WorldWideScience

Sample records for cell therapy attenuates

  1. Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Arunkumar Anandharaj; Senthilkumar Cinghu; Woo-Yoon Park

    2011-01-01

    Survivin, an antiapoptotic protein, is elevated in most malignancies and attributes to radiation resistance in tumors including glioblastoma multiforme. The downregulation of survivin could sensitize glioblastoma ceils to radiation therapy. In this study, we investigated the effect of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), in attenuating survivin and enhancing the therapeutic efficacy for glioblastoma cells, and elucidated the underlying mechanisms. Here we tested various concentrations of rapamycin (1-8 nM) in combination with radiation dose 4 Gy. Rapamycin effectively modulated the protein kinase B (Akt)/mTOR pathway by inhibiting the phosphorylation of Akt and mTOR proteins, and this inhibition was further enhanced by radiation. The expression level of survivin was decreased in rapamycin pre-treatment glioblastoma ceils followed by radiation; meanwhile, the phosphorylation of H2A histone family member X (H2AX) at serine-139 (γ-H2AX) was increased, p21 protein was also induce on radiation with rapamycin pre-treatment, which enhanced G1 arrest and the accumulation of cells at G0/subG1 phase. Furthermore, the clonogenic cell survival assay revealed a significant dose-dependent decrease in the surviving fraction for all three cell lines pre-treated with rapamycin. Our studies demonstrated that targeting survivin may be an effective approach for radiosensitization of malignant glioblastoma.

  2. Stability of colon stem cell methylation after neo-adjuvant therapy in a patient with attenuated familial adenomatous polyposis

    Directory of Open Access Journals (Sweden)

    Shibata Darryl

    2005-06-01

    Full Text Available Abstract Background Methylation at certain human CpG rich sequences increases with age. The mechanisms underlying such age-related changes are unclear, but methylation may accumulate slowly in a clock-like manner from birth and record lifetime numbers of stem cell divisions. Alternatively, methylation may fluctuate in response to environmental stimuli. The relative stability of methylation patterns may be inferred through serial observations of the same colon. Case presentation A 22 year-old male with attenuated familial adenomatous polyposis received neo-adjuvant chemotherapy and radiation prior to surgery for rectal adenocarcinoma. Colon crypt methylation patterns before and after neo-adjuvant therapy (62 days apart were essentially identical with respect to percent methylation and diversity. Consistent with previous studies, methylation patterns recorded no evidence for enhanced colon crypt stem cell survival with a germline mutation (codon 215 proximal to the mutation cluster region of APC. Conclusion The inability of neo-adjuvant therapy to significantly alter crypt methylation patterns suggests stem cells are relatively protected from transient environmental changes. Age-related methylation appears to primarily reflect epigenetic errors in stem cells that slowly accumulate in a clock-like manner from birth. Therefore, life-long human stem cell histories are potentially written within and may be read from somatic cell epigenomes.

  3. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  4. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

    Science.gov (United States)

    Bedi, Supinder S; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W; Cox, Charles S

    2013-12-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.

  5. X-Ray Attenuation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.; Toor, A.

    2000-03-03

    To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3rd-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study. The spatial structure of the LCLS x-ray pulse at the location of the attenuator is shown in Fig. 1. The central high-intensity component, due to the FEL, has a FWHM of {approx}100 {micro}m. A second component, due to the undulator's broad band spontaneous radiation is seen as a much lower intensity ''halo'' with a FWHM of 1 mm. We discuss two versions of the attenuation cell. The first is directed towards a controlled attenuation of the FEL up to the 4 orders of magnitude in the intensity, with the spontaneous radiation halo being eliminated by collimators. In the second version, the spontaneous radiation is not sacrificed but the FEL component (as well as the first harmonic of the spontaneous radiation) gets attenuated by a more modest factor up to 100. We will make all the estimates assuming that the gas used in the attenuator is Xenon and that the energy of the FEL is 8.25 keV. At

  6. R-CHOP with dose-attenuated radiation therapy could induce good prognosis in gastric diffuse large B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Mishima Yuko

    2012-09-01

    Full Text Available Abstract Background The treatment strategy for gastric diffuse large cell lymphoma (DLBCL has not been standardized in such as to the cycles of chemotherapy, dose of radiation, or necessity for the surgery. Although the results of CHOP or R-CHOP treatments have demonstrated the good prognosis, the treatments have been controversial in many cases. Methods We retrospectively analyzed 40 gastric DLBCL patients receiving chemotherapy with or without radiation in our institute. Those in stages II-IV were treated with six cycles of R-CHOP without radiation; for those in stage I, we administered three cycles of R-CHOP with radiation. Results The three-year overall survival (OS and progression-free survival (PFS rates were 95.2 and 91.8%, respectively. Those in stage I obtained 100% of OS. The radiation dose prescribed was 30.6 Gy for CR cases and 39.6 to 40 Gy for PR after chemotherapy. Although survival rates tended to correlate with staging groups or age-adjusted IPI classifications, multivariate statistical analysis did not show clear differences. All 14 patients with initial bleeding were successfully managed without surgery during treatment. Conclusion R-CHOP therapy was very effective for gastric DLBCL. It may be not necessary to use more than 30.6 Gy of radiotherapy in the highly chemo-sensitive cases. Less toxic treatments should be made available to gastric DLBCL patients.

  7. Alcohol Regulates Genes that Are Associated with Response to Endocrine Therapy and Attenuates the Actions of Tamoxifen in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Nicholes R Candelaria

    Full Text Available Hereditary, hormonal, and behavioral factors contribute to the development of breast cancer. Alcohol consumption is a modifiable behavior that is linked to increased breast cancer risks and is associated with the development of hormone-dependent breast cancers as well as disease progression and recurrence following endocrine treatment. In this study we examined the molecular mechanisms of action of alcohol by applying molecular, genetic, and genomic approaches in characterizing its effects on estrogen receptor (ER-positive breast cancer cells. Treatments with alcohol promoted cell proliferation, increased growth factor signaling, and up-regulated the transcription of the ER target gene GREB1 but not the canonical target TFF1/pS2. Microarray analysis following alcohol treatment identified a large number of alcohol-responsive genes, including those which function in apoptotic and cell proliferation pathways. Furthermore, expression profiles of the responsive gene sets in tumors were strongly associated with clinical outcomes in patients who received endocrine therapy. Correspondingly, alcohol treatment attenuated the anti-proliferative effects of the endocrine therapeutic drug tamoxifen in ER-positive breast cancer cells. To determine the contribution and functions of responsive genes, their differential expression in tumors were assessed between outcome groups. The proto-oncogene BRAF was identified as a novel alcohol- and estrogen-induced gene that showed higher expression in patients with poor outcomes. Knock-down of BRAF, moreover, prevented the proliferation of breast cancer cells. These findings not only highlight the mechanistic basis of the effects of alcohol on breast cancer cells and increased risks for disease incidents and recurrence, but may facilitate the discovery and characterization of novel oncogenic pathways and markers in breast cancer research and therapeutics.

