WorldWideScience

Sample records for cell therapy pieces

  1. Pieces

    DEFF Research Database (Denmark)

    Jensen, Niels Henrik

    1990-01-01

    The report presents results from the SIP project (System Representation in Process Control). PIECES is a graphical, interactive user interface system designed and programmed as a tool for building, manipulating and using a Multilevel Flow Model (MFM - Morten Lind, Tecnical University of Denmark...

  2. Regulatory T cells in health and disease : putting the pieces together

    OpenAIRE

    Vercoulen, Y.

    2010-01-01

    CD4+FOXP3+ Regulatory T cells (Treg) are indispensable for immune balance. In patients with autoimmunity, Treg are either present in lower numbers or not functioning properly and, therefore, inflammation is not suppressed. In murine models and in human studies increase of Treg frequency or function suppresses autoimmunity. Therefore, Treg are important candidates for therapeutic intervention in inflammatory diseases. In order to develop a safe therapy utilizing Treg, it is important to know h...

  3. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  4. [Preliminary study on effect of Rhodiolae Crenulatae Radix et Rhizoma cell wall-broken decoction pieces on intestinal flora of mice].

    Science.gov (United States)

    Yang, Ze-rui; Zeng, Gui-mei; Peng, Li-hua; Zhang, Miao-miao; Cheng, Jin-le; Zhan, Ruo-ting

    2015-08-01

    This study aims to analyze and compare the effect of cell wall-broken decoction pieces, conventional decoction pieces and conventional powder of Rhodiolae Crenulatae Radix et Rhizoma on the intestinal flora of normal mice. The conventional bacterial culture and PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) were adopted for the mice after the oral administration for 14 days. According to the bacterial culture results, the 1/8 dose cell wall-broken decoction pieces group showed fewer Enterococcus and Escherichia coli bacillus but more Lactobacillus and Bifidobacterium than the conventional decoction pieces group and the traditional powder group (P intestinal tract by promoting the growth of Lactobacillus and Bifidobacterium. Furthermore, the intestinal flora community will become more stable.

  5. Trypanosoma cruzi extracellular amastigotes and host cell signaling: more pieces to the puzzle

    Directory of Open Access Journals (Sweden)

    Éden Ramalho Ferreira

    2012-11-01

    Full Text Available Among the different infective stages that Trypanosoma cruzi employs to invade cells, extracellular amastigotes have recently gained attention by our group. This is true primarily because these amastigotes are able to infect cultured cells and animals, establishing a sustainable infective cycle. Extracellular amastigotes are thus an excellent means of adaptation and survival for T. cruzi, whose different infective stages each utilize unique mechanisms for attachment and penetration. Here we discuss some features of host cell invasion by extracellular amastigotes and the associated host cell signaling events that occur as part of the process.

  6. Nanoparticle induced oxidative stress in cancer cells: adding new pieces to an incomplete jigsaw puzzle.

    Science.gov (United States)

    Nogueira, Daniele Rubert; Rolim, Clarice M Bueno; Farooqi, Ammad Ahmad

    2014-01-01

    Nanotechnology is an emerging field with many promising applications in drug delivery systems. Because of outstanding developments in this field, rapidly increasing research is directed to the development of nanocarriers that may enhance the availability of drugs to the target sites. Substantial fraction of information has been added into the existing scientific literature focusing on the fact that nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles. It is worth mentioning that oxidative stress regulates an array of cell signaling cascades that resulted in cancer cell damage. Accumulating experimental evidence over the years has shown that wide-ranging biological mechanisms are triggered by these NPs in cultured cells due to the unique properties of engineered nanoparticles. In this review, we have attempted to provide an overview of the signaling cascades that are activated by oxidative stress in cancer cells in response to different kinds of nanomaterials, including quantum dots, metallic and polymeric nanoparticles.

  7. Regulatory T cells in health and disease : putting the pieces together

    NARCIS (Netherlands)

    Vercoulen, Y.

    2010-01-01

    CD4+FOXP3+ Regulatory T cells (Treg) are indispensable for immune balance. In patients with autoimmunity, Treg are either present in lower numbers or not functioning properly and, therefore, inflammation is not suppressed. In murine models and in human studies increase of Treg frequency or function

  8. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  9. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  10. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  11. [Cell based therapy for COPD].

    Science.gov (United States)

    Kubo, Hiroshi

    2007-04-01

    To develop a new cell based therapy for chronic obstructive pulmonary disease (COPD), we need to understand 1) the role of tissue-specific and bone marrow-derived stem cells, 2) extracellular matrix, and 3) growth factors. Recently, bronchioalveolar stem cells were identified in murine distal lungs. Impairment of these stem cells may cause improper lung repair after inflammation, resulting in pulmonary emphysema. Bone marrow-derived cells are necessary to repair injured lungs. However, the long term role of these cells is not understood yet. Although we need more careful analysis and additional experiments, growth factors, such as hepatocyte growth factor, are good candidates for the new cell based therapy for COPD. Lung was believed as a non-regenerative organ. Based on these recent reports about lung regeneration and stem cells, however, new strategies to treat COPD and a new point of view to understand the pathophysiology of COPD are rising.

  12. Cell therapy for wound healing.

    Science.gov (United States)

    You, Hi-Jin; Han, Seung-Kyu

    2014-03-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin grafts and local flaps, the cell therapy technique is simple, less time-consuming, and reduces the surgical burden for patients in the repair of acute wounds. Cell therapy has also been developed for chronic wound healing. By transplanting cells with an excellent wound healing capacity profile to chronic wounds, in which wound healing cannot be achieved successfully, attempts are made to convert the wound bed into the environment where maximum wound healing can be achieved. Fibroblasts, keratinocytes, adipose-derived stromal vascular fraction cells, bone marrow stem cells, and platelets have been used for wound healing in clinical practice. Some formulations are commercially available. To establish the cell therapy as a standard treatment, however, further research is needed.

  13. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients.

    Science.gov (United States)

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao

    2016-06-01

    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm.

  14. Towards personalized regenerative cell therapy

    DEFF Research Database (Denmark)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells...... and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation...... of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing...

  15. [Cell therapy for type I diabete].

    Science.gov (United States)

    Sokolova, I B

    2009-01-01

    Cell therapy is a modern and promising approach to type I diabetes mellitus treatment. Nowadays a wide range of cells is used in laboratory experiments and clinical studies, including allogeneic and xenogeneic cells of Langergance islets, bone marrow cells, haematopoietic stem cells, mesenchymal stem cells, and cord blood stem cells. Any type of the cells named could correct the status of the patients to a certain extent. However, full recovery after cell therapy has not been achieved yet.

  16. Cell therapy of primary myopathies.

    Science.gov (United States)

    Sampaolesi, M; Biressi, S; Tonlorenzi, R; Innocenzi, A; Draghici, E; Cusella de Angelis, M G; Cossu, G

    2005-09-01

    Mesoangioblasts are multipotent progenitors of mesodermal tissues. In vitro mesoangioblasts differentiate into many mesoderm cell types, such as smooth, cardiac and striated muscle, bone and endothelium. After transplantation mesoangioblasts colonize mostly mesoderm tissues and differentiate into many cell types of the mesoderm. When delivered through the arterial circulation, mesoangioblasts significantly restore skeletal muscle structure and function in a mouse model of muscular dystrophy. Their ability to extensively self-renew in vitro, while retaining multipotency, qualifies mesoangioblasts as a novel class of stem cells. Phenotype, properties and possible origin of mesoangioblasts are addressed in the first part of this paper. In the second part we will focus on the cell therapy approach for the treatment of Muscular Dystrophy and we will describe why mesangioblasts appear to be promising candidates for this strategy.

  17. 三七破壁饮片指纹图谱研究%Study on HPLC Fingerprint Chromatograms of Cell Wall-Broken Decoction Pieces of Notoginseng

    Institute of Scientific and Technical Information of China (English)

    陈炜璇; 刘敏; 严萍; 詹若挺; 陈蔚文; 成金乐

    2012-01-01

    Objective: To establish the HPLC fingerprint chromatograms of crude Notoginseng, cell wall-broken powder and cell wall-broken decoction pieces of Notoginseng and provide evidence for quality control of cell wall-broken decoction pieces of Notoginseng. Methods:The HPLC procedure was performed on the chromatographic column of Hypersil ODS2 ,and the mobile phase was aceto-nitrile and water in gradient elution with the flow velocity of 1. 0 mL/min. The detection wavelength was 203 nm and the column temperature was 25 ℃. The chromatograms was analyzed with the software of "similarity evaluation system for chromatographic fingerprint of TCM". Results:Eight common peaks were pinpointed from the chromatograms of different batches of crude Notoginseng, cell-broken powder and cell-broken decoction pieces, the similarities of the chromatograms were all larger than 0. 9. Conclusion: The method of the HPLC fingerprint chromatogram is of good precision, reproducibility and stability, which is suitable for quality control of cell wall-broken decoction pieces of Notoginseng.%目的:建立三七药材、破壁粉体和破壁饮片的HPLC指纹图谱,为三七破壁饮片的质量控制提供依据.方法:采用高效液相色谱法,Hypersil ODS2色谱柱,流动相:乙腈-水(梯度洗脱),流速:1.0 mL/min,检测波长:203nm,柱温:25℃.采用“中药色谱指纹图谱相似度评价系统”软件对图谱进行分析处理.结果:三七药材、破壁粉体和破壁饮片皂苷类成分指纹图谱标定8个共有峰,三七药材、破壁粉体和破壁饮片之间相似度均大于0.9.结论:建立的HPLC指纹图谱方法具有良好的精密度、重复性和稳定性,适用于三七破壁饮片的质量控制.

  18. Stem-cell therapy for neurologic diseases

    Directory of Open Access Journals (Sweden)

    Shilpa Sharma

    2015-01-01

    Full Text Available With the advent of research on stem cell therapy for various diseases, an important need was felt in the field of neurological diseases. While congenital lesion may not be amenable to stem cell therapy completely, there is a scope of partial improvement in the lesions and halt in further progression. Neuro degenerative lesions like Parkinson′s disease, multiple sclerosis and amyotrophic lateral sclerosis have shown improvement with stem cell therapy. This article reviews the available literature and summarizes the current evidence in the various neurologic diseases amenable to stem cell therapy, the plausible mechanism of action, ethical concerns with insights into the future of stem cell therapy.

  19. Photodynamic therapy as adjunctive therapy for morpheaform basal cell carcinoma.

    Science.gov (United States)

    Torres, T; Fernandes, I; Costa, V; Selores, M

    2011-01-01

    The authors decided to evaluate the possible use of methyl-aminolevulinate photodynamic therapy (MAL-PDT) as adjunctive therapy for morpheaform basal cell carcinoma prior to standard surgical excision in order to reduce tumor size and volume and to facilitate surgical treatment. It was observed that MAL-PDT may be an option as an adjunctive therapy prior to standard surgical excision of morpheaform basal cell carcinoma, leading to less invasive surgery.

  20. Photodynamic therapy as adjunctive therapy for morpheaform basal cell carcinoma

    OpenAIRE

    Torres, T.; I. Fernandes; Costa, V.; Selores, M

    2011-01-01

    The authors decided to evaluate the possible use of methyl-aminolevulinate photodynamic therapy (MAL-PDT) as adjunctive therapy for morpheaform basal cell carcinoma prior to standard surgical excision in order to reduce tumor size and volume and to facilitate surgical treatment. It was observed that MAL-PDT may be an option as an adjunctive therapy prior to standard surgical excision of morpheaform basal cell carcinoma, leading to less invasive surgery.

  1. A Piece of Cake.

    Science.gov (United States)

    Aceto, Jeffrey T.

    1995-01-01

    A civil engineer describes his first day as a substitute teacher. Despite detailed lesson plans and good intentions, maintaining an orderly class environment is far from a "piece of cake." Recess duty is an ordeal, and lunch in the shabby teacher's lounge is uninspiring. The biggest benefit is appreciation of what constitutes a full-time teacher's…

  2. A Piece of Cake

    Institute of Scientific and Technical Information of China (English)

    汪昱

    2006-01-01

    中文和英文都喜欢用“吃”来打比方。我们汉语中有个成语是用来形容一件事特别容易的,就是“小菜一碟”。英语中也有一个成语是差不多的意思:a piece of cake。看来饮食真的是人类的根本啊!和a piece of cake意思相近的还有aseasy as pie、a piece of pie。这两个也是挺有趣的短语。据考证,19世纪的时候pie这个词就用来指“非常容易的事情”了。但是它们确切的起源还是无人知晓。我们用三个例子来具体说明一下:John is very good at mathematics,so thetest was a piece of cake for him.约翰的数学很好,所以这次考试对他来说真是小菜一碟。—You’ll win this swimming competi-tion.—你会赢得这次游泳比赛的。—Why do you say that?—为什么这么说?—Because you can swim much fasterthan the other contestants.It’ll be a piece ofpie!—因为你比其他对手游得快多了。赢得比赛对你来说就是小菜一...

  3. Effects of initial pH value of the medium on the alcoholic fermentation performance of Saccharomyces cerevisiae cells immobilized on nipa leaf sheath pieces

    Directory of Open Access Journals (Sweden)

    Hoang Duc Toan Le

    2014-12-01

    Full Text Available Immobilized yeast on nipa leaf sheath pieces was applied to ethanol fermentation using the medium with different initial pH values (5.1, 4.5, 4.0, and 3.5. Control samples with the free yeast were also carried out under the same conditions. Low pH value of 4.0 or 3.5 significantly reduced yeast growth and increased the residual sugar level in the fermentation broths for both the immobilized and free cells. In all cases, the ethanol content produced and ethanol formation rate of the immobilized yeast were 13-33% and 35-69%, respectively, higher than those of the free yeast. In addition, the residual sugar content in the immobilized yeast cultures was 2.1-20.5 times lower than that in the free yeast cultures. The yeast immobilized on nipa leaf stem pieces exhibited higher alcoholic fermentation performance than the free yeast in medium with low pH value. This support was potential for further research for application in ethanol industry.

  4. Cell therapy for salivary gland regeneration.

    Science.gov (United States)

    Lin, C-Y; Chang, F-H; Chen, C-Y; Huang, C-Y; Hu, F-C; Huang, W-K; Ju, S-S; Chen, M-H

    2011-03-01

    There are still no effective therapies for hyposalivation caused by irradiation. In our previous study, bone marrow stem cells can be transdifferentiated into acinar-like cells in vitro. Therefore, we hypothesized that transplantation with bone marrow stem cells or acinar-like cells may help functional regeneration of salivary glands. Bone marrow stem cells were labeled with nanoparticles and directly co-cultured with acinar cells to obtain labeled acinar-like cells. In total, 140 severely combined immune-deficiency mice were divided into 4 groups for cell therapy experiments: (1) normal mice, (2) mice receiving irradiation around their head-and-neck areas; (3) mice receiving irradiation and intra-gland transplantation with labeled stem cells; and (4) mice receiving irradiation and intra-gland transplantation with labeled acinar-like cells. Our results showed that salivary glands damaged due to irradiation can be rescued by cell therapy with either bone marrow stem cells or acinar-like cells for recovery of saliva production, body weight, and gland weight. Transdifferentiation of bone marrow stem cells into acinar-like cells in vivo was also noted. This study demonstrated that cell therapy with bone marrow stem cells or acinar-like cells can help functional regeneration of salivary glands, and that acinar-like cells showed better therapeutic potentials than those of bone marrow stem cells.

  5. A piece of cake

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    同学们,你们知道a piece of cake的意思吗?这里,我有一个有趣的故事。一个刚到美国的人,由于不懂英语,便到补习学校学习英文。有一天,他问一个同学他没听懂的问题,

  6. 菊花破壁饮片的HPLC指纹图谱研究%Study on HPLC Fingerprint of Cell Wall-Broken Decoction Pieces of Chrysanthemi Flos

    Institute of Scientific and Technical Information of China (English)

    刘星云; 王慧玲; 彭丽华; 成金乐

    2016-01-01

    目的:建立菊花破壁饮片HPLC指纹图谱,并分析破壁饮片成品与其中间品、原料的化学成分相关性,为菊花破壁饮片整体质量评价提供依据.方法:采用高效液相色谱法,十八烷基硅烷键合硅胶为填充剂的色谱柱(250 mm×4.6 mm,5μm),以乙腈-0.5%磷酸溶液为流动相进行梯度洗脱,检测波长:348 nm,柱温:35℃.结果:建立了菊花破壁饮片的HPLC指纹图谱,得到了15个共有特征峰,11批样品的相似度达0.98以上,方法学考察结果符合指纹图谱技术要求.结论:所建立的方法稳定、可靠、重复性好,可用于菊花破壁饮片质量控制和综合评价.%Objective:To establish the HPLC fingerprint of Cell Wall-Broken Decoction Pieces of Chrysanthemi Flos, and analyze the relativity between its decoction pieces,broken powder and broken particle,helping to evaluate its quality comprehensively.Methods:RP-HPLC method was performed on an Agilent C18 (250 mm ×4.6 mm,5 μm)column with a gradient elution composed of acetonitrile-aqueous solution containing 0.5% phosphoric acid.The column temperature was set at 35 ℃,while the detective wavelength was set at 348 nm.Results:The chromatographic fingerprint common pattern was established.Fifteen mutual peaks were obtained from the chromatograms of eleven batches of samples.Conclusion:The method with good reproducibility is reliable and stable,which is feasible for quality control of cell wall-broken decoction pieces of Chrysanthemi Flos.

  7. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  8. Cell-Based Therapies for Diabetic Complications

    Science.gov (United States)

    Bernardi, Stella; Severini, Giovanni Maria; Zauli, Giorgio; Secchiero, Paola

    2012-01-01

    In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out. PMID:21822425

  9. Cell-Based Therapies for Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Stella Bernardi

    2012-01-01

    Full Text Available In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.

  10. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  11. Piece of the sun

    CERN Document Server

    Wayne, Teddy

    2015-01-01

    Our rapidly industrialising world has an insatiable hunger for energy, and conventional sources are struggling to meet demand. Oil is running out, coal is damaging our climate, many nations are abandoning nuclear, yet solar, wind and water will never be a complete replacement. The solution, says Daniel Clery in this deeply researched and revelatory book, is to be found in the original energy source: the Sun itself. There, at its centre, the fusion of 630 million tonnes of hydrogen every second generates an unfathomable amount of energy. By replicating even a tiny piece of the Sun's power

  12. Quality cell therapy manufacturing by design.

    Science.gov (United States)

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  13. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2015-01-01

    Full Text Available Low reactive level laser therapy (LLLT is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described.

  14. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  15. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... agencies, foundations, biotechnology and pharmaceutical companies. Mission: To advance knowledge, awareness, and education leading to the discovery and clinical application of gene and cell therapies to alleviate human disease. Vision: ASGCT will serve ...

  16. [Magnetic nanoparticles as tools for cell therapy].

    Science.gov (United States)

    Wilhelm, Claire; Gazeau, Florence

    2012-01-01

    Labelling living cells with magnetic nanoparticles creates opportunities for numerous biomedical applications such as Magnetic Resonance Imaging (MRI) cell tracking, cell manipulation, cell patterning for tissue engineering and magnetically-assisted cell delivery. The unique advantage of magnetic-based methods is to activate or monitor cell behavior by a remote stimulus, the magnetic field. Cell labelling methods using superparamagnetic nanoparticles have been widely developed, showing no adverse effect on cell proliferation and functionalities while conferring magnetic properties to various cell types. This paper first describes how cells can become responsive to magnetic field by safely internalizing magnetic nanoparticles. We next show how magnetic cells can be detected by MRI, giving the opportunity for non-invasive in vivo monitoring of cell migration. We exemplify the fact that MRI cell tracking has become a method of choice to follow the fate of administrated cells in cell therapy assay, whether the cells are grafted locally or administrated in the circulation. Finally we give different examples of magnetic manipulation of cells and their applications to regenerative medicine. Magnetic cell manipulation are forecasted to be more and more developed, in order to improve tissue engineering technique and assist cell-based therapies. Owing to the clinical approval of iron-oxide nanoparticles as MRI contrast agent, there is no major obstacle in the translation to human clinics of the magnetic methods summarized in this paper.

  17. Translational research of adult stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Gen; Suzuki

    2015-01-01

    Congestive heart failure(CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  18. Translational research of adult stem cell therapy.

    Science.gov (United States)

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  19. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  20. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  1. Adiponectinemia controls pro-angiogenic cell therapy.

    Science.gov (United States)

    Eren, Philippe; Camus, Stéphane; Matrone, Gianfranco; Ebrahimian, Téni G; François, Delphine; Tedgui, Alain; Sébastien Silvestre, Jean; Blanc-Brude, Olivier P

    2009-11-01

    Angiogenic cell therapy with the transplantation of endothelial progenitor cells (EPC) or bone marrow mononuclear cells (BM-MNC) receives considerable attention as an approach to revascularize ischemic tissues. Adiponectin is a circulating hormone produced by the apM1 gene in adipocytes. Adiponectin modulates lipid metabolism and obesity, and it was recently found to promote physiological angiogenesis in response to ischemia. Patients with multiple cardiovascular disease risk factors or myocardial infarction may benefit from progenitor cell therapy, but they display depressed adiponectinemia. We hypothesized that adiponectin stimulation of transplanted cells is critical for their pro-angiogenic function. We aimed to establish whether adiponectinemia in the cell donor or in the cell recipient determines the success of pro-angiogenic cell therapy. In vitro, we found that conditioned media derived from wild-type adipocytes (adipo-CM) or purified adiponectin strongly enhanced BM-MNC survival and proliferation and stimulated EPC differentiation, whereas adipo-CM from apM1-/- adipocytes was one-half less effective. On the other hand, wild-type and apM1-/- BM-MNC displayed similar resistance to apoptosis and proliferation rates. In vivo, wild-type, and apM1-/- BM-MNC induced similar angiogenic reactions in wild-type ischemic hindlimbs. In contrast, wild-type BM-MNC had much diminished effects in apM1-/- ischemic hindlimbs. We concluded that adiponectin enhances BM-MNC survival and proliferation, and adiponectinemia in the cell therapy recipient is essential for the pro-angiogenic benefits of cell therapy. These observations imply that progenitor cell transplantation might only induce angiogenesis in patients with high adiponectinemia.

  2. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  3. How we make cell therapy in Italy

    Directory of Open Access Journals (Sweden)

    Montemurro T

    2015-08-01

    Full Text Available Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Luigi Marino, Valentina Parazzi, Lorenza Lazzari, Rosaria GiordanoCell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, ItalyAbstract: In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.Keywords: advanced therapy medicinal product, good manufacturing practices, stem cells

  4. Cell therapy for diabetes mellitus: an opportunity for stem cells?

    Science.gov (United States)

    Soria, B; Bedoya, F J; Tejedo, J R; Hmadcha, A; Ruiz-Salmerón, R; Lim, S; Martin, F

    2008-01-01

    Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.

  5. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  6. Poststroke Cell Therapy of the Aged Brain

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2015-01-01

    Full Text Available During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC, the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs, mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.

  7. Brain repair: cell therapy in stroke

    Directory of Open Access Journals (Sweden)

    Kalladka D

    2014-02-01

    Full Text Available Dheeraj Kalladka, Keith W Muir Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom Abstract: Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs and neural stem cells (NSCs improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell

  8. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

  9. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  10. Stem cell therapy: facts and fiction.

    Science.gov (United States)

    Spits, C

    2012-01-01

    This opinion paper is a brief overview of the current state of the translation of stem cell therapy from the bench to the clinic. The hype generated by the great medical potential of stem cells has lead to hundreds of clinics worldwide claiming to have the cure for every imaginable condition. This fraudulent practice is far from the reality of scientists and bona fide companies. Much effort is put into addressing all the hurdles we have been encountering for the safe use of stem cells in therapy. By now, a significant number of clinical trials are booking very exciting progress, opening a realistic path to the use of these amazing cells in regenerative medicine.

  11. Cell therapies for tendons: old cell choice for modern innovation.

    Science.gov (United States)

    Petrou, Ilias G; Grognuz, Anthony; Hirt-Burri, Nathalie; Raffoul, Wassim; Applegate, Lee Ann

    2014-01-01

    Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.

  12. Mesenchymal stem cells: a new trend for cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xin WEI; Xue YANG; Zhi-peng HAN; Fang-fang QU; Li SHAO; Yu-fang SHI

    2013-01-01

    Mesenchymal stem cells (MSCs),the major stem cells for cell therapy,have been used in the clinic for approximately 10 years.From animal models to clinical trials,MSCs have afforded promise in the treatment of numerous diseases,mainly tissue injury and immune disorders.In this review,we summarize the recent opinions on methods,timing and cell sources for MSC administration in clinical applications,and provide an overview of mechanisms that are significant in MSC-mediated therapies.Although MSCs for cell therapy have been shown to be safe and effective,there are still challenges that need to be tackled before their wide application in the clinic.

  13. Progress and prospects in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xiu-ling XU; Fei YI; Hui-ze PAN; Shun-lei DUAN; Zhi-chao DING; Guo-hong YUAN; Jing QU

    2013-01-01

    In the past few years,progress being made in stem cell studies has incontestably led to the hope of developing cell replacement based therapy for diseases deficient in effective treatment by conventional ways.The induced pluripotent stem cells (iPSCs) are of great interest of cell therapy research because of their unrestricted self-renewal and differentiation potentials.Proof of principle studies have successfully demonstrated that iPSCs technology would substantially benefit clinical studies in various areas,including neurological disorders,hematologic diseases,cardiac diseases,liver diseases and etc.On top of this,latest advances of gene editing technologies have vigorously endorsed the possibility of obtaining disease-free autologous cells from patient specific iPSCs.Here in this review,we summarize current progress of stem cell therapy research with special enthusiasm in iPSCs studies.In addition,we compare current gene editing technologies and discuss their potential implications in clinic application in the future.

  14. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  15. Stem Cells and Herbal Acupuncture Therapy

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-12-01

    Full Text Available Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

  16. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  17. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  18. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  19. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  20. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    OpenAIRE

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell t...

  1. Stem cell therapy for retinal diseases

    Institute of Scientific and Technical Information of China (English)

    Jose Mauricio Garcia,; Luisa Mendon?a; Rodrigo Brant; Murilo Abud; Caio Regatieri; Bruno Diniz

    2015-01-01

    In this review, we discuss about current knowledgeabout stem cell (SC) therapy in the treatment of retinaldegeneration. Both human embryonic stem cell andinduced pluripotent stem cell has been growth inculture for a long time, and started to be explored inthe treatment of blinding conditions. The Food andDrug Administration, recently, has granted clinical trialsusing SC retinal therapy to treat complex disorders, asStargardt's dystrophy, and patients with geographicatrophy, providing good outcomes. This study'sintent is to overview the critical regeneration of thesubretinal anatomy through retinal pigment epitheliumtransplantation, with the goal of reestablish importantpathways from the retina to the occipital cortex of thebrain, as well as the differentiation from pluripotentquiescent SC to adult retina, and its relationshipwith a primary retinal injury, different techniques oftransplantation, management of immune rejection andtumorigenicity, its potential application in improvingpatients' vision, and, finally, approaching future directionsand challenges for the treatment of several conditions.

  2. Mesenchymal stromal cell therapy in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-11-01

    Full Text Available Ye Zhang, Hong Deng, Chao Pan, Yang Hu, Qian Wu, Na Liu, Zhouping Tang Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China Abstract: Stroke is a clinical disease with high incidence, high disability rate, and high mortality. But effective and safe therapy for stroke remains limited. Adult mesenchymal stromal cells (MSCs perform a variety of therapeutic functions. MSC delivery improves neurological outcomes in ischemic stroke models via neurorestorative and neuroprotective effects such as angiogenic effects, promoting endogenous proliferation, and reducing apoptosis and inflammation. MSC secretome also showed powerful therapeutic effects as a cell-based therapy in animal experiments. Several clinical trials on MSC implantation via different routes have now been completed in patients with stroke. Although challenges such as immunogenicity of allo-MSCs and large-scale production strategies need to be overcome, MSCs can be considered as a promising potential therapy for ischemic stroke. Keywords: mesenchymal stromal cell, stroke, therapy, transplantation, exosomes

  3. Gene Therapy: a Breakthrough for Sickle Cell Anemia?

    Science.gov (United States)

    ... fullstory_163849.html Gene Therapy: A Breakthrough for Sickle Cell Anemia? But treatment has only been given to ... gene therapy to treat, or even potentially cure, sickle cell anemia. The findings come from just one patient, ...

  4. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies.

    Science.gov (United States)

    Gill, Saar

    2016-08-01

    Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer.

  5. Cell therapies for pancreatic beta-cell replenishment.

    Science.gov (United States)

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo

    2016-07-11

    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.

  6. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  7. Large animal models for stem cell therapy.

    Science.gov (United States)

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  8. Cell-based therapy - navigating troubled waters.

    Science.gov (United States)

    Pepper, Michael S

    2010-05-04

    Cells and engineered tissue can be used to treat an increasing number of diseases. This development, together with promising pre-clinical data in regenerative medicine, has raised the expectations of many patients. However, this situation tends to make people vulnerable to the lures of companies that abuse the stem cell promise. The problem is compounded by people's propensity to believe that the healing powers of positive thinking, large sums of money and foreign institutions are greater than those of therapies developed through well-tested, properly constructed, clinical trials.

  9. Stem Cell-Based Gene Therapy.

    Science.gov (United States)

    Bagnis; Mannoni

    1997-01-01

    Many researchers and clinicians wonder if gene therapy remains a way to treat genetic or acquired life-threatening diseases. For the last few years, many experimental, pre-clinical, and clinical data have been published showing that it is possible to transfer with relatively high efficiency new genetic information (transgene) in many cells or tissues including both hematopoietic progenitor cells and differentiated cells. Based on experimental works, addition of the normal gene to cells with deletions, mutations, or alterations of the corresponding endogenous one has been shown to reverse the phenotype and to restore (in some case) the functional defect. In spite of very attractive preliminary results, however, suggesting the feasibility and safety of this process, therapeutically efficient gene transfer and expression in targeted cells or tissues must be proven. In this review, we will focus primarily on the attempts to use gene transfer in hematopoietic stem cells as a model for more general genetic manipulations of stem cells. Hematopoietic stem cells are included in a subset of bone marrow, cord blood, or peripheral blood cells identified by the expression of the CD34 antigen on their membrane.

  10. Muscling up damaged hearts through cell therapy

    Institute of Scientific and Technical Information of China (English)

    Chi Van Dang

    2006-01-01

    @@ Molecular and cellular processes gleaned from the most fundamental of biomedical studies are now harnessed for their potential healing properties. In the US and throughout the world, millions of patients suffer from myocardial infarction and many succumb to the morbidity and mortality of the ensuing cardiac failure, a protracted condition in need of healing. While pharmacological agents have been the mainstay intervention that ameliorates cardiac failure through increased contractility or reduction of cardiac workload, these agents do not inherently heal the wounds inflicted by poor perfusion of the affected cardiac tissue.Cell therapy, however, holds the promise of repleting the damage heart with new contractile cells that can be engineered to secrete concoctions that promote healing by recruiting new blood vessel development or angiogenesis.Such cell therapeutic promise has already been fulfilled for many decades for hematological diseases through transplantation of bone marrow stem cells, which are now more broadly implicated for their healing potential of other tissues.

