, termed Top2 cleavage complex (Top2cc), which is persistent in the presence of the drug and involves a 5' end of DNA covalently bound to a tyrosine from the enzyme through a phosphodiester group. Drug-induced Top2cc leads to Top2 linked-DNA breaks which are the major responsible for their cytotoxicity. While biochemical detection is very laborious, quantification of drug-induced Top2cc by immunofluorescence-based microscopy techniques is time consuming and requires extensive image segmentation for the analysis of a small population of cells. Here, we developed a flow cytometry-based method for the analysis of drug-induced Top2cc. This method allows a rapid analysis of a high number of cells in their cell cycle phase context. Moreover, it can be applied to almost any human cell type, including clinical samples. The methodology is useful for a high-throughput analysis of drugs that poison Top2, allowing not just the discrimination of the Top2 isoform that is targeted but also to track its removal. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  14. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  15. High-throughput identification of potential minor histocompatibility antigens by MHC tetramer-based screening

    DEFF Research Database (Denmark)

    Hombrink, Pleun; Hadrup, Sine R; Bakker, Arne

    2011-01-01

    the technical feasibility of high-throughput analysis of antigen-specific T-cell responses in small patient samples. However, the high-sensitivity of this approach requires the use of potential epitope sets that are not solely based on MHC binding, to prevent the frequent detection of T-cell responses that lack......T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, the number of MiHA identified to date remains limited, making clinical application of MiHA reactive T......MHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1(IMA) antigen demonstrates that identification of MiHA through this approach is in principle...

  16. Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: State of the science

    NARCIS (Netherlands)

    Breier, J.M.; Gassmann, K.; Kayser, R.; Stegeman, H.; Groot, D.de; Fritsche, E.; Shafer, T.J.

    2010-01-01

    In vitro, high-throughput methods have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramifications for the accuracy,

  17. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  18. High Throughput PBTK: Open-Source Data and Tools for ...

    Science.gov (United States)

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  19. A high-throughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen.

    Science.gov (United States)

    Zimmermann, Boris; Bağcıoğlu, Murat; Tafinstseva, Valeria; Kohler, Achim; Ohlson, Mikael; Fjellheim, Siri

    2017-12-01

    The two factors defining male reproductive success in plants are pollen quantity and quality, but our knowledge about the importance of pollen quality is limited due to methodological constraints. Pollen quality in terms of chemical composition may be either genetically fixed for high performance independent of environmental conditions, or it may be plastic to maximize reproductive output under different environmental conditions. In this study, we validated a new approach for studying the role of chemical composition of pollen in adaptation to local climate. The approach is based on high-throughput Fourier infrared (FTIR) characterization and biochemical interpretation of pollen chemical composition in response to environmental conditions. The study covered three grass species, Poa alpina , Anthoxanthum odoratum , and Festuca ovina . For each species, plants were grown from seeds of three populations with wide geographic and climate variation. Each individual plant was divided into four genetically identical clones which were grown in different controlled environments (high and low levels of temperature and nutrients). In total, 389 samples were measured using a high-throughput FTIR spectrometer. The biochemical fingerprints of pollen were species and population specific, and plastic in response to different environmental conditions. The response was most pronounced for temperature, influencing the levels of proteins, lipids, and carbohydrates in pollen of all species. Furthermore, there is considerable variation in plasticity of the chemical composition of pollen among species and populations. The use of high-throughput FTIR spectroscopy provides fast, cheap, and simple assessment of the chemical composition of pollen. In combination with controlled-condition growth experiments and multivariate analyses, FTIR spectroscopy opens up for studies of the adaptive role of pollen that until now has been difficult with available methodology. The approach can easily be

  20. Development of a High-Throughput Screen for Inhibitors of Epstein-Barr Virus EBNA1

    Science.gov (United States)

    Thompson, Scott; Messick, Troy; Schultz, David C.; Reichman, Melvin; Lieberman, Paul M.

    2012-01-01

    Latent infection with Epstein-Barr Virus (EBV) is a carcinogenic cofactor in several lymphoid and epithelial cell malignancies. At present, there are no small molecule inhibitors that specifically target EBV latent infection or latency-associated oncoproteins. EBNA1 is an EBV-encoded sequence-specific DNA-binding protein that is consistently expressed in EBV-associated tumors and required for stable maintenance of the viral genome in proliferating cells. EBNA1 is also thought to provide cell survival function in latently infected cells. In this work we describe the development of a biochemical high-throughput screening (HTS) method using a homogenous fluorescence polarization (FP) assay monitoring EBNA1 binding to its cognate DNA binding site. An FP-based counterscreen was developed using another EBV-encoded DNA binding protein, Zta, and its cognate DNA binding site. We demonstrate that EBNA1 binding to a fluorescent labeled DNA probe provides a robust assay with a Z-factor consistently greater than 0.6. A pilot screen of a small molecule library of ~14,000 compounds identified 3 structurally related molecules that selectively inhibit EBNA1, but not Zta. All three compounds had activity in a cell-based assay specific for the disruption of EBNA1 transcription repression function. One of the compounds was effective in reducing EBV genome copy number in Raji Burkitt lymphoma cells. These experiments provide a proof-of-concept that small molecule inhibitors of EBNA1 can be identified by biochemical high-throughput screening of compound libraries. Further screening in conjunction with medicinal chemistry optimization may provide a selective inhibitor of EBNA1 and EBV latent infection. PMID:20930215

  1. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The GLP-1 analogue liraglutide improves first-phase insulin secretion and maximal beta-cell secretory capacity over 14 weeks of therapy in subjects with Type 2 diabetes

    DEFF Research Database (Denmark)

    Madsbad, Sten; Vilsbøll, Tina; Brock, Birgitte

    Aims: We investigated the clinical effect of liraglutide, a long- acting GLP-1 analogue, on insulin secretion in Type 2 diabetes. Methods: Thirty-nine subjects (28 completed) from a randomised trial received a hyperglycaemic clamp (20 mM) with intravenous arginine stimulation, and an insulin...... group. Conclusion: In subjects with Type 2 diabetes, 14 weeks’ once-daily liraglutide (1.25 and 1.9 mg/day) markedly improves beta-cell function, significantly increases first-phase insulin secretion and maximal beta-cell secretory capacity....

  3. Inclusive fitness maximization: An axiomatic approach.

    Science.gov (United States)

    Okasha, Samir; Weymark, John A; Bossert, Walter

    2014-06-07

    Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  5. Throughput-Based Traffic Steering in LTE-Advanced HetNet Deployments

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Kovacs, Istvan Z.; Wigard, Jeroen

    2015-01-01

    The objective of this paper is to propose traffic steering solutions that aim at optimizing the end-user throughput. Two different implementations of an active mode throughput-based traffic steering algorithm for Heterogeneous Networks (HetNet) are introduced. One that always forces handover of t...... throughput is generally higher, reaching values of 36% and 18% for the medium- and high-load conditions....

  6. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  7. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.

    Science.gov (United States)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-25

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  8. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  9. NanoTopoChip: High-throughput nanotopographical cell instruction.

    Science.gov (United States)

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which

  10. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  11. Thin-film filament-based solar cells and modules

    Science.gov (United States)

    Tuttle, J. R.; Cole, E. D.; Berens, T. A.; Alleman, J.; Keane, J.

    1997-04-01

    This concept paper describes a patented, novel photovoltaic (PV) technology that is capable of achieving near-term commercialization and profitability based upon design features that maximize product performance while minimizing initial and future manufacturing costs. DayStar Technologies plans to exploit these features and introduce a product to the market based upon these differential positions. The technology combines the demonstrated performance and reliability of existing thin-film PV product with a cell and module geometry that cuts material usage by a factor of 5, and enhances performance and manufacturability relative to standard flat-plate designs. The target product introduction price is 1.50/Watt-peak (Wp). This is approximately one-half the cost of the presently available PV product. Additional features include: increased efficiency through low-level concentration, no scribe or grid loss, simple series interconnect, high voltage, light weight, high-throughput manufacturing, large area immediate demonstration, flexibility, modularity.