  8. Improving live attenuated bacterial carriers for vaccination and therapy.

    Science.gov (United States)

    Loessner, Holger; Endmann, Anne; Leschner, Sara; Bauer, Heike; Zelmer, Andrea; zur Lage, Susanne; Westphal, Kathrin; Weiss, Siegfried

    2008-01-01

    Live attenuated bacteria are well established as vaccines. Thus, their use as carriers for prophylactic and therapeutic macromolecules is a logical consequence. Here we describe several experimental applications of bacteria to carry heterologous macromolecules into the murine host. First, Listeria monocytogenes are described that are able to transfer eukaryotic expression plasmids into host cells for gene therapy. High multiplicities of infection are still required for efficient gene transfer and we point out some of the bottlenecks that counteract a more efficient transfer and application in vivo. Then, we describe Salmonella enterica serovar Typhimurium (S. typhimurium) as an expression plasmid transfer vehicle for oral DNA vaccination of mice. We demonstrate that the stabilization of the plasmid transformants results in an improved immune response. Stabilization was achieved by replacing the origin of replication of the original high-copy-number plasmid by a low-copy-number origin. Finally, we describe Salmonella carriers for the improved expression of heterologous proteins. We introduce a system in which the plasmid is carried as a single copy during cultivation but is amplified several fold upon infection of the host. Using the same in vivo inducible promoter for both protein expression and plasmid amplification, a substantial increase in antigen expression in vivo can be achieved. A modification of this approach is the introduction of inducible gene expression in vivo with a low-molecular-weight compound. Using P(BAD) promoter and L-arabinose as inducer we were able to deliberately activate genes in the bacterial carrier. No background activity could be observed with P(BAD) such that an inducible suicide gene could be introduced. This is adding an important safety feature to such live attenuated carrier bacteria.

  9. Metal attenuating therapies in neurodegenerative disease.

    Science.gov (United States)

    Mot, Alexandra I; Wedd, Anthony G; Sinclair, Layla; Brown, David R; Collins, Steven J; Brazier, Marcus W

    2011-12-01

    The clinical and pathological spectrum of neurodegenerative diseases is diverse, although common to many of these disorders is the accumulation of misfolded proteins, with oxidative stress thought to be an important contributing mechanism to neuronal damage. As a corollary, transition metal ion dyshomeostasis appears to play a key pathogenic role in a number of these maladies, including the most common of neurodegenerative diseases. In this review, studies spanning a wide variety of neurodegenerative disorders are presented with their involvement of transition metals compared and contrasted, including more detailed treatise in relation to Alzheimer's disease, Parkinson's disease and prion diseases. For each of these diseases, a discussion of the evolving scientific rationale for the development of therapies aimed at ameliorating the detrimental effects of transition metal dysregulation, including results from various human trials, is then provided.

  10. Promising long-term results with attenuated adverse effects by methotrexate-containing sequential chemoradiation therapy in locally advanced head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    To reduce severe acute and late toxicities without compromising organ preservation survival in patients with locoregionally advanced head and neck squamous cell carcinoma, we performed three-drug induction methotrexate-cisplatin-fluorouracil with weekly cisplatin-fluorouracil concurrent chemoradiation. Two induction courses of methotrexate (40 mg/m2/day, days 1, 8 and 15), cisplatin and 5-fluorouracil (25 and 750 mg/m2/day, days 1-4) were given in new diagnoses of patients with non-nasopharyngeal locoregionally advanced head and neck squamous cell carcinoma. Responders received concurrent chemoradiation with weekly cisplatin (20 mg/m2/day) and 5-fluorouracil (400 mg/m2/day) on day 1. Among 57 patients (58% with Stage IV and hypopharyngeal cancer), the rates of Grade 3-4 toxicity were 30 and 74% during induction and concurrent chemoradiotherapy (CCRT), respectively. A total of 49 patients completed induction and began concurrent chemoradiation; 47 (96%) completed all planned treatment. With a median follow-up of 62 months (range 19-83 months) for the current survivors, the 3-year overall and disease-specific survival estimates were 50 and 58%, respectively. The 3-year organ preservation survival was 74% in patients who achieved complete remission after concurrent chemoradiation, and 96% of current survivors are tracheotomy and feeding tube-free. No patient without local/regional failure suffered from distant metastasis. Methotrexate-cisplatin-fluorouracil induction chemotherapy followed by weekly cisplatin-fluorouracil concurrent chemoradiation is an acute and late toxicity-acceptable protocol without attenuating organ preservation survival in patients with locoregionally advanced head and neck squamous cell carcinoma. In this patient cohort with advanced head and neck squamous cell carcinoma, overall and organ preservation survivals were encouraging, and provided promising long-term benefits of this approach. (author)

  11. Towards personalized regenerative cell therapy

    DEFF Research Database (Denmark)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells...... and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation...... of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing...

  12. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  13. Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Ellebaek, Eva;

    2016-01-01

    administered together with TILs are severe. To further scrutinize whether similar results can be achieved with lower doses of IL2, we have carried out a phase I/II trial of TIL transfer after classical lymphodepleting chemotherapy followed by an attenuated IL2 regimen. EXPERIMENTAL DESIGN: Twenty-five patients...... decrescendo regimen (ClinicalTrials.gov Identifier: NCT00937625). RESULTS: Classical IL2-related toxicities were observed but patients were manageable in a general oncology ward without the need for intervention from the intensive care unit. RECIST 1.0 evaluation displayed three complete responses and seven...... to treatment. CONCLUSIONS: TIL-ACT with a reduced IL2 decrescendo regimen results in long-lasting complete responses in patients with treatment-refractory melanoma. Larger randomized trials are needed to elucidate whether clinical efficacy is comparable with TIL-ACT followed by HD bolus IL2. Clin Cancer Res...