  11. Stem Cell Therapy for Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Gunduz E

    2011-01-01

    Full Text Available IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone followed autologous stem cell transplantation (SCT. After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI and coronary artery bypass grafting (CABG was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 µg/kg/day granulocyte colony-stimulating factor (G-CSF subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric

  12. COMPARISON OF ANTERIOR CHAMBER REACTION WITH SINGLE-PIECE AND THREE-PIECE INTRAOCULAR LENSES IN MANUAL SMALL INCISION CATARACT SURGERY

    Directory of Open Access Journals (Sweden)

    Usha

    2014-11-01

    Full Text Available OBJECTIVES: To study the anterior chamber reaction between single-piece and three-piece intraocular lenses in manual small incision cataract surgery. METHODS: Prospective study done at Mysore Race Club Charitable Eye Hospital. 140 Patients underwent suture less sclerocorneal tunnel cataract surgeries with single-piece or three-piece Polymethylmethacrylate (PMMA intra ocular lenses (3-piece IOL. Accurate Keratometry was done with the help of Bausch and Lomb Keratometer. IOL power was calculated by using SRK (Sanders-Retzlaff-Kraff II formula, with the help of non-immersion, contact type of A-Scan biometry. Single-piece IOLs were inserted in 70 patients. Three-piece IOL inserted in rest of 70 patients. Slit lamp examination for anterior chamber cells was graded according to Hogan system. Aqueous cells were measured by counting within the visible field under Slit lamp, keeping the beam at maximum intensity. Anterior chamber reaction (AC in 1stPostoperative week and at 8 weeks are compared and analyzed by ANOVA statistics. RESULTS: Single piece IOL group had anterior chamber reaction ranging from 1 to 2+ cells i.e., in 97%. In three-piece IOL group, 70%of eyes had 2+ cells and 12.8% had 3± cells. At 8 weeks, single- piece IOL showed either no cells or occasional cells in 98.6% of patients, compared to three –piece IOL group showing in 77%of cases. 23% had 1+ cells in later group. CONCLUSION: Single-piece implanted IOLs had significant less number of cells were seen in anterior chamber from 1 week to 8 weeks as compared to three-piece IOLs.

  13. Advances in Stem Cell Therapy for Leukemia.

    Science.gov (United States)

    Tian, Hong; Qu, Qi; Liu, Liming; Wu, Depei

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called "dual transplantation," has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor-mobilized donor peripheral blood stem cells after chemotherapy, the so called "microtransplantation", has been shown to promote the graft-versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation.

  14. Kallikrein-kinin in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Julie; Chao; Grant; Bledsoe; Lee; Chao

    2014-01-01

    The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells(MSCs), endothelial progenitor cells(EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.

  15. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...... cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity, as well as a number of other challenges. Collaboration among scientists, clinicians...

  16. T-cell-directed therapies in systemic lupus erythematosus.

    Science.gov (United States)

    Nandkumar, P; Furie, R

    2016-09-01

    Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials.

  17. Development of cell therapy medicinal products by academic institutes.

    Science.gov (United States)

    de Wilde, Sofieke; Guchelaar, Henk-Jan; Herberts, Carla; Lowdell, Mark; Hildebrandt, Martin; Zandvliet, Maarten; Meij, Pauline

    2016-08-01

    In the rapidly evolving fields of cellular immunotherapy, gene therapy and regenerative medicine, a wide range of promising cell therapy medicinal products are in clinical development. Most products originate from academic research and are explored in early exploratory clinical trials. However, the success rate toward approval for regular patient care is disappointingly low. In this paper, we define strengths and hurdles applying to the development of cell therapy medicinal products in academic institutes, and analyze why only a few promising cell therapies have reached late-stage clinical development. Subsequently, we provide recommendations to stakeholders involved in development of cell therapies to exploit their potential clinical benefit.

  18. Stem Cell-Based Cell Therapy for Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Meiling Jin

    2014-01-01

    Full Text Available Glomerulonephritis (GN, characterized by immune-mediated inflammatory changes in the glomerular, is a common cause of end stage renal disease. Therapeutic options for glomerulonephritis applicable to all cases mainly include symptomatic treatment and strategies to delay progression. In the attempt to yield innovative interventions fostering the limited capability of regeneration of renal tissue after injury and the uncontrolled pathological process by current treatments, stem cell-based therapy has emerged as novel therapy for its ability to inhibit inflammation and promote regeneration. Many basic and clinical studies have been performed that support the ability of various stem cell populations to ameliorate glomerular injury and improve renal function. However, there is a long way before putting stem cell-based therapy into clinical practice. In the present article, we aim to review works performed with respect to the use of stem cell of different origins in GN, and to discuss the potential mechanism of therapeutic effect and the challenges for clinical application of stem cells.

  19. [Vismodegib Therapy for Periocular Basal Cell Carcinoma].

    Science.gov (United States)

    Keserü, M; Green, S; Dulz, S

    2017-01-01

    Background Basal cell carcinoma (BCC) is the commonest periorbital tumour. Mohs' micrographic surgery and secondary reconstruction is the therapeutic gold standard for periorbital BCC. In cases of inoperability for any reason, therapeutic alternatives are needed. Since the approval of vismodegib, an orally administered, targeted BCC therapy is available. Nevertheless there is little information on the use of vismodegib for periorbital BCC. Patients and Methods In a retrospective study, we analysed the data of 4 patients treated with vismodegib since 2014. The patients' mean age before starting therapy was 87 years. The mean maximum tumour diameter was 22.0 mm. Results The median follow-up was 17 months. The median treatment duration was 7.5 months. In 75 % of patients, complete clinical remission of BCC was achieved. In 25 % of patients, interim stabilisation of tumour growth was possible. The most common side effect of therapy was muscle spasm. Conclusion Vismodegib is an effective treatment option for patients with periorbital BCC, in whom surgical treatment is not possible for any reason.

  20. Present and future cell therapies for pancreatic beta cell replenishment.

    Science.gov (United States)

    Domínguez-Bendala, Juan; Ricordi, Camillo

    2012-12-21

    If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  1. Present and future cell therapies for pancreatic beta cell replenishment

    Institute of Scientific and Technical Information of China (English)

    Juan Domínguez-Bendala; Camillo Ricordi

    2012-01-01

    If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanoptimal approaches to immunosuppression,recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation.Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention.Progress in stem cell research over the past decade,coupled with our decades-long experience with islet transplantation,is shaping the future of cell therapies for the treatment of diabetes.Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration,including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  2. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  3. Stem cell therapy for severe autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Marmont Alberto M.

    2002-01-01

    Full Text Available Intense immunosuppresion followed by alogenic or autogenic hematopoietic stem cell transplantation is a relatively recent procedure which was used for the first time in severe, refractory cases of systemic lupus erythematosus. Currently three agressive procedures are used in the treatment of autoimmune diseases: high dose chemotherapy without stem cell rescue, intense immunosuppression with subsequent infusion of the alogenic hematopoietic stem cell transplantation combined with or without the selection of CD34+ cells, and the autogenic hematopoietic stem cell transplantation. Proof of the graft-versus-leukemia effect observed define SCT as a form of immunotherapy, with additional evidence of an similar Graft-vs-Autoimmunity effect which is suggestive of a cure for autoimmune diseases in this type of therapy. The use of alogenic SCT improved due to its safety compared to autogenic transplantations. In this report, data of multiply sclerosis and systemic lupus erythematosus are reported, with the conclusion that Immunoablation followed by SCT is clearly indicated in such cases.

  4. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  5. 1.A piece of cake

    Institute of Scientific and Technical Information of China (English)

    吕浙

    2005-01-01

    对西方人来说,蛋糕是极其平常的食物。无论是做蛋糕还是吃蛋糕.都是轻松愉快的一桩小事,因此,a piece of cake这个习语的意思是“非常简单,易如反掌.小菜一碟”。如:

  6. The Cell Therapy Catapult: growing a U.K. cell therapy industry generating health and wealth.

    Science.gov (United States)

    Thompson, Keith; Foster, Emma Palmer

    2013-12-01

    In a recent report on the regenerative medicine sector, the U.K. House of Lords made several recommendations to enable the United Kingdom to become a global leader in this important industry. Its recommendations in this regard were many and various, covering the regulatory system, clinical trials, manufacturing, funding, approval, and reimbursement. In its mission to tackle what it sees as three main types of barriers to the development of the cell therapy industry in the United Kingdom, the Cell Therapy Catapult is tackling many of these issues. Established as a center of excellence in the United Kingdom in 2012, the Cell Therapy Catapult is a research organization expected to grow to a team of around 100 experts. Its core financing of £ 70 million over the next 5 years is provided by the Technology Strategy Board, the United Kingdom's innovation agency, and with additional contract research income and access to collaborative funds, the Catapult expects to build up to annual revenues of around £ 30 million. Along with its sister Catapult programs in other areas of the economy, the Cell Therapy Catapult was established after identification of the massive early-stage expertise the country has, as well as an acute market failure-the lack of expertise to translate early-stage cell therapy research into commercial success. In this article, in addition to showing our progress so far, we will discuss the hurdles the industry faces-grouped into business, manufacturing/supply chain issues, and clinical/regulatory issues-and what we are doing to help the United Kingdom leap over them.

  7. Gene-modified bone marrow cell therapy for prostate cancer.

    Science.gov (United States)

    Wang, H; Thompson, T C

    2008-05-01

    There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.

  8. Stem cell therapy for Alzheimer's disease.

    Science.gov (United States)

    Abdel-Salam, Omar M E

    2011-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which impairs the memory and intellectual abilities of the affected individuals. Loss of episodic as well as semantic memory is an early and principal feature. The basal forebrain cholinergic system is the population of neurons most affected by the neurodegenerative process. Extracellular as well as intracellular deposition of beta-amyloid or Abeta (Abeta) protein, intracellular formation of neurofibrillary tangles and neuronal loss are the neuropathological hallmarks of AD. In the last few years, hopes were raised that cell replacement therapy would provide cure by compensating the lost neuronal systems. Stem cells obtained from embryonic as well as adult tissue and grafted into the intact brain of mice or rats were mostly followed by their incorporation into the host parenchyma and differentiation into functional neural lineages. In the lesioned brain, stem cells exhibited targeted migration towards the damaged regions of the brain, where they engrafted, proliferated and matured into functional neurones. Neural precursor cells can be intravenously administered and yet migrate into brain damaged areas and induce functional recovery. Observations in animal models of AD have provided evidence that transplanted stem cells or neural precursor cells (NPCs) survive, migrate, and differentiate into cholinergic neurons, astrocytes, and oligodendrocytes with amelioration of the learning/memory deficits. Besides replacement of lost or damaged cells, stem cells stimulate endogenous neural precursors, enhance structural neuroplasticity, and down regulate proinflammatory cytokines and neuronal apoptotic death. Stem cells could also be genetically modified to express growth factors into the brain. In the last years, evidence indicated that the adult brain of mammals preserves the capacity to generate new neurons from neural stem/progenitor cells. Inefficient adult neurogenesis may contribute to the

  9. [Retinal Cell Therapy Using iPS Cells].

    Science.gov (United States)

    Takahashi, Masayo

    2016-03-01

    Progress in basic research, starting with the work on neural stem cells in the middle 1990's to embryonic stem (ES) cells and induced pluripotent stem (iPS) cells at present, will lead the cell therapy (regenerative medicine) of various organs, including the central nervous system to a big medical field in the future. The author's group transplanted iPS cell-derived retinal pigment epithelial (RPE) cell sheets to the eye of a patient with exudative age-related macular degeneration (AMD) in 2014 as a clinical research. Replacement of the RPE with the patient's own iPS cell-derived young healthy cell sheet will be one new radical treatment of AMD that is caused by cellular senescence of RPE cells. Since it was the first clinical study using iPS cell-derived cells, the primary endpoint was safety judged by the outcome one year after surgery. The safety of the cell sheet has been confirmed by repeated tumorigenisity tests using immunodeficient mice, as well as purity of the cells, karyotype and genetic analysis. It is, however, also necessary to prove the safety by clinical studies. Following this start, a good strategy considering cost and benefit is needed to make regenerative medicine a standard treatment in the future. Scientifically, the best choice is the autologous RPE cell sheet, but autologous cell are expensive and sheet transplantation involves a risky part of surgical procedure. We should consider human leukocyte antigen (HLA) matched allogeneic transplantation using the HLA 6 loci homozyous iPS cell stock that Prof. Yamanaka of Kyoto University is working on. As the required forms of donor cells will be different depending on types and stages of the target diseases, regenerative medicine will be accomplished in a totally different manner from the present small molecule drugs. Proof of concept (POC) of photoreceptor transplantation in mouse is close to being accomplished using iPS cell-derived photoreceptor cells. The shortest possible course for treatment

  10. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  11. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  12. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    Science.gov (United States)

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  13. CELL THERAPY FOR INTERVERTEBRAL DISC REPAIR: ADVANCING CELL THERAPY FROM BENCH TO CLINICS

    Science.gov (United States)

    Benneker, L.M.; Andersson, G.; Iatridis, J.C.; Sakai, D.; Härtl, R.; Ito, K.; Grad, S.

    2016-01-01

    Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encourageing results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium “Where Science meets Clinics”, sponsored by the AO Foundation and held in Davos, Switzerland, from September 5–7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imageing methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neurogenesis. Discogenic pain, originating from “black discs” or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in outline order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects. PMID:24802611

  14. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

    Directory of Open Access Journals (Sweden)

    LM Benneker

    2014-05-01

    Full Text Available Intervertebral disc (IVD degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

  15. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  16. Cell therapy in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Congestive heart failure (CHF) has emerged as a major worldwide epidemic and its main causes seem to be the aging of the population and the survival of patients with post-myocardial infarction. Cardiomyocyte dropout (necrosis and apoptosis) plays a critical role in the progress of CHF; thus treatment of CHF by exogenous cell implantation will be a promising medical approach. In the acute phase of cardiac damage cardiac stem cells (CSCs) within the heart divide symmetrically and/or asymmetrically in response to the change of heart homeostasis, and at the same time homing of bone marrow stem cells (BMCs) to injured area is thought to occur, which not only reconstitutes CSC population to normal levels but also repairs the heart by differentiation into cardiac tissue. So far, basic studies by using potential sources such as BMCs and CSCs to treat animal CHF have shown improved ventricular remodelling and heart function. Recently, however, a few of randomized, double-blind, placebo-controlled clinical trials demonstrated mixed results in heart failure with BMC therapy during acute myocardial infarction.

  17. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O’Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  18. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O’Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-01-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities. PMID:28150746

  19. Gene therapy of primary T cell immunodeficiencies.

    Science.gov (United States)

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  20. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  1. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar,Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  2. Towards stem-cell therapy in the endocrine pancreas

    NARCIS (Netherlands)

    Gangaram-Panday, Shanti T.; Faas, Marijke M.; de Vos, Paul

    2007-01-01

    Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation.

  3. Cell therapy for avascular osteonecrosis of femoral head

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2009-04-01

    Full Text Available Avascular osteonecrosis of femoral head causes severe musculoskeletal disability. There is not standard treatment to cure avascular osteonecrosis.? Recently, cell therapy using bone marrow stromal cells has begun for this disease.

  4. Development of gene and stem cell therapy for ocular neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Jing-Xue; Zhang; Ning-Li; Wang; Qing-Jun; Lu

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.

  5. Stem Cell Therapy for Myocardial Infarction: Are We Missing Time?

    NARCIS (Netherlands)

    K.W. ter Horst

    2010-01-01

    The success of stem cell therapy in myocardial infarction (MI) is modest, and for stem cell therapy to be clinically effective fine-tuning in regard to timing, dosing, and the route of administration is required. Experimental studies suggest the existence of a temporal window of opportunity bound by

  6. Present and future of allogeneic natural killer cell therapy

    Directory of Open Access Journals (Sweden)

    Okjae eLim

    2015-06-01

    Full Text Available Natural killer (NK cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA-haploidentical hematopoietic stem cell transplantation revealed the anti-tumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor (KIR ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions.

  7. Dental stem cells: a future asset of ocular cell therapy.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  8. Potential benefits of cell therapy in coronary heart disease.

    Science.gov (United States)

    Grimaldi, Vincenzo; Mancini, Francesco Paolo; Casamassimi, Amelia; Al-Omran, Mohammed; Zullo, Alberto; Infante, Teresa; Napoli, Claudio

    2013-11-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies.

  9. Cell therapy to remove excess copper in Wilson's disease.

    Science.gov (United States)

    Gupta, Sanjeev

    2014-05-01

    To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease.

  10. Stem cell therapy in oral and maxillofacial region: An overview

    Directory of Open Access Journals (Sweden)

    P M Sunil

    2012-01-01

    Full Text Available Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.

  11. Three-dimensional approach to stem cell therapy.

    OpenAIRE

    Oh, IL-Hoan; Kim, Dong-Wook

    2002-01-01

    Recent progress in stem cell research is opening a new hope for cell therapy in regenerative medicine. Two breakthroughs were made in the stem cell era, one, new discoveries in multi-potentiality of adult stem cells beyond the traditionally appreciated extent, and the other, establishment of pluripotent stem cell from human embryo. In addition to the newly identified multi-potentiality of adult stem cells, their ability to be trans-differentiated toward other tissue types (stem cell plasticit...

  12. Stem cell-based therapy for erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hong; XIA Shu-jie

    2011-01-01

    Objective To review the effect of stem cells in erectile dysfunction as well as their application to the therapy of erectile dysfunction.Data sources The data used in the present article were mainly from PubMed with relevant English articles published from 1974 to 2011.The search terms were "stem cells" and "erectile dysfunction".Study selection Articles regarding the role of stem cells in erectile dysfunction and their application to the therapy of erectile dysfunction were selected.Results Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types.Meanwhile,in preclinical experiments,therapeutic gene-modified stem cells have been approved to offer a novel strategy for cell therapy and gene therapy of erectile dysfunction.Conclusion The transplantation of stem cells has the potential to provide cell types capable of restoring normal function after injury or degradation inerectile dysfunction.However,a series of problems,such as the safety of stem cells transplantation,their application in cell therapy and gene therapy of erectile dysfunction need further investigation.

  13. Cell-based therapies and imaging in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, Frank M. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Munich (Germany); Schachinger, Volker; Dimmeler, Stefanie [University of Frankfurt, Department of Molecular Cardiology, Frankfurt (Germany)

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application. (orig.)

  14. Stem Cell-Based Therapies in Chagasic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Campos de Carvalho

    2015-01-01

    Full Text Available Chagas disease is caused by Trypanosoma cruzi and can lead to a dilated cardiomyopathy decades after the prime infection by the parasite. As with other dilated cardiomyopathies, conventional pharmacologic therapies are not always effective and as heart failure progresses patients need heart transplantation. Therefore alternative therapies are highly desirable and cell-based therapies have been investigated in preclinical and clinical studies. In this paper we review the main findings of such studies and discuss future directions for stem cell-based therapies in chronic chagasic cardiomyopathy.

  15. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  16. Biologicals and Fetal Cell Therapy for Wound and Scar Management

    OpenAIRE

    Hirt-Burri, Nathalie; Ramelet, Albert-Adrien; Raffoul, Wassim; de Buys Roessingh, Anthony; Scaletta, Corinne; Pioletti, Dominique; Applegate, Lee Ann

    2011-01-01

    Few biopharmaceutical preparations developed from biologicals are available for tissue regeneration and scar management. When developing biological treatments with cellular therapy, selection of cell types and establishment of consistent cell banks are crucial steps in whole-cell bioprocessing. Various cell types have been used in treatment of wounds to reduce scar to date including autolog and allogenic skin cells, platelets, placenta, and amniotic extracts. Experience with fetal cells show ...

  17. RETAINED STONE PIECE IN ANTERIOR CHAMBER

    Directory of Open Access Journals (Sweden)

    ZvornicaninJasmin, Nadarevic-VodencarevicAmra

    2015-04-01

    Full Text Available ABSTRACT We read with interest the article by Surekha et al. regarding the retained stone piece in anterior chamber. Similar to the results of previous studies, the authors found that delayed intraocular foreign body (IOFB management can result in good visual outcome without an apparent increased risk of endophthalmitis or other deleterious side effects. However, the authors failed to explain the exact reason for the diminution of vision in patients left eye. It is unclear what the uncorrected visual acuity was and what kind of correction was used, more precisely type and amount of cylinder, given the presence of the corneal opacity. Since the size of the IOFB is approximately 4x4x1mm, significant irido-corneal angle changes resulting in intraocular pressure raise and optic nerve head damage can be expected. Traumatic glaucoma following open globe injury can occur in 2.7 to 19% of cases, with several risk factors associated with glaucoma development (advanced age, poor visual acuity at presentation,perforating rather than penetrating ocular injury,lens injury, presence of vitreous hemorrhage and presence of an IOFB. Earlier reportsof latetraumaticoptic neuropathy onset, even after several years, indicate that this possibility cannot be completely ruled out too. Therefore, repeated intraocular pressure measurements, gonioscopy, pupillary reaction assessment, together with through posterior segment examination including visual field and optical coherence tomography examinations can be useful in determining the possible optic nerve damage as one of the possible reasons for visual acuity reduction. The authors did not suggest any operative treatment at this time. However, it should bear in mind that the inert anterior chamber IOFB could be a risk factor for non-infectious endophthalmitis development even after many years. Also, long term retained anterior chamber foreign body leads to permanent endothelial cell loss and can even result in a corneal

  18. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  19. Metastasis in renal cell carcinoma: Biology and implications for therapy

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2016-10-01

    Full Text Available Although multiple advances have been made in systemic therapy for renal cell carcinoma (RCC, metastatic RCC remains incurable. In the current review, we focus on the underlying biology of RCC and plausible mechanisms of metastasis. We further outline evolving strategies to combat metastasis through adjuvant therapy. Finally, we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.

  20. Stem cell and genetic therapies for the fetus.

    Science.gov (United States)

    Pearson, Erik G; Flake, Alan W

    2013-02-01

    The prenatal diagnosis and management of congenital disease has made significant progress over the previous decade. Currently, fetal therapy (including open surgery and fetoscopic intervention) provides therapeutic options for a range of congenital anomalies; however, it is restricted to the treatment of fetal pathophysiology. Improvements in prenatal screening and the early diagnosis of genetic disease allow for preemptive treatment of anticipated postnatal disease by stem cell or genetic therapy. While currently awaiting clinical application, in utero stem cell therapy has made significant advances in overcoming the engraftment and immunologic barriers in both murine and pre-clinical large animal models. Likewise, proof in principle for fetal gene therapy has been demonstrated in rodent and large animal systems as a method to prevent the onset of inherited genetic disease; however, safety and ethical risks still need to be addressed prior to human application. In this review, we examine the current status and future direction of stem cell and genetic therapy for the fetus.

  1. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    Science.gov (United States)

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  2. Stem cell therapy in treatment of different diseases.

    Science.gov (United States)

    Larijani, Bagher; Esfahani, Ensieh Nasli; Amini, Peyvand; Nikbin, Behrouz; Alimoghaddam, Kamran; Amiri, Somayeh; Malekzadeh, Reza; Yazdi, Nika Mojahed; Ghodsi, Maryam; Dowlati, Yahya; Sahraian, Mohammad Ali; Ghavamzadeh, Ardeshir

    2012-01-01

    Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia). In this paper the goal is evaluation of cell therapy in treatment of Parkinson's disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  3. Stem Cell Therapy in Treatment of Different Diseases

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sahraian

    2012-02-01

    Full Text Available Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia. In this paper the goal is evaluation of cell therapy in treatment of Parkinsons disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  4. Establishing the role of cytokine therapy in advanced renal cell carcinoma.

    NARCIS (Netherlands)

    Gore, M.E.; Mulder, P.H.M. de

    2008-01-01

    Tribute to Professor Pieter De Mulder, from Martin Gore. Pieter and I were often pitted against each other in debates at international meetings on the role of cytokine therapy. The truth is that there was little disagreement between us, but we both thought such set pieces were a good way to highligh

  5. Stem-cell-based therapy and lessons from the heart.

    NARCIS (Netherlands)

    Passier, R.; van Laake, L.W.; Mummery, C.L.

    2008-01-01

    The potential usefulness of human embryonic stem cells for therapy derives from their ability to form any cell in the body. This potential has been used to justify intensive research despite some ethical concerns. In parallel, scientists have searched for adult stem cells that can be used as an alte

  6. Stem Cell Based Gene Therapy in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    2014-01-01

    Full Text Available Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.

  7. Cell therapy for liver diseases: current medicine and future promises.

    Science.gov (United States)

    Alejandra, Meza-Ríos; Juan, Armendáriz-Borunda; Ana, Sandoval-Rodríguez

    2015-06-01

    Liver diseases are a major health problem worldwide since they usually represent the main causes of death in most countries, causing excessive costs to public health systems. Nowadays, there are no efficient current therapies for most hepatic diseases and liver transplant is infrequent due to the availability of organs, cost and risk of transplant rejection. Therefore, alternative therapies for liver diseases have been developed, including cell-based therapies. Stem cells (SCs) are characterized by their self-renewing capacity, unlimited proliferation and differentiation under certain conditions into tissue- or organ-specific cells with special functions. Cell-based therapies for liver diseases have been successful in experimental models, showing anti-inflammatory, antifibrogenic and regenerative effects. Nowadays, clinical trials using SCs for liver pathologies are increasing in number, and those that have reached publication have achieved favorable effects, encouraging us to think that SCs will have a potential clinical use in a short time.

  8. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  9. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  10. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Portillo

    2014-08-01

    Full Text Available Treatments for neonatal hypoxic ischemic encephalopathy (HIE have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke providing insights on the potential of cell therapy, currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS, which have been recently modified to Baby STEPS to cater for the neonatal symptoms of HIE. These guidelines recognized that neonatal HIE exhibits distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials, and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.

  11. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  12. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells.

    Science.gov (United States)

    Nakamura, Masaya; Okano, Hideyuki

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  13. Cell Therapy to Obtain Spinal Fusion

    Science.gov (United States)

    2006-02-01

    Cell viability in these experiments was determined to be greater than 90%. 6 *** marketed for DNA rather than virus transfer, we have determined...dead cells and debris were removed by washing with PBS and cells were passaged before confluence. Several vials of these cells were frozen in Origen

  14. Gene therapy for oral squamous cell carcinoma: an overview.

    Science.gov (United States)

    Saraswathi, T R; Kavitha, B; Vijayashree Priyadharsini, J

    2007-01-01

    A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  15. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  16. Gene therapy for oral squamous cell carcinoma: An overview

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2007-01-01

    Full Text Available A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  17. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2013-09-01

    Stem Cells and Development , vol. 21, no. 8, pp. 1299–1308, 2012. [25] B. Zheng, B...Matsumoto, H. Eto et al., “Functional implications of CD34 expression in human adipose-derived stem/progenitor cells,” Stem Cells and Development , vol...and progenitor cells within adipose tissue,” Stem Cells and Development , vol. 17, no. 6, pp. 1053–1063, 2008. [43] H. Li, L. Zimmerlin, K. G. Marra,

  18. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  19. Methods for Stem Cell Production and Therapy

    Science.gov (United States)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  20. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy

    Science.gov (United States)

    Ceder, Jens; Elgqvist, Jörgen

    2017-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody–drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  1. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  2. CRISPR Meets CAR T-cell Therapy.

    Science.gov (United States)

    2017-03-21

    Using CRISPR/Cas9 technology, researchers have devised a method to deliver a CAR gene to a specific locus, TRAC, in T cells. This targeted approach yielded therapeutic cells that were more potent even at low doses; in a mouse model of acute lymphoblastic leukemia, they outperformed CAR T cells created with a randomly integrating retroviral vector.

  3. Bone marrow cells differentiation into organ cells using stem cell therapy.

    Science.gov (United States)

    Yang, Y-J; Li, X-L; Xue, Y; Zhang, C-X; Wang, Y; Hu, X; Dai, Q

    2016-07-01

    Bone marrow cells (BMC) are progenitors of bone, cartilage, skeletal tissue, the hematopoiesis-supporting stroma and adipocyte cells. BMCs have the potential to differentiate into neural cells, cardiac myocytes, liver hepatocytes, chondrocytes, renal, corneal, blood, and myogenic cells. The bone marrow cell cultures from stromal and mesenchymal cells are called multipotent adult progenitor cells (MAPCs). MAPCs can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and endoderm in vitro. It has been shown that the stem cells derived from bone marrow cells (BMCs) can regenerate cardiac myocytes after myocardial infarction (MI). Adult bone marrow mesenchymal stem cells have the ability to regenerate neural cells. Neural stem/progenitor cells (NS/PC) are ideal for treating central nervous system (CNS) diseases, such as Alzheimer's, Parkinson's and Huntington disease. However, there are important ethical issues about the therapeutic use of stem cells. Neurons, cardiac myocytes, hepatocytes, renal cells, blood cells, chondrocytes and adipocytes regeneration from BMCs are very important in disease control. It is known that limbal epithelial stem cells in the cornea can repair the eye sight and remove symptoms of blindness. Stem cell therapy (SCT) is progressing well in animal models, but the use of SCT in human remains to be explored further.

  4. Cell therapy for heart disease after 15 years: Unmet expectations.

    Science.gov (United States)

    Nigro, Patrizia; Bassetti, Beatrice; Cavallotti, Laura; Catto, Valentina; Carbucicchio, Corrado; Pompilio, Giulio

    2017-02-21

    Over the past two decades cardiac cell therapy (CCT) has emerged as a promising new strategy to cure heart diseases at high unmet need. Thousands of patients have entered clinical trials for acute or chronic heart conditions testing different cell types, including autologous or allogeneic bone marrow (BM)-derived mononuclear or selected cells, BM- or adipose tissue-derived mesenchymal cells, or cardiac resident progenitors based on their potential ability to regenerate scarred or dysfunctional myocardium. Nowadays, the original enthusiasm surrounding the regenerative medicine field has been cushioned by a cumulative body of evidence indicating an inefficient or modest efficacy of CCT in improving cardiac function, along with the continued lack of indisputable proof for long-term prognostic benefit. In this review, we have firstly comprehensively outlined the positive and negative results of cell therapy studies in patients with acute myocardial infarction, refractory angina and chronic heart failure. Next, we have discussed cell therapy- and patient-related variables (e.g. cell intrinsic and extrinsic characteristics as well as criteria of patient selection and proposed methodologies) that might have dampened the efficacy of past cell therapy trials. Finally, we have addressed critical factors to be considered before embarking on further clinical trials.

  5. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    erythematosus, antineutrophil cytoplasmic antibody-associated vasculitis, polymyositis/dermatomyositis, and primary Sjögren's syndrome. For some anti-B cell agents, clinical benefits have been convincingly demonstrated, while other B cell-targeted therapies failed to improve outcomes when added to standard...

  6. Ethical issues in stem cell research and therapy.

    Science.gov (United States)

    King, Nancy Mp; Perrin, Jacob

    2014-07-07

    Rapid progress in biotechnology has introduced a host of pressing ethical and policy issues pertaining to stem cell research. In this review, we provide an overview of the most significant issues with which the stem cell research community should be familiar. We draw on a sample of the bioethics and scientific literatures to address issues that are specific to stem cell research and therapy, as well as issues that are important for stem cell research and therapy but also for translational research in related fields, and issues that apply to all clinical research and therapy. Although debate about the moral status of the embryo in human embryonic stem cell research continues to have relevance, the discovery of other highly multipotent stem cell types and alternative methods of isolating and creating highly multipotent stem cells has raised new questions and concerns. Induced pluripotent stem cells hold great promise, but care is needed to ensure their safety in translational clinical trials, despite the temptation to move quickly from bench to bedside. A variety of highly multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from amniotic fluid, umbilical cord blood, adipose tissue, or urine - present the opportunity for widespread biobanking and increased access. With these increased opportunities, however, come pressing policy issues of consent, control, and justice. The imperatives to minimize risks of harm, obtain informed consent, reduce the likelihood of the therapeutic misconception, and facilitate sound translation from bench to bedside are not unique to stem cell research; their application to stem cell research and therapy nonetheless merits particular attention. Because stem cell research is both scientifically promising and ethically challenging, both the application of existing ethical frameworks and careful consideration of new ethical implications are necessary as this broad and diverse field moves forward.

  7. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  8. Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease.

    Science.gov (United States)

    Lee, Ji Han; Oh, Il-Hoan; Lim, Hyun Kook

    2016-11-01

    Alzheimer's disease (AD) without cure remains as a serious health issue in the modern society. The major neuropathological alterations in AD are characterized by chronic neuroinflammation and neuronal loss due to neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau, plaques of β-amyloid (Aβ) and various metabolic dysfunctions. Due to the multifaceted nature of AD pathology and our limited understanding on its etiology, AD is difficult to be treated with currently available pharmaceuticals. This unmet need, however, could be met with stem cell technology that can be engineered to replace neuronal loss in AD patients. Although stem cell therapy for AD is only in its development stages, it has vast potential uses ranging from replacement therapy to disease modelling and drug development. Current progress with stem cells in animal model studies offers promising results for the new prospective treatment for AD. This review will discuss the characteristics of AD, current progress in stem cell therapy and remaining challenges and promises in its development.