  12. High throughput screening method for assessing heterogeneity of microorganisms

    NARCIS (Netherlands)

    Ingham, C.J.; Sprenkels, A.J.; van Hylckama Vlieg, J.E.T.; Bomer, Johan G.; de Vos, W.M.; van den Berg, Albert

    2006-01-01

    The invention relates to the field of microbiology. Provided is a method which is particularly powerful for High Throughput Screening (HTS) purposes. More specific a high throughput method for determining heterogeneity or interactions of microorganisms is provided.

  13. Combined whole-cell high-throughput functional screening for identification of new nicotinamidases/pyrazinamidases in metagenomic/polygenomic libraries

    Directory of Open Access Journals (Sweden)

    Rubén Zapata-Pérez

    2016-11-01

    Full Text Available Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide to produce ammonia and nicotinic acid. These enzymes are an essential component of the NAD+ salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or nicotinic acid to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside. After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the sodium nitroprusside method allowed the finding of the first nicotinamidase with balanced catalytic efficiency towards nicotinamide (nicotinamidase activity and pyrazinamide (pyrazinamidase activity. Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.

  14. Combined Whole-Cell High-Throughput Functional Screening for Identification of New Nicotinamidases/Pyrazinamidases in Metagenomic/Polygenomic Libraries.

    Science.gov (United States)

    Zapata-Pérez, Rubén; García-Saura, Antonio G; Jebbar, Mohamed; Golyshin, Peter N; Sánchez-Ferrer, Álvaro

    2016-01-01

    Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide (NAM) to produce ammonia and nicotinic acid (NA). These enzymes are an essential component of the NAD + salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or NA) to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside (SNP). After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the SNP method allowed the finding of the first nicotinamidase with balanced catalytic efficiency toward NAM (nicotinamidase activity) and pyrazinamide (pyrazinamidase activity). Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.

  15. Maximal Inequalities for Dependent Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jorgensen, Jorgen

    2016-01-01

    Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X-k. Then a......Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X......-k. Then a maximal inequality gives conditions ensuring that the maximal partial sum M-n = max(1) (...

  16. An ethical justification of profit maximization

    DEFF Research Database (Denmark)

    Koch, Carsten Allan

    2010-01-01

    In much of the literature on business ethics and corporate social responsibility, it is more or less taken for granted that attempts to maximize profits are inherently unethical. The purpose of this paper is to investigate whether an ethical argument can be given in support of profit maximizing...... behaviour. It is argued that some form of consequential ethics must be applied, and that both profit seeking and profit maximization can be defended from a rule-consequential point of view. It is noted, however, that the result does not apply unconditionally, but requires that certain form of profit (and...... utility) maximizing actions are ruled out, e.g., by behavioural norms or formal institutions....

  17. Identifying Inhibitors of Inflammation: A Novel High-Throughput MALDI-TOF Screening Assay for Salt-Inducible Kinases (SIKs).

    Science.gov (United States)

    Heap, Rachel E; Hope, Anthony G; Pearson, Lesley-Anne; Reyskens, Kathleen M S E; McElroy, Stuart P; Hastie, C James; Porter, David W; Arthur, J Simon C; Gray, David W; Trost, Matthias

    2017-12-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry has become a promising alternative for high-throughput drug discovery as new instruments offer high speed, flexibility and sensitivity, and the ability to measure physiological substrates label free. Here we developed and applied high-throughput MALDI TOF mass spectrometry to identify inhibitors of the salt-inducible kinase (SIK) family, which are interesting drug targets in the field of inflammatory disease as they control production of the anti-inflammatory cytokine interleukin-10 (IL-10) in macrophages. Using peptide substrates in in vitro kinase assays, we can show that hit identification of the MALDI TOF kinase assay correlates with indirect ADP-Hunter kinase assays. Moreover, we can show that both techniques generate comparable IC 50 data for a number of hit compounds and known inhibitors of SIK kinases. We further take these inhibitors to a fluorescence-based cellular assay using the SIK activity-dependent translocation of CRTC3 into the nucleus, thereby providing a complete assay pipeline for the identification of SIK kinase inhibitors in vitro and in cells. Our data demonstrate that MALDI TOF mass spectrometry is fully applicable to high-throughput kinase screening, providing label-free data comparable to that of current high-throughput fluorescence assays.

  18. Automation in Cytomics: A Modern RDBMS Based Platform for Image Analysis and Management in High-Throughput Screening Experiments

    NARCIS (Netherlands)

    E. Larios (Enrique); Y. Zhang (Ying); K. Yan (Kuan); Z. Di; S. LeDévédec (Sylvia); F.E. Groffen (Fabian); F.J. Verbeek

    2012-01-01

    textabstractIn cytomics bookkeeping of the data generated during lab experiments is crucial. The current approach in cytomics is to conduct High-Throughput Screening (HTS) experiments so that cells can be tested under many different experimental conditions. Given the large amount of different

  19. High-Throughput Process Development for Biopharmaceuticals.

    Science.gov (United States)

    Shukla, Abhinav A; Rameez, Shahid; Wolfe, Leslie S; Oien, Nathan

    2017-11-14

    The ability to conduct multiple experiments in parallel significantly reduces the time that it takes to develop a manufacturing process for a biopharmaceutical. This is particularly significant before clinical entry, because process development and manufacturing are on the "critical path" for a drug candidate to enter clinical development. High-throughput process development (HTPD) methodologies can be similarly impactful during late-stage development, both for developing the final commercial process as well as for process characterization and scale-down validation activities that form a key component of the licensure filing package. This review examines the current state of the art for HTPD methodologies as they apply to cell culture, downstream purification, and analytical techniques. In addition, we provide a vision of how HTPD activities across all of these spaces can integrate to create a rapid process development engine that can accelerate biopharmaceutical drug development. Graphical Abstract.

  20. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    Science.gov (United States)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  1. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    Science.gov (United States)

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  2. Recent advances in quantitative high throughput and high content data analysis.

    Science.gov (United States)

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  3. Inclusive Fitness Maximization:An Axiomatic Approach

    OpenAIRE

    Okasha, Samir; Weymark, John; Bossert, Walter

    2014-01-01

    Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of qu...

  4. [High-throughput genotyping multiplex ligation-dependent probe amplification for assisting diagnosis in a case of anti-Di(a)-induced severe hemolytic disease of the newborn].

    Science.gov (United States)

    Ji, Yanli; Mo, Chunyan; Wei, Ling; Zhou, Xiuzhen; Zhang, Runqing; Zhao, Yang; Luo, Hong; Wang, Zhen; Luo, Guangping

    2012-02-01

    To report a rare case of hemolytic disease of the newborn (HDN) with kernicterus caused by anti-Di(a) diagnosed using high-throughput genotyping multiplex ligation-dependent probe amplification (MLPA). Conventional serological methods were used to detect the antibodies related with HDN. The genotypes of more than 40 red blood cell antigens for the newborn and her parents were obtained using the high-throughput MLPA assay. The antibody titers were tested using a standard serological method. The unknown antibody against the low-frequency antigens was predicted based on the primary serological tests. The genotyping results for more than 40 red blood cell antigens of the newborn and her parents showed incompatible antigens of MNS and Diego blood group system, indicating the existence of anti-N or anti-Di(a). Further serological tests confirmed anti-Di(a) existence in the plasma of the newborn and her mother. The titer of anti-Di(a) in the mother's plasma was 1:32. Severe HDN including kernicterus can result from anti-Di(a). High-throughput genotyping MLPA assay can help type some rare antigens in complicated cases. The reagent red cell panels including Di(a)-positive cells are necessary in routine antibody screening test in Chinese population.