  14. Combination therapy with andrographolide and D-penicillamine enhanced therapeutic advantage over monotherapy with D-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis

    International Nuclear Information System (INIS)

    Long treatment regime with D-penicillamine is needed before it can exert clinically meaningful benefits in the treatment of copper toxicosis. The consequence of long-term D-penicillamine treatment is associated with numerous side effects. The limitations of D-penicillamine monotherapy prompted us to search for more effective treatment strategies that could decrease the duration of D-penicillamine therapy. The present study was designed to evaluate the therapeutic potential of D-penicillamine in combination with another hepatoprotective drug, andrographolide in treatment of copper toxicosis in rats. D-penicillamine treatment led to the excretion of copper through urine. Addition of andrographolide to D-penicillamine regime appeared to increase protection of liver by increasing the biliary excretion of copper and reduction in cholestatic injury. The early removal of the causative agent copper during combination treatment was the most effective therapeutic intervention that contributed to the early rectification of fibrosis in liver. Combination treatment reduced Kupffer cells accumulation and TNFα production in liver of copper exposed rats. In particular, andrographolide mediated the anti-inflammatory effect by inhibiting the cytokine production. However, another possible mechanism of cytoprotection of andrographolide was decreasing mitochondrial production of superoxide anions that resulted in better restoration of mitochondrial dysfunction during combination therapy than monotherapy. Furthermore, ROS inhibition by combination regimen resulted in significant decline in activation of caspase cascade. Inhibition of caspases attenuated apoptosis of hepatocytes, induced by chronic copper exposure. In summary, this study suggested that added benefit of combination treatment over use of either agent alone in alleviating the hepatotoxicity and fibrosis associated with copper toxicosis.

  15. Cell therapy of pseudarthrosis

    OpenAIRE

    Bastos Filho, Ricardo; Lermontov, Simone; Borojevic, Radovan; Schott, Paulo Cezar; Gameiro, Vinicius Schott; José Mauro GRANJEIRO

    2012-01-01

    Objective To assess the safety and efficiency of cell therapy for pseudarthrosis. Implant of the bone marrow aspirate was compared to mononuclear cells purified extemporaneously using the Sepax® equipment. Methods Six patients with nonunion of the tibia or femur were treated. Four received a percutaneous infusion of autologous bone marrow aspirated from the iliac crest, and two received autologous bone marrow mononuclear cells separated from the aspirate with the Sepax®. The primary fixation ...

  16. Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Ning-Li Chai; Qiang Fu; Hui Shi; Chang-Hao Cai; Jun Wan; Shi-Ping Xu; Ben-Yan Wu

    2012-01-01

    AIM:To investigate the potential mechanism of ArgGly-Asp (RGD) peptide-labeled liposome loading oxymatrine (OM) therapy in CCl4-induced hepatic fibrosis in METHODS:We constructed a rat model of CCl4-induced hepatic fibrosis and treated the rats with different formulations of OM.To evaluate the antifibrotic effect of OM,we detected levels of alkaline phosphatase,hepatic histopathology (hematoxylin and eosin stain and Masson staining) and fibrosis-related gene expression of matrix metallopeptidase (MMP)-2,tissue inhibitor of metalloproteinase (TIMP)-1 as well as type Ⅰ procollagen via quantitative real-time polymerase chain reaction.To detect cell viability and apoptosis of hepatic stellate cells (HSCs),we performed 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay and flow cytometry.To reinforce the combination of oxymatrine with HSCs,we constructed fluorescein-isothiocyanate-conjugated Arg-Gly-Asp peptide-labeled liposomes loading OM,and its targeting of HSCs was examined by fluorescent microscopy.RESULTS:OM attenuated CCl4-induced hepatic fibrosis,as defined by reducing serum alkaline phosphatase (344.47 ± 27.52 U/L vs 550.69 ± 43.78 U/L,P < 0.05),attenuating liver injury and improving collagen deposits (2.36% ± 0.09% vs 7.70% ± 0.60%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).OM inhibited cell viability and induced apoptosis of HSCs in vitro.RGD promoted OM targeting of HSCs and enhanced the therapeutic effect of OM in terms of serum alkaline phosphatase (272.51 ± 19.55 U/L vs 344.47 ± 27.52 U/L,P < 0.05),liver injury,collagen deposits (0.26% ± 0.09% vs 2.36% ± 0.09%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).Moreover,in vitro assay demonstrated that RGD enhanced the effect of OM on HSC viability and apoptosis.CONCLUSION:OM attenuated hepatic fibrosis by

  17. Cell Therapy for Multiple Sclerosis

    OpenAIRE

    Ben-Hur, Tamir

    2011-01-01

    The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic pl...

  18. Cell Therapies for Liver Diseases

    Science.gov (United States)

    Yu, Yue; Fisher, James E.; Lillegard, Joseph B.; Rodysill, Brian; Amiot, Bruce; Nyberg, Scott L.

    2011-01-01

    Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure (ALF), acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential for wide application in other liver diseases, including non-inherited liver diseases and liver cancer, and in improving the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases. PMID:22140063

  19. Stem cell therapy for diabetes

    OpenAIRE

    Lee, K. O.; Gan, S U; Calne, R Y

    2012-01-01

    Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced plu...

  20. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  1. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  2. Cell Therapy for Cardiovascular Regeneration

    OpenAIRE

    Takehara, Naofumi

    2013-01-01

    A great numbers of cardiovascular disease patients all over the world are suffering in the poor outcomes. Under this situation, cardiac regeneration therapy to reorganize the postnatal heart that is defined as a terminal differentiated-organ is a very important theme and mission for human beings. However, the temporary success of several clinical trials using usual cell types with uncertain cell numbers has provided the transient effect of cell therapy to these patients. We therefore should r...

  3. Definition of Genetically Distinct Attenuation Mechanisms in Naturally Virulence-Attenuated Listeria monocytogenes by Comparative Cell Culture and Molecular Characterization

    OpenAIRE

    Roberts, Angela; Chan, Yvonne; Wiedmann, Martin

    2005-01-01

    Listeria monocytogenes is a foodborne pathogen able to cause serious disease in humans and animals. Not all isolates are equally pathogenic, however, and several isolates have been characterized as naturally virulence attenuated. We sought to identify the genetic basis of natural virulence attenuation using cell culture assays and molecular techniques. By comparing the phenotypes of naturally virulence-attenuated isolates to those of defined virulence gene mutants in plaque, cytotoxicity, and...

  4. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  5. Stem cell therapy independent of stemness.