  9. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  10. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2014-07-01

    compared with the other c- chain cytokines. Since systemic administration of recombi - nant IL-7 is well-tolerated (167), we and other investigators are...alternative vector systems that retain significant genomic integration capacity, but are based on DNA plasmids such as the transposon/transposes system which...mutagenesis by DNA transposons in gene therapy. Transl Res 2013;161:265–283. 197. Nakazawa Y, et al. PiggyBac-mediated cancer immunotherapy using EBV

  11. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    Science.gov (United States)

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  12. Advances in Gene/Cell Therapy in Epidermolysis Bullosa.

    Science.gov (United States)

    Murauer, Eva M; Koller, Ulrich; Pellegrini, Graziella; De Luca, Michele; Bauer, Johann W

    2015-01-01

    In the past few years, substantial preclinical and experimental advances have been made in the treatment of the severe monogenic skin blistering disease epidermolysis bullosa (EB). Promising approaches have been developed in the fields of protein and cell therapies, including allogeneic stem cell transplantation; in addition, the application of gene therapy approaches has become reality. The first ex vivo gene therapy for a junctional EB (JEB) patient was performed in Italy more than 8 years ago and was shown to be effective. We have now continued this approach for an Austrian JEB patient. Further, clinical trials for a gene therapy treatment of recessive dystrophic EB are currently under way in the United States and in Europe. In this review, we aim to point out that sustainable correction of autologous keratinocytes by stable genomic integration of a therapeutic gene represents a realistic option for patients with EB.

  13. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mauricio P. Pinto

    2016-09-01

    Full Text Available Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1 upregulation of compensatory/alternative pathways for angiogenesis; (2 vasculogenic mimicry; and (3 vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  14. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    Directory of Open Access Journals (Sweden)

    Reza B Jalili

    Full Text Available Type 1 diabetes (T1D results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO, into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes.

  15. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    Science.gov (United States)

    Jalili, Reza B; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes.

  16. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  17. Stem cell research: paths to cancer therapies and regenerative medicine.

    Science.gov (United States)

    Weissman, Irving

    2005-09-21

    Most tissues in complex metazoans contain a rare subset of cells that, at the single-cell level, can self-renew and also give rise to mature daughter cells. Such stem cells likely in development build tissues and are retained in adult life to regenerate them. Cancers and leukemias are apparently not an exception: rare leukemia stem cells and cancer stem cells have been isolated that contain all of the tumorigenicity of the whole tumor, and it is their properties that will guide future therapies. None of this was apparent just 20 years ago, yet this kind of stem cell thinking already provides new perspectives in medical science and could usher in new therapies. Today, political, religious, and ethical issues surround embryonic stem cell and patient-specific pluripotent stem cell research and are center stage in the attempts by governments to ban these fields for discovery and potential therapies. These interventions require physicians and physician-scientists to determine for themselves whether patient welfare or personal ethics will dominate in their practices, and whether all aspects of stem cell research can be pursued in a safe and regulated fashion.

  18. Last piece of ATLAS takes the plunge

    CERN Multimedia

    2008-01-01

    On Friday 29 February the second small wheel was lowered 100 metres underground into the ATLAS cavern in front of a captivated audience. Although called the "small wheels" they are small in name only - each wheel is 9.3 metres in diameter and weighs 100 tonnes including the massive shielding elements. This piece completes ATLAS’ muon spectrometer, which has the ability to accurately track particles to the width of a human hair. The first piece of ATLAS was installed in 2003 and, five years later, this small wheel is the final large piece of the detector to take the subterranean voyage to its final resting place.

  19. Implant Gigi One-Piece vs Two-Pieces dalam Praktek Sehari-Hari

    Directory of Open Access Journals (Sweden)

    Dian Lestari Kurnia

    2014-12-01

    prosedur bedah dan prosedur prostetik lebih sederhana. Desain ini juga meniadakan celah mikro pada perbatasan implant dan abutment. Desain implant gigi one-piece memiliki keterbatasan pada pilihan prosedur prostetik apabila dibandingkan dengan desain implant gigi two-pieces.   One-Piece Versus Two-pieces Tooth Implant In Daily Practice. Implant had been a gold standard to replace missing tooth. However, implant marketed today was considered complex, and needs a second surgery. Complications may occur such as screw loosening or fracture and the presence of micro gap at implant-abutment-junction that is found causing fixture failure. The one-piece-implant design may offer some advantages. Purpose: this paper was aimed to discuss the pros and cons of one-piece-implants and two-piece-implants. Case 1 A 43-year-old woman came to place an implant on #16. The available bone height was 5 mm. A trans alveolar sinus lift procedure was performed with 0,5 cc allograft. A 12 mm one-piece-implant was inserted. Case 2 A 24-year-old woman came to place an implant on #46. The available bone height was 12 mm and a 10 mm two-piece-implant was inserted. Discussion: One-piece-implant offers some advantage. It needs no second surgery, easier placement protocol, and more natural prosthetic procedures. The design is preventing the failure in implant-abutment-junction failure. The absence of micro gap in one-piece-implant seems superior in preventing crestal bone resorption. However, the prosthetic option was limited in one-piece-implant. Two-piece-implant offers more choices in prosthetic abutment. Conclusion: One-piece-implant was easier and provide simple protocol with limited choice on prosthetic.

  20. Recent advances in cell-based therapy for Parkinson disease

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Cooper, Oliver; Vinuela, Angel

    2008-01-01

    In this review, the authors discuss recent advances in the field of cell therapy for Parkinson disease (PD). They compare and contrast recent clinical trials using fetal dopaminergic neurons. They attribute differences in cell preparation techniques, cell type specification, and immunosuppression...... as reasons for variable outcome and for some of the side effects observed in these clinical trials. To address ethical, practical, and technical issues related to the use of fetal cell sources, alternative sources of therapeutic dopaminergic neurons are being developed. The authors describe the progress...... in enrichment and purification strategies of stem cell-derived dopaminergic midbrain neurons. They conclude that recent advances in cell therapy for PD will create a viable long-term treatment option for synaptic repair for this debilitating disease....

  1. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  2. Myelin restoration: progress and prospects for human cell replacement therapies.

    Science.gov (United States)

    Potter, Gregory B; Rowitch, David H; Petryniak, Magdalena A

    2011-06-01

    Oligodendrocytes are the primary source of myelin in the adult central nervous system (CNS), and their dysfunction or loss underlies several diseases of both children and adults. Dysmyelinating and demyelinating diseases are thus attractive targets for cell-based strategies since replacement of a single presumably homogeneous cell type has the potential to restore functional levels of myelin. To understand the obstacles that cell-replacement therapy might face, we review oligodendrocyte biology and emphasize aspects of oligodendrocyte development that will need to be recapitulated by exogenously transplanted cells, including migration from the site of transplantation, axon recognition, terminal differentiation, axon wrapping, and myelin production and maintenance. We summarize studies in which different types of myelin-forming cells have been transplanted into the CNS and highlight the continuing challenges regarding the use of cell-based therapies for human white matter disorders.

  3. Stem Cell Therapy to Treat Diabetes Mellitus

    OpenAIRE

    2008-01-01

    Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these ...

  4. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  5. Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

    Science.gov (United States)

    2015-10-01

    AD_________________ (Leave blank) Award Number: W81XWH-14-1-0350 TITLE: Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After...30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTILE Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy 5a. CONTRACT NUMBER...Innovative reporter gene systems are designed to mark quiescent or proliferating lung cancer cells (Aim 1) and then used to track and trace the dynamics of

  6. Combination therapy in A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Menghui [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: wangjing_fmmu@yahoo.com.cn; Deng Jinglan; Wang Zhe; Yang Weidong; Li Guoquan; Ren Bingxiu [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2010-04-15

    Background and aim: We investigated the anti-tumor effect induced by the combination of the radiotherapeutic agent {sup 131}I-RC-160 and the prodrug 5-FC in human non-small cell lung cancer (NSCLC) A549 cells that were co-expressing the human somatostatin receptor 2 gene (hSSTR2) and E. coli cytosine deaminase gene (CD). Methods: We cloned both hSSTR2 and CD into a bicistronic mammalian expression plasmid and stably transfected it into A549 cells (pCIS-A549 cells). After antibiotic selection, SSTR expression in stable clones was determined by reverse transcription and polymerase chain reaction (RT-PCR), Western blot, flow cytometry and immunofluorescence analyses. To assess the in vivo targeting efficiency of the 'engineered' A549 cells, the cells were subcutaneously injected into nude mice and the biodistribution of {sup 99m}Tc-RC-160 was assessed at different time points. The tumor inhibitory effects of {sup 131}I-RC-160 and/or 5-FC were evaluated by measurement of tumor growth and immunohistochemical analysis. Results: Multiple analyses demonstrated the successful expression of hSSTR2 in A549 cells. In vivo radioimaging revealed specific targeting of RC-160 to the tumors derived from pCIS-A549 cells when compared to those from control A549 cells. The tumor inhibitory rate of pCIS-A549 tumors in the {sup 131}I-RC-160 plus 5-FC-treated group was significantly higher than that in the single agent-treated group, control group and control tumors. Conclusion: Co-expression of the hSSTR2 and CD genes in tumor cells can selectively sensitize these cells to the infra-additive effects of radioisotope-labeled RC-160 and 5-FC in vivo. This approach offers a potential therapeutic strategy for the treatment of lung cancer.

  7. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2014-11-01

    cells reverts nociceptive hyper- sensitivity in an experimental model of neuropathy,” Stem Cells and Development, vol. 22, no. 8, pp. 1252–1263, 2013...which the differences between males and females are most striking. Differences in injury mechanism, pain sensation, drug handling, and healing

  8. Emerging Stem Cell Therapies: Treatment, Safety, and Biology

    Directory of Open Access Journals (Sweden)

    Joel Sng

    2012-01-01

    Full Text Available Stem cells are the fundamental building blocks of life and contribute to the genesis and development of all higher organisms. The discovery of adult stem cells has led to an ongoing revolution of therapeutic and regenerative medicine and the proposal of novel therapies for previously terminal conditions. Hematopoietic stem cell transplantation was the first example of a successful stem cell therapy and is widely utilized for treating various diseases including adult T-cell leukemia-lymphoma and multiple myeloma. The autologous transplantation of mesenchymal stem cells is increasingly employed to catalyze the repair of mesenchymal tissue and others, including the lung and heart, and utilized in treating various conditions such as stroke, multiple sclerosis, and diabetes. There is also increasing interest in the therapeutic potential of other adult stem cells such as neural, mammary, intestinal, inner ear, and testicular stem cells. The discovery of induced pluripotent stem cells has led to an improved understanding of the underlying epigenetic keys of pluripotency and carcinogenesis. More in-depth studies of these epigenetic differences and the physiological changes that they effect will lead to the design of safer and more targeted therapies.

  9. B Cell Epitope-Based Vaccination Therapy

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    2015-08-01

    Full Text Available Currently, many peptide vaccines are undergoing clinical studies. Most of these vaccines were developed to activate cytotoxic T cells; however, the response is not robust. Unlike vaccines, anti-cancer antibodies based on passive immunity have been approved as a standard treatment. Since passive immunity is more effective in tumor treatment, the evidence suggests that limited B cell epitope-based peptide vaccines may have similar activity. Nevertheless, such peptide vaccines have not been intensively developed primarily because humoral immunity is thought to be preferable to cancer progression. B cells secrete cytokines, which suppress immune functions. This review discusses the possibility of therapeutic antibody induction by a peptide vaccine and the role of active and passive B cell immunity in cancer patients. We also discuss the use of humanized mice as a pre-clinical model. The necessity of a better understanding of the activity of B cells in cancer is also discussed.

  10. CD4+Foxp3+ regulatory T cell therapy in transplantation

    Institute of Scientific and Technical Information of China (English)

    Qizhi Tang; Jeffrey A. Bluestone; Sang-Mo Kang

    2012-01-01

    Regulatory T cells (Tregs) are long-lived cells that suppress immune responses in vivo in a dominant and antigen-specific manner.Therefore,therapeutic application of Tregs to control unwanted immune responses is an active area of investigation.Tregs can confer long-term protection against auto-inflammatory diseases in mouse models.They have also been shown to be effective in suppressing alloimmunity in models of graft-versus-host disease and organ transplantation.Building on extensive research in Treg biology and preclinical testing of therapeutic efficacy over the past decade,we are now at the point of evaluating the safety and efficacy of Treg therapy in humans.This review focuses on developing therapy for transplantation using CD4+Foxp3+ Tregs,with an emphasis on the studies that have informed clinical approaches that aim to maximize the benefits while overcoming the challenges and risks of Treg cell therapy.

  11. Modeling of gene therapy for regenerative cells using intelligent agents.

    Science.gov (United States)

    Adly, Aya Sedky; Aboutabl, Amal Elsayed; Ibrahim, M Shaarawy

    2011-01-01

    Gene therapy is an exciting field that has attracted much interest since the first submission of clinical trials. Preliminary results were very encouraging and prompted many investigators and researchers. However, the ability of stem cells to differentiate into specific cell types holds immense potential for therapeutic use in gene therapy. Realization of this potential depends on efficient and optimized protocols for genetic manipulation of stem cells. It is widely recognized that gain/loss of function approaches using gene therapy are essential for understanding specific genes functions, and such approaches would be particularly valuable in studies involving stem cells. A significant complexity is that the development stage of vectors and their variety are still not sufficient to be efficiently applied in stem cell therapy. The development of scalable computer systems constitutes one step toward understanding dynamics of its potential. Therefore, the primary goal of this work is to develop a computer model that will support investigations of virus' behavior and organization on regenerative tissues including genetically modified stem cells. Different simulation scenarios were implemented, and their results were encouraging compared to ex vivo experiments, where the error rate lies in the range of acceptable values in this domain of application.

  12. Exploiting cytokines in adoptive T-cell therapy of cancer.

    Science.gov (United States)

    Petrozziello, Elisabetta; Sturmheit, Tabea; Mondino, Anna

    2015-01-01

    Adoptive immunotherapy with tumor-reactive autologous T cells, either expanded from tumor specimens or genetically engineered to express tumor-reactive T-cell receptors and chimeric antigen receptors, is holding promising results in clinical trials. Several critical issues have been identified and results underline the possibility to exploit cytokines to further ameliorate the efficacy of current treatment protocols, also encompassing adoptive T-cell therapy. Here we review latest developments on the use of cytokines to better direct the nature of the T-cell infusion product, T-cell function and persistence in vivo, as well as to modulate the tumor microenvironment.

  13. Effect of Stem Cell Therapy on Adriamycin Induced Tubulointerstitial Injury

    Science.gov (United States)

    Zickri, Maha Baligh; Zaghloul, Somaya; Farouk, Mira; Fattah, Marwa Mohamed Abdel

    2012-01-01

    Background and Objectives It was postulated that adriamycin (ADR) induce renal tubulointerstitial injury. Clinicians are faced with a challenge in producing response in renal patients and slowing or halting the evolution towards kidney failure. The present study aimed at investigating the relation between the possible therapeutic effect of human mesenchymal stem cells (HMSCs), isolated from cord blood on tubular renal damage and their distribution by using ADR induced nephrotoxicity as a model in albino rat. Methods and Results Thirty three male albino rats were divided into control group, ADR group where rats were given single intraperitoneal (IP) injection of 5 mg/kg adriamycin. The rats were sacrificed 10, 20 and 30 days following confirmation of tubular injury. In stem cell therapy group, rats were injected with HMSCs following confirmation of renal injury and sacrificed 10, 20 and 30 days after HMSCs therapy. Kidney sections were exposed to histological, histochemical, immunohistochemical, morphometric and serological studies. In response to SC therapy, vacuolated cytoplasm, dark nuclei, detached epithelial lining and desquamated nuclei were noticed in few collecting tubules (CT). 10, 20 and 30 days following therapy. The mean count of CT showing desquamated nuclei and mean value of serum creatinine revealed significant difference in ADR group. The mean area% of Prussian blue+ve cells and that of CD105 +ve cells measured in subgroup S1 denoted a significant increase compared to subgroups S2 and S3. Conclusions ADR induced tubulointerstitial damage that regressed in response to cord blood HMSC therapy. PMID:24298366

  14. Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Arjen F. Nikkels

    2010-06-01

    Full Text Available Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methyl-aminolevulinate (MAL based photodynamic therapy (PDT resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence. Although spontaneous regression of cutaneous Langerhans cell histiocytosis is observed, the rapid effect of photodynamic therapy after several failures of other treatment suggests that photodynamic therapy was successful. As far as we know this is the first report of photodynamic therapy for refractory skin lesions. Larger series are needed to determine whether photodynamic therapy deserves a place in the treatment of multiresistant cutaneous Langerhans cell histiocytosis.

  15. Immune therapy including dendritic cell based therapy in chronic hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Sk Md Fazle Akbar; Norio Horiike; Morikazu Onji

    2006-01-01

    Hepatitis B virus (HBV) infection is a global public health problem. Of the approximately 2 billion people who have been infected worldwide, more than 400 million are chronic carriers of HBV. Considerable numbers of chronic HBV carriers suffer from progressive liver diseases. In addition, all HBV carriers are permanent source of this virus. There is no curative therapy for chronic HBV carriers. Antiviral drugs are recommended for about 10% patients, however, these drugs are costly, have limited efficacy, and possess considerable side effects.Recent studies have shown that immune responses of the host to the HBV are critically involved at every stage of chronic HBV infection: (1) These influence acquisition of chronic HBV carrier state, (2) They are important in the context of liver damages, (3) Recovery from chronic HBV-related liver diseases is dependent on nature and extent of HBV-specific immune responses.However, induction of adequate levels of HBV-specific immune responses in chronic HBV carriers is difficult.During the last one decade, hepatitis B vaccine has been administered to chronic HBV carriers as a therapeutic approach (vaccine therapy). The present regimen of vaccine therapy is safe and cheap, but not so effective.A dendritic cell-based therapeutic vaccine has recently been developed for treating chronic HBV infection. In this review, we will discuss about the concept, scientific logics, strategies and techniques of development of HBV-specific immune therapies including vaccine therapy and dendritic cell-based vaccine therapy for treating chronic HBV infection.

  16. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2012-07-01

    Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J.Clin.Invest...function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115: 1616–1626. 14. Hinrichs...cells in non- obese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol. 2002;169(1):204–209. 27. Giassi LJ, et al. Expanded CD34+ human

  17. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  18. Anti-CDR3 Therapy for B-Cell Malignancies

    Science.gov (United States)

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0548 TITLE: PRINCIPAL INVESTIGATOR: Anti-CDR3 Therapy for B-Cell Malignancies Dr. David Fitzgerald CONTRACTING...REPORT DATE October 2014 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 30 Sep 2013 - 29 Sep 2014 "Anti-CDR3 Therapy for B-Cell Malignancies” 5a...and light chains, into a model antibody 4D5 (see figures 1-5 in the report). The "Tomlinson" human antibody phage library will be used to pan for

  19. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    Science.gov (United States)

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  20. Stem Cell Therapy for Diabetes: Are We Close Enough?

    Directory of Open Access Journals (Sweden)

    Sachin S. Kadam

    2014-04-01

    Full Text Available Over the last few decades, understanding of the mechanism of cellular development has increased tremendously. The knowledge of the potential of stem/precursor cells in tissue engineering and cell therapy has gained the popularity. In case of diabetes, the availability of the source of stem cells and the efficacy of their isolation techniques for maximum yield of viable cells to expand is an important issue which needs attention. Attempts to make beta cells from mouse embryonic stem cells (ES and adult stem cells have been frustrating in part because too much has been expected too soon. The problem with ES cells are that it is not known whether these cells are truly similar to normal beta cells or not and ethical issues surrounding them. ES cells is a major concern. Current claims about differentiation / transdifferentiation of adult stem cells to insulin producing cells has been demonstrated by many groups. These adult stem cells are of enormous interest because of their general accessibility and lack of ethical issues. Also, adult stem cells are non immunocompatible unless isolated from the same patient whereas ethical and scientific issues surrounding embryonic and fetal stem cells hinder their widespread implementation. Therefore, much attention is now focused on alternative sources of adult/postnatal stem cells.

  1. Cell Mediated Photothermal Therapy of Brain Tumors.

    Science.gov (United States)

    Hirschberg, Henry; Madsen, Steen J

    2017-03-01

    Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.

  2. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  3. Cell death signaling and anticancer therapy

    Directory of Open Access Journals (Sweden)

    Lorenzo eGalluzzi

    2011-05-01

    Full Text Available For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.

  4. Cardiac stem cell therapy research in China

    Institute of Scientific and Technical Information of China (English)

    Junbo GE

    2006-01-01

    @@ For more than two decades, the morbidity and mortality of coronary artery disease (CAD) has been increasing rapidly in China. Despite tremendous advances in treatment strategies of CAD, heart failure after acute myocardial infarction (AMI) continues to be one of the greatest medical challenges throughout the world. In 1994, Soonpaa and colleagues first reported the possibility of cardiomyocytes implantation and suggested that intracardiac cell grafting might provide a useful approach for myocardial repair.1 Cell implantation has become a novel therapeutic option for ischemic cardiac injury and heart failure.

  5. Stem Cell Therapy for Treatment of Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Padma Priya Sivan

    2016-01-01

    Full Text Available Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  6. Stem Cell Therapy for Treatment of Ocular Disorders.

    Science.gov (United States)

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  7. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  8. Advances in stem cell therapy for cardiovascular disease (Review).

    Science.gov (United States)

    Sun, Rongrong; Li, Xianchi; Liu, Min; Zeng, Yi; Chen, Shuang; Zhang, Peying

    2016-07-01

    Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease.

  9. [The prospect of pluripotent stem cell-based therapy].

    Science.gov (United States)

    Borisenko, G G

    2009-01-01

    Human embrional stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into any somatic cell type. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have great potential for the therapy of incurable diseases. Here, we review new developments in the area of embrional stem cells and discuss major challenges--standartization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new aprouches for directed differentiation etc.--which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches of hESC therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines (3). In addition, we discuss brifly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinic. Therefore, the major direction of hESC use is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks. Finally, cell therapy is far more complex and resource-consuming process as compared to drug-based medicine; pluripotent stem cell biology and technology is in need of further investigation and development before these cells can be used in clinics.

  10. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  11. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  12. Gene and stem cell therapy of the hair follicle.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  13. Cell-based reparative therapies for multiple sclerosis.

    Science.gov (United States)

    Ben-Hur, Tamir; Fainstein, Nina; Nishri, Yossi

    2013-11-01

    The strong rationale for cell-based therapy in multiple sclerosis is based on the ability of stem and precursor cells of neural and mesenchymal origin to attenuate neuroinflammation, to facilitate endogenous repair processes, and to participate directly in remyelination, if directed towards a myelin-forming fate. However, there are still major gaps in knowledge regarding induction of repair in chronic multiple sclerosis lesions, and whether transplanted cells can overcome the multiple environmental inhibitory factors which underlie the failure of endogenous repair. Major challenges in clinical translation include the determination of the optimal cellular platform, the route of cell delivery, and candidate patients for treatment.

  14. Pure Red Cell Aplasia Following Interleukin-2 Therapy

    Directory of Open Access Journals (Sweden)

    Janice P. Dutcher MD

    2016-04-01

    Full Text Available A 61-year-old woman with metastatic renal cell carcinoma underwent systemic treatment with high-dose interleukin-2 (IL-2. Anemia requiring transfusion of 1 unit of packed red blood cells (PRBCs was required during the second week of IL-2 therapy. One month following completion of high-dose IL-2 treatment, she was hospitalized for severe, symptomatic anemia and received 5 units of PRBCs. She was referred back for evaluation. A complete hematologic evaluation was performed including antiviral serology, evaluation for hemolysis, complete iron studies, and finally bone marrow aspiration and biopsy. The diagnosis was pure red cell aplasia, and no inciting viral cause could be ascertained. She required PRBCs for 5 months following IL-2 therapy. It was concluded that IL-2 was the cause of her red cell aplasia. This subsequently resolved spontaneously, and she had normal hemoglobin and hematocrit, respectively, 1 and 2 years after treatment.

  15. Novel Therapies for Aggressive B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Kenneth A. Foon

    2012-01-01

    Full Text Available Aggressive B-cell lymphoma (BCL comprises a heterogeneous group of malignancies, including diffuse large B-cell lymphoma (DLBCL, Burkitt lymphoma, and mantle cell lymphoma (MCL. DLBCL, with its 3 subtypes, is the most common type of lymphoma. Advances in chemoimmunotherapy have substantially improved disease control. However, depending on the subtype, patients with DLBCL still exhibit substantially different survival rates. In MCL, a mature B-cell lymphoma, the addition of rituximab to conventional chemotherapy regimens has increased response rates, but not survival. Burkitt lymphoma, the most aggressive BCL, is characterized by a high proliferative index and requires more intensive chemotherapy regimens than DLBCL. Hence, there is a need for more effective therapies for all three diseases. Increased understanding of the molecular features of aggressive BCL has led to the development of a range of novel therapies, many of which target the tumor in a tailored manner and are summarized in this paper.

  16. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  17. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy

    Science.gov (United States)

    Qin, Weiwei; Huang, Guan; Chen, Zuanguang; Zhang, Yuanqing

    2017-01-01

    Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.

  18. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  19. Targeted cytotoxic therapy kills persisting HIV infected cells during ART.

    Science.gov (United States)

    Denton, Paul W; Long, Julie M; Wietgrefe, Stephen W; Sykes, Craig; Spagnuolo, Rae Ann; Snyder, Olivia D; Perkey, Katherine; Archin, Nancie M; Choudhary, Shailesh K; Yang, Kuo; Hudgens, Michael G; Pastan, Ira; Haase, Ashley T; Kashuba, Angela D; Berger, Edward A; Margolis, David M; Garcia, J Victor

    2014-01-01

    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA(+) cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.

  20. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    NARCIS (Netherlands)

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  1. [Successful therapy of metastatic basal cell carcinoma with vismodegib].

    Science.gov (United States)

    Zutt, M; Mazur, F; Bergmann, M; Lemke, A J; Kaune, K M

    2014-11-01

    A 71-year-old man presented with giant basal cell carcinoma on the abdomen which had metastasized. He was treated with oral vismodegib. Both the primary ulcerated tumor on the abdomen and the metastases responded. Vismodegib was well tolerated without significant side effects. The tumor recurred promptly after vismodegib was discontinued, and then was resistant to therapy when vismodegib was re-administered.

  2. Understanding the application of stem cell therapy in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Sharma RK

    2012-10-01

    Full Text Available Rakesh K Sharma, Donald J Voelker, Roma Sharma, Hanumanth K ReddyUniversity of Arkansas for Medical Sciences, Medical Center of South Arkansas, El Dorado, AR, USAAbstract: Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.Keywords: stem cell therapy, stem cell delivery, cardiovascular diseases, myocardial infarction, cardiomyopathy

  3. Cell Therapy To Obtain Spinal Fusion

    Science.gov (United States)

    2010-07-01

    peritoneal perforation, sacroiliac joint instability, and herniation of abdominal contents through defects in the ilium [8]. Furthermore, the volume of...M, Zhang Y, Senitzer D, Forman SJ, Emerson SG 2007 Hematopoietic stem-cell contribution to ectopic skeletogenesis. J Bone Joint Surg Am 89(2):347...becomes weight bearing. It readily fuses to the skeletal bone, and often leads to ankylosis of the joints . Harnessing this capacity in a targeted

  4. A quality risk management model approach for cell therapy manufacturing.

    Science.gov (United States)

    Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio

    2010-12-01

    International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed.

  5. CAR T Cell Therapy: A Game Changer in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Hilde Almåsbak

    2016-01-01

    Full Text Available The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.

  6. Cell therapy medicinal product regulatory framework in Europe and its application for MSC based therapy development

    Directory of Open Access Journals (Sweden)

    Janis eAncans

    2012-08-01

    Full Text Available Advanced therapy medicinal products (ATMPs, including cell therapy products, form a new class of medicines in the European Union. Since ATMPs are at the forefront of scientific innovation in medicine, specific regulatory framework has been developed for these medicines and implemented from 2009. The Committee for Advanced Therapies (CAT has been established at European Medicines Agency (EMA for centralized classification, certification and evaluation procedures, and other ATMP related tasks. Guidance documents, initiatives and interaction platforms are available to make the new framework more accessible for small and medium-sized enterprises, academia, hospitals and foundations. Good understanding of centralised and national components of the regulatory system is required to plan product development. It is in the best interests of cell therapy developers to utilise provided resources starting with the preclinical stage. Whilst there have not been mesenchymal stem cell (MSC based medicine authorisations in the EU, three MSC products have received marketing approval in other regions since 2011. Information provided on regulatory requirements, procedures and initiatives is aimed to facilitate MSC based medicinal product development and authorisation in the EU.

  7. Key developments in stem cell therapy in cardiology.

    Science.gov (United States)

    Schulman, Ivonne H; Hare, Joshua M

    2012-11-01

    A novel therapeutic strategy to prevent or reverse ventricular remodeling, the substrate for heart failure and arrhythmias following a myocardial infarction, is the use of cell-based therapy. Successful cell-based tissue regeneration involves a complex orchestration of cellular and molecular events that include stem cell engraftment and differentiation, secretion of anti-inflammatory and angiogenic mediators, and proliferation of endogenous cardiac stem cells. Recent therapeutic approaches involve bone marrow-derived mononuclear cells and mesenchymal stem cells, adipose tissue-derived stem cells, cardiac-derived stem cells and cell combinations. Clinical trials employing mesenchymal stem cells and cardiac- derived stem cells have demonstrated efficacy in infarct size reduction and regional wall contractility improvement. Regarding delivery methods, the safety of catheter-based, transendocardial stem cell injection has been established. These proof-of-concept studies have paved the way for ongoing pivotal trials. Future studies will focus on determining the most efficacious cell type(s) and/or cell combinations and the mechanisms underlying their therapeutic effects.