  5. A Cross-Layer Approach for Maximizing Visual Entropy Using Closed-Loop Downlink MIMO

    Directory of Open Access Journals (Sweden)

    Hyungkeuk Lee

    2008-07-01

    Full Text Available We propose an adaptive video transmission scheme to achieve unequal error protection in a closed loop multiple input multiple output (MIMO system for wavelet-based video coding. In this scheme, visual entropy is employed as a video quality metric in agreement with the human visual system (HVS, and the associated visual weight is used to obtain a set of optimal powers in the MIMO system for maximizing the visual quality of the reconstructed video. For ease of cross-layer optimization, the video sequence is divided into several streams, and the visual importance of each stream is quantified using the visual weight. Moreover, an adaptive load balance control, named equal termination scheduling (ETS, is proposed to improve the throughput of visually important data with higher priority. An optimal solution for power allocation is derived as a closed form using a Lagrangian relaxation method. In the simulation results, a highly improved visual quality is demonstrated in the reconstructed video via the cross-layer approach by means of visual entropy.

  6. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  7. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    Science.gov (United States)

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  8. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Jiang, Yanqiu; Liu, Zhaoxi; Liu, Yuxin; Wang, Xiaoli; Kuang, Haixue

    2015-08-26

    Twenty-seven naphthoquinones and their derivatives, including four new naphthalenyl glucosides and twenty-three known compounds, were isolated from green walnut husks, which came from Juglans mandshurica Maxim. The structures of four new naphthalenyl glucosides were elucidated based on extensive spectroscopic analyses. All of these compounds were evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by MTT [3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide] assay. The results were shown that most naphthoquinones in an aglycone form exhibited better cytotoxicity in vitro than naphthalenyl glucosides with IC50 values in the range of 7.33-88.23 μM. Meanwhile, preliminary structure-activity relationships for these compounds were discussed.

  9. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    Science.gov (United States)

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  10. TWF process cell throughput study

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1992-01-01

    The TWF will prepare transuranic (TRU) waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP). WH ampersand MP's early participation in the TWF project included the installation and testing of a WPC mockup (using the conceptual design). Operating experience indicated significant improvements could be made in the WPC scheme, so we conducted a process cell equipment study with Equipment Engineering to identify better equipment and methods (ref. 4). The results of that study were used to construct the WPC computer simulation model

  11. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  12. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  13. Throughput Capacity of Ad Hoc Networks with Route Discovery

    Directory of Open Access Journals (Sweden)

    Blum Rick S

    2007-01-01

    Full Text Available Throughput capacity of large ad hoc networks has been shown to scale adversely with the size of network . However the need for the nodes to find or repair routes has not been analyzed in this context. In this paper, we explicitly take route discovery into account and obtain the scaling law for the throughput capacity under general assumptions on the network environment, node behavior, and the quality of route discovery algorithms. We also discuss a number of possible scenarios and show that the need for route discovery may change the scaling for the throughput capacity.

  14. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  15. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  16. NanoTopoChip : High-throughput nanotopographical cell instruction

    NARCIS (Netherlands)

    Hulshof, Frits F.B.; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R.M.; de Boer, Meint; Papenburg, Bernke J.; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-01-01

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and

  17. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    Science.gov (United States)

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  18. POLITENESS MAXIM OF MAIN CHARACTER IN SECRET FORGIVEN

    Directory of Open Access Journals (Sweden)

    Sang Ayu Isnu Maharani

    2017-06-01

    Full Text Available Maxim of Politeness is an interesting subject to be discussed, since politeness has been criticized from our childhood. We are obliques to be polite to anyone either in speaking or in acting. Somehow we are manage to show politeness in our spoken expression though our intention might be not so polite. For example we must appriciate others opinion although we feel objection toward the opinion. In this article the analysis of politeness is based on maxim proposes by Leech. He proposed six types of politeness maxim. The discussion shows that the main character (Kristen and Kami use all types of maxim in their conversation. The most commonly used are approbation maxim and agreement maxim

  19. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  20. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.

    Science.gov (United States)

    Tao, Lei; Zhao, Yue; Wu, Ying; Wang, Qiuyu; Yuan, Hongmei; Zhao, Lijuan; Guo, Wendong; You, Xiangling

    2016-03-01

    Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Oliver N F King

    2010-11-01

    Full Text Available Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(ε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(ε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors.High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4 family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II and to modulate demethylation at the H3K9 locus in a cell-based assay.These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.

  3. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  4. High-throughput screening (HTS) and modeling of the retinoid ...

    Science.gov (United States)

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  5. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  6. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  7. Natural maximal νμ-ντ mixing

    International Nuclear Information System (INIS)

    Wetterich, C.

    1999-01-01

    The naturalness of maximal mixing between myon- and tau-neutrinos is investigated. A spontaneously broken nonabelian generation symmetry can explain a small parameter which governs the deviation from maximal mixing. In many cases all three neutrino masses are almost degenerate. Maximal ν μ -ν τ -mixing suggests that the leading contribution to the light neutrino masses arises from the expectation value of a heavy weak triplet rather than from the seesaw mechanism. In this scenario the deviation from maximal mixing is predicted to be less than about 1%. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  9. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  10. Utility maximization and mode of payment

    NARCIS (Netherlands)

    Koning, R.H.; Ridder, G.; Heijmans, R.D.H.; Pollock, D.S.G.; Satorra, A.

    2000-01-01

    The implications of stochastic utility maximization in a model of choice of payment are examined. Three types of compatibility with utility maximization are distinguished: global compatibility, local compatibility on an interval, and local compatibility on a finite set of points. Keywords:

  11. Measuring topology of low-intensity DNA methylation sites for high-throughput assessment of epigenetic drug-induced effects in cancer cells

    International Nuclear Information System (INIS)

    Gertych, Arkadiusz; Farkas, Daniel L.; Tajbakhsh, Jian

    2010-01-01

    Epigenetic anti-cancer drugs with demethylating effects have shown to alter genome organization in mammalian cell nuclei. The interest in the development of novel epigenetic drugs has increased the demand for cell-based assays to evaluate drug performance in pre-clinical studies. An imaging-based cytometrical approach that can measure demethylation effects as changes in the spatial nuclear distributions of methylated cytosine and global DNA in cancer cells is introduced in this paper. The cells were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei. In the preprocessing step the segmentation of nuclei in three-dimensional images (3-D) is followed by an automated assessment of nuclear DAPI/MeC patterns to exclude dissimilar entities. Next, low-intensity MeC (LIM) and low-intensity DNA (LID) sites of similar nuclei are localized and processed to obtain specific nuclear density profiles. These profiles sampled at half of the total nuclear volume yielded two parameters: LIM 0.5 and LID 0.5 . The analysis shows that zebularine and 5-azacytidine-the two tested epigenetic drugs introduce changes in the spatial distribution of low-intensity DNA and MeC signals. LIM 0.5 and LID 0.5 were significantly different (p < 0.001) in 5-azacytidine treated (n = 660) and zebularine treated (n = 496) vs. untreated (n = 649) DU145 human prostate cancer cells. In the latter case the LIM sites were predominantly found at the nuclear border, whereas treated populations showed different degrees of increase in LIMs towards the interior nuclear space, in which a large portion of heterochromatin is located. The cell-by-cell evaluation of changes in the spatial reorganization of MeC/DAPI signals revealed that zebularine is a more gentle demethylating agent than 5-azacytidine. Measuring changes in the topology of low-intensity sites can potentially be a

  12. Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Rasmussen, Michael; Røder, Gustav Andreas

    2011-01-01

    and it is well suited for high-throughput screening. To exemplify this, we screened a panel of 384 high-affinity peptides binding to the MHC class I molecule, HLA-A*02:01, and observed the rates of dissociation that ranged from 0.1h to 46h depending on the peptide used.......Efficient presentation of peptide-MHC class I complexes to immune T cells depends upon stable peptide-MHC class I interactions. Theoretically, determining the rate of dissociation of a peptide-MHC class I complexes is straightforward; in practical terms, however, generating the accurate and closely...... timed data needed to determine the rate of dissociation is not simple. Ideally, one should use a homogenous assay involving an inexhaustible and label-free assay principle. Here, we present a homogenous, high-throughput peptide-MHC class I dissociation assay, which by and large fulfill these ideal...