    Science.gov (United States)

    Lee, Techung

    2012-12-26

    Mesenchymal stem cell (MSC) therapy is entering a new era shifting the focus from initial feasibility study to optimization of therapeutic efficacy. However, how MSC therapy facilitates tissue regeneration remains incompletely characterized. Consistent with the emerging notion that secretion of multiple growth factors/cytokines (trophic factors) by MSC provides the underlying tissue regenerative mechanism, the recent study by Bai et al demonstrated a critical therapeutic role of MSC-derived hepatocyte growth factor (HGF) in two animal models of multiple sclerosis (MS), which is a progressive autoimmune disorder caused by damage to the myelin sheath and loss of oligodendrocytes. Although current MS therapies are directed toward attenuation of the immune response, robust repair of myelin sheath likely requires a regenerative approach focusing on long-term replacement of the lost oligodendrocytes. This approach appears feasible because adult organs contain various populations of multipotent resident stem/progenitor cells that may be activated by MSC trophic factors as demonstrated by Bai et al This commentary highlights and discusses the major findings of their studies, emphasizing the anti-inflammatory function and trophic cross-talk mechanisms mediated by HGF and other MSC-derived trophic factors in sustaining the treatment benefits. Identification of multiple functionally synergistic trophic factors, such as HGF and vascular endothelial growth factor, can eventually lead to the development of efficacious cell-free therapeutic regimens targeting a broad spectrum of degenerative conditions. PMID:23516128

  6. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  7. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  8. Limbal Stem Cell Therapy

    OpenAIRE

    Kringlegarden, Hilde Grane

    2013-01-01

    It is widely accepted today that stem cells in the adult corneal epithelium is located to the limbus. No specific marker of limbal epithelial cells (LESCs) has been identified, yet many have been suggested, including ΔNp63α, ABCG2, vimentin and notch 1. Negative markers include amongst others the differentiation markers Ck3 and Ck12. The lack of an identified specific marker elucidates the need for establishment of more exact molecular markers of LESCs. Limbal stem cell deficiency (LSCD) may ...

  9. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Gene Therapy and Cell Therapy in the News Position Statements Scientists & Clinicians Job Bank General Grant Information ASGCT Grants and Awards ASGCT ... Password New Investigator Resource Center Join ... American Society of Gene & Cell Therapy is the primary professional membership organization for gene and cell therapy. The Society's members ...

  10. Mast cells contribute to peripheral tolerance and attenuate autoimmune vasculitis.

    Science.gov (United States)

    Gan, Poh-Yi; Summers, Shaun A; Ooi, Joshua D; O'Sullivan, Kim M; Tan, Diana S Y; Muljadi, Ruth C M; Odobasic, Dragana; Kitching, A Richard; Holdsworth, Stephen R

    2012-12-01

    Mast cells contribute to the modulation of the immune response, but their role in autoimmune renal disease is not well understood. Here, we induced autoimmunity resulting in focal necrotizing GN by immunizing wild-type or mast cell-deficient (Kit(W-sh/W-sh)) mice with myeloperoxidase. Mast cell-deficient mice exhibited more antimyeloperoxidase CD4+ T cells, enhanced dermal delayed-type hypersensitivity responses to myeloperoxidase, and more severe focal necrotizing GN. Furthermore, the lymph nodes draining the sites of immunization had fewer Tregs and reduced production of IL-10 in mice lacking mast cells. Reconstituting these mice with mast cells significantly increased the numbers of Tregs in the lymph nodes and attenuated both autoimmunity and severity of disease. After immunization with myeloperoxidase, mast cells migrated from the skin to the lymph nodes to contact Tregs. In an ex vivo assay, mast cells enhanced Treg suppression through IL-10. Reconstitution of mast cell-deficient mice with IL-10-deficient mast cells led to enhanced autoimmunity to myeloperoxidase and greater disease severity compared with reconstitution with IL-10-intact mast cells. Taken together, these studies establish a role for mast cells in mediating peripheral tolerance to myeloperoxidase, protecting them from the development of focal necrotizing GN in ANCA-associated vasculitis. PMID:23138486

  11. Advances in corneal cell therapy.

    Science.gov (United States)

    Fuest, Matthias; Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Mehta, Jodhbir S

    2016-09-01

    Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy. PMID:27498943

  12. Lentivirus IL-10 gene therapy down-regulates IL-17 and attenuates mouse orthotopic lung allograft rejection.

    Science.gov (United States)

    Hirayama, S; Sato, M; Loisel-Meyer, S; Matsuda, Y; Oishi, H; Guan, Z; Saito, T; Yeung, J; Cypel, M; Hwang, D M; Medin, J A; Liu, M; Keshavjee, S

    2013-06-01

    The purpose of the study was to examine the effect of lentivirus-mediated IL-10 gene therapy to target lung allograft rejection in a mouse orthotopic left lung transplantation model. IL-10 may regulate posttransplant immunity mediated by IL-17. Lentivirus-mediated trans-airway luciferase gene transfer to the donor lung resulted in persistent luciferase activity up to 6 months posttransplant in the isograft (B6 to B6); luciferase activity decreased in minor-mismatched allograft lungs (B10 to B6) in association with moderate rejection. Fully MHC-mismatched allograft transplantation (BALB/c to B6) resulted in severe rejection and complete loss of luciferase activity. In minor-mismatched allografts, IL-10-encoding lentivirus gene therapy reduced the acute rejection score compared with the lentivirus-luciferase control at posttransplant day 28 (3.0 ± 0.6 vs. 2.0 ± 0.6 (mean ± SD); p = 0.025; n = 6/group). IL-10 gene therapy also significantly reduced gene expression of IL-17, IL-23, and retinoic acid-related orphan receptor (ROR)-γt without affecting levels of IL-12 and interferon-γ (IFN-γ). Cells expressing IL-17 were dramatically reduced in the allograft lung. In conclusion, lentivirus-mediated IL-10 gene therapy significantly reduced expression of IL-17 and other associated genes in the transplanted allograft lung and attenuated posttransplant immune responses after orthotopic lung transplantation. PMID:23601206

  13. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    Science.gov (United States)

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  14. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  15. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  16. Adult Stem Cells and Diabetes Therapy

    OpenAIRE

    Ilgun, Handenur; Kim, Joseph William; Luo, LuGuang

    2015-01-01

    The World Health Organization estimates that diabetes will be the fourth most prevalent disease by 2050. Developing a new therapy for diabetes is a challenge for researchers and clinicians in field. Many medications are being used for treatment of diabetes however with no conclusive and effective results therefore alternative therapies are required. Stem cell therapy is a promising tool for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, and pluripotent stem cell...