  8. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  9. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  10. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  11. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  12. Neoadjuvant targeted therapy in patients with renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2015-01-01

    Full Text Available Cytoreductive nephrectomy as an independent option in patients with metastatic renal cell carcinoma (mRCC cannot be considered as the only effective method, with rare exception, of a few patients with solitary metastases. Cytoreductive nephrectomy is now part of a multimodal approach encompassing surgical treatment and systemic drug therapy. Many retrospective and two prospective studies have demonstrated that it is expedient to perform cytoreductive nephrectomy. Immunotherapy should not be used as preoperatively in the era of cytokine therapy for mRCC due to that fact that it has no impact on primary tumor. In the current targeted therapy era, many investigators have concentrated attentionon the role of neoadjuvant targeted therapy for the treatment of patients with both localized and locally advanced mRCC. The potential benefits of neoadjuvant therapy for localized and locally advanced RCC include to make surgery easier and to increase the possibility of organsparing treatment, by decreasing the stage of primary tumor and the size of tumors. The possible potential advantages of neoadjuvant targeted therapy in patients with mRCC include prompt initiation of necessary systemic therapy; identification of patients with primary refractory tumors; and a preoperative reduction in the stage of primary tumor. Numerous retrospective and some prospective phase II studies have shown that neoadjuvant targeted therapy in patients with localized and locally advanced RCC is possible and tolerable and surgical treatment after neoadjuvant targeted therapy is safe and executable with a low incidence of complications. If neoadjuvant therapy is to be performed, it should be done within 2–4 months before surgery. Sorafenib and sunitinib are now most tested and suitable for neoadjuvant targeted therapy. Sorafenib is a more preferred drug due to its shorter half-life and accordingly to the possibility of discontinuing the drug immediately prior to

  13. Stem cells and regenerative therapies for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Farrell K

    2012-07-01

    Full Text Available Krista Farrell, Roger A BarkerCambridge Centre for Brain Repair, University of Cambridge, Cambridge, UKAbstract: Currently the mainstay of Parkinson’s disease (PD therapy is the pharmacological replacement of the loss of the dopaminergic nigrostriatal pathway using drugs such as dopamine agonists and levodopa. Whilst these drugs effectively ameliorate some of the motor features of PD, they do not improve many of the nonmotor features that arise secondary to pathology outside of this system, nor do they slow the progressive neurodegeneration that is a characteristic of the disease. Regenerative therapies for PD seek to fill this therapeutic gap, with cell transplantation being the most explored approach to date. A number of different cell sources have been used in this therapeutic approach, but to date, the most successful has been the use of fetal ventral mesencephalic (VM tissue that contains within it the developing nigral dopaminergic cells. Cell transplantation for PD was pioneered in the 1980–1990s, with several successful open-label trials of fetal VM transplantation in patients with relatively advanced PD. Whilst these findings were not replicated in two subsequent double-blind sham-surgery controlled trials, there were reasons to explain this outside of the one drawn at the time that these therapies are ineffective. Indeed all these studies have provided evidence that following the transplantation of fetal VM tissue, dopaminergic cells can survive long term, produce dopamine, and bring about clinical improvements in younger patients over many years. The use of fetal tissue, irrespective of its true efficacy, will never become a widely available therapy for PD for a host of practical and ethical reasons, and thus much work has been put in recently to exploring the utility of stem cells as a source of nigral dopaminergic neurons. In this respect, the advent of embryonic stem cell and induced pluripotent cells has heralded a new era in

  14. Importance of the stem cell microenvironment forophthalmological cell-based therapy

    Institute of Scientific and Technical Information of China (English)

    Peng-Xia Wan; Bo-Wen Wang; Zhi-Chong Wang

    2015-01-01

    Cell therapy is a promising treatment for diseasesthat are caused by cell degeneration or death. Thecells for clinical transplantation are usually obtainedby culturing healthy allogeneic or exogenous tissue invitro . However, for diseases of the eye, obtaining theadequate number of cells for clinical transplantationis difficult due to the small size of tissue donors andthe frequent needs of long-term amplification ofcells in vitro , which results in low cell viability aftertransplantation. In addition, the transplanted cells oftendevelop fibrosis or degrade and have very low survival.Embryonic stem cells (ESCs) and induced pluripotentstem cells (iPS) are also promising candidates for celltherapy. Unfortunately, the differentiation of ESCs canbring immune rejection, tumorigenicity and undesireddifferentiated cells, limiting its clinical application.Although iPS cells can avoid the risk of immune rejectioncaused by ES cell differentiation post-transplantation,the low conversion rate, the risk of tumor formationand the potentially unpredictable biological changesthat could occur through genetic manipulation hinderits clinical application. Thus, the desired clinical effectof cell therapy is impaired by these factors. Recentresearch findings recognize that the reason for lowsurvival of the implanted cells not only depends on theseeded cells, but also on the cell microenvironment,which determines the cell survival, proliferation andeven reverse differentiation. When used for cell therapy,the transplanted cells need a specific three-dimensionalstructure to anchor and specific extra cellular matrixcomponents in addition to relevant cytokine signalingto transfer the required information to support theirgrowth. These structures present in the matrix inwhich the stem cells reside are known as the stem cellmicroenvironment. The microenvironment interactionwith the stem cells provides the necessary homeostasisfor cell maintenance and growth. A large number ofstudies

  15. Stem Cell Therapy and Administration Routes After Stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Gutiérrez-Fernández, María; Fuentes, Blanca; Ramos-Cejudo, Jaime; Díez-Tejedor, Exuperio

    2016-10-01

    Cell-based therapy has demonstrated safety and efficacy in experimental animal models of stroke, as well as safety in stroke patients. However, various questions remain regarding the therapeutic window, dosage, route of administration, and the most appropriate cell type and source, as well as mechanisms of action and immune-modulation to optimize treatment based on stem cell therapy. Various delivery routes have been used in experimental stroke models, including intracerebral, intraventricular, subarachnoid, intra-arterial, intraperitoneal, intravenous, and intranasal routes. From a clinical point of view, it is necessary to demonstrate which is the most feasible, safest, and most effective for use with stroke patients. Therefore, further experimental studies concerning the safety, efficacy, and mechanisms of action involved in these therapeutic effects are required to determine their optimal clinical use.

  16. Gold nanocages for imaging and therapy of prostate cancer cells

    Science.gov (United States)

    Sironi, Laura; Avvakumova, Svetlana; Galbiati, Elisabetta; Locarno, Silvia A.; Macchi, Chiara; D'Alfonso, Laura; Ruscica, Massimiliano; Magni, Paolo; Collini, Maddalena; Romeo, Sergio; Chirico, Giuseppe; Prosperi, Davide

    2016-04-01

    Gold nanocages (AuNCs) have been shown to be a useful tool both for imaging and hyperthermia therapy of cancer, thanks to their outstanding optical properties, low toxicity and facile functionalization with targeting molecules, including peptides and antibodies. In particular, hyperthermia is a minimally invasive therapy which takes advantage of the peculiar properties of gold nanoparticles to efficiently convert the absorbed light into heat. Here, we use AuNCs for the selective targeting and imaging of prostate cancer cells. Moreover, we report the hyperthermic effect characterization of the AuNCs both in solution and internalized in cells. Prostate cancer cells were irradiated at different exposure times, with a pulsed near infrared laser, and the cellular viability was evaluated by confocal microscopy.

  17. Trimodal therapy in squamous cell carcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Matuschek C

    2011-10-01

    Full Text Available Abstract Patients with ESCC (squamous cell carcinoma of the esophagus are most commonly diagnosed with locally advanced tumor stages. Early metastatic disease and late diagnosis are common reasons responsible for this tumor's poor clinical outcome. The prognosis of esophageal cancer is very poor because patients usually do not have symptoms in early disease stages. Squamous cell carcinoma of the esophagus frequently complicates patients with multiple co-morbidities and these patients often require interdisciplinary diagnosis and treatment procedures. At present time, neoadjuvant radiation therapy and chemotherapy followed by surgery are regarded as the international standard of care. Meta-analyses have confirmed that this approach provides the patient with better local tumor control and an increased overall survival rate. It is recommended that patients with positive tumor response to neoadjuvant therapy and who are poor surgical candidates should consider definitive radiochemotherapy without surgery as a treatment option. In future, EGFR antibodies may also be administered to patients during therapy to improve the current treatment effectiveness. Positron-emission tomography proves to be an early response-imaging tool used to evaluate the effect of the neoadjuvant therapy and could be used as a predictive factor for the survival rate in ESCC. The percentage proportions of residual tumor cells in the histopathological analyses represent a gold standard for evaluating the response rate to radiochemotherapy. In the future, early response evaluation and molecular biological tests could be important diagnostic tools in influencing the treatment decisions of ESCC patients.

  18. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  19. ESHAP therapy effective in a patient with Langerhans cell sarcoma.

    Science.gov (United States)

    Yoshimi, Akihide; Kumano, Keiki; Motokura, Toru; Takazawa, Yutaka; Oota, Satoshi; Chiba, Shigeru; Takahashi, Tsuyoshi; Fukayama, Masashi; Kurokawa, Mineo

    2008-06-01

    We describe the rare case of a 53-year-old woman with systemic involvement of Langerhans cell sarcoma (LCS) who had undergone living-related liver transplantation. We chose the CHOP regimen as first-line chemotherapy, and clinical improvement of LCS was obtained. Intensive care was necessary due to the systemic involvement of LCS and severe infectious diseases. After the third cycle of CHOP therapy, however, disease progression was observed, and we administrated a modified ESHAP regimen (etoposide, carboplatin, cytarabine, methylprednisolone) as second-line therapy. A marked response was obtained after four cycles of this combination chemotherapy. Modified ESHAP may be a very effective combination chemotherapy regimen for LCS.

  20. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  1. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy.

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S; Burke, Martin; McNally, Elizabeth M

    2010-01-01

    A 41-year-old male with cardiomyopathy from an inherited beta myosin heavy-chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart.

  2. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S.; Burke, Martin; McNally, Elizabeth M.

    2010-01-01

    A 41 year old male with cardiomyopathy from an inherited β myosin heavy chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart. PMID:19026577

  3. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Yuxi He

    2014-08-01

    Full Text Available Retinitis pigmentosa (RP is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs. This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment.

  4. Last piece of the puzzle for ATLAS

    CERN Multimedia

    Clare Ryan

    At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern. Each of ATLAS' small wheels are 9.3 metres in diameter and weigh 100 tonnes including the massive shielding elements. They are the final parts of ATLAS' muon spectrometer. The first piece of ATLAS was installed in 2003 and since then many detector elements have journeyed down the 100 metre shaft into the ATLAS underground cavern. This last piece completes this gigantic puzzle.

  5. Two unnoticed pieces of medieval polyphony

    OpenAIRE

    Hiley, David

    1992-01-01

    The two pieces introduced and briefly discussed in this article have so far remained unnoticed because of the manner of their notation. In each case pieces of two-voice polyphony were notated with the two voices separate, instead of in the score notation which has been usual since, roughly, the second half of the twelfth century. In the one case, the sequence Magnus deus in universa terra in a manuscript from Marchiennes of the fourteenth century, a second voice was added at the back of the b...

  6. Stem cell therapy for cardiovascular disease : answering basic questions regarding cell behavior

    NARCIS (Netherlands)

    Bogt, Koen Elzert Adriaan van der

    2010-01-01

    Stem cell therapy has raised enthusiasm as a potential treatment for cardiovascular diseases. However, questions remain about the in vivo behavior of the cells after transplantation and the mechanism of action with which the cells could potentially alleviate disease symptoms. The objective of the re

  7. Risk factors in the development of stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hermsen Harm PH

    2011-03-01

    Full Text Available Abstract Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience or potential/theoretical risks (i.e. risks observed in animal studies include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC. Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC in

  8. Treating hearing disorders with cell and gene therapy

    Science.gov (United States)

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  9. Gene therapy progress and prospects: stem cell plasticity.

    Science.gov (United States)

    Kashofer, K; Bonnet, D

    2005-08-01

    properties similar to embryonic stem (ES) cells. These cells can be cultured and expanded in vitro without losing their stem cell potential making them an attractive target for cell therapy. Finally, it is still not clear if stem cells for various tissues are present in peripheral blood, or bone marrow and thus can be directly purified from these sources. Identification of putative tissue stem cells would be necessary before purification strategies can be devised. In this review, we discuss the evidence for these models, and the conflicting results obtained to date.

  10. [Academic cell therapy facilities are challenged by European regulation on advanced therapy medicinal products].

    Science.gov (United States)

    Chabannon, Christian; Sabatier, Florence; Rial-Sebbag, Emmanuelle; Calmels, Boris; Veran, Julie; Magalon, Guy; Lemarie, Claude; Mahalatchimy, Aurélie

    2014-05-01

    Regulation (EC) n° 1394/2007 from the European Parliament and the Council describes a new category of health products termed « Advanced Therapy Medicinal Products » (ATMPs). ATMPs derive from cell engineering, tissue engineering or genetic manipulations, and can in some instances be combined with medical devices. ATMPs are distributed and administered to patients, after biotechnology or pharmaceutical companies have obtained a marketing authorization that is granted by the European Commission on the basis of the European Medicines Agency (EMA) assessment. Seven years after the publication of the regulation, few of these therapies have received a marketing authorization, and even fewer have met commercial success, suggesting that a number of medical and economic issues still need to be sorted out in order to achieve sustainability in this field. The coexistence of three sets of rules for three categories of health products that are biologically and medically related - ATMPs, ATMPs produced under the hospital exemption rule, and cell therapy products (CTPs) (a specific legal category in France) that have long been used in hematopoietic cell transplantation - constitutes a complex regulatory framework. This situation raises significant issues for historical as well as emerging operators in this moving field that are discussed thereafter.

  11. Responses of Cancer Cells Induced by Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2013-01-01

    Full Text Available Photodynamic therapy (PDT involves the administration of a photosensitizer, followed by local irradiation of tumor tissues using a laser of an appropriate wavelength to activate the photosensitizer. Since multiple cellular signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic effect, understanding the responses of cancer cells to PDT will aid in the development of new interventions. This review describes the possible cell-death signaling pathways initiated by PDT. In addition, we describe our latest findings regarding the induction of expression of miRNAs specific to apoptosis in cancer cells and the induction of antitumor immunity following PDT against cancer cells. A more detailed understanding of the molecular mechanisms related to PDT will potentially improve long-term survival of PDT treated patients.

  12. Toward a stem cell gene therapy for breast cancer.

    Science.gov (United States)

    Li, ZongYi; Liu, Ying; Tuve, Sebastian; Xun, Ye; Fan, Xiaolong; Min, Liang; Feng, Qinghua; Kiviat, Nancy; Kiem, Hans-Peter; Disis, Mary Leonora; Lieber, André

    2009-05-28

    Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.

  13. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  14. Gene Therapy In Squamous Cell Carcinoma – A Short Review

    Directory of Open Access Journals (Sweden)

    Soma Susan Varghese

    2011-07-01

    Full Text Available Oral cancer remains one of the leading causes of death world wide. Various means to destroy tumor cells preferentially have been developed; gene therapy is one among them with less treatment morbidity. Gene therapy involves the transfer of therapeutic or working copy of genes into a specific cell of an individual in order to repair a faulty copy of gene. The alteration can be accomplished by repairing or replacing the damaged DNA by various strategies and vectors. To date genetically altered viruses are commonly used as gene delivery vehicle (vector which has an advantage of evolutionary selection of host-virus relation. Non viral vectors which include the physical transfection of genes can be accomplished by electrophoration, microinjection, or use of ballistic particles and chemical transfection by forming liposomes.

  15. Activation of endogenous neural stem cells for multiple sclerosis therapy

    Directory of Open Access Journals (Sweden)

    Iliana eMichailidou

    2015-01-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability.A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs. Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.

  16. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    Science.gov (United States)

    2014-09-01

    Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp ...clinical trials for CRPC. The team is composed of Drs. Jeffrey Karp Co-Director of Regenerative Therapeutics at the Brigham & Women’s Hospital...encapsulating a PSA-activated thapsigargin-based prodrug (G115, Fig. 5) were generated by the Karp lab with the properties outlined in Table 7. These

  17. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    Prostate: From Birth to Death and Potential Applications in Between. Prostate Cancer Foundation Tumor Microenvironment/ Immunology Working Group...Award Number: W81XWH-13-1-0304 TITLE: Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs CONTRACTING...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  18. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  19. Combined modality therapy for locally advanced penile squamous cell carcinoma.

    Science.gov (United States)

    Pedrick, T J; Wheeler, W; Riemenschneider, H

    1993-12-01

    We report here a patient who presented with locally advanced Jackson Stage IV penile squamous cell carcinoma who was managed with preoperative 5-fluorouracil, mitomycin C chemotherapy, and concurrent radiation therapy. He experienced an excellent partial response which allowed more limited surgery than would otherwise be indicated. He is still alive and well 5 years after completion of his treatment without side effects, local recurrence, or distant metastatic disease.

  20. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  1. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions.

  2. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  3. Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Bhasin A

    2012-01-01

    Full Text Available Background: The regenerative potential of brain has led to emerging therapies that can cure clinico-motor deficits after neurological diseases. Bone marrow mononuclear cell therapy is a great hope to mankind as these cells are feasible, multipotent and aid in neurofunctional gains in Stroke patients. Aims: This study evaluates safety, feasibility and efficacy of autologous mononuclear (MNC stem cell transplantation in patients with chronic ischemic stroke (CIS using clinical scores and functional imaging (fMRI and DTI. Design: Non randomised controlled observational study Study: Twenty four (n=24 CIS patients were recruited with the inclusion criteria as: 3 months–2years of stroke onset, hand muscle power (MRC grade at least 2; Brunnstrom stage of recovery: II-IV; NIHSS of 4-15, comprehendible. Fugl Meyer, modified Barthel Index (mBI and functional imaging parameters were used for assessment at baseline, 8 weeks and at 24 weeks. Twelve patients were administered with mean 54.6 million cells intravenously followed by 8 weeks of physiotherapy. Twelve patients served as controls. All patients were followed up at 24 weeks. Outcomes: The laboratory and radiological outcome measures were within normal limits in MNC group. Only mBI showed statistically significant improvement at 24 weeks (p<0.05 whereas the mean FM, MRC, Ashworth tone scores in the MNC group were high as compared to control group. There was an increased number of cluster activation of Brodmann areas BA 4, BA 6 post stem cell infusion compared to controls indicating neural plasticity. Cell therapy is safe and feasible which may facilitate restoration of function in CIS.

  4. Photodynamic therapy for basal cell skin cancer ENT-organs

    Directory of Open Access Journals (Sweden)

    V. N. Volgin

    2014-01-01

    Full Text Available Results of photodynamic therapy in 96 patients with primary and recurrent basal cell skin cancer of ENT-organs are represented. For photodynamic therapy the Russian-made photosensitizer Photoditazine at dose of 0.6–1.4 mg/kg was used. Parameters were selected taking into account type and extent of tumor and were as follows: output power – 0.1–3.0 W, power density – 0.1–1.3 W/cm2, light dose – 100–400 J/cm2. The studies showed high efficacy of treatment for primary and recurrent basal cell skin cancer of nose, ear and external auditory canal – from 87.5 to 94.7% of complete regression. Examples of efficacy of the method are represented in the article. High efficacy and good cosmetic effects allowed to make a conclusion about perspectivity of photodynamic therapy for recurrent basal cell skin cancer of ENT-organs. 

  5. Cell therapy of periodontium: from animal to human?

    Directory of Open Access Journals (Sweden)

    Elena Andreea eTrofin

    2013-11-01

    Full Text Available Periodontitis is a chronic inflammatory disease affecting the soft and hard tissues supporting the teeth, which often leads to tooth loss. Its significant impact on the patient’s general health and quality of life point to a need for more effective management of this condition. Existing treatments include scaling/root planing and surgical approaches but their overall effects are relatively modest and restricted in application. The goal of regenerative therapy of periodontal defects is to enhance endogenous progenitors and thus promote optimal wound healing. Considering that the host or tissue might be defective in the periodontitis context, it has been proposed that grafting exogenous stem cells would produce new tissues and create a suitable microenvironment for tissue regeneration. Thus, cell therapy of periodontium has been assessed in many animal models and promising results have been reported. However, the methodological diversity of these studies makes the conversion to clinical practice difficult. The aim of this review is to highlight the primary requirements to be satisfied before the leap to clinical trials can be made. We therefore review cell therapy applications for periodontal regeneration in animal models and the concerns to be addressed before undertaking human experiments.

  6. Genome-editing Technologies for Gene and Cell Therapy.

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  7. Therapies targeting cancer stem cells: Current trends and future challenges

    Institute of Scientific and Technical Information of China (English)

    Denisa; L; Dragu; Laura; G; Necula; Coralia; Bleotu; Carmen; C; Diaconu; Mihaela; Chivu-Economescu

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells(CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a longlasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of mi RNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers.

  8. Genome-editing Technologies for Gene and Cell Therapy

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  9. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  10. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  11. Cell therapy for neurological disorders: The elusive goal

    Directory of Open Access Journals (Sweden)

    Prakash N Tandon

    2016-01-01

    Full Text Available The positive outcomes of the transplantation of fetal neural tissue in adult rat models of a variety of neurological disorders, particularly Parkinson's disease, in the 1970s, and its translation to humans in the 1980s, raised great hopes for patients suffering from these incurable disorders. This resulted in a frantic research globally to find more suitable, reliable, and ethically acceptable alternatives. The discovery of adult stem cells, embryonic stem cells, and more recently, the induced pluripotent cells further raised our expectations. The useful functional recovery in animal models using these cell transplantation techniques coupled with the desperate needs of such patients prompted many surgeons to “jump from the rat-to-man” without scientifically establishing a proof of their utility. Each new development claimed to overcome the limitations, shortcomings, safety, and other technical problems associated with the earlier technique, yet newer difficulties prevented evidence-based acceptance of their clinical use. However, thousands of patients across the globe have received these therapies without a scientifically acceptable proof of their reliability. The present review is an attempt to summarize the current status of cell therapy for neurological disorders.

  12. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem(iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies.However,the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells.Embryonic stem cells(ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy.Recent studies on human parthenogenetic embryonic stem cells(hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics,but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions.To generate various pluripotent stem cells,diverse reprogramming techniques and approaches will be developed and integrated.This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology,and ultimately benefit cell therapy and regenerative medicine.

  13. Human parthenogenetic embryonic stem cells: one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    HAO Jie; HU WanWan; SHENG Chao; YU Yang; ZHOU Qi

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or in duced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine.

  14. B cell-directed therapies in multiple sclerosis.

    Science.gov (United States)

    Gasperi, Christiane; Stüve, Olaf; Hemmer, Bernhard

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory neurological disease of the CNS that goes along with demyelination and neurodegeneration. It is probably caused by an autoimmune response against the CNS, which emerges from the interplay of genetic and environmental factors. Although major progress has been made in the treatment of MS, it is still the leading cause for acquired nontraumatic neurological disability in young adults. Several therapeutic agents have been approved for the treatment of relapsing-remitting MS (RRMS), aiming at the reduction of relapses and a delay in disability progression. Three therapeutic monoclonal antibodies targeting CD20-positive B cells (rituximab, ocrelizumab and ofatumumab) were investigated in MRI-based Phase II and Phase III trials in RRMS, providing consistent evidence for a disease-ameliorating effect of B cell depleting therapies in MS. Here, we discuss the role of B cells and review current and future therapeutic approaches to target B cells in MS.

  15. Cell-Based Therapy for Degenerative Retinal Disease.

    Science.gov (United States)

    Zarbin, Marco

    2016-02-01

    Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.

  16. [Music therapy induced alternations in natural killer cell count and function].

    Science.gov (United States)

    Hasegawa, Y; Kubota, N; Inagaki, T; Shinagawa, N

    2001-03-01

    The effects of music therapy on natural killer (NK) cell count and activity (NKCA) were studied in 19 persons. Alzheimer's disease, cerebrovessel disease and Parkinson's disease subjects were assigned to a music therapy. Blood samples were drawn at rest and after completion of music therapy. Music therapy did not change the number of circulating lymphocytes. The percentage of NK cells increased during music therapy, along with an increase in the NK cell activity. The proportion of T cells, CD4 and CD8 did not change significantly during music therapy. One hour after the music therapy session, plasma adrenaline increased but cortisol and noradrenalin did not change. The results indicate that music therapy can significantly increase NK cell count and activity. The change in NK cell and function were independent of neuro-degenerative diseases.

  17. Efficient photodynamic therapy on human retinoblastoma cell lines.

    Directory of Open Access Journals (Sweden)

    Jan Walther

    Full Text Available Photodynamic therapy (PDT has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.

  18. Efficient Photodynamic Therapy on Human Retinoblastoma Cell Lines

    Science.gov (United States)

    Walther, Jan; Schastak, Stanislas; Dukic-Stefanovic, Sladjana; Wiedemann, Peter; Neuhaus, Jochen; Claudepierre, Thomas

    2014-01-01

    Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma. PMID:24498108

  19. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    Science.gov (United States)

    Xiao, Juan; Yang, Rongbing; Biswas, Sangita; Qin, Xin; Zhang, Min; Deng, Wenbin

    2015-04-24

    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  20. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  1. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Science.gov (United States)

    2010-07-01

    ...” and “Multi-piece Rim Matching Chart,” or any other poster which contains at least the same... mounting and inflation. (4) The size (bead diameter and tire/wheel widths) and type of both the tire...

  2. [Stem cells, stem cell therapy, and ethical problems of medicine].

    Science.gov (United States)

    Hruska, I; Filip, S

    2007-01-01

    Common denominator of many philosophic approaches to the problem of using human embryos in medicine is the statement that it is "a full-value human subject that deserves respect as an adult human being". It has a defined identity in which it starts its own coordinated gradual development. Therefore, it is not just a simple cluster of cells. Integrity or holistic properties of a new quality of cells that, as a whole, represent an early embryo, and in fact are not a cluster of pre-embryonic "structural" parts or a sum of cells etc. They have theirs own evolution, previously inherently encoded, but not precisely predestined. In other words, only autointegrity alone in evolution, inherence as a part of predetermination in evolution of embryo, is not able to exist as a unit "alone". Human foetus since the first moments of its existence goes through many qualitative (externally or internally determined) transformations before it becomes a respectable human being. It is possible to say that medicine, as many times before, is now coming to a stage when axiologic values, ethical directives or moral feelings of its subjects and human objects proved in the past, are no more relevant at present. Therefore, medicine has no other alternative than an active approach to study this problem from all philosophical, biological and medical aspects to evolutionize itself in this new dimension. In this paper some of these questions are discussed and some ways of forming the ethics in therapeutic use of stem cells are presented.

  3. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells

    NARCIS (Netherlands)

    S.A.J. Chamuleau; K.R. Vrijsen; D.G. Rokosh; X.L. Tang; J.J. Piek; R. Bolli

    2009-01-01

    Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells.

  4. Implant Gigi One-Piece vs Two-Pieces dalam Praktek Sehari-Hari

    OpenAIRE

    Dian Lestari Kurnia; Amilia Ramadhani; Rikko Hudyono

    2014-01-01

    Saat ini, implant merupakan pilihan terbaik untuk menggantikan gigi yang tanggal, akan tetapi prosedur pemasangannya terbilang rumit dan memerlukan prosedur bedah kedua untuk pemasangan prostetik. Beberapa komplikasi seperti screw patah atau longgar dan adanya celah mikro pada batas pertemuan implant dan abutment dapat menyebabkan kegagalan implant. Studi kasus ini bertujuan untuk membahas mengenai keuntungan dan kerugian desain implant gigi one-piece dan two-pieces. Kasus pertama, seorang wa...

  5. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  6. Targeted therapy in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shou-Ching Tang

    2004-01-01

    @@ 1 Introduction Recent progress in molecular biology has enabled us to better understand the molecular mechanism underlying pathogenesis of human malignancy including lung cancer. Sequencing of human genome has identified many oncogenes and tumor suppressor genes,giving us a better understanding of the molecular events leading to the formation, progression, metastasis, and the development of drug resistance in human lung cancer. In addition, many signal transduction pathways have been discovered that play important roles in lung cancer. Novel strategy of anti-cancer drug development now involves the identification and development of targeted therapy that interrupts one or more than one pathways or cross-talk among different signal transduction pathways. In addition, efforts are underway that combine the traditional cytotoxic (non-targeted) agents with the biological (targeted) therapy to increase the response rate and survival in patients with lung cancer, especially advanced non-small cell lung cancer (NSCLC).

  7. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    Institute of Scientific and Technical Information of China (English)

    Justin; D; Glenn; Katharine; A; Whartenby

    2014-01-01

    Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.

  8. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  9. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L

    2013-01-01

    Further development of adoptive T-cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) has the potential to markedly change the long-term prognosis of patients with metastatic melanoma, and modifications of the original protocol that can improve its clinical efficacy are highly...... desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...

  10. Photothermal Therapy of Cancer Cells mediated by Blue Hydrogel Nanoparticles

    Science.gov (United States)

    Curry, Taeyjuana; Epstein, Tamir; Kopelman, Raoul

    2012-10-01

    Coomassie Blue dye has been covalently linked into a polyacrylamide nanoparticle matrix, so as to form nontoxic, biologically compatible, biodegradable and cell-specific targetable nanoparticles for photothermal therapy (PTT) of cancer. The nanoparticles were found to be approximately 80-95 nm in diameter, with an absorbance value of 0.52. Using an inexpensive, low intensity LED array light source (590nm, 25mW/cm^2), with 20 minute excitation times, at 37 , PTT induced hyperthermia/thermolysis in HeLa cells, in vitro, resulting in virtually complete cell death when observed 3 hours after exposure. These multifunctional particles have been previously used in cancer delineation, for surgery, and in photoacoustic imaging studies; the addition of the PTT function now enables a multi-pronged medical approach to cancer.

  11. Adoptive therapy with CAR redirected T cells for hematological malignancies.

    Science.gov (United States)

    Li, Shiqi; Yang, Zhi; Shen, Junjie; Shan, Juanjuan; Qian, Cheng

    2016-04-01

    The survival of patients with hematological malignancies has been significantly improved due to the development of new therapeutic agents. However, relapse remains a major matter for concern. Recently, T cells engineered with chimeric antigen receptor (CAR) were reported to show unprecedented responses in a range of hematological malignancies. The persistence of the CAR-T cell can last for years and tends toward long-term antitumor memory by which relapses can be effectively prevented. The primary side effects that appear in most clinical trials are cytokine release syndrome and neurotoxicity. However, these symptoms can be treated and reversed. In this review, we describe CAR structure and function and summarize recent advances in CAR-T cell therapy in hematological malignancies.

  12. Photothermal therapy of cancer cells using novel hollow gold nanoflowers

    Directory of Open Access Journals (Sweden)

    Han J

    2014-01-01

    Full Text Available Jing Han,1 Jinru Li,1 Wenfeng Jia,1 Liangming Yao,2 Xiaoqin Li,1 Long Jiang,1 Yong Tian21Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, 2Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: This article presents a new strategy for fabricating large gold nanoflowers (AuNFs that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanoparticles (AuNPs and growing their crystallites on the surface of vesicles. The localized surface plasmon-resonance spectrum of this type of AuNF can be easily modulated to the NIR region by controlling the size of the AuNFs. When the size of the AuNFs increased, biosafety under visible light improved and cytotoxicity increased under NIR irradiation. Experiments in vitro with HeLa cells and in vivo with small mice have been carried out, with promising results. The mechanism for this phenomenon is based on the hypothesis that it is difficult for larger AuNFs to enter the cell without NIR irradiation, but they enter the cell easily at the higher temperatures caused by NIR irradiation. We believe that these effects will exist in other types of noble metallic NPs and cancer cells. In addition, the affinity between AuNPs and functional biomolecules, such as aptamers and biomarkers, will make this type of AuNF a good recognition device in cancer diagnosis and therapy.Keywords: HeLa cells, endocytosis, cytotoxicity, AuNFs, NIR, cancer therapy

  13. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  14. Human fetal chromaffin cells: a potential tool for cell pain therapy.

    Science.gov (United States)

    Jozan, Suzanne; Aziza, Jacqueline; Châtelin, Sophie; Evra, Corinne; Courtade-Saïdi, Monique; Parant, Olivier; Sol, Jean Christophe; Zhou, Huafang; Lazorthes, Yves

    2007-06-01

    Transplantation of adrenal medulla cells has been proposed in the treatment of various conditions. Indeed, these cells possess a bipotentiality: neural and neuroendocrine, which could be exploited for brain repair or pain therapy. In a previous study, we characterized these human cells in vitro over 7-10 gestational weeks (GW) [Zhou, H., Aziza, J., Sol, J.C., Courtade-Saidi, M., Chatelin, S., Evra, C., Parant, O., Lazorthes, Y., and Jozan, S., 2006. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development. Exp. Neurol. 198, 370-381]. We report here our results on the extension to 23 GW. This developmental period can be split into three stages. During the first stage (7-10 GW), we observed in situ that extra-adrenal surrounding cells display the same morphology and phenotype as the intra-adrenal chromaffin cells. We also found that the intra-adrenal chromaffin cells could be committed in vitro towards an adrenergic phenotype using differentiating agents. During the second stage (11 to 15-16 GW), two types of cells (Type 1 and Type 2 cells) were identified morphologically both inside and outside the gland. Interestingly, we noted that the Type 2 cells stem from the Type 1 cells. However, during this developmental period only the intra-adrenal Type 2 cells will evolve towards an adrenergic phenotype. In the third stage (17-23 GW), we observed the ultimate location of the medulla gland. Both the in situ results and the in vitro experiments indicate that particular procedures need to be implemented prior transplantation of chromaffin cells. First, in order to obtain a large number of immature chromaffin cells, they must be isolated from the intra and extra-adrenal gland and should then be committed towards an adrenergic phenotype in vitro for subsequent use in pain therapy. This strategy is under investigation in our laboratory.

  15. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy.