  13. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  14. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloid-β aggregation inhibitors.

    Directory of Open Access Journals (Sweden)

    Yukako Ishigaki

    Full Text Available The aggregation of amyloid β protein (Aβ is a key step in the pathogenesis of Alzheimer's disease (AD, and therefore inhibitory substances for Aβ aggregation may have preventive and/or therapeutic potential for AD. Here we report a novel microliter-scale high-throughput screening system for Aβ aggregation inhibitors based on fluorescence microscopy-imaging technology with quantum-dot Nanoprobes. This screening system could be analyzed with a 5-µl sample volume when a 1536-well plate was used, and the inhibitory activity could be estimated as half-maximal effective concentrations (EC50. We attempted to comprehensively screen Aβ aggregation inhibitors from 52 spices using this system to assess whether this novel screening system is actually useful for screening inhibitors. Screening results indicate that approximately 90% of the ethanolic extracts from the spices showed inhibitory activity for Aβ aggregation. Interestingly, spices belonging to the Lamiaceae, the mint family, showed significantly higher activity than the average of tested spices. Furthermore, we tried to isolate the main inhibitory compound from Saturejahortensis, summer savory, a member of the Lamiaceae, using this system, and revealed that the main active compound was rosmarinic acid. These results demonstrate that this novel microliter-scale high-throughput screening system could be applied to the actual screening of Aβ aggregation inhibitors. Since this system can analyze at a microscopic scale, it is likely that further minimization of the system would easily be possible such as protein microarray technology.

  15. High throughput comet assay to study genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Naouale El Yamani

    2015-06-01

    Full Text Available The unique physicochemical properties of engineered nanomaterials (NMs have accelerated their use in diverse industrial and domestic products. Although their presence in consumer products represents a major concern for public health safety, their potential impact on human health is poorly understood. There is therefore an urgent need to clarify the toxic effects of NMs and to elucidate the mechanisms involved. In view of the large number of NMs currently being used, high throughput (HTP screening technologies are clearly needed for efficient assessment of toxicity. The comet assay is the most used method in nanogenotoxicity studies and has great potential for increasing throughput as it is fast, versatile and robust; simple technical modifications of the assay make it possible to test many compounds (NMs in a single experiment. The standard gel of 70-100 μL contains thousands of cells, of which only a tiny fraction are actually scored. Reducing the gel to a volume of 5 μL, with just a few hundred cells, allows twelve gels to be set on a standard slide, or 96 as a standard 8x12 array. For the 12 gel format, standard slides precoated with agarose are placed on a metal template and gels are set on the positions marked on the template. The HTP comet assay, incorporating digestion of DNA with formamidopyrimidine DNA glycosylase (FPG to detect oxidised purines, has recently been applied to study the potential induction of genotoxicity by NMs via reactive oxygen. In the NanoTEST project we investigated the genotoxic potential of several well-characterized metal and polymeric nanoparticles with the comet assay. All in vitro studies were harmonized; i.e. NMs were from the same batch, and identical dispersion protocols, exposure time, concentration range, culture conditions, and time-courses were used. As a kidney model, Cos-1 fibroblast-like kidney cells were treated with different concentrations of iron oxide NMs, and cells embedded in minigels (12

  16. High throughput miniature drug-screening platform using bioprinting technology

    International Nuclear Information System (INIS)

    Rodríguez-Dévora, Jorge I; Reyna, Daniel; Xu Tao; Zhang Bimeng; Shi Zhidong

    2012-01-01

    In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage. (paper)

  17. Activity versus outcome maximization in time management.

    Science.gov (United States)

    Malkoc, Selin A; Tonietto, Gabriela N

    2018-04-30

    Feeling time-pressed has become ubiquitous. Time management strategies have emerged to help individuals fit in more of their desired and necessary activities. We provide a review of these strategies. In doing so, we distinguish between two, often competing, motives people have in managing their time: activity maximization and outcome maximization. The emerging literature points to an important dilemma: a given strategy that maximizes the number of activities might be detrimental to outcome maximization. We discuss such factors that might hinder performance in work tasks and enjoyment in leisure tasks. Finally, we provide theoretically grounded recommendations that can help balance these two important goals in time management. Published by Elsevier Ltd.

  18. Maximizing Entropy over Markov Processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2013-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....

  19. Maximizing entropy over Markov processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2014-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code. © 2014 Elsevier...

  20. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  1. High throughput label-free platform for statistical bio-molecular sensing

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, En-Te; Chen, Ching-Hsiu

    2011-01-01

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing...

  2. A programmable, scalable-throughput interleaver

    NARCIS (Netherlands)

    Rijshouwer, E.J.C.; Berkel, van C.H.

    2010-01-01

    The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation

  3. HEALTH INSURANCE: CONTRIBUTIONS AND REIMBURSEMENT MAXIMAL

    CERN Document Server

    HR Division

    2000-01-01

    Affected by both the salary adjustment index on 1.1.2000 and the evolution of the staff members and fellows population, the average reference salary, which is used as an index for fixed contributions and reimbursement maximal, has changed significantly. An adjustment of the amounts of the reimbursement maximal and the fixed contributions is therefore necessary, as from 1 January 2000.Reimbursement maximalThe revised reimbursement maximal will appear on the leaflet summarising the benefits for the year 2000, which will soon be available from the divisional secretariats and from the AUSTRIA office at CERN.Fixed contributionsThe fixed contributions, applicable to some categories of voluntarily insured persons, are set as follows (amounts in CHF for monthly contributions):voluntarily insured member of the personnel, with complete coverage:815,- (was 803,- in 1999)voluntarily insured member of the personnel, with reduced coverage:407,- (was 402,- in 1999)voluntarily insured no longer dependent child:326,- (was 321...

  4. On the maximal diphoton width

    CERN Document Server

    Salvio, Alberto; Strumia, Alessandro; Urbano, Alfredo

    2016-01-01

    Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into $\\gamma\\gamma$ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.

  5. Gold nanoparticle-mediated (GNOME) laser perforation: a new method for a high-throughput analysis of gap junction intercellular coupling.

    Science.gov (United States)

    Begandt, Daniela; Bader, Almke; Antonopoulos, Georgios C; Schomaker, Markus; Kalies, Stefan; Meyer, Heiko; Ripken, Tammo; Ngezahayo, Anaclet

    2015-10-01

    The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 μm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 μm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 μm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling.

  6. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology.

    Science.gov (United States)

    Duarte, José M; Barbier, Içvara; Schaerli, Yolanda

    2017-11-17

    Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.

  7. Centroid based clustering of high throughput sequencing reads based on n-mer counts.

    Science.gov (United States)

    Solovyov, Alexander; Lipkin, W Ian

    2013-09-08

    Many problems in computational biology require alignment-free sequence comparisons. One of the common tasks involving sequence comparison is sequence clustering. Here we apply methods of alignment-free comparison (in particular, comparison using sequence composition) to the challenge of sequence clustering. We study several centroid based algorithms for clustering sequences based on word counts. Study of their performance shows that using k-means algorithm with or without the data whitening is efficient from the computational point of view. A higher clustering accuracy can be achieved using the soft expectation maximization method, whereby each sequence is attributed to each cluster with a specific probability. We implement an open source tool for alignment-free clustering. It is publicly available from github: https://github.com/luscinius/afcluster. We show the utility of alignment-free sequence clustering for high throughput sequencing analysis despite its limitations. In particular, it allows one to perform assembly with reduced resources and a minimal loss of quality. The major factor affecting performance of alignment-free read clustering is the length of the read.