  17. Stem cells: sources and therapies.

    Science.gov (United States)

    Monti, Manuela; Perotti, Cesare; Del Fante, Claudia; Cervio, Marila; Redi, Carlo Alberto

    2012-01-01

    The historical, lexical and conceptual issues embedded in stem cell biology are reviewed from technical, ethical, philosophical, judicial, clinical, economic and biopolitical perspectives. The mechanisms assigning the simultaneous capacity to self-renew and to differentiate to stem cells (immortal template DNA and asymmetric division) are evaluated in the light of the niche hypothesis for the stemness state. The induction of cell pluripotency and the different stem cells sources are presented (embryonic, adult and cord blood). We highlight the embryonic and adult stem cell properties and possible therapies while we emphasize the particular scientific and social values of cord blood donation to set up cord blood banks. The current scientific and legal frameworks of cord blood banks are reviewed at an international level as well as allogenic, dedicated and autologous donations. The expectations and the challenges in relation to present-day targeted diseases like diabetes mellitus type I, Parkinson's disease and myocardial infarction are evaluated in the light of the cellular therapies for regenerative medicine. PMID:23283430

  18. Cell therapy of primary myopathies.

    Science.gov (United States)

    Sampaolesi, M; Biressi, S; Tonlorenzi, R; Innocenzi, A; Draghici, E; Cusella de Angelis, M G; Cossu, G

    2005-09-01

    Mesoangioblasts are multipotent progenitors of mesodermal tissues. In vitro mesoangioblasts differentiate into many mesoderm cell types, such as smooth, cardiac and striated muscle, bone and endothelium. After transplantation mesoangioblasts colonize mostly mesoderm tissues and differentiate into many cell types of the mesoderm. When delivered through the arterial circulation, mesoangioblasts significantly restore skeletal muscle structure and function in a mouse model of muscular dystrophy. Their ability to extensively self-renew in vitro, while retaining multipotency, qualifies mesoangioblasts as a novel class of stem cells. Phenotype, properties and possible origin of mesoangioblasts are addressed in the first part of this paper. In the second part we will focus on the cell therapy approach for the treatment of Muscular Dystrophy and we will describe why mesangioblasts appear to be promising candidates for this strategy.

  19. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC.

    Science.gov (United States)

    Tian, Y; Guo, B; Jia, H; Ji, K; Sun, Y; Li, Y; Zhao, T; Gao, L; Meng, Y; Kalvakolanu, D V; Kopecko, D J; Zhao, X; Zhang, L; Xu, D

    2012-06-01

    The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy. PMID:22555509

  20. Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells.

    Science.gov (United States)

    Wang, Li; Wang, JianTao; Li, Zhixi; Liu, YanYang; Jiang, Ming; Li, Yan; Cao, Dan; Zhao, Maoyuan; Wang, Feng; Luo, Feng

    2016-06-01

    Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy. PMID:26666817

  1. Stem-cell therapy for neurologic diseases

    Directory of Open Access Journals (Sweden)

    Shilpa Sharma

    2015-01-01

    Full Text Available With the advent of research on stem cell therapy for various diseases, an important need was felt in the field of neurological diseases. While congenital lesion may not be amenable to stem cell therapy completely, there is a scope of partial improvement in the lesions and halt in further progression. Neuro degenerative lesions like Parkinson′s disease, multiple sclerosis and amyotrophic lateral sclerosis have shown improvement with stem cell therapy. This article reviews the available literature and summarizes the current evidence in the various neurologic diseases amenable to stem cell therapy, the plausible mechanism of action, ethical concerns with insights into the future of stem cell therapy.

  2. Photodynamic therapy as adjunctive therapy for morpheaform basal cell carcinoma.

    Science.gov (United States)

    Torres, T; Fernandes, I; Costa, V; Selores, M

    2011-01-01

    The authors decided to evaluate the possible use of methyl-aminolevulinate photodynamic therapy (MAL-PDT) as adjunctive therapy for morpheaform basal cell carcinoma prior to standard surgical excision in order to reduce tumor size and volume and to facilitate surgical treatment. It was observed that MAL-PDT may be an option as an adjunctive therapy prior to standard surgical excision of morpheaform basal cell carcinoma, leading to less invasive surgery.

  3. Photodynamic therapy as adjunctive therapy for morpheaform basal cell carcinoma

    OpenAIRE

    Torres, T.; I. Fernandes; Costa, V.; Selores, M

    2011-01-01

    The authors decided to evaluate the possible use of methyl-aminolevulinate photodynamic therapy (MAL-PDT) as adjunctive therapy for morpheaform basal cell carcinoma prior to standard surgical excision in order to reduce tumor size and volume and to facilitate surgical treatment. It was observed that MAL-PDT may be an option as an adjunctive therapy prior to standard surgical excision of morpheaform basal cell carcinoma, leading to less invasive surgery.

  4. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    OpenAIRE

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B; Parkos, Charles A.; Nusrat, Asma

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating c...

  5. Stem Cell Conditioned Culture Media Attenuated Albumin-Induced Epithelial-Mesenchymal Transition in Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Junping Hu

    2015-03-01

    Full Text Available Background: Proteinuria-induced epithelial-mesenchymal transition (EMT plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods: Rat renal tubular cells were treated with/without albumin (20 µmg/ml plus SCM or control cell media (CCM. EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results: Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and a-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion: These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases.

  6. Stem cell therapy vs. ethics and religion

    OpenAIRE

    Hansen, Paula Melo Paulon; Sloth, Stine Hesselholt

    2009-01-01

    Stem cells are somatic cells that can go through two different kinds of divisions. Symmetric division allows them to divide into undifferentiated cells, whilst asymmetric division produces one undifferentiated cell and a sister cell that will differentiate later on. Human stem cell therapy (HSCT) is a controversial theme in the religious, political, legal, ethical and scientific worlds. Although it is believed by many scientists that stem cell therapy will be able to cure life-threatening dis...

  7. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  8. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H2O2-induced PC12 cell death. H2O2-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H2O2-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-XL and caspase-3. The accumulation of intracellular ROS in H2O2-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H2O2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H2O2-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  9. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  10. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    International Nuclear Information System (INIS)

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  11. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    Science.gov (United States)

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-01

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  12. Cell therapy of refractory Crohn's disease.