    Science.gov (United States)

    Rasmussen, Anne-Marie; Borelli, Gabriel; Hoel, Hanna Julie; Lislerud, Kari; Gaudernack, Gustav; Kvalheim, Gunnar; Aarvak, Tanja

    2010-04-15

    Adoptive T cell therapy is a promising treatment strategy for patients with different types of cancer. The methods used for generation of high numbers of tumor specific T cells usually require long-term ex vivo culture, which frequently lead to generation of terminally differentiated effector cells, demonstrating low persistence in vivo. Therefore, optimization of protocols for generation of T cells for adoptive cell therapy is warranted. The aim of this work was to develop a protocol for expansion of antigen-specific T cells using Dynabeads CD3/CD28 to obtain T cells expressing markers important for in vivo persistence and survival. To achieve high numbers of antigen-specific T cells following expansion, we have tested the effect of depleting regulatory T cells using Dynabeads CD25 and including a pre-stimulation step with peptide prior to the non-specific expansion with Dynabeads. Our data demonstrate that virus- and tumor specific T cells can be expanded to high numbers using Dynabeads CD3/CD28 following optimization of the culture conditions. The expansion protocol presented here results in enrichment of antigen-specific CD8(+) T cells with an early/intermediate memory phenotype. This is observed even when the antigen-specific CD8(+) T cells demonstrated a terminal effector phenotype prior to expansion. This protocol thus results in expanded T cells with a phenotypic profile which may increase the chance of retaining long-term persistence following adoptive transfer. Based on these data we have developed a cGMP protocol for expansion of tumor specific T cells for adoptive T cell therapy.

  16. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  17. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  18. Selenite benefits embryonic stem cells therapy in Parkinson's disease.

    Science.gov (United States)

    Tian, L-P; Zhang, S; Xu, L; Li, W; Wang, Y; Chen, S-D; Ding, J-Q

    2012-09-01

    Embryonic stem cells (ESC) transplantation is a potential therapeutic approach for Parkinson's disease (PD). However, one of the main challenges to this therapy is the post-transplantation survival of dopaminergic (DA) neurons. In this study, mouse ESC were differentiated into DA neurons by a modified serum free protocol. These ESC-derived neurons were then transplanted into striatum of 6-OHDA lesioned rat. The viability of grafted DA neurons was decreased, accompanied by activated microglia and high levels of proinflammatory factors, such as TNF-α and iNOS, in the graft niche. This suggested that the local neuroinflammation might be involved in the reduced cells viability. Selenite, the source of essential micronutrient selenium, could inhibit NF-κB p65 nuclear translocation and subsequently reduce iNOS, COX-2 and TNF-α expression in LPS-treated BV2 cells in a dose dependant manner. Before the transplantation of ESC-derived DA neurons, 6-OHDA lesioned rats were intraperitoneally injected with selenite. The expression levels of TNF-α and iNOS were decreased by 30% and 50%, respectively, in selenite treated group. The survival of implanted DA neurons and the rotational behavior of transplanted rats were also remarkably improved by selenite treatment. To sum up, selenite might benefit ESCs transplantation therapy in PD through anti-inflammation effects.

  19. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    Science.gov (United States)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  20. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  1. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  2. The Endocrine Regulation of Stem Cells: Physiological Importance and Pharmacological Potentials for Cell-Based Therapy.

    Science.gov (United States)

    Ghorbani, Ahmad; Naderi-Meshkin, Hojjat

    2016-01-01

    Throughout life, different types of stem cells participate in tissue generation, maintenance, plasticity, and repair. Their abilities to secrete growth factors, to proliferate and differentiate into several cell lineages, and to migrate and home into the damaged tissues have made them attractive candidates for cell therapy and tissue engineering applications. Normal stem cell function is tied to the cell-intrinsic mechanisms and extrinsic signals derived from the surrounding microenvironment or circulation. Understanding the regulatory signals that govern stem cell functions is essential in order to have full knowledge about organogenesis, tissue maintenance and tissue plasticity in the physiological condition. It is also important for optimizing tissue engineering and improving the therapeutic efficiency of stem cells in regenerative medicine. A growing body of evidence indicates that hormonal signals can critically influence stem cell functions in fetal, postnatal, and adult tissues. This review focuses on recent studies revealing how growth hormone, insulin, thyroid hormone, parathormone, adrenocorticotropin, glucocorticoids, erythropoietin, and gastrointestinal hormones control stem cell behavior through influencing survival, proliferation, migration, homing, and differentiation of these cells. Moreover, how environmental factors such as exercise, hypoxia, and nutrition might affect stem cell functions through influencing the endocrine system is discussed. Some of the current limitations of cell therapy and how hormones can help overcoming these limitations are briefly outlined.

  3. Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms

    Science.gov (United States)

    Rao, Gautam; Mashkouri, Sherwin; Aum, David; Marcet, Paul; Borlongan, Cesar V

    2017-01-01

    Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson’s disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a clinically relevant model of epilepsy with both neurological and neuropsychiatric symptoms of the disease as the primary outcome measures.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  5. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  6. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    NARCIS (Netherlands)

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Van Luijk, Peter; Limoli, Charles L.

    2014-01-01

    Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for re

  7. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.

    Science.gov (United States)

    Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S

    2008-09-01

    Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.

  8. Stem cell therapy in autoimmune rheumatic diseases: a comprehensive review.

    Science.gov (United States)

    Liu, Bin; Shu, ShangAn; Kenny, Thomas P; Chang, Christopher; Leung, Patrick S C

    2014-10-01

    The clinical management of autoimmune rheumatic diseases (ARD) has undergone significant changes in the last few decades, leading to remarkable improvements in clinical outcomes of many patients with mild to moderate ARD. On the other hand, severe refractory ARD patients often have high morbidity and mortality. Extensive basic research and clinical evidence has opened the door to new encouraging perspectives, such as the establishment of a role of stem cell transplantation (SCT) in the strategic management of ARD. Given the great heterogeneity of ARD, it is difficult to assign an optimal SCT regimen to all ARD patients. SCT remains a challenging mode of therapy in ARD patients from the standpoints of both efficacy and safety. As the clinical data of SCT in ARD increases and as we improve our understanding of stem cell biology and the downstream effects on the immune system, the future is promising for the development of optimal personalized SCT regimens in ARD.

  9. Cell Therapy in Patients with Critical Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Rita Compagna

    2015-01-01

    Full Text Available Critical limb ischemia (CLI represents the most advanced stage of peripheral arterial obstructive disease (PAOD with a severe obstruction of the arteries which markedly reduces blood flow to the extremities and has progressed to the point of severe rest pain and/or even tissue loss. Recent therapeutic strategies have focused on restoring this balance in favor of tissue survival using exogenous molecular and cellular agents to promote regeneration of the vasculature. These are based on stimulation of angiogenesis by extracellular and cellular components. This review article carries out a systematic analysis of the most recent scientific literature on the application of stem cells in patients with CLI. The results obtained from the detailed analysis of the recent literature data have confirmed the beneficial role of cell therapy in reducing the rate of major amputations in patients with CLI and improving their quality of life.

  10. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine.

  11. Therapy of murine squamous cell carcinomas with 2-difluoromethylornithine

    Directory of Open Access Journals (Sweden)

    Chen Yan

    2004-06-01

    Full Text Available Abstract Targeted overexpression of an ornithine decarboxylase (ODC transgene to mouse skin (the K6/ODC mouse significantly enhances susceptibility to carcinogenesis. While in most strain backgrounds the predominant tumor type resulting from initiation-promotion protocols is benign squamous papilloma, K6/ODC mice on a FVB/N background develop malignant squamous cell carcinomas (SCCs rapidly and in high multiplicity after carcinogen treatment. We have investigated the utility of polyamine-based therapy against SCCs in this model using the ODC inhibitor 2-difluoromethylornithine delivered orally. At a 2% concentration in drinking water, DFMO caused rapid tumor regression, but in most cases, tumors eventually regrew rapidly even in the presence of DFMO. The tumors that regrew were spindle cell carcinomas, an aggressive undifferentiated variant of SCC. At 1% DFMO in the drinking water, tumors also responded rapidly, but tumor regrowth did not occur. The majority of DFMO-treated SCCs were classified as complete responses, and in some cases, apparent tumor cures were achieved. The enzymatic activity of ODC, the target of DFMO, was substantially reduced after treatment with 1% DFMO and the high SCC polyamine levels, especially putrescine, were also significantly lowered. Based on the results of BrdUrd labeling and TUNEL assays, the effect of DFMO on SCC growth was accompanied by a significant reduction in tumor proliferation with no increase in the apoptotic index. These results demonstrate that SCCs, at least in the mouse, are particularly sensitive to polyamine-based therapy.

  12. Current status and perspectives of cell therapy in Chagas disease

    Directory of Open Access Journals (Sweden)

    Milena Botelho Pereira Soares

    2009-07-01

    Full Text Available One century after its discovery, Chagas disease, caused by the protozoan, Trypanosoma cruzi, remains a major health problem in Latin America. Mortality and morbidity are mainly due to chronic processes that lead to dysfunction of the cardiac and digestive systems. About one third of the chronic chagasic individuals have or will develop the symptomatic forms of the disease, with cardiomyopathy being the most common chronic form. This is a progressively debilitating disease for which there are no currently available effective treatments other than heart transplantation. Like in other cardiac diseases, tissue engineering and cell therapy have been investigated in the past few years as a means of recovering the heart function lost as a consequence of chronic damage caused by the immune-mediated pathogenic mechanisms elicited in individuals with chronic chagasic cardiomyopathy. Here we review the studies of cell therapy in animal models and patients with chronic Chagas disease and the perspectives of the recovery of the heart function lost due to infection with T. cruzi.

  13. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  14. Use of an apparatus for separating magnetic pieces of material

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Using of an apparatus for separating magnetic pieces of scrap-material of a first group from magnetic pieces of scrap- material of a second group, wherein a mixture of pieces of scrap-material from the first group and from the second group is collectively transported with a conveyor to a separating

  15. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  16. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma:a case for gene therapy

    Institute of Scientific and Technical Information of China (English)

    Marianna Foldvari; Ding Wen Chen

    2016-01-01

    Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufifcient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also dis-cuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efifcient and representativein vitro models for rapid and reliable screening in the drug development process.

  17. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy

    Directory of Open Access Journals (Sweden)

    Marianna Foldvari

    2016-01-01

    Full Text Available Regeneration of damaged retinal ganglion cells (RGC and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process.

  18. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies.

    Science.gov (United States)

    Negroni, Elisa; Gidaro, Teresa; Bigot, Anne; Butler-Browne, Gillian S; Mouly, Vincent; Trollet, Capucine

    2015-04-01

    Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.

  19. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells.

    Science.gov (United States)

    Chamuleau, S A J; Vrijsen, K R; Rokosh, D G; Tang, X L; Piek, J J; Bolli, R

    2009-05-01

    Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199-207.).

  20. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... compliant medium for MSC cultivation, expansion and differentiation. The expanded and differentiated MSCs can be used in autologous mesenchymal stromal cell therapy in patients with ischaemic heart disease Udgivelsesdato: 2008......OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...

  1. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    Science.gov (United States)

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-01

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  2. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients

    DEFF Research Database (Denmark)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca;

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-...

  3. Photodynamic therapy for the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-02-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described.

  4. A natural stem cell therapy? How novel findings and biotechnology clarify the ethics of stem cell research

    OpenAIRE

    Patel, P.

    2006-01-01

    The natural replacement of damaged cells by stem cells occurs actively and often in adult tissues, especially rapidly dividing cells such as blood cells. An exciting case in Boston, however, posits a kind of natural stem cell therapy provided to a mother by her fetus—long after the fetus is born. Because there is a profound lack of medical intervention, this therapy seems natural enough and is unlikely to be morally suspect. Nevertheless, we feel morally uncertain when we consider giving this...

  5. Adenovirus as a gene therapy vector for hematopoietic cells.

    Science.gov (United States)

    Marini, F C; Yu, Q; Wickham, T; Kovesdi, I; Andreeff, M

    2000-06-01

    Adenovirus (Adv)-mediated gene transfer has recently gained new attention as a means to deliver genes for hematopoietic stem cell (HSC) or progenitor cell gene therapy. In the past, HSCs have been regarded as poor Adv targets, mainly because they lack the specific Adv receptors required for efficient and productive Adv infection. In addition, the nonintegrating nature of Adv has prevented its application to HSC and bone marrow transduction protocols where long-term expression is required. There is even controversy as to whether Adv can infect hematopoietic cells at all. In fact, the ability of Adv to infect epithelium-based targets and its inability to effectively transfect HSCs have been used in the development of eradication schemes that use Adv to preferentially infect and "purge" tumor cell-contaminating HSC grafts. However, there are data supporting the existence of productive Adv infections into HSCs. Such protocols involve the application of cytokine mixtures, high multiplicities of infection, long incubation periods, and more recently, immunological and genetic modifications to Adv itself to enable it to efficiently transfer genes into HSCs. This is a rapidly growing field, both in terms of techniques and applications. This review examines the two sides of the Adv/CD34 controversy as well as the current developments in this field.

  6. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  7. Clinical significance of metallothioneins in cell therapy and nanomedicine

    Directory of Open Access Journals (Sweden)

    Sharma S

    2013-04-01

    Full Text Available Sushil Sharma,1 Afsha Rais,1 Ranbir Sandhu,1 Wynand Nel,1 Manuchair Ebadi21Saint James School of Medicine, Bonaire, The Netherlands; 2Department of Pharmacology, Physiology, and Therapeutics, Center of Excellence in Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USAAbstract: Mammalian metallothioneins (MTs are low molecular weight (6–7 kDa cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs. MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as early and sensitive biomarkers of environmental safety and effectiveness of newly developed NPs for clinical applications. Microarray analysis has indicated that MTs are significantly induced in drug resistant cancers and during radiation treatment. Nutritional stress and environmental toxins (eg, kainic acid and domoic acid induce MTs and aggregation of multilamellar electron-dense membrane stacks (Charnoly body due to mitochondrial degeneration. MTs enhance mitochondrial bioenergetics of reduced nicotinamide adenine dinucleotide–ubiquinone oxidoreductase (complex-1, a rate-limiting enzyme complex involved in the oxidative phosphorylation. Monoamine oxidase-B inhibitors (eg, selegiline inhibit α-synuclein nitration, implicated in Lewy body formation, and inhibit 1-methyl 4-phenylpyridinium and 3-morpholinosydnonimine-induced apoptosis in cultured human dopaminergic neurons and mesencephalic fetal stem cells. MTs

  8. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  9. Would cancer stem cells affect the future investment in stem cell therapy.

    Science.gov (United States)

    Rameshwar, Pranela

    2012-04-20

    The common goal within the overwhelming interests in stem cell research is to safely translate the science to patients. Although there are various methods by which this goal can be reached, this editorial emphasizes the safety of mesenchymal stem cell (MSC) transplant and possible confounds by the growing information on cancer stem cells (CSCs). There are several ongoing clinical trials with MSCs and their interactions with CSCs need to be examined. The rapid knowledge on MSCs and CSCs has now collided with regards to the safe treatment of MSCs. The information discussed on MSCs can be extrapolated to other stem cells with similar phenotype and functions such as placenta stem cells. MSCs are attractive for cell therapy, mainly due to reduced ethical concerns, ease in expansion and reduced ability to be transformed. Also, MSCs can exert both immune suppressor and tissue regeneration simultaneously. It is expected that any clinical trial with MSCs will take precaution to ensure that the cells are not transformed. However, going forward, the different centers should be aware that MSCs might undergo oncogenic events, especially as undifferentiated cells or early differentiated cells. Another major concern for MSC therapy is their ability to promote tumor growth and perhaps, to protect CSCs by altered immune responses. These issues are discussed in light of a large number of undiagnosed cancers.

  10. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy

    Science.gov (United States)

    Sarang, Shabari; Viswanathan, Chandra

    2016-01-01

    Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes. PMID:27426087

  11. Embryonic and adult stem cells as a source for cell therapy in Parkinson's disease.

    Science.gov (United States)

    Levy, Yossef S; Stroomza, Merav; Melamed, Eldad; Offen, Daniel

    2004-01-01

    The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson's disease (PD) in particular, is that they will improve patient's functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft's excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their

  12. ET-67SUICIDE GENE THERAPY FOR GLIOMA USING MULTILINEAGE-DEFFERENTIATING STRESS ENDURING (MUSE) CELLS

    OpenAIRE

    Yamasaki, Tomohiro; Wakao, Shohei; Kawaji, Hiroshi; Suzuki, Tomo; Kamio, Yoshinobu; AMANO, SHINJI; Sameshima, Tetsuro; Sakai, Naoto; TOKUYAMA, TSUTOMU; Dezawa, Mari; Namba, Hiroki

    2014-01-01

    INTRODUCTION: We have been investigating cell-based glioma gene therapy using various kinds of stem cells transduced with the herpes simplex virus thymidine kinase gene (HSVtk). In our previous study, we used SSEA3/CD105 double-positive multilineage-differentiating stress-enduring (Muse) cells transduced with HSVtk (Muse-tk cells) as the vehicle for HSVtk/ganciclovir (GCV) gene therapy. We demonstrated a potent in vitro tumoricidal bystander effect for various glioma cells. In the present stu...

  13. Fractal dimension analysis of complexity in Ligeti piano pieces

    Science.gov (United States)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  14. Relaxation Algorithm of Piecing-Error for Sub-Images

    Institute of Scientific and Technical Information of China (English)

    LI Yueping; TANG Pushan

    2001-01-01

    During the process of automatic image recognition or automatic reverse design of IC, people often encounter the problem that some sub-images must be pieced together into a whole image. In the traditional piecing algorithm for sub images, a large accumulated error will be made. In this paper, a relaxation algorithm of piecing-error for sub-images is presented. It can eliminate the accumulated error in the traditional algorithm and greatly improve the quality of pieced image. Based on an initial pieced image, one can continuously adjust the center of every sub-image and its angle to lessen the error between the adjacent sub-images, so the quality of pieced image can be improved. The presented results indicate that the proposed algorithm can dramatically decrease the error while the quality of ultimate pieced image is still acceptable. The time complexity of this algorithm is O(n In n).

  15. New advances in the mesenchymal stem cells therapy against skin flaps necrosis

    Institute of Scientific and Technical Information of China (English)

    Fu-Gui; Zhang; Xiu-Fa; Tang

    2014-01-01

    Mesenchymal stem cells(MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various cells, such as osteoblasts, adipocytes, chondrocytes, vascular endothelial progenitor cells, and other cell types. MSCs are being widely studied as potential cell therapy agents due to their angiogenic properties, which have been well established by in vitro and in vivo researches. Within this context, MSCs therapy appears to hold substantial promise, particularly in the treatment of conditions involving skin grafts, pedicle flaps, as well as free flaps described in literatures. The purpose of this review is to report the new advances and mechanisms underlying MSCs therapy against skin flaps necrosis.

  16. New advances in the mesenchymal stem cells therapy against skin flaps necrosis.

    Science.gov (United States)

    Zhang, Fu-Gui; Tang, Xiu-Fa

    2014-09-26

    Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various cells, such as osteoblasts, adipocytes, chondrocytes, vascular endothelial progenitor cells, and other cell types. MSCs are being widely studied as potential cell therapy agents due to their angiogenic properties, which have been well established by in vitro and in vivo researches. Within this context, MSCs therapy appears to hold substantial promise, particularly in the treatment of conditions involving skin grafts, pedicle flaps, as well as free flaps described in literatures. The purpose of this review is to report the new advances and mechanisms underlying MSCs therapy against skin flaps necrosis.

  17. Untested, unproven, and unethical: the promotion and provision of autologous stem cell therapies in Australia.

    Science.gov (United States)

    McLean, Alison K; Stewart, Cameron; Kerridge, Ian

    2015-02-09

    An increasing number of private clinics in Australia are marketing and providing autologous stem cell therapies to patients. Although advocates point to the importance of medical innovation and the primacy of patient choice, these arguments are unconvincing. First, it is a stark truth that these clinics are flourishing while the efficacy and safety of autologous stem cell therapies, outside of established indications for hematopioetic stem cell transplantation, are yet to be shown. Second, few of these therapies are offered within clinical trials. Third, patients with chronic and debilitating illnesses, who are often the ones who take up these therapies, incur significant financial burdens in the expectation of benefiting from these treatments. Finally, the provision of these stem cell therapies does not follow the established pathways for legitimate medical advancement. We argue that greater regulatory oversight and professional action are necessary to protect vulnerable patients and that at this time the provision of unproven stem cell therapies outside of clinical trials is unethical.

  18. Cell Death Pathways in Photodynamic Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    Michael R. Hamblin

    2011-06-01

    Full Text Available Photodynamic therapy (PDT is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2 are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  19. Cell Death Pathways in Photodynamic Therapy of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, Pawel, E-mail: pmroz@partners.org [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Yaroslavsky, Anastasia [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Boston University College of Engineering, Boston, MA 02114 (United States); Kharkwal, Gitika B [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Hamblin, Michael R. [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 (United States)

    2011-06-03

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  20. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy.

    Science.gov (United States)

    Duncan, Kelsey; Gonzales-Portillo, Gabriel S; Acosta, Sandra A; Kaneko, Yuji; Borlongan, Cesar V; Tajiri, Naoki

    2015-10-14

    Distinguished by an infarct core encased within a penumbra, stroke remains a primary source of mortality within the United States. While our scientific knowledge regarding the pathology of stroke continues to improve, clinical treatment options for patients suffering from stroke are extremely limited. Tissue plasminogen activator (tPA) remains the sole FDA-approved drug proven to be helpful following stroke. However, due to the need to administer the drug within 4.5h of stroke onset its usefulness is constrained to less than 5% of all patients suffering from ischemic stroke. One experimental therapy for the treatment of stroke involves the utilization of stem cells. Stem cell transplantation has been linked to therapeutic benefit by means of cell replacement and release of growth factors; however the precise means by which this is accomplished has not yet been clearly delineated. Using a traumatic brain injury model, we recently demonstrated the ability of transplanted mesenchymal stromal cells (MSCs) to form a biobridge connecting the area of injury to the neurogenic niche within the brain. We hypothesize that MSCs may also have the capacity to create a similar biobridge following stroke; thereby forming a conduit between the neurogenic niche and the stroke core and peri-infarct area. We propose that this biobridge could assist and promote interaction of host brain cells with transplanted stem cells and offer more opportunities to enhance the effectiveness of stem cell therapy in stroke. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.

  1. Re: Engineered Nanoparticles Induce Cell Apoptosis: Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Engineered nanoparticles (ENPs have been widely applied in industry, biology and medicine recently (i.e. clothes, sunscreens, cosmetics, foods, diagnostic medicine, imaging and drug delivery. There are many kinds of manufactured nanomaterial products including TiO2, ZnO, CeO2, Fe2O3, and CuO (as metal oxide nanoparticles as well as gold, silver, platinum and palladium (as metal nanoparticles, and other carbon-based ENP’s such as carbon nanotububes and quantum dots. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs and cause toxic effects. In many researches, ENP effects on the cancer cells of different organs with related cell apoptosis were noted (AgNP, nano-Cr2O3, Au-Fe2O3 NPs, nano-TiO2, nano-HAP, nano-Se, MoO3 nanoplate, Realgar nanoparticles. ENPs, with their unique properties, such as surface charge, particle size, composition and surface modification with tissue recognition ligands or antibodies, has been increasingly explored as a tool to carry small molecular weight drugs as well as macromolecules for cancer therapy, thus generating the new concept “nanocarrier”. Direct induction of cell apoptosis by ENPs provides an opportunity for cancer treatment. In the century of nanomedicine that depends on development of the nanotechnology, ENPs have a great potential for application in cancer treatment with minimal side effects.

  2. Clinical relevance of stem cell therapies in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Amit K Srivastava

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS, characterized by the progressive loss of both upper and lower motor neurons, is a fatal neurodegenerative disorder. This disease is often accompanied by a tremendous physical and emotional burden not only for the patients, but also for their families and friends as well. There is no clinically relevant treatment available for ALS. To date, only one Food and Drug Administration (FDA-approved drug, Riluzole, licensed 18 years ago, has been proven to marginally prolong patients′ survival without improving the quality of their lives. Because of the lack of an effective drug treatment and the promising outcomes from several preclinical studies, researchers have highlighted this disease as a suitable candidate for stem cell therapy. This review article highlights the finding of key preclinical studies that present a rationale for the use of different types of stem cells for the treatment of ALS, and the most recent updates on the stem cell-based ALS clinical trials around the world.

  3. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease.

    Science.gov (United States)

    Chen, L W; Kuang, F; Wei, L C; Ding, Y X; Yung, K K L; Chan, Y S

    2011-06-01

    Parkinson's disease (PD), a common degenerative disease in humans, is known to result from loss of dopamine neurons in the substantia nigra and is characterized by severe motor symptoms of tremor, rigidity, bradykinsia and postural instability. Although levodopa administration, surgical neural lesion, and deep brain stimulation have been shown to be effective in improving parkinsonian symptoms, cell replacement therapy such as transplantation of dopamine neurons or neural stem cells has shed new light on an alternative treatment strategy for PD. While the difficulty in securing donor dopamine neurons and the immuno-rejection of neural transplants largely hinder application of neural transplants in clinical treatment, induced pluripotent stem cells (iPS cells) derived from somatic cells may represent a powerful tool for studying the pathogenesis of PD and provide a source for replacement therapies in this neurodegenerative disease. Yamanaka et al. [2006, 2007] first succeeded in generating iPS cells by reprogramming fibroblasts with four transcription factors, Oct4, Sox2, Klf4, and c-Myc in both mouse and human. Animal studies have further shown that iPS cells from fibroblasts could be induced into dopamine neurons and transplantation of these cells within the central nervous system improved motor symptoms in the 6-OHDA model of PD. More interestingly, neural stem cells or fibroblasts from patients can be efficiently reprogrammed and subsequently differentiated into dopamine neurons. Derivation of patient-specific iPS cells and subsequent differentiation into dopamine neurons would provide a disease-specific in vitro model for disease pathology, drug screening and personalized stem cell therapy for PD. This review summarizes current methods and modifications in producing iPS cells from somatic cells as well as safety concerns of reprogramming procedures. Novel reprogramming strategies that deter abnormal permanent genetic and epigenetic alterations are essential for

  4. Two-piece hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    Subramaniam Elangovan

    2011-01-01

    Full Text Available There are various types of obturator fabrication achievable by prosthodontist. Maxillectomy, which is a term used by head and neck surgeons and prosthodontists to describe the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms is a defect for which to provide an effective obturator is a difficult task for the maxillofacial prosthodontist. Multidisciplinary treatment planning is essential to achieve adequate retention and function for the prosthesis. Speech is often unintelligible as a result of the marked defects in articulation and nasal resonance. This paper describes how to achieve the goal for esthetics and phonetics and also describes the fabrication of a hollow obturator by two piece method, which is simple and maybe used as definitive obturator for maximum comfort of the patient.

  5. Stem cell models of polyglutamine diseases and their use in cell-based therapies

    Directory of Open Access Journals (Sweden)

    Evangelia eSiska

    2015-07-01

    Full Text Available Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.

  6. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model.

    Directory of Open Access Journals (Sweden)

    Goichi Yanai

    Full Text Available Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes

  7. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  8. The missing piece syndrome in peer-to-peer communication

    Directory of Open Access Journals (Sweden)

    Bruce Hajek

    2011-01-01

    Full Text Available Typical protocols for peer-to-peer file sharing over the Internet divide files to be shared into pieces. New peers strive to obtain a complete collection of pieces from other peers and from a seed. In this paper we investigate a problem that can occur if the seeding rate is not large enough. The problem is that, even if the statistics of the system are symmetric in the pieces, there can be symmetry breaking, with one piece becoming very rare. If peers depart after obtaining a complete collection, they can tend to leave before helping other peers receive the rare piece. Assuming that peers arrive with no pieces, there is a single seed, random peer contacts are made, random useful pieces are downloaded, and peers depart upon receiving the complete file, the system is stable if the seeding rate (in pieces per time unit is greater than the arrival rate, and is unstable if the seeding rate is less than the arrival rate. The result persists for any piece selection policy that selects from among useful pieces, such as rarest first, and it persists with the use of network coding.

  9. Cellular plasticity : the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy

    NARCIS (Netherlands)

    Moonen, Jan-Renier A. J.; Harmsen, Martin C.; Krenning, Guido

    2012-01-01

    Progenitor cell based therapies have emerged for the treatment of ischemic cardiovascular diseases where there is insufficient endogenous repair. However, clinical success has been limited, which challenges the original premise that transplanted progenitor cells would orchestrate repair. In this rev

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  12. Progress and challenges in the development of a cell-based therapy for hemophilia A.

    Science.gov (United States)

    Fomin, M E; Togarrati, P P; Muench, M O

    2014-12-01

    Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review, we discuss the possibilities, progress, and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific induced pluripotent stem cells.

  13. Case Reports of Adipose-derived Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  14. The prospect of precision therapy for renal cell carcinoma.

    Science.gov (United States)

    Ciccarese, Chiara; Brunelli, Matteo; Montironi, Rodolfo; Fiorentino, Michelangelo; Iacovelli, Roberto; Heng, Daniel; Tortora, Giampaolo; Massari, Francesco

    2016-09-01

    The therapeutic landscape of renal cell carcinoma (RCC) has greatly expanded in the last decade. From being a malignancy orphan of effective therapies, kidney cancer has become today a tumor with several treatment options. Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). In this complex scenario it is important to find prognostic and predictive factors that can help in decision making in the treatment of mRCC.

  15. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Nazem Ghasemi,

    2017-01-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease characterized by central nervous system (CNS lesions that can lead to severe physical or cognitive disability as well as neurological defects. Although the etiology and pathogenesis of MS remains unclear, the present documents illustrate that the cause of MS is multifactorial and include genetic predisposition together with environmental factors such as exposure to infectious agents, vitamin deficiencies, and smoking. These agents are able to trigger a cascade of events in the immune system which lead to neuronal cell death accompanied by nerve demyelination and neuronal dysfunction. Conventional therapies for MS are based on the use of anti-inflammatory and immunomodulatory drugs, but these treatments are not able to stop the destruction of nerve tissue. Thus, other strategies such as stem cell transplantation have been proposed for the treatment of MS. Overall, it is important that neurologists be aware of current information regarding the pathogenesis, etiology, diagnostic criteria, and treatment of MS. Thus, this issue has been discussed according to recent available information.

  16. Terapia celular no acidente vascular cerebral Cell therapy in strokes

    Directory of Open Access Journals (Sweden)

    Rosalia Mendez-Otero

    2009-05-01

    Full Text Available O AVC é o recordista em número de óbitos e a maior causa de incapacidade no Brasil. Apesar das inúmeras pesquisas realizadas ao longo dos últimos anos não há terapias farmacológicas adequadas para este quadro e, neste cenário, as terapias celulares vêm sendo consideradas como alternativas terapêuticas para diminuir as perdas funcionais decorrentes do AVC. Nesta revisão comentaremos os resultados de diversos estudos pré-clinicos e de alguns clínicos que utilizaram diferentes tipos de células-tronco em AVC.Stroke is the leading cause of death and incapacity in Brazil. Over the last few years, numerous preclinical and clinical studies have been carried out, however to date, none of the drugs tested in these studies were effective in patients. The emerging field of stem cell research has raised hope of therapy to ameliorate the functional loss after strokes. In this review we will discuss the results of several preclinical studies and clinical trials using different types of stem cells in the treatment of strokes.

  17. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    Directory of Open Access Journals (Sweden)

    Ander Abarrategi

    2016-01-01

    Full Text Available Osteosarcoma (OS is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.

  18. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.

    Science.gov (United States)

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei

    2016-04-01

    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  19. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  20. Photodynamic therapy-induced programmed cell death in carcinoma cell lines

    Science.gov (United States)

    He, Xiao-Yan; Sikes, Robert A.; Thomsen, Sharon L.; Chung, L.; Jacques, Steven L.

    1993-06-01

    The mode of cell death following photodynamic therapy (PDT) was investigated from the perspective of programmed cell death (apoptosis). Human prostate carcinoma cells (PC3), human non-small cell lung carcinoma (H322a), and rat mammary carcinoma (MTF7) were treated by PDT following sensitization with dihematoporphyrin ether (DHE). The response of these carcinoma cell lines to PDT was variable. An examination of extracted cellular DNA by gel electrophoresis showed the characteristic DNA ladder pattern indicative of internucleosomal cleavage of DNA during apoptosis. MTF7 and PC3 responded to PDT by inducing apoptosis while H322a had no apoptotic response. The magnitude of the response and the PDT dosage required to induce the effect were different in PC3 and MTF7. MTF7 cells responded with rapid apoptosis at the dose of light and drug that yielded 50% cell death (LD50). In contrast, PC3 showed only marginal apoptosis at the LD50 but had a marked response at the LD85. Furthermore, the onset of apoptosis followed slower kinetics in PC3 (2 hr - 4 hr) than in MTF7 (cells were killed by PDT but failed to exhibit any apoptotic response. This study indicates that apoptosis may occur during PDT induced cell death, but this pathway is not universal for all cancer cell lines.