  8. Development of an intracellular glycolytic flux sensor for high throughput applications in E.coli

    DEFF Research Database (Denmark)

    Lehning, Christina Eva

    The aim of this PhD project was to construct, test and apply an intracellular, growth-­‐ independent and direct measureable glycolytic flux biosensor in E. coli. Studying the metabolic flux of bacterial cells is of growing interest as it is of fundamental importance to bacterial physiology as well...... to study the flux-­‐altering effects of gene knockouts in E. coli at the single cell level in a vastly parallelized and high-­‐throughput manner. After growth for several generations in rich and minimal media, 2126 gene knockouts, mainly outside of the core metabolism, could be screened. 3 gene knockouts...

  9. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity.

    Science.gov (United States)

    Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Petrova, Tatijana N; Pokrovsky, Andrey G; Gorovoy, Petr G

    2017-02-01

    Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD 50 , 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.

  10. Cell-Based Reporter System for High-Throughput Screening of MicroRNA Pathway Inhibitors and Its Limitations

    Czech Academy of Sciences Publication Activity Database

    Bruštíková, Kateřina; Sedlák, David; Kubíková, Jana; Škuta, Ctibor; Šolcová, Kateřina; Malík, Radek; Bartůněk, Petr; Svoboda, Petr

    2018-01-01

    Roč. 9 (2018), č. článku 45. ISSN 1664-8021 R&D Projects: GA ČR GA13-29531S; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk LM2011022 Institutional support: RVO:68378050 Keywords : miRNA * high-throughput screening * miR-30 * let-7 * Argonaute Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.789, year: 2016

  11. Best Signal Quality in Cellular Networks: Asymptotic Properties and Applications to Mobility Management in Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Baccelli François

    2010-01-01

    Full Text Available The quickly increasing data traffic and the user demand for a full coverage of mobile services anywhere and anytime are leading mobile networking into a future of small cell networks. However, due to the high-density and randomness of small cell networks, there are several technical challenges. In this paper, we investigate two critical issues: best signal quality and mobility management. Under the assumptions that base stations are uniformly distributed in a ring-shaped region and that shadowings are lognormal, independent, and identically distributed, we prove that when the number of sites in the ring tends to infinity, then (i the maximum signal strength received at the center of the ring tends in distribution to a Gumbel distribution when properly renormalized, and (ii it is asymptotically independent of the interference. Using these properties, we derive the distribution of the best signal quality. Furthermore, an optimized random cell scanning scheme is proposed, based on the evaluation of the optimal number of sites to be scanned for maximizing the user data throughput.

  12. Survival associated pathway identification with group Lp penalized global AUC maximization

    Directory of Open Access Journals (Sweden)

    Liu Zhenqiu

    2010-08-01

    Full Text Available Abstract It has been demonstrated that genes in a cell do not act independently. They interact with one another to complete certain biological processes or to implement certain molecular functions. How to incorporate biological pathways or functional groups into the model and identify survival associated gene pathways is still a challenging problem. In this paper, we propose a novel iterative gradient based method for survival analysis with group Lp penalized global AUC summary maximization. Unlike LASSO, Lp (p 1. We first extend Lp for individual gene identification to group Lp penalty for pathway selection, and then develop a novel iterative gradient algorithm for penalized global AUC summary maximization (IGGAUCS. This method incorporates the genetic pathways into global AUC summary maximization and identifies survival associated pathways instead of individual genes. The tuning parameters are determined using 10-fold cross validation with training data only. The prediction performance is evaluated using test data. We apply the proposed method to survival outcome analysis with gene expression profile and identify multiple pathways simultaneously. Experimental results with simulation and gene expression data demonstrate that the proposed procedures can be used for identifying important biological pathways that are related to survival phenotype and for building a parsimonious model for predicting the survival times.

  13. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  14. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  15. Advances in analytical tools for high throughput strain engineering

    DEFF Research Database (Denmark)

    Marcellin, Esteban; Nielsen, Lars Keld

    2018-01-01

    The emergence of inexpensive, base-perfect genome editing is revolutionising biology. Modern industrial biotechnology exploits the advances in genome editing in combination with automation, analytics and data integration to build high-throughput automated strain engineering pipelines also known...... as biofoundries. Biofoundries replace the slow and inconsistent artisanal processes used to build microbial cell factories with an automated design–build–test cycle, considerably reducing the time needed to deliver commercially viable strains. Testing and hence learning remains relatively shallow, but recent...... advances in analytical chemistry promise to increase the depth of characterization possible. Analytics combined with models of cellular physiology in automated systems biology pipelines should enable deeper learning and hence a steeper pitch of the learning cycle. This review explores the progress...

  16. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    Science.gov (United States)

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  17. Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Arendt Thomas

    2005-11-01

    Full Text Available Abstract Neuronal expression of cyclooxygenase-2 (COX-2 and cell cycle proteins is suggested to contribute to neurodegeneration during Alzheimer's disease (AD. The stimulus that induces COX-2 and cell cycle protein expression in AD is still elusive. Activated glia cells are shown to secrete substances that can induce expression of COX-2 and cell cycle proteins in vitro. Using post mortem brain tissue we have investigated whether activation of microglia and astrocytes in AD brain can be correlated with the expression of COX-2 and phosphorylated retinoblastoma protein (ppRb. The highest levels of neuronal COX-2 and ppRb immunoreactivity are observed in the first stages of AD pathology (Braak 0–II, Braak A. No significant difference in COX-2 or ppRb neuronal immunoreactivity is observed between Braak stage 0 and later Braak stages for neurofibrillary changes or amyloid plaques. The mean number of COX-2 or ppRb immunoreactive neurons is significantly decreased in Braak stage C compared to Braak stage A for amyloid deposits. Immunoreactivity for glial markers KP1, CR3/43 and GFAP appears in the later Braak stages and is significantly increased in Braak stage V-VI compared to Braak stage 0 for neurofibrillary changes. In addition, a significant negative correlation is observed between the presence of KP1, CR3/43 and GFAP immunoreactivity and the presence of neuronal immunoreactivity for COX-2 and ppRb. These data show that maximal COX-2 and ppRb immunoreactivity in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia. In contrast to in vitro studies, post mortem data do not support a causal relation between the activation of microglia and astrocytes and the expression of neuronal COX-2 and ppRb in the pathological cascade of AD.

  18. Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Braga, Thiago Verano; Roepstorff, Peter

    2015-01-01

    The investigation of post-translational modifications (PTMs) represents one of the main research focuses for the study of protein function and cell signaling. Mass spectrometry instrumentation with increasing sensitivity improved protocols for PTM enrichment and recently established pipelines...... for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis...

  19. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM....... Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  20. Assessment of DNA damage in car spray painters exposed to organic solvents by the high-throughput comet assay.

    Science.gov (United States)

    Londoño-Velasco, Elizabeth; Martínez-Perafán, Fabián; Carvajal-Varona, Silvio; García-Vallejo, Felipe; Hoyos-Giraldo, Luz Stella

    2016-05-01

    Occupational exposure as a painter is associated with DNA damage and development of cancer. Comet assay has been widely adopted as a sensitive and quantitative tool for DNA damage assessment at the individual cell level in populations exposed to genotoxics. The aim of this study was to assess the application of the high-throughput comet assay, to determine the DNA damage in car spray painters. The study population included 52 car spray painters and 52 unexposed subjects. A significant increase in the %TDNA median (p  0.05). The results showed an increase in DNA breaks in car spray painters exposed to organic solvents and paints; furthermore, they demonstrated the application of high-throughput comet assay in an occupational exposure study to genotoxic agents.