    Science.gov (United States)

    Knyazev, O V; Parfenov, A I; Shcherbakov, P L; Ruchkina, I N; Konoplyannikov, A G

    2013-11-01

    We analyzed medium-term efficiency and safety of biological therapy of Crohn's disease, in particular transplantation of allogenic mesenchymal stromal bone marrow cells and anticytokine therapy with selective immunosuppressive agents. It was found that both methods of biological therapy of refractory Crohn's disease resulted in clinical and in some cases endoscopic remission. In most cases, clinical remission was maintained without steroid hormone therapy. Thus, both methods produce comparable clinical results. It was concluded that transplantation of mesenchymal stromal bone marrow cells could be considered as a promising method in the therapy of refractory Crohn's disease comparable by its efficiency with infliximab therapy. PMID:24319711

  13. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    International Nuclear Information System (INIS)

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  14. Stem cell therapy for inflammatory bowel disease

    NARCIS (Netherlands)

    Duijvestein, Marjolijn

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal (MSC) cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases (IBD). Hematopoietic stem cells are thought to repopulate the immune system and reset the immunological response to luminal a

  15. Stem Cell Therapy for Heart Failure

    OpenAIRE

    Michler, Robert E.

    2013-01-01

    The last decade has witnessed the publication of a large number of clinical trials primarily using bone marrow-derived stem cells as the injected cell. These “first-generation” clinical trials have advanced our understanding and shown us that (1) cell therapy is safe, (2) cell therapy has been modestly effective, and (3) in humans, bone marrow-derived stem cells do not transdifferentiate into cardiomyocytes or new blood vessels (or at least in sufficient numbers to have any effect).

  16. Cell Therapy for Parkinson’s Disease

    OpenAIRE

    Morizane, Asuka; Takahashi, Jun

    2016-01-01

    In Parkinson’s disease (PD), dopamine neurons in the substantia nigra are degenerated and lost. Cell therapy for PD replaces the lost dopamine neurons by transplanting donor dopamine neural progenitor cells. Cell therapy for PD has been performed in the clinic since the 1980s and uses donor cells from the mesencephalon of aborted embryos. Regenerative medicine for PD using induced pluripotent stem (iPS) cell technology is drawing attention, because it offers a limitless and more advantageous ...

  17. [Hormonal therapy of advanced or relapsed ovarian granulosa cell tumor].

    Science.gov (United States)

    Sun, H; Bai, P

    2016-07-01

    Ovarian granulosa cell tumor is a rare gynecologic malignancy with hormonal activity. Surgical excision is the standard treatment for this disease. Most patients present excellent short term prognosis, however, late relapse often occurs, even after many years. Viable treatments of advanced or relapsed granulosa cell tumor are still limited, and the optimal therapy method has not been established. Compared with chemotherapy and radiotherapy, hormonal therapy is a well-tolerated treatment which can be administrated over a long period of time without serious side effects, and the combined application of hormones may achieve a better outcome. Therefore, hormonal therapy has been suggested as a potential treatment option for patients with advanced or relapsed granulosa cell tumor, and to extend the tumor-free interval and attenuate the disease progression. Future researches should be focused on the identification of the hormonal therapy which may provide the greatest clinical benefit, comparing and analyzing the effects of different combined therapeutic regimens of hormone drugs, and on the synthesis of drugs highly activating estrogen receptor β expressed in the granulosa cell tumor cells. PMID:27531259

  18. Cell Therapy in Chagas Disease

    Directory of Open Access Journals (Sweden)

    Antonio C. Campos de Carvalho

    2009-01-01

    Full Text Available Chagas disease which is caused by the parasite Trypanosoma cruzi is an important cause of cardiomyopathy in Latin America. In later stages chagasic cardiomyopathy is associated with congestive heart failure which is often refractory to medical therapy. In these individuals heart transplantation has been attempted. However, this procedure is fraught with many problems attributable to the surgery and the postsurgical administration of immunosuppressive drugs. Studies in mice suggest that the transplantation of bone-marrow-derived cells ameliorates the inflammation and fibrosis in the heart associated with this infection. Cardiac magnetic resonance imaging reveals that bone marrow transplantation ameliorates the infection induced right ventricular enlargement. On the basis of these animal studies the safety of autologous bone marrow transplantation has been assessed in patients with chagasic end-stage heart disease. The initial results are encouraging and more studies need to be performed.

  19. Cell therapy for salivary gland regeneration.

    Science.gov (United States)

    Lin, C-Y; Chang, F-H; Chen, C-Y; Huang, C-Y; Hu, F-C; Huang, W-K; Ju, S-S; Chen, M-H

    2011-03-01

    There are still no effective therapies for hyposalivation caused by irradiation. In our previous study, bone marrow stem cells can be transdifferentiated into acinar-like cells in vitro. Therefore, we hypothesized that transplantation with bone marrow stem cells or acinar-like cells may help functional regeneration of salivary glands. Bone marrow stem cells were labeled with nanoparticles and directly co-cultured with acinar cells to obtain labeled acinar-like cells. In total, 140 severely combined immune-deficiency mice were divided into 4 groups for cell therapy experiments: (1) normal mice, (2) mice receiving irradiation around their head-and-neck areas; (3) mice receiving irradiation and intra-gland transplantation with labeled stem cells; and (4) mice receiving irradiation and intra-gland transplantation with labeled acinar-like cells. Our results showed that salivary glands damaged due to irradiation can be rescued by cell therapy with either bone marrow stem cells or acinar-like cells for recovery of saliva production, body weight, and gland weight. Transdifferentiation of bone marrow stem cells into acinar-like cells in vivo was also noted. This study demonstrated that cell therapy with bone marrow stem cells or acinar-like cells can help functional regeneration of salivary glands, and that acinar-like cells showed better therapeutic potentials than those of bone marrow stem cells.

  20. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  1. Cell-Based Therapies for Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Stella Bernardi

    2012-01-01

    Full Text Available In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.

  2. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  3. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  4. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  5. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available BACKGROUND: Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: Rat bone marrow-derived MSCs (5 × 10(6 were injected into Sprague-Dawley (SD rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.

  6. Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2014-04-01

    Full Text Available Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD. Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2. The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on

  7. Pluripotent Stem Cells and Gene Therapy

    OpenAIRE

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical s...

  8. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  9. Quality cell therapy manufacturing by design.

    Science.gov (United States)

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  10. Introduction to Stem Cell Therapy

    OpenAIRE

    Biehl, Jesse K.; Russell, Brenda

    2009-01-01

    Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type. There are two major classes of stem cells: pluripotent that can become any cell in the adult body, and multipotent that are restricted to becoming a more limited population of cells. Cell sources, characteristics, differentiation and therapeutic applications are discussed. Stem cel...

  11. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2015-01-01

    Full Text Available Low reactive level laser therapy (LLLT is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described.

  12. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  13. Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Mundra, Vaibhav; Gerling, Ivan C.; Mahato, Ram I.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomdulators has been explored in cell/organ t...