  1. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  2. Host-based Th2 cell therapy for prolongation of cardiac allograft viability.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    Full Text Available Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1 reduced the frequency of activated T cells in secondary lymphoid organs; (2 shifted post-transplant cytokines towards a Th2 phenotype; and (3 prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.

  3. One Piece Orbitozygomatic Approach Based on the Sphenoid Ridge Keyhole

    DEFF Research Database (Denmark)

    Spiriev, Toma; Poulsgaard, Lars; Fugleholm, Kaare

    2016-01-01

    The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge was exami......The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge...

  4. The last piece of the ring

    CERN Multimedia

    2008-01-01

    In a sequel to the recent success at CMS, the last section of the LHC beam vacuum system was installed in ATLAS on Monday 16 June. The place where experiment and accelerator meet, the completion of the last part of the continuous 27 km beampipe signals how near the LHC is to the circulation of its first beam. Watch the video! The last section of the LHC beampipe being installed in ATLAS.Although a seemingly simple piece of technology in comparison with the complexity of the detectors, the beampipe is a carefully designed and essential part of both the experiments and the LHC. The section of beam pipe that completed the LHC ring on Monday 16 June is about 20 metres from the centre of ATLAS, very close to where the first magnets of the LHC are located. Unlike the central ATLAS beampipe, which is made of beryllium, the final section is made of stainless steel. An aluminium cone surrounds the stainless steel tube with the super slim...

  5. Model Checking in Bits and Pieces

    Directory of Open Access Journals (Sweden)

    Kedar S. Namjoshi

    2013-09-01

    Full Text Available Fully automated verification of concurrent programs is a difficult problem, primarily because of state explosion: the exponential growth of a program state space with the number of its concurrently active components. It is natural to apply a divide and conquer strategy to ameliorate state explosion, by analyzing only a single component at a time. We show that this strategy leads to the notion of a "split" invariant, an assertion which is globally inductive, while being structured as the conjunction of a number of local, per-component invariants. This formulation is closely connected to the classical Owicki-Gries method and to Rely-Guarantee reasoning. We show how the division of an invariant into a number of pieces with limited scope makes it possible to apply new, localized forms of symmetry and abstraction to drastically simplify its computation. Split invariance also has interesting connections to parametric verification. A quantified invariant for a parametric system is a split invariant for every instance. We show how it is possible, in some cases, to invert this connection, and to automatically generalize from a split invariant for a small instance of a system to a quantified invariant which holds for the entire family of instances.

  6. Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Casimir de Rham

    2014-01-01

    Full Text Available Great hopes have been placed on human pluripotent stem (hPS cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA, the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.

  7. Stem cells for cell replacement therapy: a therapeutic strategy for HD?

    Science.gov (United States)

    Rosser, Anne; Svendsen, Clive N

    2014-09-15

    Much interest has been expressed over the last couple of decades in the potential application of stem cells to medicine, both for research and diagnostic tools and as a source of donor cells for therapeutic purposes. Potential therapeutic applications include replacement of cells in many body organs where the capacity for intrinsic repair is limited, including the pancreas, heart, and brain. A key challenge is to generate the relevant donor cell types, and this is particularly challenging in the brain where the number of different neuronal subtypes is so great. Although dopamine neuron replacement in Parkinson's disease has been the focus of most clinical studies, great interest has been shown in this approach for other disorders, including Huntington's disease. Replacing complete neural circuits in the adult brain is clearly challenging, and there are many other complexities with regard to both donor cells and host. This article presents the pros and cons of taking a cell therapy approach in Huntington's disease. It considers the implantation both of cells that are already of the same neural subtype as those lost in the disease process (ie, primary fetal cells derived from the developing striatum) and those derived from stem cells, which require "directing" toward that phenotype.

  8. Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in Breast Cancer Patients

    Science.gov (United States)

    2008-09-01

    Therapy for Lymphedema inBreast Cancer Patients PRINCIPAL INVESTIGATOR: Young Kwon Hong, Ph.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in... lymphedema patients. The key significance of our proposal is to utilize the elusive circulating adult stem cells to avoid the ethical and immunological

  9. Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression.

    Science.gov (United States)

    Imhof, Marianne; Karas, Irene; Gomez, Ivan; Eger, Andreas; Imhof, Martin

    2013-01-01

    There is a continuous demand for preclinical modeling of the interaction of dendritic cells with the immune system and cancer cells. Recent progress in gene expression profiling with nucleic acid microarrays, in silico modeling and in vivo cell and animal approaches for non-clinical proof of safety and efficacy of these immunotherapies is summarized. Immunoinformatic approaches look promising to unfold this potential, although still unstable and difficult to interpret. Animal models have progressed a great deal in recent years, finally narrowing the gap from bench to bedside. However, translation to the clinic should be done with precaution. The most significant results concerning clinical benefit might come from detailed immunologic investigations made during well designed clinical trials of dendritic-cell-based therapies, which in general prove safe.

  10. Small DNA pieces in C. elegans are intermediates of DNA fragmentation during apoptosis.

    Directory of Open Access Journals (Sweden)

    P Joseph Aruscavage

    Full Text Available While studying small noncoding RNA in C. elegans, we discovered that protocols used for isolation of RNA are contaminated with small DNA pieces. After electrophoresis on a denaturing gel, the DNA fragments appear as a ladder of bands, approximately 10 nucleotides apart, mimicking the pattern of nuclease digestion of DNA wrapped around a nucleosome. Here we show that the small DNA pieces are products of the DNA fragmentation that occurs during apoptosis, and correspondingly, are absent in mutant strains incapable of apoptosis. In contrast, the small DNA pieces are present in strains defective for the engulfment process of apoptosis, suggesting they are produced in the dying cell prior to engulfment. While the small DNA pieces are also present in a number of strains with mutations in predicted nucleases, they are undetectable in strains containing mutations in nuc-1, which encodes a DNase II endonuclease. We find that the small DNA pieces can be labeled with terminal deoxynucleotidyltransferase only after phosphatase treatment, as expected if they are products of DNase II cleavage, which generates a 3' phosphate. Our studies reveal a previously unknown intermediate in the process of apoptotic DNA fragmentation and thus bring us closer to defining this important pathway.

  11. Virus integration and genome influence in approaches to stem cell based therapy for andro-urology.

    Science.gov (United States)

    Li, Longkun; Zhang, Deying; Li, Peng; Damaser, Margot; Zhang, Yuanyuan

    2015-03-01

    Despite the potential of stem cells in cell-based therapy, major limitations such as cell retention, ingrowth, and trans-differentiation after implantation remain. One technique for genetic modification of cells for tissue repair is the introduction of specific genes using molecular biology techniques, such as virus integration, to provide a gene that adds new functions to enhance cellular function, and to secrete trophic factors for recruiting resident cells to participate in tissue repair. Stem cells can be labeled to track cell survival, migration, and lineage. Increasing evidence demonstrates that cell therapy and gene therapy in combination remarkably improve differentiation of implanted mesenchymal stromal cells (MSCs), revascularization, and innervation in genitourinary tissues, especially to treat urinary incontinence, erectile dysfunction, lower urinary tract reconstruction, and renal failure. This review discusses the benefits, safety, side effects, and alternatives for using genetically modified MSCs in tissue regeneration in andro-urology.

  12. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  13. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    Science.gov (United States)

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance.

  14. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy

    Directory of Open Access Journals (Sweden)

    Miki Ando

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9 into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.

  15. Mesenchymal Stem Cells for Regenerative Therapy: Optimization of Cell Preparation Protocols

    Directory of Open Access Journals (Sweden)

    Chiho Ikebe

    2014-01-01

    Full Text Available Administration of bone marrow-derived mesenchymal stem cells (MSCs is an innovative approach for the treatment of a range of diseases that are not curable by current therapies including heart failure. A number of clinical trials have been completed and many others are ongoing; more than 2,000 patients worldwide have been administered with culture-expanded allogeneic or autologous MSCs for the treatment of various diseases, showing feasibility and safety (and some efficacy of this approach. However, protocols for isolation and expansion of donor MSCs vary widely between these trials, which could affect the efficacy of the therapy. It is therefore important to develop international standards of MSC production, which should be evidence-based, regulatory authority-compliant, of good medical practice grade, cost-effective, and clinically practical, so that this innovative approach becomes an established widely adopted treatment. This review article summarizes protocols to isolate and expand bone marrow-derived MSCs in 47 recent clinical trials of MSC-based therapy, which were published after 2007 onwards and provided sufficient methodological information. Identified issues and possible solutions associated with the MSC production methods, including materials and protocols for isolation and expansion, are discussed with reference to relevant experimental evidence with aim of future clinical success of MSC-based therapy.

  16. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  17. Successful imiquimod treatment of multiple basal cell carcinomas after radiation therapy for Hodgkin's disease.

    Science.gov (United States)

    Beyeler, Mirjam; Urosevic, Mirjana; Pestalozzi, Bernhard; Dummer, Reinhard

    2005-01-01

    We present a case of a 55-year-old male patient who developed five basal cell carcinomas 23 years after radiation therapy of Hodgkin's disease. In 1980 he received radiation therapy twice. Due to relapses, he was treated with aggressive polychemotherapy and underwent autologous stem cell transplantation, which then led to complete remission. Until now he is in complete remission. However, multiple superficial basal cell carcinomas have developed on irradiation fields that have been successfully treated by imiquimod.

  18. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  19. Gene Therapy of T Helper Cells in HIV Infection. Mathematical Model of the Criteria for Clinical Effect

    DEFF Research Database (Denmark)

    Lund, Ole; Lund, Ole søgaard; Gram, Gregers

    1997-01-01

    The paper presents a mathematical model of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. Our main results are that the therapy should be designed to give the transduced cells a significant but not necessarily total protection against HIV-induced cell...... deaths, and to avoid the production of viral mutants that are insensitive to gene therapy. The transduced cells will not survive if the gene therapy only blocks the spread of virus....

  20. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products.

    Science.gov (United States)

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-05-15

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cell-based therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cell-based therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cell-based medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development.

  1. Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A

    2017-02-15

    The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4(+) and CD8(+) T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution.

  2. Regulations and ethical codes for clinical cell therapy trials in Iran

    Institute of Scientific and Technical Information of China (English)

    Hooshang Saberi; Nazi Derakhshanrad; Babak Arjmand; Jafar Ai; Masoud Soleymani; Amir Ali Hamidieh; Mohammad Taghi Joghataei; Zahid Hussain Khan; Seyed Hassan Emami Razavi

    2015-01-01

    Objective:The local regulations for conducting experimental and clinical cell therapy studies are dependent on the national and cultural approach to the issue, and may have many common aspects as well as differences with the regulations in other countries. The study reflects the latest national aspects of cell therapy in Iran and relevant regulations. Methods:The following topics are discussed in the article including sources of cell harvest, regulations for cell disposal, stem cell manufacturing, and economic aspects of stem cell, based on current practice in Iran. Results:All cell therapy trials in Iran are required to strictly abide with the ethical codes, national and local regulations, and safety requirements, as well as considering human rights and respect. Adherence to these standards has facilitated the conduct of human cell therapy trials for research, academic advancement, and therapy. Conclusions:The cell therapy trials based on the aforementioned regulations may be assumed to be ethical and they are candidates for clinical translations based on safety and efficacy issues.

  3. Complex PTSD and phased treatment in refugees: a debate piece

    Directory of Open Access Journals (Sweden)

    F. Jackie June ter Heide

    2016-02-01

    Full Text Available Background: Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD. Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. Objective: The aim of this debate piece is to defend two theses: (1 that complex trauma leads to complex PTSD in a minority of refugees only and (2 that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. Methods: The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Results: Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET and culturally adapted cognitive-behaviour therapy (CA-CBT, have consistently been found to be high. Conclusions: Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers.

  4. Determining duration of HER2-targeted therapy using stem cell extinction models.

    Directory of Open Access Journals (Sweden)

    Lindsay Riley

    Full Text Available INTRODUCTION: Trastuzumab dramatically improves survival in breast cancer patients whose tumor overexpresses HER2. A subpopulation of cells in human breast tumors has been identified with characteristics of cancer stem cells. These breast cancer stem-like cells (BCSCs rely on HER2 signaling for self-renewal, suggesting that HER2-targeted therapy targets BCSCs even when the bulk of the tumor does not overexpress HER2. In order to guide clinical trials examining HER2-targeted therapy in the adjuvant setting, we propose a mathematical model to examine BCSC population dynamics and predict optimal duration of therapy. METHODS: Varying the susceptibility of BCSCs to HER2-targeted therapy, we quantify the average time to extinction of BCSCs. We expand our model using stochastic simulation to include the partially differentiated tumor cells (TCs that represent bulk tumor population and examine effects of plasticity on required duration of therapy. RESULTS: Lower susceptibility of BCSCs and increased rates of dedifferentiation entail longer extinction times, indicating a need for prolonged administration of HER2-targeted therapy. We predict that even when therapy does not appreciably reduce tumor size in the advanced cancer setting, it will eventually eradicate the tumor in the adjuvant setting as long as there is at least a modest effect on BCSCs. CONCLUSIONS: We anticipate that our results will inform clinical trials of targeted therapies in planning the duration of therapy needed to eradicate BCSCs. Our predictions also address safety, as longer duration of therapy entails a greater potential impact on normal stem cells that may also be susceptible to stem cell-targeted therapies.

  5. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro.

    Science.gov (United States)

    Wyld, L.; Smith, O.; Lawry, J.; Reed, M. W.; Brown, N. J.

    1998-01-01

    Photodynamic therapy (PDT) is a form of cancer treatment based on the destruction of cells by the interaction of light, oxygen and a photosensitizer. Aminolaevulinic acid (ALA) is the prodrug of the photosensitizer protoporphyrin IX (PpIX). ALA-induced PDT depends on the rate of cellular synthesis of PpIX, which may vary with cell cycle phase. This study has investigated the relationship between cell cycle phase, PpIX generation and phototoxicity in synchronized and unsynchronized bladder cancer cells (HT1197). In unsynchronized cells, relative PpIX fluorescence values (arbitrary units) were significantly different between cell cycle phases after a 1-h ALA incubation (G1 24.8 +/- 0.7; S-phase, 32.7 +/- 0.8, P < 0.05; G2 35.4 +/- 0.8, P < 0.05). In synchronized cells after a 1-h ALA incubation, cells in G1 produced less PpIX than those in S-phase or G2 [6.65 +/- 1.1 ng per 10(5) cells compared with 15.5 +/- 2.1 (P < 0.05), and 8.1 +/- 1.8 ng per 10(5) cells (not significant) respectively] and were significantly less sensitive to ALA-induced PDT (% survival, G1 76.2 +/- 8.3; S-phase 49.7 +/- 4.6, P < 0.05; G2 44.2 +/- 2.4, P < 0.05). This differential response in tumour cells may have implications for clinical PDT, resulting in treatment resistance and possible failure in complete tumour response. PMID:9662250

  6. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results.

  7. 16 CFR 301.20 - Fur products composed of pieces.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  8. 29 CFR 530.202 - Piece rates-work measurement.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  9. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives.

    Science.gov (United States)

    Tong, Leslie M; Fong, Helen; Huang, Yadong

    2015-03-13

    Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.

  10. In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine

    Science.gov (United States)

    Moreira, Mayra Lorena; da Costa Medeiros, Priscylla; de Souza, Sergio Augusto Lopes; Rosado-de-Castro, Paulo Henrique

    2016-01-01

    Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases. PMID:26880951

  11. Automating the Process of Work-Piece Recognition and Location for a Pick-and-Place Robot in a SFMS

    Directory of Open Access Journals (Sweden)

    R. V. Sharan

    2014-03-01

    Full Text Available This paper reports the development of a vision system to automatically classify work-pieces with respect to their shape and color together with determining their location for manipulation by an in-house developed pick-and-place robot from its work-plane. The vision-based pick-and-place robot has been developed as part of a smart flexible manufacturing system for unloading work-pieces for drilling operations at a drilling workstation from an automatic guided vehicle designed to transport the work-pieces in the manufacturing work-cell. Work-pieces with three different shapes and five different colors are scattered on the work-plane of the robot and manipulated based on the shape and color specification by the user through a graphical user interface. The number of corners and the hue, saturation, and value of the colors are used for shape and color recognition respectively in this work. Due to the distinct nature of the feature vectors for the fifteen work-piece classes, all work-pieces were successfully classified using minimum distance classification during repeated experimentations with work-pieces scattered randomly on the work-plane.

  12. Cell Based Therapies: At Crossroads to find the right Cell source

    Directory of Open Access Journals (Sweden)

    Editorial

    2012-01-01

    Full Text Available Development of newer Cell Based therapies for various diseases and disorders which have limited therapeutic options, is on the rise with clinical trials on cell based therapies being registered all over the world every now and then. However a dilemma arises when it comes to the choosing the ideal source of Stem cells for therapy. Clinical applications of Hematopoietic Stem cells Transplantation (HSCT in the form of Bone Marrow Transplantation has been in practice since the 1950s (1 for malignant and non malignant haematological disorders and even for auto-immune disorders (since 1977 (2, with several reports on successful outcomes after HSCT. The dilemma in HSCT is whether to use allogeneic or autologous sources. While allogeneic sources have the advantage of the graft being devoid of cancer cells, as they are from a healthy donor, they have the risk of life-long Immunosuppression. Autologous Source is advantageous as it needs no immunosuppression but the risk of relapse is high. In adult stem cells, there have been several studies which have demonstrated the various levels of safety and efficacy of both Allogeneic and autologous adult cell sources for application in diseases of the cornea, Spinal Cord, Heart, Liver etc. Each time, a study is published, the patients and the physicians are thrown into a state of perplexity on which source of cell could offer the best possible solution to the various diseases. Next hopping onto Human Embryonic Stem cells, though they were discovered in 1998, the first Human Embryonic Stem cell trial was approved by the FDA in January 2009 but it could hit the road only in October 2010 (3. The trial was for spinal cord injury and a year later, the trial came to a halt in November 2011 when the company, which was financing and pursuing the trial, announced the discontinuation of the trial due to financial reasons (4. However it is worthwhile to note that it was the financial compulsion which led to the

  13. Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development.

    Science.gov (United States)

    Ancans, Janis

    2012-01-01

    Advanced therapy medicinal products (ATMPs), including cell therapy products, form a new class of medicines in the European Union. Since the ATMPs are at the forefront of scientific innovation in medicine, specific regulatory framework has been developed for these medicines and implemented from 2009. The Committee for Advanced Therapies (CAT) has been established at the European Medicines Agency (EMA) for centralized classification, certification and evaluation procedures, and other ATMP-related tasks. Guidance documents, initiatives, and interaction platforms are available to make the new framework more accessible for small- and medium-sized enterprises, academia, hospitals, and foundations. Good understanding of the centralized and national components of the regulatory system is required to plan product development. It is in the best interests of the cell therapy developers to utilize the resources provided starting with the pre-clinical stage. Whilst there have been no mesenchymal stem cell (MSC)-based medicine authorizations in the EU, three MSC products have received marketing approval in other regions since 2011. The information provided on the regulatory requirements, procedures, and initiatives is aimed at facilitating MSC-based medicinal product development and authorization in the EU.

  14. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan Starup; Schytte, Tine; Jensen, Henrik R;

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... and SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  15. New approaches to gene and cell therapy for hemophilia.

    Science.gov (United States)

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.

  16. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    Ke-xiu Zhu; Ya-li Cao; Bin Li; Jia Wang; Xiao-bing Han

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM, Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by eisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM, Chk2 and p53 of HeLa cells with and withont cisplatin were detected by RT-PCR and Western blot, respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin inhibited the proliferation of HeLa cells in a dose- and time-dependent manner. The mRNA and protein expressions of ATM, Chk2 and p53 were increased in HeLa cells treated with cisplatin. The cell cycle was arrested in G2/M phase in HeLa cells treated with cisplatin. Conclusion Activation of ATM, Chk2 and p53 might be critical in determining whether cells survive or undergo apoptesis. Targeting ATM, Chk2 and p53 pathway might he a promising strategy for reversing chemoresistance to clsplatin in cervical cancer.

  17. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia.

    Science.gov (United States)

    Li, Yaqian; Liu, Wei; Liu, Fei; Zeng, Yang; Zuo, Simin; Feng, Siyu; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Khademhosseini, Ali; Bai, Jing; Du, Yanan

    2014-09-16

    The promise of cell therapy for repair and restoration of damaged tissues or organs relies on administration of large dose of cells whose healing benefits are still limited and sometimes irreproducible due to uncontrollable cell loss and death at lesion sites. Using a large amount of therapeutic cells increases the costs for cell processing and the risks of side effects. Optimal cell delivery strategies are therefore in urgent need to enhance the specificity, efficacy, and reproducibility of cell therapy leading to minimized cell dosage and side effects. Here, we addressed this unmet need by developing injectable 3D microscale cellular niches (microniches) based on biodegradable gelatin microcryogels (GMs). The microniches are constituted by in vitro priming human adipose-derived mesenchymal stem cells (hMSCs) seeded within GMs resulting in tissue-like ensembles with enriched extracellular matrices and enhanced cell-cell interactions. The primed 3D microniches facilitated cell protection from mechanical insults during injection and in vivo cell retention, survival, and ultimate therapeutic functions in treatment of critical limb ischemia (CLI) in mouse models compared with free cell-based therapy. In particular, 3D microniche-based therapy with 10(5) hMSCs realized better ischemic limb salvage than treatment with 10(6) free-injected hMSCs, the minimum dosage with therapeutic effects for treating CLI in literature. To the best of our knowledge, this is the first convincing demonstration of injectable and primed cell delivery strategy realizing superior therapeutic efficacy for treating CLI with the lowest cell dosage in mouse models. This study offers a widely applicable cell delivery platform technology to boost the healing power of cell regenerative therapy.

  18. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pattani, Varun P., E-mail: varun.pattani@utexas.edu; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W. [The University of Texas at Austin, Department of Biomedical Engineering (United States)

    2015-01-15

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm{sup 2} laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  19. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    Science.gov (United States)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  20. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    Science.gov (United States)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  1. Therapy effects of gold nanorods on the CNE-1 nasopharyngeal carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Shao J

    2012-10-01

    Full Text Available Jinyan Shao,1 Jianguo Tang,1 Jian Ji,2 Wenbo Zhou21Department of Otolaryngology, Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 2Department of Polymer Science, Ministry of Education Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou, People's Republic of ChinaAbstract: The use of nanocarriers to deliver drugs to tumor tissue is one of the most important strategies in cancer therapeutics. Recently, gold nanorods (GNRs have begun to be used in cancer therapy because of their unique properties. The purpose of this study was to show the potential that GNRs have against human nasopharyngeal carcinoma CNE-1 cells, using near-infrared (NIR laser light. Transmission electron microscopic and ultraviolet-visible spectroscopic investigations confirmed the efficient uptake of the GNRs by CNE-1 and human rhinal epithelia cells. The in vitro NIR photothermal therapy for the CNE-1 and rhinal epithelia cells was designed in three groups: (1 control, (2 laser alone, and (3 GNRs with laser. Fluorescence microscopy images indicated that, at some GNR concentrations and some intensities of NIR laser, GNRs with laser therapy could induce cell death for CNE-1 cells while keeping the rhinal epithelia cells healthy. Therefore, the results of this study suggest that using GNRs with NIR laser therapy can selectively destruct CNE-1 cells while having no effect on normal (rhinal epithelia cells.Keywords: photothermal therapy, near-infrared laser, rhinal epithelia cells, cell uptake

  2. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure.

    Science.gov (United States)

    Hashemi Goradel, Nasser; Darabi, Masoud; Shamsasenjan, Karim; Ejtehadifar, Mostafa; Zahedi, Sarah

    2015-09-01

    Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.

  3. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development.

    Science.gov (United States)

    Zhou, H; Aziza, J; Sol, J C; Courtade-Saïdi, M; Chatelin, S; Evra, C; Parant, O; Lazorthes, Y; Jozan, S

    2006-04-01

    Adult adrenal chromaffin cells are being utilized for therapeutic transplantation. With the prospect of using fetal chromaffin cells in pain therapy, we studied their phenotype, proliferative power, function, and growth in vitro and in situ in order to determine the optimal time for implantation. Between 7 and 10 gestational weeks (GW), we isolated, in vitro, two types of chromaffin cells with a noradrenergic phenotype akin to that observed, in situ. Among the adherent chromaffin cells first observed in vitro, only a few samples expressed met-enkephalin, whereas almost all the neurosphere-like colonies, which appeared later, expressed it. However, neither of the two types of populations expressed an adrenergic phenotype in line with that observed in situ. At the upper limits of the voluntary abortion period authorized in France, this phenotype (12 GW) and met-enkephalin expression (13 GW) were evidenced in situ. For the first time in man, we demonstrate the secretion of noradrenaline in vitro by the two populations of cells. Consistent with this result, we also noted dopamine beta hydroxylase (DbetaH) mRNA expression in vitro and in situ within this period. These observations on the expression of these biological factors indicate that 9-10 GW would be the best stage for sampling these cells for preclinical transplantation experiments.

  4. Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy.

    Science.gov (United States)

    Sancricca, Cristina; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta

    2010-06-26

    Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders.

  5. Application of SFM and laser scanning technology to the description of mosaics piece by piece

    Science.gov (United States)

    Ajioka, O.; Hori, Y.

    2014-06-01

    Mosaic floors of surviving buildings in Ostia have been mainly recorded in photographs. From 2008, Japanese research group carries out a project of 3d measuring of the whole structure of ancient Roman city Ostia using laser scanners, including its landscape, city blocks, streets, buildings, wall paintings and mosaics. The laser scanner allows for a more detailed analysis and a greater potential for recording mosaics. We can record the data of mosaics, which are described piece by piece. However it is hard to acquire enough high dense point cloud and the internal camera of the laser scanner produce low quality images. We introduce a possible technology of 3D recording of mosaics with high-quality colour information; SFM. The use of this technique permits us to create 3D models from images provided from a CCD camera without heavy and large laser scanners. We applied SFM system to different three types of the mosaics laid down on the floors of "the House of the Dioscuroi", "the Insula of the Muse" and "the House of Jove and Ganymede", and created high resolution orthographic images. Then we examined to compare these orthographic images with that are created from the point cloud data. As a result, we confirmed that SFM system has sufficient practical utility for the mosaic research. And we present how much of density of point cloud or ground resolution are required for the documentation of mosaics accurately.

  6. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  7. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells?

    Science.gov (United States)

    Agahozo, Marie Colombe; Peferoen, Laura; Baker, David; Amor, Sandra

    2016-09-01

    MS is widely considered to be a T cell-mediated disease although T cell immunotherapy has consistently failed, demonstrating distinct differences with experimental autoimmune encephalomyelitis (EAE), an animal model of MS in which T cell therapies are effective. Accumulating evidence has highlighted that B cells also play key role in MS pathogenesis. The high frequency of oligoclonal antibodies in the CSF, the localization of immunoglobulin in brain lesions and pathogenicity of antibodies originally pointed to the pathogenic role of B cells as autoantibody producing plasma cells. However, emerging evidence reveal that B cells also act as antigen presenting cells, T cell activators and cytokine producers suggesting that the strong efficacy of anti-CD20 antibody therapy observed in people with MS may reduce disease progression by several different mechanisms. Here we review the evidence and mechanisms by which B cells contribute to disease in MS compared to findings in the EAE model.

  8. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies

    DEFF Research Database (Denmark)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P;

    2016-01-01

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical ou...

  9. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...

  10. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would...

  11. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy

    NARCIS (Netherlands)

    Gostynski, A.; Deviaene, F. C. L.; Pasmooij, A. M. G.; Pas, H. H.; Jonkman, M. F.

    2009-01-01

    Background Replacing mutant skin in epidermolysis bullosa (EB) by epithelial sheets of transduced autologous keratinocytes is the essential surgical step of ex vivo gene therapy. The same applies for revertant cell therapy in which epithelial sheets of revertant autologous keratinocytes are used. Re

  12. Beta therapy with 90strontium as single modality therapy for canine squamous cell carcinoma in third eyelid

    Directory of Open Access Journals (Sweden)

    Alexandre Lima de Andrade

    2015-06-01

    Full Text Available The purpose was to evaluate the effectiveness of beta-radiation with strontium-90 as single modality treatment of canine third eyelid squamous cell carcinoma (SCC. Nine dogs diagnosed with third eyelid SCC were treated with strontium-90. Radiation therapy was administered in four fractions of 100cGy per site every four days and at a depth of 0.2cm (Strontium-90 build' up in each fraction. Radiation with beta therapy was well tolerated in all animals with no occurrence of radiation induced cataracts. In all cases, there were increased signs of conjunctival inflammation around the mass, which subsided with topical anti-inflammatory. Two dogs required surgical treatment for local tumor recurrence at 150 days and 352 days. In the remaining seven cases, disease free interval ranged from 1239 days to 2555 days. Beta therapy using 90Sr may be a valid alternative for the treatment of third eyelid SCC in dogs

  13. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    NARCIS (Netherlands)

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cance

  14. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma.

    Science.gov (United States)

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2013-01-17

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide-loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans.

  15. Genetic Engineering of Mesenchymal Stem Cells and Its Application in Human Disease Therapy

    OpenAIRE

    Hodgkinson, Conrad P; Gomez, José A.; Mirotsou, Maria; Dzau, Victor J.

    2010-01-01

    Hodgkinson and colleagues review the current status of knowledge with respect to the genetic modifications being explored as a means to improve mesenchymal stem cell therapy for human diseases, with a particular focus on cardiovascular diseases.

  16. Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy

    Directory of Open Access Journals (Sweden)

    Ulrike Baranyi

    2016-05-01

    Conclusion: This proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes.

  17. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    Full Text Available Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED. Many relative animal studies have been done to evaluate the efficacy of this therapy in rats.This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED.We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP to mean arterial pressure (MAP and in the structure of the cavernous body were compared.10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001. In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS and neuronal nitric oxide synthase (nNOS, the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF. Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification.Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic

  18. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  19. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy

    Science.gov (United States)

    Pashoutan Sarvar, Davod; Shamsasenjan, Karim; Akbarzadehlaleh, Parvin

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.

  20. Autologous stem cell-based therapy for sickle cell leg ulcer: a pilot study.

    Science.gov (United States)

    Meneses, José Válber L; Fortuna, Vitor; de Souza, Eliane Silva; Daltro, Gildasio Cerqueira; Meyer, Roberto; Minniti, Caterina P; Borojevic, Radovan

    2016-12-01

    Recurrent chronic leg ulcers are among the most severe vasculopathic complications of sickle cell disease (SCD). Their treatment remains a challenge. Stem cell therapy with bone marrow mononuclear cells (BMMC) is a promising new therapeutic option for other forms of chronic ulcers. This prospective pilot study was performed to evaluate safety and feasibility of BMMC implantation in patients with SCD and chronic leg ulcers (SCLU). Ulcer closure, recurrence and local pain were evaluated. BMMC were successfully administered to 23 SCLU patients and no serious adverse events occurred. During the 6-month follow-up period, 91·3% of patients had improved ulcer pain compared with baseline and 29·2% of the treated ulcers achieved total healing. The frequency of progenitor stem cells (CD34CD45(low) and fibroblast colony-forming units) in BMMC was found to be significantly reduced in SCLU patients and compared to SCD patients without ulcers (P < 0·004 and P < 0·01, respectively). No relationship was observed between treatment outcome and the number of implanted BM progenitor stem cells. In conclusion, BMMC implantation is a feasible and safe procedure, showing favourable outcomes for the treatment of SCLU, and encouraging further controlled clinical trials.

  1. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    Science.gov (United States)

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  2. Cell therapy to remove excess copper in Wilson’s disease

    OpenAIRE

    Gupta, Sanjeev

    2014-01-01

    To achieve permanent correction of Wilson’s disease by a cell therapy approach, replacement of healthy hepatocytes will be most desirable. There is a physiological need for hepatic ATP7B-dependent copper transport in bile, which is deficient in Wilson’s disease, producing progressive copper accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raised possibilities for cell therapy in Wilson’s disease. Therapeutic principles included...