  1. Parallel recognition of cancer cells using an addressable array of solid-state micropores.

    Science.gov (United States)

    Ilyas, Azhar; Asghar, Waseem; Kim, Young-tae; Iqbal, Samir M

    2014-12-15

    Early stage detection and precise quantification of circulating tumor cells (CTCs) in the peripheral blood of cancer patients are important for early diagnosis. Early diagnosis improves the effectiveness of the therapy and results in better prognosis. Several techniques have been used for CTC detection but are limited by their need for dye tagging, low throughput and lack of statistical reliability at single cell level. Solid-state micropores can characterize each cell in a sample providing interesting information about cellular populations. We report a multi-channel device which utilized solid-state micropores array assembly for simultaneous measurement of cell translocation. This increased the throughput of measurement and as the cells passed the micropores, tumor cells showed distinctive current blockade pulses, when compared to leukocytes. The ionic current across each micropore channel was continuously monitored and recorded. The measurement system not only increased throughput but also provided on-chip cross-relation. The whole blood was lysed to get rid of red blood cells, so the blood dilution was not needed. The approach facilitated faster processing of blood samples with tumor cell detection efficiency of about 70%. The design provided a simple and inexpensive method for rapid and reliable detection of tumor cells without any cell staining or surface functionalization. The device can also be used for high throughput electrophysiological analysis of other cell types. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  3. Analisis Throughput Varian TCP Pada Model Jaringan WiMAX

    Directory of Open Access Journals (Sweden)

    Medi Taruk

    2016-07-01

    Full Text Available Transmission Control Protocol (TCP is a protocol that works at the transport layer of the OSI model. TCP was originally designed more destined for a wired network. However, to meet the need for the development of a very fast network technology based on the needs of the use by the user, it needs further development to the use of TCP on wireless devices. One implementation of a wireless network based on Worldwide Interoperability for Microwave Access (WiMAX network is a model that offers a variety advantage, particularly in terms of access speed. In this case, use NS-2 to see throughput at TCP variants tested, namely TCP-Tahoe, TCP-Reno, TCP-Vegas, and TCP-SACK over WiMAX network model, with few observations scenarios. The first is a look at each of these variants throughput of TCP when only one particular variant of the work in the network. Second observe all variants of TCP throughput at the same time and have the equivalent QoS, but with the possibility of a small congestion based on the capacity of the link is made sufficient. Third observed throughput with multi congestion. In WiMAX network has scheduling services are UGS, rtPS and ertPS using UDP protocol and nrtPS and BE using the TCP Protocol. By using the software network simulator (NS-2 to obtain performance comparison TCP protocol-based services on the WiMAX network with QoS parameters are throughput, packet loss, fairness and time delay.

  4. Emory University: High-Throughput Protein-Protein Interaction Dataset for Lung Cancer-Associated Genes | Office of Cancer Genomics

    Science.gov (United States)

    To discover novel PPI signaling hubs for lung cancer, CTD2 Center at Emory utilized large-scale genomics datasets and literature to compile a set of lung cancer-associated genes. A library of expression vectors were generated for these genes and utilized for detecting pairwise PPIs with cell lysate-based TR-FRET assays in high-throughput screening format. Read the abstract.

  5. Optimization of planar metallic nonrefracting transmission-grating profiles for M/sup th/-order intensity maximization in the soft x-ray range

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.L.; Lindau, I.

    1982-01-01

    In this paper, we derive the thickness profiles of metallic transmission-grating bars which maximize either the power throughput into the m/sup th/ diffracted order or the ratio of the m/sup th/-order diffracted power to the total output power (in the soft x-ray range). The derivation is performed for both general and symmetric bar shapes and for the two physically important cases of continuous gratings and gratings with integral bars. The solutions derived are shown to be valid for cases where the optical constants are generalized to be functions of position in a direction perpendicular to the grating bars. Examples of some optimum profiles for gold in the soft x-ray range are computed on the basis of the presented analysis and tabulated for convenient reference. 18 references

  6. High-throughput automated microfluidic sample preparation for accurate microbial genomics.

    Science.gov (United States)

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C

    2017-01-27

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

  7. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    Science.gov (United States)

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  8. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  9. High-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2017-03-01

    Full Text Available Microfluidic techniques are effective tools for precise manipulation of particles and cells, whose enrichment and separation is crucial for a wide range of applications in biology, medicine, and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and label-free particle manipulation. The particle migration can be engineered to realize the controllable focusing and separation of particles based on a difference in size. The widespread use of inertial and viscoelastic microfluidics depends on the understanding of hydrodynamic effects on particle motion. This review will summarize the progress in the fundamental mechanisms and key applications of inertial and viscoelastic particle manipulation.

  10. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    Science.gov (United States)

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sources of PCR-induced distortions in high-throughput sequencing data sets

    Science.gov (United States)

    Kebschull, Justus M.; Zador, Anthony M.

    2015-01-01

    PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules. PMID:26187991

  12. High Throughput and Mechano-Active Platforms to Promote Cartilage Regeneration and Repair

    Science.gov (United States)

    Mohanraj, Bhavana

    Traumatic joint injuries initiate acute degenerative changes in articular cartilage that can lead to progressive loss of load-bearing function. As a result, patients often develop post-traumatic osteoarthritis (PTOA), a condition for which there currently exists no biologic interventions. To address this need, tissue engineering aims to mimic the structure and function of healthy, native counterparts. These constructs can be used to not only replace degenerated tissue, but also build in vitro, pre-clinical models of disease. Towards this latter goal, this thesis focuses on the design of a high throughput system to screen new therapeutics in a micro-engineered model of PTOA, and the development of a mechanically-responsive drug delivery system to augment tissue-engineered approaches for cartilage repair. High throughput screening is a powerful tool for drug discovery that can be adapted to include 3D tissue constructs. To facilitate this process for cartilage repair, we built a high throughput mechanical injury platform to create an engineered cartilage model of PTOA. Compressive injury of functionally mature constructs increased cell death and proteoglycan loss, two hallmarks of injury observed in vivo. Comparison of this response to that of native cartilage explants, and evaluation of putative therapeutics, validated this model for subsequent use in small molecule screens. A primary screen of 118 compounds identified a number of 'hits' and relevant pathways that may modulate pathologic signaling post-injury. To complement this process of therapeutic discovery, a stimuli-responsive delivery system was designed that used mechanical inputs as the 'trigger' mechanism for controlled release. The failure thresholds of these mechanically-activated microcapsules (MAMCs) were influenced by physical properties and composition, as well as matrix mechanical properties in 3D environments. TGF-beta released from the system upon mechano-activation stimulated stem cell

  13. Vacua of maximal gauged D=3 supergravities

    International Nuclear Information System (INIS)

    Fischbacher, T; Nicolai, H; Samtleben, H

    2002-01-01

    We analyse the scalar potentials of maximal gauged three-dimensional supergravities which reveal a surprisingly rich structure. In contrast to maximal supergravities in dimensions D≥4, all these theories possess a maximally supersymmetric (N=16) ground state with negative cosmological constant Λ 2 gauged theory, whose maximally supersymmetric groundstate has Λ = 0. We compute the mass spectra of bosonic and fermionic fluctuations around these vacua and identify the unitary irreducible representations of the relevant background (super)isometry groups to which they belong. In addition, we find several stationary points which are not maximally supersymmetric, and determine their complete mass spectra as well. In particular, we show that there are analogues of all stationary points found in higher dimensions, among them are de Sitter (dS) vacua in the theories with noncompact gauge groups SO(5, 3) 2 and SO(4, 4) 2 , as well as anti-de Sitter (AdS) vacua in the compact gauged theory preserving 1/4 and 1/8 of the supersymmetries. All the dS vacua have tachyonic instabilities, whereas there do exist nonsupersymmetric AdS vacua which are stable, again in contrast to the D≥4 theories

  14. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    Science.gov (United States)

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    Science.gov (United States)

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  16. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway.