  14. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A;

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  15. Effectiveness of Sand-Therapy on the Attenuation of Separation anxiety Signs in Pre-School Children

    Directory of Open Access Journals (Sweden)

    Arghavan Shariat

    2015-01-01

    Full Text Available Background and Objective: The present research was conducted with the aim of determining effect of Sand-therapy on the attenuation of separation anxiety signs among pre-school children in Isfahan, Iran. Methods: The statistical society consists of all pre-school children who had separation anxiety disorder and Among100 children, 30 persons were selected using available sampling. The method of this research is quasi-experimental with one group and pre-test and post-test plan. After performing pre-test of separation anxiety disorder scale, the experimental group were trained under sand-therapy training in 10 sessions of 60 minutes for a period of two months and after that, post-test of separation anxiety disorder scale was performed. The research tool consists of the questionnaire CSI-4 of child’s morbid signs. Wilcoxon method was used to analysis the results. Results: The research findings showed that there was a meaningful different (P=0.008 between pre- test & post-test scores of anxiety signs for study group.Conclusion: As a practical message, we can mention that sand therapy is as an interesting and practical playing for the children and it is a meaningful therapy related to attenuation of separation anxious signs.Keywords: Sand therapy, separation anxiety, pre-school-children

  16. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Yu-ling MI; Kai-ming WANG; Wei-dong ZENG; Cai-qiao ZHANG

    2008-01-01

    The attenuating effect of daidzein (DAD on oxidative toxicity induced by Aroclor 1254 (A 1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A 1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.

  17. [Outlook: Future therapy of renal cell carcinoma].

    Science.gov (United States)

    Bergmann, Lothar; Miller, Kurt

    2010-01-01

    Targeted therapies have fundamentally altered the therapy of metastatic renal cell carcinoma (mRCC). Sunitinib today is an internationally recommended reference standard in first-line therapy; other drugs such as Temsirolimus, Everolimus, Bevacizumab (in combination with Interferon-alpha) and Sorafenib are part of the therapeutic arsenal. Practitioners thus have now more and better therapeutic options at hand, leading to a significantly improved prognosis for mRCC patients. Numerous ongoing research activities aim at the improvement of the benefits of the new compounds in the metastatic situation or application earlier in the course of the disease. Key aspects of future development in RCC are the optimization of the current therapy options by developing new targeted therapies, the search for the best combinations and sequences including the role of nephrectomy and the assessment in the adjuvant or neo-adjuvant setting. The following contribution provides an overview of ongoing studies, thus giving insight into the future therapy of RCC. PMID:20164673

  18. Translational research of adult stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Gen; Suzuki

    2015-01-01

    Congestive heart failure(CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  19. Translational research of adult stem cell therapy.

    Science.gov (United States)

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  20. Pluripotent Stem Cells and Gene Therapy

    Science.gov (United States)

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  1. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  2. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  3. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  4. Verification of the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy of prostate cancer.

    Science.gov (United States)

    Takakura, Toru; Ito, Yoshiyuki; Higashikawa, Akinori; Nishiyama, Tomohiro; Sakamoto, Takashi

    2016-07-01

    This study measured the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy (IMRT) of prostate cancer, and verified the effect of dose-correction accuracy in a radiation treatment planning system (RTPS). The new cushion was filled with polystyrene foams inflated 15-fold (Sφ ≒ 1 mm) to reduce contraction caused by air suction and was compared to normal polystyrene foam inflated to 50-fold (Sφ ≒ 2 mm). The dose attenuation at several thicknesses of compression bag filled with normal and low-inflation materials was measured using an ionization chamber; and then the calculated RTPS dose was compared to ionization chamber measurements, while the new cushion was virtually included as region of interest in the calculation area. The dose attenuation rate of the normal cushion was 0.010 %/mm (R (2) = 0.9958), compared to 0.031 %/mm (R (2) = 0.9960) in the new cushion. Although the dose attenuation rate of the new cushion was three times that of the normal cushion, the high agreement between calculated dose by RTPS and ionization chamber measurements was within approximately 0.005 %/mm. Thus, the results of the current study indicate that the new cushion may be effective in clinical use for dose calculation accuracy in RTPS. PMID:27260347

  5. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    Science.gov (United States)

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. PMID:26340932

  6. How we make cell therapy in Italy

    Directory of Open Access Journals (Sweden)

    Montemurro T

    2015-08-01

    Full Text Available Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Luigi Marino, Valentina Parazzi, Lorenza Lazzari, Rosaria GiordanoCell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, ItalyAbstract: In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.Keywords: advanced therapy medicinal product, good manufacturing practices, stem cells

  7. Gene and cell therapy for muscle regeneration

    OpenAIRE

    Stilhano, Roberta Sessa; Martins, Leonardo; Ingham, Sheila Jean McNeill; Pesquero, João Bosco; Huard, Johnny

    2015-01-01

    Skeletal muscle injury and healing are multifactorial processes, involving three steps of healing: (1) degeneration and inflammation, (2) regeneration, and (3) fibrosis. Fibrous tissue hinders the muscle’s complete recovery and current therapies fail in achieving total muscle recovery. Gene and cell therapy (or both) are potential future treatments for severe muscular injuries. Stem cells’ properties associated with growth factors or/and cytokines can improve muscle healing and permit long-te...

  8. Stem cell therapy independent of stemness

    OpenAIRE

    Lee, Techung

    2012-01-01

    Mesenchymal stem cell (MSC) therapy is entering a new era shifting the focus from initial feasibility study to optimization of therapeutic efficacy. However, how MSC therapy facilitates tissue regeneration remains incompletely characterized. Consistent with the emerging notion that secretion of multiple growth factors/cytokines (trophic factors) by MSC provides the underlying tissue regenerative mechanism, the recent study by Bai et al demonstrated a critical therapeutic role of MSC-derived h...

  9. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  10. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis.