  3. Effect of low level laser therapy and high intensity laser therapy on endothelial cell proliferation in vitro: preliminary communication

    Science.gov (United States)

    Lukowicz, Malgorzata; Szymanska, Justyna; Goralczyk, Krzysztof; Zajac, Andrzej; Rość, Danuta

    2013-01-01

    Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation. Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 - 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times. Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC. Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.

  4. Melody-based knowledge discovery in musical pieces

    Science.gov (United States)

    Rybnik, Mariusz; Jastrzebska, Agnieszka

    2016-06-01

    The paper is focused on automated knowledge discovery in musical pieces, based on transformations of digital musical notation. Usually a single musical piece is analyzed, to discover the structure as well as traits of separate voices. Melody and rhythm is processed with the use of three proposed operators, that serve as meta-data. In this work we focus on melody, so the processed data is labeled using fuzzy labels, created for detecting various voice characteristics. A comparative analysis of two musical pieces may be performed as well, that compares them in terms of various rhythmic or melodic traits (as a whole or with voice separation).

  5. Potential for cell therapy in Parkinson's disease using genetically programmed human embryonic stem cell-derived neural progenitor cells.

    Science.gov (United States)

    Ambasudhan, Rajesh; Dolatabadi, Nima; Nutter, Anthony; Masliah, Eliezer; Mckercher, Scott R; Lipton, Stuart A

    2014-08-15

    Neural transplantation is a promising strategy for restoring dopaminergic dysfunction and modifying disease progression in Parkinson's disease (PD). Human embryonic stem cells (hESCs) are a potential resource in this regard because of their ability to provide a virtually limitless supply of homogenous dopaminergic progenitors and neurons of appropriate lineage. The recent advances in developing robust cell culture protocols for directed differentiation of hESCs to near pure populations of ventral mesencephalic (A9-type) dopaminergic neurons has heightened the prospects for PD cell therapy. Here, we focus our review on current state-of-the-art techniques for harnessing hESC-based strategies toward development of a stem cell therapeutic for PD. Importantly, we also briefly describe a novel genetic-programming approach that may address many of the key challenges that remain in the field and that may hasten clinical translation.

  6. Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012.

    Science.gov (United States)

    Weiss, Daniel J

    2013-10-01

    A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.

  7. Mesenchymal Stem Cell Therapy for the Treatment of Vocal Fold Scarring

    DEFF Research Database (Denmark)

    Wingstrand, Vibe Lindeblad; Grønhøj Larsen, Christian; Jensen, David H;

    2016-01-01

    OBJECTIVES: Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance the biomechan......OBJECTIVES: Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance...... the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. DATA SOURCES: PubMed, Embase, the Cochrane Library and Google Scholar were searched. METHODS: Controlled studies that assessed...... the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring were included. Primary outcomes were viscoelastic properties and mucosal wave amplitude. RESULTS: Seven preclinical animal studies (n = 152 single vocal folds) were eligible for inclusion. Evaluation of viscoelastic...

  8. Stem cell therapies in preclinical models of stroke associated with aging

    Directory of Open Access Journals (Sweden)

    Aurel ePopa-Wagner

    2014-11-01

    Full Text Available Stroke has limited treatment options, demanding a vigorous search for new therapeutic strategies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments related to unfavorable environments that are in part related to aging processes. Since stroke afflicts mostly the elderly, it is highly desirable and clinically important to test the efficacy of cell therapies in aged brain microenvironments. Although widely believed to be refractory to regeneration, recent studies using both neural precursor cells and bone marrow-derived mesenchymal stem cells for stroke therapy suggest that the aged rat brain is not refractory to cell-based therapy, and that it also supports plasticity and remodeling. Yet, important differences exist in the aged compared with young brain, i.e., the accelerated progression of ischemic injury to brain infarction, the reduced rate of endogenous neurogenesis and the delayed initiation of neurological recovery. Pitfalls in the development of cell-based therapies may also be related to age-associated comorbidities, e.g., diabetes or hyperlipidemia, which may result in maladaptive or compromised brain remodeling, respectively. These age-related aspects should be carefully considered in the clinical translation of restorative therapies.

  9. Ambivalent journeys of hope: embryonic stem cell therapy in a clinic in India.

    Science.gov (United States)

    Prasad, Amit

    2015-03-01

    Stem cell therapy in non-Western countries such as India has received a lot of attention. Apart from media reports, there are a number of social science analyses of stem cell policy, therapy, and research, their ethical implications, and impact of advertising on patients. Nevertheless, in the media reports as well as in academic studies, experiences of patients, who undertake overseas journeys for stem cell therapy, have largely been either ignored or presented reductively, often as a "false hope." In this article, I analyze the experiences of patients and their "journeys of hope" to NuTech Mediworld, an embryonic stem cell therapy clinic in New Delhi, India. My analysis, which draws on my observations in the clinic and patients' experiences, instead of seeking to adjudicate whether embryonic stem cell therapy in clinics such as NuTech is right or wrong, true or false, focuses on how patients navigate and contest these concerns. I utilize Gilles Deleuze and Felix Guattari's "concepts," lines of flight and deterritorialization, to highlight how embryonic stem cell therapy's "political economy of hope" embodies deterritorialization of several "regimes of truth" and how these deterritorializations impact patients' experiences.

  10. Cell Therapy for Stroke: Review of Previous Clinical Trials and Introduction of Our New Trials

    Science.gov (United States)

    SHICHINOHE, Hideo; HOUKIN, Kiyohiro

    2016-01-01

    Stroke is still a leading cause of death and disability, and despite intensive research, few treatment options exist. A recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke. Although some pioneer studies on the use of cell therapy for the treatment of stroke have been reported, certain problems still remain unsolved. We investigated the use of autologous bone marrow stromal cell (BMSC) transplantation for the treatment of stroke, to develop it as the next-generation cell therapy. In this study, we introduce the preparation of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrow stem cell (RAINBOW) study. The trial will start in 2016, and we hope that it will not only be helpful for treating patients but also for clarifying the therapeutic mechanisms. Moreover, we review stem cell therapeutics as an emerging paradigm in stroke (STEPS) and the guidelines for the development of cell therapy for stroke in the United States as well as introduce the development of new guidelines in Japan. These guidelines are expected to encourage the development of cell therapy for stroke management. PMID:27302193

  11. Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy

    Science.gov (United States)

    Srivastava, Alok; Shaji, Ramachandran V.

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation has been well established for several decades as gene replacement therapy for patients with thalassemia major, and now offers very high rates of cure for patients who have access to this therapy. Outcomes have improved tremendously over the last decade, even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent, with a >90% survival rate, but for the best results, hematopoietic stem cell transplantation should be offered early, before any end organ damage occurs. However, access to this therapy is limited in more than half the patients by the lack of suitable donors. Inadequate hematopoietic stem cell transplantation services and the high cost of therapy are other reasons for this limited access, particularly in those parts of the world which have a high prevalence of this condition. As a result, fewer than 10% of eligible patients are actually able to avail of this therapy. Other options for curative therapies are therefore needed. Recently, gene correction of autologous hematopoietic stem cells has been successfully established using lentiviral vectors, and several clinical trials have been initiated. A gene editing approach to correct the β-globin mutation or disrupt the BCL11A gene to increase fetal hemoglobin production has also been reported, and is expected to be introduced in clinical trials soon. Curative possibilities for the major hemoglobin disorders are expanding. Providing access to these therapies around the world will remain a challenge. PMID:27909215

  12. Chimeric antigen receptor T cell therapy in AML: How close are we?

    Science.gov (United States)

    Gill, Saar

    2016-12-01

    The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML.

  13. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect

    DEFF Research Database (Denmark)

    Lund, O; Lund, O S; Gram, G

    1997-01-01

    This paper presents a mathematical analysis of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. The analysis indicates that for such a therapy to be successful, it must protect the transduced cells against HIV-induced death. The transduced cells will not......This paper presents a mathematical analysis of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. The analysis indicates that for such a therapy to be successful, it must protect the transduced cells against HIV-induced death. The transduced cells...

  14. Cells therapy for Parkinson's disease-so close and so far away

    Institute of Scientific and Technical Information of China (English)

    REN ZhenHua; ZHANG Yu

    2009-01-01

    One of the strategies of treating Parkinson's disease (PD) is the replacement of lost neurons in the substantia nigra with healthy dapamingergic cells. Potential sources for cells range from autologous grafts of dopamine secreting cells, fetal ventral mesencephalon tissue, to various stem cell types. Over the past quarter century, many experimental replacement therapies have been tried on PD animal models as well as human patients, yet none resulted in satisfactory outcomes that warrant wide applications. Recent progress in stem cell biology has shown that nuclear transfer embryonic stem cells (ntES) or induced pluripotent stem cells (iPS) derived cells can be used to successfully treat rodent PO models, thus solving the problem of immunorejection and paving the way for future autologous transplantations for treating PO. Meanwhile, however, post mortem analysis of patients who fetal brain cell transplantation revealed that implanted cells are prone to degeneration just like endogenous neurons in the same pathological area, indicating long-term efficacy of cell therapy of PD needs to overcome the degenerating environment in the brain. A better understanding of neurodegeneration in the midbrain appeared to be a necessary step in developing new cell therapies in Parkinson's disease.It is likely that future cell replacement will focus on not only ameliorating symptoms of the disease but also trying to slow the progression of the disease by either neuroprotection or restoring the micro-environment in the midbrain.

  15. Cells therapy for Parkinson’s disease-so close and so far away

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One of the strategies of treating Parkinson’s disease(PD) is the replacement of lost neurons in the substantia nigra with healthy dapamingergic cells.Potential sources for cells range from autologous grafts of dopamine secreting cells,fetal ventral mesencephalon tissue,to various stem cell types.Over the past quarter century,many experimental replacement therapies have been tried on PD animal models as well as human patients,yet none resulted in satisfactory outcomes that warrant wide applications.Recent progress in stem cell biology has shown that nuclear transfer embryonic stem cells(ntES) or induced pluripotent stem cells(iPS) derived cells can be used to successfully treat rodent PD models,thus solving the problem of immunorejection and paving the way for future autologous transplantations for treating PD.Meanwhile,however,post mortem analysis of patients who received fetal brain cell transplantation revealed that implanted cells are prone to degeneration just like endogenous neurons in the same pathological area,indicating long-term efficacy of cell therapy of PD needs to overcome the degenerating environment in the brain.A better understanding of neurodegeneration in the midbrain appeared to be a necessary step in developing new cell therapies in Parkinson’s disease.It is likely that future cell replacement will focus on not only ameliorating symptoms of the disease but also trying to slow the progression of the disease by either neuroprotection or restoring the micro-environment in the midbrain.

  16. Cytokine-induced killer (CIK cell therapy for patients with hepatocellular carcinoma: efficacy and safety

    Directory of Open Access Journals (Sweden)

    Ma Yue

    2012-04-01

    Full Text Available Abstract Purpose To evaluate the efficacy of cytokine-induced killer (CIK cell therapy in the treatment of hepatocellular carcinoma. Materials and methods Randomized phase II and III trials on CIK cell-based therapy were identified by electronic searches using a combination of "hepatocellular carcinoma" and "cytokine-induced killer cells". Results The analysis showed significant survival benefit (one-year survival, p p p p p p +, CD4+, CD4+CD8+ and CD3+CD4+ T cells significantly increased in the CIK group, compared with the non-CIK group (p Conclusions CIK cell therapy demonstrated a significant superiority in prolonging the median overall survival, PFS, DCR, ORR and QoL of HCC patients. These results support further larger scale randomized controlled trials for HCC patients with or without the combination of other therapeutic methods.

  17. Paclitaxel augments cytotoxic effect of photodynamic therapy using verteporfin in gastric and bile duct cancer cells.

    Science.gov (United States)

    Park, Seungwoo; Hong, Sung Pil; Oh, Tae Yoon; Bang, Seungmin; Chung, Jae Bock; Song, Si Young

    2008-07-01

    Photodynamic therapy (PDT) shows a limited antitumor effect in treating gastrointestinal tumors because of improper light penetration or insufficient photosensitizer uptake. The aim of this study was to evaluate the cytotoxic effect of PDT combined with paclitaxel on in vitro cancer cells. In vitro photodynamic therapy was performed in gastric cancer cells (NCI-N87) and bile duct cancer cells (YGIC-6B) using verteporfin (2 ug mL(-1)) and a PTH light source (1 000 W, Oriel Co.) with 665-675 nm narrow band pass filter. Cytotoxicity was compared using the MTT assay between cancer cells treated with PDT alone or pretreated with paclitaxel (IC(25)). Apoptotic changes were evaluated using DAPI staining, DNA fragmentation analysis, Annexin V-FITC apoptosis assay, cell cycle analysis, and western blots for cytochrome c, Bax, and Bid. The PDT-induced cytotoxicity was potentiated by pretreating with low dose paclitaxel (P cancer therapy.

  18. OBJECT ORIENTED SOFTWARE FOR MICRO WORK PIECE RECOGNITION IN MICROASSEMBLY

    Directory of Open Access Journals (Sweden)

    Toledo-Ramírez, G.K.

    2006-04-01

    Full Text Available The aim of this article is to describe object oriented software for the automatic micro work piece handling system.The general task of this system is the recognition of work pieces with neural classifier and detection of theirpositions. Other important functions of the system are work piece styles database administration, work piecedatabase administration for neural classifier training and testing, neural classifier interface between database, userand work piece finder. The software is object oriented and widely commented, that makes its modification,adaptation and improvement easier. Most of the software modules can be used in other research projects. Thesoftware was tested on image database. The results of experiments prove its effectiveness in chosen task.

  19. Existential field 8: appendix to the report - special focus pieces

    OpenAIRE

    Georgiou, Myria; Haddon, Leslie; Helsper, Ellen; Wang, Yinhan

    2010-01-01

    This appendix contains five special focus pieces on Diasporic families and media consumption, The place of mobile technology in European families, Families’ digital disadvantage and exclusion, ICT and intimate relationships, and Girl culture and Web 2.0.

  20. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    Science.gov (United States)

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  1. Maintenance therapies for non small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Normand eBlais

    2014-08-01

    Full Text Available Treatment of lung cancer had evolved during the last decade with the introduction of new chemotherapeutic regimens and targeted therapies. However, the maximum benefit reached after first line therapy is limited by the cumulative toxicity of platinum drugs and the subsequent deterioration in performance status in a high percentage of patients who end up receiving not more than one line of treatment. Maintenance therapy had been introduced and evaluated in many large randomized trials showing a delay in tumour progression and an improvement in overall survival. This effective strategy should be taken into account when discussing the initial treatment plan and tailored according to the preferences of both patients and physicians.

  2. Application of stem cell/growth factor system, as a multimodal therapy approach in regenerative medicine to improve cell therapy yields.

    Science.gov (United States)

    Pourrajab, Fatemeh; Babaei Zarch, Mojtaba; Baghi Yazdi, Mohammad; Rahimi Zarchi, Abolfazl; Vakili Zarch, Abbas

    2014-04-15

    Stem cells hold a great promise for regenerative medicine, especially for replacing cells in infarcted organ that hardly have any intrinsic renewal capacity, including heart and brain. Signaling pathways that regulate pluripotency or lineage-specific gene and protein expression have been the major focus of stem cell research. Between them, there are some well known signaling pathways such as GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines may regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes or accentuate synergistic compliance. For example, contributing factors in the progression of heart failure are both the loss of cardiomyocytes after myocardial infarction, and the absence of an adequate endogenous repair signaling. Combining cell engraftment with therapeutic signaling factor delivery is more exciting in terms of host progenitor/donor stem cell survival and proliferation. Thus stem cell-based therapy, besides triggering signaling pathways through GF/GFR systems can become a realistic option in regenerative processes for replacing lost cells and reconstituting the damaged organ, as before.

  3. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Chuan-gang Peng

    2015-01-01

    Full Text Available Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury.

  4. Photodynamic therapy as a treatment for esophageal squamous cell carcinoma in a dog.

    Science.gov (United States)

    Jacobs, T M; Rosen, G M

    2000-01-01

    Intrathoracic esophageal squamous cell carcinoma was diagnosed by endoscopy in an 11-year-old, castrated male Labrador retriever with signs of regurgitation and weight loss. Photodynamic therapy with photofrin was administered three times under endoscopic guidance over a two-month period. A partial response to photodynamic therapy was supported by a reduction in tumor size (noted on serial endoscopic examinations) and by a return to oral alimentation. The dog was euthanized due to recurrent regurgitation and aspiration pneumonia nine months after the onset of therapy. Necropsy revealed marked local invasiveness and regional lymph node metastasis of the esophageal squamous cell carcinoma in addition to pneumonia. The application of photodynamic therapy in the treatment of canine esophageal squamous cell carcinoma is discussed and compared with the human literature.

  5. Features of Microsystems for Cultivation and Characterization of Stem Cells with the Aim of Regenerative Therapy

    Directory of Open Access Journals (Sweden)

    Kihoon Ahn

    2016-01-01

    Full Text Available Stem cells have infinite potential for regenerative therapy thanks to their advantageous ability which is differentiable to requisite cell types for recovery and self-renewal. The microsystem has been proved to be more helpful to stem cell studies compared to the traditional methods, relying on its advantageous feature of mimicking in vivo cellular environments as well as other profitable features such as minimum sample consumption for analysis and multiprocedures. A wide variety of microsystems were developed for stem cell studies; however, regenerative therapy-targeted applications of microtechnology should be more emphasized and gain more attractions since the regenerative therapy is one of ultimate goals of biologists and bioengineers. In this review, we introduce stem cell researches harnessing well-known microtechniques (microwell, micropattern, and microfluidic channel in view point of physical principles and how these systems and principles have been implemented appropriately for characterizing stem cells and finding possible regenerative therapies. Biologists may gain information on the principles of microsystems to apply them to find solutions for their current challenges, and engineers may understand limitations of the conventional microsystems and find new chances for further developing practical microsystems. Through the well combination of engineers and biologists, the regenerative therapy-targeted stem cell researches harnessing microtechnology will find better suitable treatments for human disorders.

  6. 40 Years of Processing Pieces of Space

    Science.gov (United States)

    Satterwhite, C. E.; Funk, R. C.; Righter, K.; Harrington, R. H.

    2016-01-01

    representative sample, either a 1-3 gram chip or thin section is sent to the Smithsonian Institution for classification. After Antarctic meteorites have been classified and approved by the Nomenclature Committee of the Meteoritical Society, they are announced in the Antarctic Meteorite Newsletter, which is published twice per year (fall and spring) so that scientists may review which meteorites are available to study. Requests for Antarctic Meteorite samples are welcomed from research scientists, regardless of their current state of funding for meteorite studies. Since its inception over 3,300 requests have been made for pieces of these meteorites and over 400 investigators worldwide are active in the study of meteorites.. Research on these samples has been published in more than1500 peer reviewed articles; a listing of papers for any meteorite sample can be generated by accessing http://curator.jsc.nasa.gov/antmet/referencesearch.cfm. Antarctic meteorite samples requested by scientists are prepared several different ways. Most samples are prepared as chips, either using a rock splitter or using a chisel and chipping bowl. In special situations, a researcher may request a meteorite slab in which case the samples are cut using a diamond-bladed bandsaw inside of a dry nitrogen glove box. The meteorites are always cut in a 100 percent liquid-free environment. Additionally, thin/thick sections of Antarctic meteorites are also prepared at JSC. The meteorite thin section lab at JSC can prepare standard 30-micron thin sections, thick sections of variable thickness (100 to 200 microns), or demountable sections using superglue, all section are prepared without using water. Although many of the techniques used back in the '70's are still used today, advances in computers, software, databases, available tools and instrumentation have helped to streamline and shorten the duration of the classification process. In conjunction with present day missions to asteroids and other planets

  7. Cell- and gene-therapy approaches to inner ear repair

    OpenAIRE

    Conde de Felipe, Magnolia; Feijoo-Redondo, Ana; García-Sancho, Javier; Schimmang, Thomas; Durán, Mercedes

    2011-01-01

    Sensorineural hearing loss is the most common sensory disorder in humans. It is primarily due to the degeneration of highly specialised mechanosensory cells in the cochlea, the so-called hair cells. Hearing problems can also be caused or further aggravated by the death of auditory sensory neurons that convey the information from the hair cells to the brain stem. Despite the discovery of stem/progenitor cells in the mammalian cochlea, no regeneration of either damaged hair cells or auditory ne...

  8. Emerging treatment options for refractory angina pectoris: ranolazine, shock wave treatment, and cell-based therapies.

    Science.gov (United States)

    Gennari, Marco; Gambini, Elisa; Bassetti, Beatrice; Capogrossi, Maurizio; Pompilio, Giulio

    2014-01-01

    A challenge of modern cardiovascular medicine is to find new, effective treatments for patients with refractory angina pectoris, a clinical condition characterized by severe angina despite optimal medical therapy. These patients are not candidates for surgical or percutaneous revascularization. Herein we review the most up-to-date information regarding the modern approach to the patient with refractory angina pectoris, from conventional medical management to new medications and shock wave therapy, focusing on the use of endothelial precursor cells (EPCs) in the treatment of this condition. Clinical limitations of the efficiency of conventional approaches justify the search for new therapeutic options. Regenerative medicine is considered the next step in the evolution of organ replacement therapy. It is driven largely by the same health needs as transplantation and replacement therapies, but it aims further than traditional approaches, such as cell-based therapy. Increasing knowledge of the role of circulating cells derived from bone marrow (EPCs) on cardiovascular homeostasis in physiologic and pathologic conditions has prompted the clinical use of these cells to relieve ischemia. The current state of therapeutic angiogenesis still leaves many questions unanswered. It is of paramount importance that the treatment is delivered safely. Direct intramyocardial and intracoronary administration has demonstrated acceptable safety profiles in early trials, and may represent a major advance over surgical thoracotomy. The combined efforts of bench and clinical researchers will ultimately answer the question of whether cell therapy is a suitable strategy for treatment of patients with refractory angina.

  9. Stem Cells in Liver Diseases and Cancer: Recent Advances on the Path to New Therapies

    OpenAIRE

    Rountree, C. Bart; Mishra, Lopa; Willenbring, Holger

    2012-01-01

    Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the AASLD Henry M. and Lillian Stratton Basic Research Single Topic Conference “Stem Cells in Liver Diseases and Cancer: Discovery and Promise” brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes...

  10. Stem cells to pancreatic beta-cells: new sources for diabetes cell therapy.

    Science.gov (United States)

    Guo, Tingxia; Hebrok, Matthias

    2009-05-01

    The number of patients worldwide suffering from the chronic disease diabetes mellitus is growing at an alarming rate. Insulin-secreting beta-cells in the islet of Langerhans are damaged to different extents in diabetic patients, either through an autoimmune reaction present in type 1 diabetic patients or through inherent changes within beta-cells that affect their function in patients suffering from type 2 diabetes. Cell replacement strategies via islet transplantation offer potential therapeutic options for diabetic patients. However, the discrepancy between the limited number of donor islets and the high number of patients who could benefit from such a treatment reflects the dire need for renewable sources of high-quality beta-cells. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into components of all three germ layers, including all pancreatic lineages. The ability to differentiate hESCs into beta-cells highlights a promising strategy to meet the shortage of beta-cells. Here, we review the different approaches that have been used to direct differentiation of hESCs into pancreatic and beta-cells. We will focus on recent progress in the understanding of signaling pathways and transcription factors during embryonic pancreas development and how this knowledge has helped to improve the methodology for high-efficiency beta-cell differentiation in vitro.

  11. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect

    DEFF Research Database (Denmark)

    Lund, O; Lund, O S; Gram, G

    1997-01-01

    This paper presents a mathematical analysis of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. The analysis indicates that for such a therapy to be successful, it must protect the transduced cells against HIV-induced death. The transduced cells...... will not survive as a population if the gene therapy only blocks the spread of virus from transduced cells that become infected. The analysis also suggests that the degree of protection against disease-related cell death provided by the gene therapy is more important than the fraction cells that is initially...... transduced. If only a small fraction of the cells can be transduced, transduction of T helper cells and transduction of haematopoietic progenitor cells will result in the same steady-state level of transduced T helper cells. For gene therapy to be efficient against HIV infection, our analysis suggests...

  12. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Science.gov (United States)

    Yarygin, Konstantin N.

    2017-01-01

    The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable. PMID:28210629

  13. Exploring a new therapy for diabetic polyneuropathy –the application of stem cell transplantation-

    Directory of Open Access Journals (Sweden)

    Hiroki eMizukami

    2014-04-01

    Full Text Available Diabetic polyneuropathy (DPN is the most common complication that emerges early in diabetic patients. Intervention with strict blood glucose control or treatment with aldose reductase inhibitor is reported to be effective in early stages of DPN. Curative treatment for overt or symptomatic DPN, however, has not been established, thus requiring much effort to explore a new therapy. Recent preclinical studies on the use of gene or cell therapy have provided promising results in the treatment of DPN. Of particular interest, induced pluripotent stem (iPS cells are introduced. In these studies, restoration of DPN was proposed to be attributed to either neurotrophic factors released from transplanted stem cells or differentiation of stem cells to substitute the damaged peripheral nerve. There are still several problems, however, that remain to be overcome, such as perturbed function, fragility or limited survival of transplanted cells in diabetes milieu and risk for malignant transformation of transplanted cells. Questions, which cell is the most appropriate as the source for cell therapy, or which site is the best for transplantation to obtain the most effective results, remain to be answered. In this communication, we overview the current status of preclinical studies on the cell therapy for DPN and discuss the future prospect.

  14. On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance.

    Science.gov (United States)

    Gallego-Perez, Daniel; Chang, Lingqian; Shi, Junfeng; Ma, Junyu; Kim, Sung-Hak; Zhao, Xi; Malkoc, Veysi; Wang, Xinmei; Minata, Mutsuko; Kwak, Kwang J; Wu, Yun; Lafyatis, Gregory P; Lu, Wu; Hansford, Derek J; Nakano, Ichiro; Lee, L James

    2016-09-14

    Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.

  15. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies.

    Science.gov (United States)

    McCusker, Catherine D; Gardiner, David M

    2014-06-01

    Regenerative medicine has reached the point where we are performing clinical trials with stem-cell-derived cell populations in an effort to treat numerous human pathologies. However, many of these efforts have been challenged by the inability of the engrafted populations to properly integrate into the host environment to make a functional biological unit. It is apparent that we must understand the basic biology of tissue integration in order to apply these principles to the development of regenerative therapies in humans. Studying tissue integration in model organisms, where the process of integration between the newly regenerated tissues and the 'old' existing structures can be observed and manipulated, can provide valuable insights. Embryonic and adult cells have a memory of their original position, and this positional information can modify surrounding tissues and drive the formation of new structures. In this Review, we discuss the positional interactions that control the ability of grafted cells to integrate into existing tissues during the process of salamander limb regeneration, and discuss how these insights could explain the integration defects observed in current cell-based regenerative therapies. Additionally, we describe potential molecular tools that can be used to manipulate the positional information in grafted cell populations, and to promote the communication of positional cues in the host environment to facilitate the integration of engrafted cells. Lastly, we explain how studying positional information in current cell-based therapies and in regenerating limbs could provide key insights to improve the integration of cell-based regenerative therapies in the future.

  16. Perspectives on stem cell-based elastic matrix regenerative therapies for abdominal aortic aneurysms.

    Science.gov (United States)

    Bashur, Chris A; Rao, Raj R; Ramamurthi, Anand

    2013-06-01

    Abdominal aortic aneurysms (AAAs) are potentially fatal conditions that are characterized by decreased flexibility of the aortic wall due to proteolytic loss of the structural matrix. This leads to their gradual weakening and ultimate rupture. Drug-based inhibition of proteolytic enzymes may provide a nonsurgical treatment alternative for growing AAAs, although it might at best be sufficient to slow their growth. Regenerative repair of disrupted elastic matrix is required if regression of AAAs to a healthy state is to be achieved. Terminally differentiated adult and diseased vascular cells are poorly capable of affecting such regenerative repair. In this context, stem cells and their smooth muscle cell-like derivatives may represent alternate cell sources for regenerative AAA cell therapies. This article examines the pros and cons of using different autologous stem cell sources for AAA therapy, the requirements they must fulfill to provide therapeutic benefit, and the current progress toward characterizing the cells' ability to synthesize elastin, assemble elastic matrix structures, and influence the regenerative potential of diseased vascular cell types. The article also provides a detailed perspective on the limitations, uncertainties, and challenges that will need to be overcome or circumvented to translate current strategies for stem cell use into clinically viable AAA therapies. These therapies will provide a much needed nonsurgical treatment option for the rapidly growing, high-risk, and vulnerable elderly demographic.

  17. Advances in Cell Transplantation Therapy for Diseased Myocardium

    Directory of Open Access Journals (Sweden)

    Outi M. Villet

    2011-01-01

    Full Text Available The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

  18. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  19. Research progress in animal models and stem cell therapy for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Han F

    2014-12-01

    Full Text Available Fabin Han,1,2 Wei Wang1, Chao Chen1 1Centre for Stem Cells and Regenerative Medicine, 2Department of Neurology, Liaocheng People’s Hospital/The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People’s Republic of China Abstract: Alzheimer’s disease (AD causes degeneration of brain neurons and leads to memory loss and cognitive impairment. Since current therapeutic strategies cannot cure the disease, stem cell therapy represents a powerful tool for the treatment of AD. We first review the advances in molecular pathogenesis and animal models of AD and then discuss recent clinical studies using small molecules and immunoglobulins to target amyloid-beta plaques for AD therapy. Finally, we discuss stem cell therapy for AD using neural stem cells, olfactory ensheathing cells, embryonic stem cells, and mesenchymal stem cell from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific induced pluripotent stem cells are proposed as a future treatment for AD. Keywords: amyloid-beta plaque, neurofibrillary tangle, neural stem cell, olfactory ensheathing cell, mesenchymal stem cell, induced pluripotent stem cell

  20. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases.

    Science.gov (United States)

    Jeon, Sohee; Oh, Il-Hoan

    2015-04-01

    Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases.

  1. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy.

    Science.gov (United States)

    Themeli, Maria; Kloss, Christopher C; Ciriello, Giovanni; Fedorov, Victor D; Perna, Fabiana; Gonen, Mithat; Sadelain, Michel

    2013-10-01

    Progress in adoptive T-cell therapy for cancer and infectious diseases is hampered by the lack of readily available, antigen-specific, human T lymphocytes. Pluripotent stem cells could provide an unlimited source of T lymphocytes, but the therapeutic potential of human pluripotent stem cell-derived lymphoid cells generated to date remains uncertain. Here we combine induced pluripotent stem cell (iPSC) and chimeric antigen receptor (CAR) technologies to generate human T cells targeted to CD19, an antigen expressed by malignant B cells, in tissue culture. These iPSC-derived, CAR-expressing T cells display a phenotype resembling that of innate γδ T cells. Similar to CAR-transduced, peripheral blood γδ T cells, the iPSC-derived T cells potently inhibit tumor growth in a xenograft model. This approach of generating therapeutic human T cells 'in the dish' may be useful for cancer immunotherapy and other medical applications.

  2. Photodynamic therapy combined with distant gamma-ray therapy in the patient with squamous cell carcinoma of the skin

    Directory of Open Access Journals (Sweden)

    V. L. Filinov

    2015-01-01

    Full Text Available Results of clinical follow-up of the patient with squamous cell skin carcinoma of the nasal dorsum are represented. The patient underwent a course of combined photodynamic therapy (PDT with distant gamma-ray therapy. Distant gamma-ray therapy was performed daily during 12 days (single dose of 3 Gy, total dose of 36 Gy with the first session 24 h after injection of the photosensitization. For PDT the photosensitizer photosens at dose of 0,3 mg/kg was used. The method of prolonged PDT was applied, sessions of laser irradiation were performed daily during 7 days. The PDT sessions were carried out 2 h after session of gamma-ray therapy using distant (150 J/cm2, 40 mW/cm2 and contact (500 J/cm2, 100 mW/cm2 modalities. According to multiple cytological studies after treatment there were no signs of tumor, but inflammation. Four months after treatment according to cytological data continued tumor growth was detected. The patient underwent an additional course of PDT. Currently the patient is under follow-up: no recurrence during 8 months after repeated treatment. 