    Science.gov (United States)

    Bose, Debojit; Su, Yichi; Marcus, Assaf; Raulet, David H; Hammond, Ming C

    2016-12-22

    In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis. We have engineered an RNA-based fluorescent biosensor that responds to 2',3'-cGAMP. The resulting "mix-and-go" cGAS activity assay shows excellent statistical reliability as a high-throughput screening (HTS) assay and distinguishes between direct and indirect cGAS inhibitors. Furthermore, the biosensor enables quantitation of 2',3'-cGAMP in mammalian cell lysates. We envision this biosensor-based assay as a resource to study the cGAS-cGAMP-STING pathway in the context of infectious diseases, cancer immunotherapy, and autoimmune diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  18. Corydalis edulis Maxim. Promotes Insulin Secretion via the Activation of Protein Kinase Cs (PKCs) in Mice and Pancreatic β Cells.

    Science.gov (United States)

    Zheng, Jiao; Zhao, Yunfang; Lun, Qixing; Song, Yuelin; Shi, Shepo; Gu, Xiaopan; Pan, Bo; Qu, Changhai; Li, Jun; Tu, Pengfei

    2017-01-16

    Corydalis edulis Maxim., a widely grown plant in China, had been proposed for the treatment for type 2 diabetes mellitus. In this study, we found that C. edulis extract (CE) is protective against diabetes in mice. The treatment of hyperglycemic and hyperlipidemic apolipoprotein E (ApoE)-/- mice with a high dose of CE reduced serum glucose by 28.84% and serum total cholesterol by 17.34% and increased insulin release. We also found that CE significantly enhanced insulin secretion in a glucose-independent manner in hamster pancreatic β cell (HIT-T15). Further investigation revealed that CE stimulated insulin exocytosis by a protein kinase C (PKC)-dependent signaling pathway and that CE selectively activated novel protein kinase Cs (nPKCs) and atypical PKCs (aPKCs) but not conventional PKCs (cPKCs) in HIT-T15 cells. To the best of our knowledge, our study is the first to identify the PKC pathway as a direct target and one of the major mechanisms underlying the antidiabetic effect of CE. Given the good insulinotropic effect of this herbal medicine, CE is a promising agent for the development of new drugs for treating diabetes.

  19. Full Duplex Communications in 5G Small Cells

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Gatnau, Marta; Berardinelli, Gilberto

    2017-01-01

    Full duplex communication promises system performance improvement over conventional half duplex communication by allowing simultaneous transmission and reception. However, such concurrent communication results in strong self interference and an increase in the overall network interference, and can...... only be exploited when traffic is available in both directions. The potential throughput gains of full duplex communication over conventional half duplex transmission in a small cell network with asymmetric traffic conditions is investigated in this contribution. The throughput performance gains...... are analysed using tools from stochastic geometry, and further confirmed through extensive system level simulations. Our findings explicitly quantify how the gains from full duplex communication depend on the traffic profile and the inter-cell interference coupling. The demonstrated throughput gains and delay...

  20. Sex differences in autonomic function following maximal exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2015-01-01

    Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.

  1. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    Science.gov (United States)

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  2. Eccentric exercise decreases maximal insulin action in humans

    DEFF Research Database (Denmark)

    Asp, Svend; Daugaard, J R; Kristiansen, S

    1996-01-01

    subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... for all three clamp steps used (P maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR......) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P maximal...

  3. Maximize x(a - x)

    Science.gov (United States)

    Lange, L. H.

    1974-01-01

    Five different methods for determining the maximizing condition for x(a - x) are presented. Included is the ancient Greek version and a method attributed to Fermat. None of the proofs use calculus. (LS)

  4. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  5. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  6. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers.

    Directory of Open Access Journals (Sweden)

    Fermín I Milagro

    Full Text Available INTRODUCTION: MicroRNAs (miRNAs are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when 5% (responders. At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772 and three others were down-regulated (mir-223, mir-224 and mir-376b. Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

  7. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  8. A Simulated Annealing method to solve a generalized maximal covering location problem

    Directory of Open Access Journals (Sweden)

    M. Saeed Jabalameli

    2011-04-01

    Full Text Available The maximal covering location problem (MCLP seeks to locate a predefined number of facilities in order to maximize the number of covered demand points. In a classical sense, MCLP has three main implicit assumptions: all or nothing coverage, individual coverage, and fixed coverage radius. By relaxing these assumptions, three classes of modelling formulations are extended: the gradual cover models, the cooperative cover models, and the variable radius models. In this paper, we develop a special form of MCLP which combines the characteristics of gradual cover models, cooperative cover models, and variable radius models. The proposed problem has many applications such as locating cell phone towers. The model is formulated as a mixed integer non-linear programming (MINLP. In addition, a simulated annealing algorithm is used to solve the resulted problem and the performance of the proposed method is evaluated with a set of randomly generated problems.

  9. High throughput, low set-up time reconfigurable linear feedback shift registers

    NARCIS (Netherlands)

    Nas, R.J.M.; Berkel, van C.H.

    2010-01-01

    This paper presents a hardware design for a scalable, high throughput, configurable LFSR. High throughput is achieved by producing L consecutive outputs per clock cycle with a clock cycle period that, for practical cases, increases only logarithmically with the block size L and the length of the

  10. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  11. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  12. Utility Maximization in Nonconvex Wireless Systems

    CERN Document Server

    Brehmer, Johannes

    2012-01-01

    This monograph formulates a framework for modeling and solving utility maximization problems in nonconvex wireless systems. First, a model for utility optimization in wireless systems is defined. The model is general enough to encompass a wide array of system configurations and performance objectives. Based on the general model, a set of methods for solving utility maximization problems is developed. The development is based on a careful examination of the properties that are required for the application of each method. The focus is on problems whose initial formulation does not allow for a solution by standard convex methods. Solution approaches that take into account the nonconvexities inherent to wireless systems are discussed in detail. The monograph concludes with two case studies that demonstrate the application of the proposed framework to utility maximization in multi-antenna broadcast channels.

  13. A bioimage informatics platform for high-throughput embryo phenotyping.

    Science.gov (United States)

    Brown, James M; Horner, Neil R; Lawson, Thomas N; Fiegel, Tanja; Greenaway, Simon; Morgan, Hugh; Ring, Natalie; Santos, Luis; Sneddon, Duncan; Teboul, Lydia; Vibert, Jennifer; Yaikhom, Gagarine; Westerberg, Henrik; Mallon, Ann-Marie

    2018-01-01

    High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest. © The Author 2016. Published by Oxford University Press.

  14. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  15. Tiered High-Throughput Screening Approach to Identify ...

    Science.gov (United States)

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  16. High-throughput screening of chemical effects on ...

    Science.gov (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples on steroidogenesis via HPLC-MS/MS quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a three stage screening strategy. The first stage established the maximum tolerated concentration (MTC; >70% viability) per sample. The second stage quantified changes in hormone levels at the MTC while the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were pre-stimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2,060 chemical samples evaluated, 524 samples were selected for six-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into five distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A d

  17. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  18. Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization.