  3. Regulatory Considerations in Application of Encapsulated Cell Therapies

    NARCIS (Netherlands)

    van Zanten, J.; de Vos, Paul; Pedraz, JL; Orive, G

    2010-01-01

    The encapsulation of tissue in semi-permeable membranes is a technology with high potential and in due time several new therapies based on this technology will be tested in clinical trials. Recent, new legislation requires that these investigational medicinal products used in clinical trials Phase I

  4. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  5. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  6. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review

    Science.gov (United States)

    Nguyen, Patricia K.; Rhee, June-Wha; Wu, Joseph C.

    2017-01-01

    Importance Stem cell therapy is a promising treatment strategy for patients with heart failure, which accounts for over 10% of deaths in the U.S. annually. Despite over a decade of research, further investigation is still needed to determine whether stem cell regenerative therapy is clinically effective and can be routinely implemented in clinical practice. Objective The purpose of this review is to describe the current progress in cardiac stem cell regenerative therapy using adult stem cells and highlight the merits and limitations of clinical trials performed to date. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English language studies published between January 1, 2000 and April 20, 2016. Twenty-nine randomized clinical trials and 7 systematic reviews and meta-analyses were included in this review. Findings Although adult stem cells were once believed to have the ability to create new heart tissue or grow blood vessels, preclinical studies suggest instead that these cells release cardio-protective paracrine factors that activate endogenous pathways, leading to myocardial repair. Subsequent randomized controlled clinical trials, the majority of which used autologous bone marrow mononuclear cells, have found only a modest benefit in patients receiving stem cell therapy. The lack of a significant benefit may result from variations in trial methodology, discrepancies in reporting, and an over-reliance on surrogate endpoints. Conclusions and Relevance Although stem cell therapy for cardiovascular disease is not yet ready for routine clinical application, significant progress continues to be made. Physicians should be aware of the current status of this treatment so that they can better inform their patients who may be in search of alternative therapies. PMID:27557438

  7. Experimental myocardial stem cell therapy for ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Kastrup, Jens; Mygind, Naja D; Qayyum, Abbas A

    2016-01-01

    ), chronic IHD and heart failure. The patients suffer from chest pain (angina), dyspnea and a reduced quality of life. Common for all these conditions is loss of functional cardiomyocytes and endothelial cells. Stem cell therapy to regenerate injured myocardium is a new treatment option which has gained much...... interest in the last 10-15 years especially after STEMI. Many preclinical and clinical studies have shown encouraging results but also very diverse clinical outcomes after stem cell treatment. This diversity in results may be explained by different factors, such as cell isolation technique, infarct...... location, timing and route of delivery, cell dosage, cell type etc. The present review will try to elaborate and clarify the present status for stem cell therapy in STEMI....

  8. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy.

    Science.gov (United States)

    Zhang, Shuo; Chen, Simon; Li, Yuan; Liu, Yu

    2017-03-01

    Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.

  9. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    Science.gov (United States)

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  10. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  11. Targeted Therapy for Renal Cell Carcinoma: a Prospective study

    Directory of Open Access Journals (Sweden)

    Robin Joshi

    2015-06-01

    Conclusions: In our cohort, use of sunitinib showed similar outcome to previously published articles. Our study supports the use of sunitinib in metastatic renal cell carcinoma. Keywords: metastatic renal cell carcinoma; sunitinib; tyrosine kinase inhibitor.

  12. Stem cell-based therapies for spinal cord injury.

    Science.gov (United States)

    Nandoe Tewarie, Rishi S; Hurtado, Andres; Bartels, Ronald H; Grotenhuis, Andre; Oudega, Martin

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.

  13. Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers.

    Science.gov (United States)

    Wei, Heming; Ooi, Ting Huay; Tan, Genevieve; Lim, Sze Yun; Qian, Ling; Wong, Philip; Shim, Winston

    2010-01-01

    Stem cell-based therapy for patients with post-infarct heart failure is a relatively new and revolutionary concept in cardiology. Despite the encouraging results from pre-clinical studies, outcomes from most clinical trials remain moderately positive while the clinical benefits are largely attributed to transplanted cell-associated paracrine effects in stimulating angiogenesis and protecting endogenous cardiomyocytes. This scenario indicates that there may be a considerably protracted iterative process of conceptual and procedural refinement before true clinical benefits can be fully materialized. At present, many pressing questions regarding cell therapy remain unanswered. In addition to the primary interest in determining the ideal type of stem cells with best cardiogenic potential in vitro and in vivo, there are growing concerns on the impact of the host cardiac milieu on the transplanted cells, including their survival, migration, engraftment, and trans-differentiation as well as contribution to left ventricular function. Effective cell delivery and tracking methods are central to the unraveling of these questions. To date, cell-delivery modalities are yet to be optimized and strategies for safe and effective assessment of cells transplanted in the recipients are to be established. In this review, we discuss cell delivery and tracking modalities that are adopted in the current pre-clinical and clinical studies. We further discussed emerging technologies that are poised to impact the success of cell therapy.

  14. Stem cell therapy - Hope and scope in pediatric surgery

    Directory of Open Access Journals (Sweden)

    Gupta Devendra

    2005-01-01

    Full Text Available A stem cell is an undifferentiated cell in the body with undetermined function capable of forming various tissues under definite signals received from the body. Stem cell research in animals using embryonal stem cells has been an ongoing program in the west with fruitful results. However, only limited information is available with the use of stem cells in human beings. Of the various sources of stem cells, umbilical cord blood stem cell research has shown potential for future treatment in Alzheimer′s, Parkinson′s, heart attack, stroke and spinal cord injuries. Human trials have been done in diseases like spinal cord injury and chronic liver cirrhosis. Cord blood stem cells have already been effectively used in the treatment of sickle cell, leukemia, non-Hodgkin′s lymphoma and some other cancers, life threatening anemias and auto-immune diseases. Current challenges with the use of stem cells in clinical practice include the provisions to direct the differentiation of embryonic stem cells into specialized cell populations, and also devise ways to guard their development or proliferation once placed in vivo. Only further research and its clinical application will solve the many unanswered queries.

  15. Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse.

    Science.gov (United States)

    Emmerson, Stuart J; Gargett, Caroline E

    2016-05-26

    Pelvic organ prolapse (POP) occurs when the pelvic organs (bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells (MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.

  16. Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse

    Institute of Scientific and Technical Information of China (English)

    Stuart; J; Emmerson; Caroline; E; Gargett

    2016-01-01

    Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman’s quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells(MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.

  17. Optimization of delivery strategies for cardiac cell therapy in ischemic heart disease

    NARCIS (Netherlands)

    van der Spoel, T.I.G.

    2012-01-01

    Cardiac cell therapy has been proposed as an alternative treatment option for patients after acute myocardial infarction (MI). Irrespective of the chosen regenerative strategy, it is essential to deliver sufficient number of cells to the infarcted myocardium to become effective which is important si

  18. The clinical relevance of cell-based therapy for the treatment of stress urinary incontinence

    DEFF Research Database (Denmark)

    Gräs, Søren; Lose, Gunnar

    2011-01-01

    Stress urinary incontinence is a common disorder affecting the quality of life for millions of women worldwide. Effective surgical procedures involving synthetic permanent meshes exist, but significant short- and long-term complications occur. Cell-based therapy using autologous stem cells...

  19. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    Science.gov (United States)

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities.

  20. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    2009-01-01

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their poten

  1. Induction of the apoptosis of cancer cell by sonodynamic therapy:a review

    Institute of Scientific and Technical Information of China (English)

    Wen-Kun Bai; E Shen; Bing Hu

    2012-01-01

    Ultrasound can be used not only in examination,but also in therapy,especially in the therapy of cancer.Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic effects of agents known as sonosensitizers.It has been tested in vitro and in vivo.The ultrasound could penetrate the tissue and cell under some of conditions which directly changes cell membrane permeability,thereby allowing the delivery of exogenous molecules into the cells in some degree.Ultrasound could inhibit the proliferation or induce the apoptosis of cancer cells in vitro or in vivo.Recent researches indicated low-frequency and low-intensity ultrasound could induce cell apoptosis,which could be strengthened by sonodynamic sensitivity,microbubbles,chemotherapeutic drugs and so on.Most kinds of ultrasound suppressed the proliferation of cancer cells through inducing the apoptosis of cancer cells.The mechanism of apoptosis is not clear.In this review,we will focus on and discuss the mechanisms of the induction of cancer cell apoptosis by ultrasound.

  2. Stem and Progenitor Cell-Based Therapy of the Central Nervous System

    DEFF Research Database (Denmark)

    Goldman, Steven A.

    2016-01-01

    A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreove...

  3. Rethinking on ethics and regulations in cell therapy as part of neurorestoratology

    Directory of Open Access Journals (Sweden)

    Sharma A

    2016-01-01

    Full Text Available Alok Sharma,1,2 Ziad M Al Zoubi3 1Department of Neurosurgery, Lokmanya Tilak Municipal General (LTMG Hospital and LTM Medical College, Mumbai, India; 2NeuroGen Brain and Spine Institute, Mumbai, India; 3Jordan Orthopedic and Spinal Centre, Amman, Jordan Abstract: Ethics, regulations, and evidence-based practices form the foundation of modern medicine. However, in recent years, and particularly in reference to cellular therapy, they have become obstacles to the growth and development of this new form of treatment. Based on four important documents, it is proposed that regulatory bodies and medical associations recommend an alternate way of looking at regulations for cell therapy, so as to ensure that only safe and effective treatments are offered to patients, and that greater availability of these new treatment options is also encouraged. The four documents on which these recommendations are based are: 1 World Medical Association Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects; 2 The International Society for Cellular Therapy "White paper" published in 2010; 3 The Beijing Declaration of the International Association of Neurorestoratology; and 4 New legislation passed in Japan in 2014 on regenerative medicine. These recommendations are: greater permissiveness for the use of cell therapy in incurable conditions, identify legitimate cell therapy services, promote medical innovation, respect the rights of patients to choose treatments, recognize the valid compassionate use of unapproved therapies, recognize the significance of small functional gains, give importance to practice-based evidence and existing published literature, have differing regulations for the different types of cell therapies, and adapt the new Japanese legislation for regenerative medicine. Keywords: cellular therapy, stem cells, ethics, regulations, evidence-based medicine, practice-based evidence, Japan regulations, Korea regulations 

  4. A question of ethics: selling autologous stem cell therapies flaunts professional standards.

    Science.gov (United States)

    Munsie, Megan; Hyun, Insoo

    2014-11-01

    The idea that the body's own stem cells could act as a repair kit for many conditions, including cardiac repair, underpins regenerative medicine. While progress is being made, with hundreds of clinical trials underway to evaluate possible autologous cell-based therapies, some patients and physicians are not prepared to wait and are pursuing treatments without evidence that the proposed treatments are effective, or even safe. This article explores the inherent tension between patients, practitioners and the need to regulate the development and commercialization of new cellular therapies--even when the cells come from the patient.

  5. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    Science.gov (United States)

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  6. Baby STEPS: a giant leap for cell therapy in neonatal brain injury.

    Science.gov (United States)

    Borlongan, Cesar V; Weiss, Michael D

    2011-07-01

    We advance Baby STEPS or Stem cell Therapeutics as an Emerging Paradigm in Stroke as a guide in facilitating the critical evaluation in the laboratory of the safety and efficacy of cell therapy for neonatal encephalopathy. The need to carefully consider the clinical relevance of the animal models in mimicking human neonatal brain injury, selection of the optimal stem cell donor, and the application of functional outcome assays in small and large animal models serve as the foundation for preclinical work and beginning to understand the mechanism of this cellular therapy. The preclinical studies will aid our formulation of a rigorous human clinical trial that encompasses not only efficacy testing but also monitoring of safety indices and demonstration of mechanisms of action. This schema forms the basis of Baby STEPS. Our goal is to resonate the urgent call to enhance the successful translation of cell therapy from the laboratory to the clinic.

  7. Photodynamic Approach for Teratoma-Free Pluripotent Stem Cell Therapy Using CDy1 and Visible Light

    Science.gov (United States)

    2016-01-01

    Pluripotent stem cells (PSC) are promising resources for regeneration therapy, but teratoma formation is one of the critical problems for safe clinical application. After differentiation, the precise detection and subsequent elimination of undifferentiated PSC is essential for teratoma-free stem cell therapy, but a practical procedure is yet to be developed. CDy1, a PSC specific fluorescent probe, was investigated for the generation of reactive oxygen species (ROS) and demonstrated to induce selective death of PSC upon visible light irradiation. Importantly, the CDy1 and/or light irradiation did not negatively affect differentiated endothelial cells. The photodynamic treatment of PSC with CDy1 and visible light irradiation confirmed the inhibition of teratoma formation in mice, and suggests a promising new approach to safe PSC-based cell therapy. PMID:27725957

  8. Standard treatment option in stage III non-small-cell lung cancer: case against trimodal therapy and consolidation drug therapy.

    Science.gov (United States)

    Jeremić, Branislav

    2015-03-01

    Prospective randomized trials and meta-analyses established concurrent radiochemotherapy (RT-CHT) as standard treatment approach in patients with inoperable, locally advanced (stage IIIA and B) non-small-cell lung cancer (NSCLC). In patients with either clinically (c) or pathologically (p) staged disease (stage IIIA), including those with pN2 disease, trimodal therapy was also frequently practiced in the past and is currently still advocated by large cooperative groups and organizations. Similarly, consolidation CHT provided after concurrent RT-CHT was suggested to be feasible and effective in inoperable stage III NSCLC. Contrasting these practices and suggestions, there is no evidence that trimodal therapy in stage IIIA (clinically or pathologically staged) or consolidation CHT in inoperable stage III NSCLC plays any role in its treatment. In both cases, evidence clearly demonstrates that concurrent RT-CHT is of similar efficacy and less toxic, and it should be considered a standard treatment option for all patients with stage III NSCLC.

  9. Stem cells: Potential therapy for age-related diseases

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2006-01-01

    Aging is associated with a progressive failing of tissues and organs of the human body leading to a large number of age-related diseases. Regenerative medicine is an emerging clinical discipline that aims to employ cellular medicines (normal cells, ex vivo expanded cells, or tissue......-engineered organs) to restore the functions of damaged or defective tissues and organs and thus to "rejuvenate" the failing aging body. One of the most important sources for cellular medicine is embryonic and adult (somatic) stem cells (SSCs). One example of SCCs with enormous clinical potential is the mesenchymal...... stem cells (MSCs) that are present in the bone marrow and are able to differentiate into cell types such as osteoblasts, chondrocytes, endothelial cells, and probably also neuron-like cells. Because of the ease of their isolation and their extensive differentiation potential, MSCs are among the first...

  10. Graphene: The Missing Piece for Cancer Diagnosis?

    Science.gov (United States)

    Cruz, Sandra M. A.; Girão, André F.; Gonçalves, Gil; Marques, Paula A. A. P.

    2016-01-01

    This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage. PMID:26805845

  11. Graphene: The Missing Piece for Cancer Diagnosis?

    Directory of Open Access Journals (Sweden)

    Sandra M. A. Cruz

    2016-01-01

    Full Text Available This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.

  12. Graphene: The Missing Piece for Cancer Diagnosis?

    Science.gov (United States)

    Cruz, Sandra M A; Girão, André F; Gonçalves, Gil; Marques, Paula A A P

    2016-01-21

    This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.

  13. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  14. Cell therapy of periodontium: from animal to human?

    OpenAIRE

    2013-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft and hard tissues supporting the teeth, which often leads to tooth loss. Its significant impact on the patient's general health and quality of life point to a need for more effective management of this condition. Existing treatments include scaling/root planning and surgical approaches but their overall effects are relatively modest and restricted in application. The goal of regenerative therapy of periodontal defects is to enh...

  15. Skin reactions and quality of life after x-ray therapy of Basal cell carcinoma

    DEFF Research Database (Denmark)

    Skiveren, Jette; Mikkelsen, Maria Rudkjaer; Daugbjerg, Helle

    2012-01-01

    controls (P = 0.819). Three months after X-ray therapy eight patients had no skin reactions, 11 had slight atrophy, pigmentation change, and/or some hair loss, four had patch atrophy, moderate telangiectasia, and/or total hair loss. Conclusions. BCC has a negative effect on patients' quality of life......-ray therapy compared with matched healthy controls. Materials. Twenty-five patients (mean age 69) with BCC completed the Dermatology Life Quality Index (DLQI) before and two weeks and three months after X-ray therapy and their results were compared with the DLQI scores for 25 matched controls. Results......Background. Advanced basal cell carcinoma (BCC) is often treated by surgery or X-ray therapy. The consequences of X-ray therapy on the patients' health-related quality-of-life (HRQOL) have so far not been described. Objectives. To quantify quality of life in BCC patients before and after X...

  16. Thrombolytic therapy reduces red blood cell aggregation in plasma without affecting intrinsic aggregability.

    Science.gov (United States)

    Ben-Ami, R; Sheinman, G; Yedgar, S; Eldor, A; Roth, A; Berliner, A S; Barshtein, G

    2002-03-15

    Red blood cell (RBC) aggregation may contribute to occlusion of the coronary microcirculation during myocardial infarction. We studied the effect of thrombolytic therapy on RBC aggregation in patients with acute myocardial infarction (AMI). Compared with patients with myocardial infarction who did not receive thrombolytic therapy, those treated with systemic thrombolysis exhibited significantly reduced RBC aggregation, reduced plasma fibrinogen levels and increased plasma D-dimer levels. Using measurement of RBC aggregation in a standardized dextran-500 solution, reduction in RBC aggregation after thrombolysis was shown to be plasma dependent. Thrombolytic therapy had no direct effect on intrinsic RBC aggregability in patients with AMI. We conclude that thrombolytic therapy has rheologic consequences that may contribute to its overall efficacy. Inhibition of RBC aggregation by thrombolytic therapy may result from the degradation of fibrinogen, a key factor in the formation of RBC aggregates, and from the generation of fibrinogen degradation products capable of disaggregating RBCs.

  17. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

    Directory of Open Access Journals (Sweden)

    Fay BL

    2015-11-01

    Full Text Available Brittany L Fay, Jilian R Melamed, Emily S Day Biomedical Engineering, University of Delaware, Newark, DE, USA Abstract: Nanoshell-mediated photothermal therapy (PTT is currently being investigated as a standalone therapy for the treatment of cancer. The cellular effects of PTT include loss of membrane integrity, so we hypothesized that nanoshell-mediated PTT could potentiate the cytotoxicity of chemotherapy by improving drug accumulation in cancer cells. In this work, we validated our hypothesis using doxorubicin as a model drug and SUM149 inflammatory breast cancer cells as a model cancer subtype. In initial studies, SUM149 cells were exposed to nanoshells and near-infrared light and then stained with ethidium homodimer-1, which is excluded from cells with an intact plasma membrane. The results confirmed that nanoshell-mediated PTT could increase membrane permeability in SUM149 cells. In complementary experiments, SUM149 cells treated with nanoshells, near-infrared light, or a combination of the two to yield low-dose PTT were exposed to fluorescent rhodamine 123. Analyzing rhodamine 123 fluorescence in cells via flow cytometry confirmed that increased membrane permeability caused by PTT could enhance drug accumulation in cells. This was validated using fluorescence microscopy to assess intracellular distribution of doxorubicin. In succeeding experiments, SUM149 cells were exposed to subtherapeutic levels of doxorubicin, low-dose PTT, or a combination of the two treatments to determine whether the additional drug uptake induced by PTT is sufficient to enhance cell death. Analysis revealed minimal loss of viability relative to controls in cells exposed to subtherapeutic levels of doxorubicin, 15% loss of viability in cells exposed to low-dose PTT, and 35% loss of viability in cells exposed to combination therapy. These data indicate that nanoshell-mediated PTT is a viable strategy to potentiate the effects of chemotherapy and warrant further

  18. Introducing Dendrosomal Nanocurcumin as a Compound Capable of in vitro Eliminating Undifferentiated Stem Cells in Cell Therapy Practices.

    Science.gov (United States)

    Javidi, M A; Zolghadr, F; Babashah, S; Sadeghizadeh, M

    2015-11-01

    One of the major obstacles needed to be overcome before using cell therapy for clinical purposes is the high probability of tumor formation in patients who receive the transplants, as undifferentiated stem cells (SCs) have the potential to form teratomas/teratocarcinoma in xenotransplants. In this study the ability of dendrosomal nanocurcumin (solublized curcumin using a biodegradable non-toxic nano-carrier) to affect undifferentiated/hazardous cell, and hence increasing the safety of cell therapy (particularly in diabetes type I) by mesenchymal stem cells (MSCs) was examined. The results showed that after completion of differentiation of human mesenchymal stem cells (hMSCs) into insulin producing cells (IPCs), the expression level of insulin increases, although there remains a minority of undifferentiated cells which still express nestin (gene which is expressed in progenitor stem cells of IPCs). It indicates the emergence of a heterogeneous population containing undifferentiated and differentiated cells. Furthermore our data demonstrated that the expression level of p53 decreases during differentiation of hMSCs into IPCs which implies a more favorable microenvironment for tumor formation following the transplantation of such a heterogeneous population. After treatment with dendrosomal nanocurcumin, nestin expression eliminated, however no significant effect on the expression and secretion of insulin was observed. Together our data shows that dendrosomal nanocurcumin have the ability to affect residual undifferentiated stem cells after the completion of differentiation of MSCs induced to differentiate into IPCs; while it exerts no significant harmful effect on the survival and function of differentiated cells. With regard to the obtained results in this study, exploiting dendrosomal nanocurcumin, after completion of induced differentiation of stem cells and prior to the transplantation step, can be suggested as a very efficient, safe and cost-effective method to

  19. Dramatic and sustained responsiveness of pulmonary Langerhans cell histiocytosis-associated pulmonary hypertension to vasodilator therapy

    Science.gov (United States)

    May, Adam; Kane, Garvan; Yi, Eunhee; Frantz, Robert; Vassallo, Robert

    2014-01-01

    Pulmonary Langerhans cell histiocytosis (PLCH) is an uncommon diffuse lung disease characterized by the abnormal accumulation of Langerhans' cells around small airways and other distal lung compartments. Although pulmonary hypertension (PH) is a frequent complication of PLCH, the role of advanced PH therapies for PLCH-related PH is not well-established. We describe a PLCH patient with severe, disease-related PH that responded unexpectedly well to advanced PH therapy with sustained improvement over a 10 year follow-up period. This case indicates that PLCH-associated PH may, in certain instances, be highly responsive to advanced PH therapies and emphasizes the importance of trialing these therapies among patients with PLCH-related PH. PMID:26029568

  20. Is Stem Cell Therapy Ready for Prime Time in Treatment of Inflammatory Bowel Diseases?

    Science.gov (United States)

    Hawkey, Christopher J; Hommes, Daniel W

    2017-02-01

    Autologous hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cell therapy have been proposed for patients with refractory Crohn's disease (CD) and fistulizing CD, respectively. Will these highly advanced techniques be available only for select patients, at specialized centers, or is further clinical development justified, with the aim of offering widespread, more definitive therapeutic options for often very difficult to treat disease? Patients with CD who are eligible for HSCT have typically been failed by most approved therapies, have undergone multiple surgeries, and have coped with years of disease activity and poor quality of life. The objective of HSCT is to immediately shut down the immune response and allow the transplanted stem cells to develop into self-tolerant lymphocytes. For patients with fistulizing CD, mesenchymal stromal cell therapy deposits MSCs locally, into fistulizing tracts, to down-regulate the local immune response and induce wound healing. Recent trials have produced promising results for HSCT and mesenchymal stromal cell therapy as alternatives to systemic therapies and antibiotics for patients with inflammatory bowel diseases, but are these immunotherapies ready for prime time?

  1. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy.

    Science.gov (United States)

    Fábián, Ákos; Vereb, György; Szöllősi, János

    2013-01-01

    Cancer stem cell (CSC) biology is a rapidly developing field within cancer research. CSCs are postulated to be a unique cell population exclusively capable of infinite self renewal, multilineage differentiation and with ability to evade conventional cytotoxic cancer therapy. These traits distinguish CSCs from their more differentiated counterparts, which possess only limited or no potential for self renewal and tumor initiation. Therefore, CSCs would be the driving motor of malignant growth and therapy resistance. Accordingly, successful cancer treatment would need to eliminate this highly potent group of cells, since even small residual numbers would suffice to recapitulate the disease after therapy. Putative CSCs has been identified in a broad range of human malignancies and several cell surface markers have been associated with their stem cell phenotype. Despite all efforts, a pure CSC population has not been isolated and often in vitro clonogenic and in vivo tumorigenic potential is found in several cell populations with occasionally contradictory surface marker signatures. Here, we give a brief overview of recent advances in CSC theory, including the signaling pathways in CSCs that also appear crucial for stem cells homeostasis in normal tissues. We discuss evidence for the interaction of CSCs with the stromal tumor environment. Finally, we review the emerging potentially effective CSC-targeted treatment strategies and their future role in therapy.

  2. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.

    Science.gov (United States)

    Gill, Saar; June, Carl H

    2015-01-01

    On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.

  3. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  4. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  5. Anti-CD137 monoclonal antibodies and adoptive T cell therapy: a perfect marriage?

    Science.gov (United States)

    Weigelin, Bettina; Bolaños, Elixabet; Rodriguez-Ruiz, Maria E; Martinez-Forero, Ivan; Friedl, Peter; Melero, Ignacio

    2016-05-01

    CD137(4-1BB) costimulation and adoptive T cell therapy strongly synergize in terms of achieving maximal efficacy against experimental cancers. These costimulatory biological functions of CD137 have been exploited by means of introducing the CD137 signaling domain in clinically successful chimeric antigen receptors and to more efficiently expand T cells in culture. In addition, immunomagnetic sorting of CD137-positive T cells among tumor-infiltrating lymphocytes selects for the fittest antitumor T lymphocytes for subsequent cultures. In mouse models, co-infusion of both agonist antibodies and T cells attains marked synergistic effects that result from more focused and intense cytolytic activity visualized under in vivo microscopy and from more efficient entrance of T cells into the tumor through the vasculature. These several levels of dynamic interaction between adoptive T cell therapy and CD137 offer much opportunity to raise the efficacy of current cancer immunotherapies.

  6. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies

    Science.gov (United States)

    Zhang, Cheng; Yang, Shi-Jie; Wen, Qin; Zhong, Jiang F; Chen, Xue-Lian; Stucky, Andres; Press, Michael F; Zhang, Xi

    2017-01-01

    The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application. PMID:28123601

  7. Application of Allogeneic Fibroblast Cells in Cellular Therapy of Recessive Dystrophic Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Zare

    2015-09-01

    Full Text Available Context Connective tissue cells include fibroblasts, chondrocytes, adipocyte, and osteocytes. These cells are specialized for the secretion of collagenous extracellular matrix and are responsible for the architectural framework of the human body. Evidence Acquisition Connective tissue cells play a central role in supporting as well as repairing tissues and organs. Fibroblast cell therapy could be used for the treatment of burn wounds, scars, diabetic foot ulcers, acne scars and skin aging. This review focused on biology of fibroblasts and their role in cell therapy of recessive dystrophic epidermolysis bullosa (RDEB. Results Fibroblasts are known to play a pivotal role in skin structure and integrity, and dermal fibroblasts are believed to promote skin regeneration and rejuvenation via collagen production. Conclusions Fibroblasts can be used in transplantations to ameliorate an immune system response, in order to reduce antigen production. Human fibroblasts suppress ongoing mixed lymphocyte reactions (MLRs between lymphocyte cells from two individuals, and supernatant materials from fibroblast cultures suppress MLRs.

  8. An official American Thoracic Society workshop report: stem cells and cell therapies in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J; Chambers, Daniel; Giangreco, Adam; Keating, Armand; Kotton, Darrell; Lelkes, Peter I; Wagner, Darcy E; Prockop, Darwin J

    2015-04-01

    The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.

  9. Targeted therapies and radiation therapy in non-small cell lung cancer; Therapies ciblees et radiotherapie dans les cancers bronchiques non a petites cellules

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, S.; Quero, L.; Wong Hee Kam, S.; Maylin, C.; Hennequin, C. [Service de cancerologie radiotherapie, hopital Saint-Louis, AP-HP, 1, avenue Claude-Vellefaux, 75010 Paris (France); Deutsch, E. [UMR 1030 ' radiosensibilite des tumeurs et tissus sains ' , Inserm, 114, rue edouard-Vaillant, 94805 Villejuif (France); Departement de radiotherapie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France)

    2011-10-15

    Lung cancer is the leading cause of cancer-related death. Between 80-85% of lung cancers are non-small cell lung carcinomas. One third of the patients are diagnosed with locally advanced stage. In this condition, concomitant radio-chemotherapy is the standard treatment for patients with good performance status. Despite important improvements in the last years, non-small cell lung carcinoma prognosis remains poor, with high rates of both local recurrences and metastases. The heterogeneity of molecular characteristics of non-small cell lung carcinoma cells and a better knowledge of potential targets offer promising developments for new pharmacologic agents. Hereafter we will review the currently most studied pathways and the most promising ones for the treatment of locally advanced unresectable non-small cell lung carcinoma. Two of the most attractive pathways where new agents have been developed and assessed in combination with thoracic radiotherapy or radio-chemotherapy are the EGFR pathway (either with the use of monoclonal antibodies or tyrosine kinase inhibitors) and the angiogenesis inhibition. The development of targeted agents could lead to individualized therapeutic combinations taking into account the intrinsic characteristics of tumor cells. Pharmacological modulation of tumour cells radiosensitivity by targeted therapies is only starting, but yet offers promising perspectives. (authors)

  10. T Cell Gene Therapy to Eradicate Disseminated Breast Cancers

    Science.gov (United States)

    2012-05-01

    Cells. In this project I found DC maturation stimuli lead to caspase-1 activation in human monocyte-derived DCs. RNAi mediated inhibition of the...inflammasome component ASC shows marked inhibition of the capacity of lipopolysachharide (LPS)-matured DCs to stimulate antigen specific T cells. RNAi ...proteins in insect cell expression system for testing their effectiveness in inhibiting tick feeding by using them as vaccines to immunize the host

  11. Advances in bone marrow stem cell therapy for retinal dysfunction.

    OpenAIRE

    Park, SS; Moisseiev, E; Bauer, G.; Anderson, JD; Grant, MB; Zam, A; Zawadzki, RJ; Werner., JS; Nolta, JA

    2017-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic ret...

  12. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

    OpenAIRE

    Fay BL; Melamed JR; Day ES

    2015-01-01

    Brittany L Fay, Jilian R Melamed, Emily S Day Biomedical Engineering, University of Delaware, Newark, DE, USA Abstract: Nanoshell-mediated photothermal therapy (PTT) is currently being investigated as a standalone therapy for the treatment of cancer. The cellular effects of PTT include loss of membrane integrity, so we hypothesized that nanoshell-mediated PTT could potentiate the cytotoxicity of chemotherapy by improving drug accumulation in cancer cells. In this work, we validated our hypo...

  13. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.

  14. Effects of nitric oxide on stem cell therapy.

    Science.gov (United States)

    Wang, Wuchen; Lee, Yugyung; Lee, Chi H

    2015-12-01

    The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.

  15. 77 FR 24717 - Scientific Information Request on Local Therapies for the Treatment of Stage I Non-Small Cell...

    Science.gov (United States)

    2012-04-25

    ... Therapies for the Treatment of Stage I Non-Small Cell Lung Cancer and Endobronchial Obstruction Due to... for the Treatment of Stage I Non-Small Cell Lung Cancer and Endobronchial Obstruction Due to Advanced... effectiveness review of the evidence for local therapies for the treatment of stage I non-small cell lung...

  16. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Verdegaal, Els M

    2014-01-01

    Adoptive cell therapy (ACT) based on autologous T cell derived either from tumor as tumor-infiltrating lymphocytes (TILs) or from peripheral blood is developing as a key area of future personalized cancer therapy. TIL-based ACT is defined as the infusion of T cells harvested from autologous fresh...... review....

  17. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  18. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2014-10-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC. Society of Clinical Oncology (ASCO has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  19. [Advances of driver gene and targeted therapy of non-small cell lung cancer].

    Science.gov (United States)

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-10-20

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  20. [Advances of molecular targeted therapy in squamous cell lung cancer].

    Science.gov (United States)

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.