    Science.gov (United States)

    Kurnianingsih, Yoanna A; Sim, Sam K Y; Chee, Michael W L; Mullette-Gillman, O'Dhaniel A

    2015-01-01

    We investigated how adult aging specifically alters economic decision-making, focusing on examining alterations in uncertainty preferences (willingness to gamble) and choice strategies (what gamble information influences choices) within both the gains and losses domains. Within each domain, participants chose between certain monetary outcomes and gambles with uncertain outcomes. We examined preferences by quantifying how uncertainty modulates choice behavior as if altering the subjective valuation of gambles. We explored age-related preferences for two types of uncertainty, risk, and ambiguity. Additionally, we explored how aging may alter what information participants utilize to make their choices by comparing the relative utilization of maximizing and satisficing information types through a choice strategy metric. Maximizing information was the ratio of the expected value of the two options, while satisficing information was the probability of winning. We found age-related alterations of economic preferences within the losses domain, but no alterations within the gains domain. Older adults (OA; 61-80 years old) were significantly more uncertainty averse for both risky and ambiguous choices. OA also exhibited choice strategies with decreased use of maximizing information. Within OA, we found a significant correlation between risk preferences and choice strategy. This linkage between preferences and strategy appears to derive from a convergence to risk neutrality driven by greater use of the effortful maximizing strategy. As utility maximization and value maximization intersect at risk neutrality, this result suggests that OA are exhibiting a relationship between enhanced rationality and enhanced value maximization. While there was variability in economic decision-making measures within OA, these individual differences were unrelated to variability within examined measures of cognitive ability. Our results demonstrate that aging alters economic decision-making for

  19. Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization

    Directory of Open Access Journals (Sweden)

    Yoanna Arlina Kurnianingsih

    2015-05-01

    Full Text Available We investigated how adult aging specifically alters economic decision-making, focusing on examining alterations in uncertainty preferences (willingness to gamble and choice strategies (what gamble information influences choices within both the gains and losses domains. Within each domain, participants chose between certain monetary outcomes and gambles with uncertain outcomes. We examined preferences by quantifying how uncertainty modulates choice behavior as if altering the subjective valuation of gambles. We explored age-related preferences for two types of uncertainty, risk and ambiguity. Additionally, we explored how aging may alter what information participants utilize to make their choices by comparing the relative utilization of maximizing and satisficing information types through a choice strategy metric. Maximizing information was the ratio of the expected value of the two options, while satisficing information was the probability of winning.We found age-related alterations of economic preferences within the losses domain, but no alterations within the gains domain. Older adults (OA; 61 to 80 years old were significantly more uncertainty averse for both risky and ambiguous choices. OA also exhibited choice strategies with decreased use of maximizing information. Within OA, we found a significant correlation between risk preferences and choice strategy. This linkage between preferences and strategy appears to derive from a convergence to risk neutrality driven by greater use of the effortful maximizing strategy. As utility maximization and value maximization intersect at risk neutrality, this result suggests that OA are exhibiting a relationship between enhanced rationality and enhanced value maximization. While there was variability in economic decision-making measures within OA, these individual differences were unrelated to variability within examined measures of cognitive ability. Our results demonstrate that aging alters economic

  20. Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting

    Directory of Open Access Journals (Sweden)

    Leila Saadatifard

    2018-04-01

    Full Text Available High-throughput imaging techniques, such as Knife-Edge Scanning Microscopy (KESM,are capable of acquiring three-dimensional whole-organ images at sub-micrometer resolution. These images are challenging to segment since they can exceed several terabytes (TB in size, requiring extremely fast and fully automated algorithms. Staining techniques are limited to contrast agents that can be applied to large samples and imaged in a single pass. This requires maximizing the number of structures labeled in a single channel, resulting in images that are densely packed with spatial features. In this paper, we propose a three-dimensional approach for locating cells based on iterative voting. Due to the computational complexity of this algorithm, a highly efficient GPU implementation is required to make it practical on large data sets. The proposed algorithm has a limited number of input parameters and is highly parallel.

  1. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    Science.gov (United States)

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  2. Measuring Gene Expression in Bombarded Barley Aleurone Layers with Increased Throughput.

    Science.gov (United States)

    Uwase, Grace; Enrico, Taylor P; Chelimo, David S; Keyser, Benjamin R; Johnson, Russell R

    2018-03-30

    The aleurone layer of barley grains is an important model system for hormone-regulated gene expression in plants. In aleurone cells, genes required for germination or early seedling development are activated by gibberellin (GA), while genes associated with stress responses are activated by abscisic acid (ABA). The mechanisms of GA and ABA signaling can be interrogated by introducing reporter gene constructs into aleurone cells via particle bombardment, with the resulting transient expression measured using enzyme assays. An improved protocol is reported that partially automates and streamlines the grain homogenization step and the enzyme assays, allowing significantly more throughput than existing methods. Homogenization of the grain samples is carried out using an automated tissue homogenizer, and GUS (β-glucuronidase) assays are carried out using a 96-well plate system. Representative results using the protocol suggest that phospholipase D activity may play an important role in the activation of HVA1 gene expression by ABA, through the transcription factor TaABF1.

  3. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity.

    Science.gov (United States)

    Seamon, Kyle J; Light, Yooli K; Saada, Edwin A; Schoeniger, Joseph S; Harmon, Brooke

    2018-06-05

    The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

  4. High-throughput screening of small molecule libraries using SAMDI mass spectrometry.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Scholle, Michael D; Eisenberg, Adam H; Mrksich, Milan

    2011-07-11

    High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.

  5. Maximally Informative Observables and Categorical Perception

    OpenAIRE

    Tsiang, Elaine

    2012-01-01

    We formulate the problem of perception in the framework of information theory, and prove that categorical perception is equivalent to the existence of an observable that has the maximum possible information on the target of perception. We call such an observable maximally informative. Regardless whether categorical perception is real, maximally informative observables can form the basis of a theory of perception. We conclude with the implications of such a theory for the problem of speech per...

  6. Red blood cell phenotype prevalence in blood donors who self-identify as Hispanic

    DEFF Research Database (Denmark)

    Sheppard, Chelsea A; Bolen, Nicole L; Eades, Beth

    2017-01-01

    CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non-Hispanic ......CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non...

  7. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    Science.gov (United States)

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint

  8. Throughput assurance of wireless body area networks coexistence based on stochastic geometry.

    Directory of Open Access Journals (Sweden)

    Ruixia Liu

    Full Text Available Wireless body area networks (WBANs are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp, transmit power of their nodes (Pt, and their carrier-sensing threshold (γ. Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks.

  9. High-throughput scoring of seed germination

    NARCIS (Netherlands)

    Ligterink, Wilco; Hilhorst, Henk W.M.

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very

  10. Maximally Entangled Multipartite States: A Brief Survey

    International Nuclear Information System (INIS)

    Enríquez, M; Wintrowicz, I; Życzkowski, K

    2016-01-01

    The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)

  11. Corporate Social Responsibility and Profit Maximizing Behaviour

    OpenAIRE

    Becchetti, Leonardo; Giallonardo, Luisa; Tessitore, Maria Elisabetta

    2005-01-01

    We examine the behavior of a profit maximizing monopolist in a horizontal differentiation model in which consumers differ in their degree of social responsibility (SR) and consumers SR is dynamically influenced by habit persistence. The model outlines parametric conditions under which (consumer driven) corporate social responsibility is an optimal choice compatible with profit maximizing behavior.

  12. High throughput nanoimprint lithography for semiconductor memory applications

    Science.gov (United States)

    Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun

    2017-03-01

    Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non

  13. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  14. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  15. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Guinea pig maximization test

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1985-01-01

    Guinea pig maximization tests (GPMT) with chlorocresol were performed to ascertain whether the sensitization rate was affected by minor changes in the Freund's complete adjuvant (FCA) emulsion used. Three types of emulsion were evaluated: the oil phase was mixed with propylene glycol, saline...

  17. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale L

    2005-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  18. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale

    2004-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  19. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.

    2013-01-01

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  20. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.