    Science.gov (United States)

    Wang, Bo; Yao, Kevin; Huuskes, Brooke M; Shen, Hsin-Hui; Zhuang, Junli; Godson, Catherine; Brennan, Eoin P; Wilkinson-Berka, Jennifer L; Wise, Andrea F; Ricardo, Sharon D

    2016-08-01

    The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-β1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-βR1 confirmed that miR-let7c attenuates TGF-β1-driven TGF-βR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease. PMID:27203438

  11. Stem cell strategies for Alzheimer's disease therapy.

    Science.gov (United States)

    Sugaya, K; Alvarez, A; Marutle, A; Kwak, Y D; Choumkina, E

    2006-06-01

    We have found much evidence that the brain is capable of regenerating neurons after maturation. In our previous study, human neural stem cells (HNSCs) transplanted into aged rat brains differentiated into neural cells and significantly improved the cognitive functions of the animals, indicating that HNSCs may be a promising candidate for cell-replacement therapies for neurodegenerative diseases including Alzheimer's disease (AD). However, ethical and practical issues associated with HNSCs compel us to explore alternative strategies. Here, we report novel technologies to differentiate adult human mesenchymal stem cells, a subset of stromal cells in the bone marrow, into neural cells by modifying DNA methylation or over expression of nanog, a homeobox gene expressed in embryonic stem cells. We also report peripheral administrations of a pyrimidine derivative that increases endogenous stem cell proliferation improves cognitive function of the aged animal. Although these results may promise a bright future for clinical applications used towards stem cell strategies in AD therapy, we must acknowledge the complexity of AD. We found that glial differentiation takes place in stem cells transplanted into amyloid-( precursor protein (APP) transgenic mice. We also found that over expression of APP gene or recombinant APP treatment causes glial differentiation of stem cells. Although further detailed mechanistic studies may be required, RNA interference of APP or reduction of APP levels in the brain can significantly reduced glial differentiation of stem cells and may be useful in promoting neurogenesis after stem cell transplantation. PMID:16953146

  12. Mast Cells Contribute to Peripheral Tolerance and Attenuate Autoimmune Vasculitis

    OpenAIRE

    Gan, Poh-Yi; Summers, Shaun A.; Ooi, Joshua D.; O’Sullivan, Kim M.; Tan, Diana S.Y.; Muljadi, Ruth C.M.; Odobasic, Dragana; Kitching, A. Richard; Holdsworth, Stephen R.

    2012-01-01

    Mast cells contribute to the modulation of the immune response, but their role in autoimmune renal disease is not well understood. Here, we induced autoimmunity resulting in focal necrotizing GN by immunizing wild-type or mast cell-deficient (KitW-sh/W-sh) mice with myeloperoxidase. Mast cell-deficient mice exhibited more antimyeloperoxidase CD4+ T cells, enhanced dermal delayed-type hypersensitivity responses to myeloperoxidase, and more severe focal necrotizing GN. Furthermore, the lymph no...

  13. Poststroke Cell Therapy of the Aged Brain

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2015-01-01

    Full Text Available During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC, the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs, mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.

  14. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    Science.gov (United States)

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  15. Activation and Genetic Modification of Human Monocyte-Derived Dendritic Cells using Attenuated Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Agnieszka Michael

    2010-01-01

    Full Text Available Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background. Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-α, IL-12, IL-1β; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection.

  16. Cell Therapy for Wound Healing

    OpenAIRE

    You, Hi-Jin; Han, Seung-Kyu

    2014-01-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin...

  17. Brain repair: cell therapy in stroke

    Directory of Open Access Journals (Sweden)

    Kalladka D

    2014-02-01

    Full Text Available Dheeraj Kalladka, Keith W Muir Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom Abstract: Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs and neural stem cells (NSCs improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell

  18. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model. PMID:24831573

  19. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

  20. Genetically Attenuated Plasmodium berghei Liver Stages Persist and Elicit Sterile Protection Primarily via CD8 T Cells

    OpenAIRE

    Mueller, Ann-Kristin; Deckert, Martina; Heiss, Kirsten; Goetz, Kristin; Matuschewski, Kai; Schlüter, Dirk

    2007-01-01

    Live-attenuated Plasmodium liver stages remain the only experimental model that confers complete sterile protection against malaria. Irradiation-attenuated Plasmodium parasites mediate protection primarily by CD8 T cells. In contrast, it is unknown how genetically attenuated liver stage parasites provide protection. Here, we show that immunization with uis3(−) sporozoites does not cause breakthrough infection in T and B-cell-deficient rag1−/− and IFN-γ−/− mice. However, protection was abolish...

  1. Embryonic and adult stem cell therapy.

    Science.gov (United States)

    Brignier, Anne C; Gewirtz, Alan M

    2010-02-01

    There are many types of stem cells. All share the characteristics of being able to self-renew and to give rise to differentiated progeny. Over the last decades, great excitement has been generated by the prospect of being able to exploit these properties for the repair, improvement, and/or replacement of damaged organs. However, many hurdles, both scientific and ethical, remain in the path of using human embryonic stem cells for tissue-engineering purposes. In this report we review current strategies for isolating, enriching, and, most recently, inducing the development of human pluripotent stem cells. In so doing, we discuss the scientific and ethical issues associated with this endeavor. Finally, progress in the use of stem cells as therapies for type 1 diabetes mellitus, congestive heart failure, and various neurologic and immunohematologic disorders, and as vehicles for the delivery of gene therapy, is briefly discussed. PMID:20061008

  2. How we make cell therapy in Italy.

    Science.gov (United States)

    Montemurro, Tiziana; Viganò, Mariele; Budelli, Silvia; Montelatici, Elisa; Lavazza, Cristiana; Marino, Luigi; Parazzi, Valentina; Lazzari, Lorenza; Giordano, Rosaria

    2015-01-01

    In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product. PMID:26316716

  3. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  4. Cell therapies for tendons: old cell choice for modern innovation.

    Science.gov (United States)

    Petrou, Ilias G; Grognuz, Anthony; Hirt-Burri, Nathalie; Raffoul, Wassim; Applegate, Lee Ann

    2014-01-01

    Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.

  5. Adult Stem Cell Therapy for Periodontal Disease

    OpenAIRE

    Kim, Su-Hwan; Seo, Byoung-Moo; Choung, Pill-Hoon; Lee, Yong-Moo

    2010-01-01

    Periodontal disease is a major cause of tooth loss and characterized by inflammation of tooth-supporting structures. Recently, the association between periodontal disease and other health problems has been reported, the importance of treating periodontal disease for general health is more emphasized. The ultimate goal of periodontal therapy is regeneration of damaged periodontal tissues. The development of adult stem cell research enables to improve the cell-based tissue engineering for perio...

  6. Large animal models for stem cell therapy

    OpenAIRE

    Harding, John; Roberts, R. Michael; Mirochnitchenko, Oleg

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for nov...

  7. Mesenchymal stem cells: a new trend for cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xin WEI; Xue YANG; Zhi-peng HAN; Fang-fang QU; Li SHAO; Yu-fang SHI

    2013-01-01

    Mesenchymal stem cells (MSCs),the major stem cells for cell therapy,have been used in the clinic for approximately 10 years.From animal models to clinical trials,MSCs have afforded promise in the treatment of numerous diseases,mainly tissue injury and immune disorders.In this review,we summarize the recent opinions on methods,timing and cell sources for MSC administration in clinical applications,and provide an overview of mechanisms that are significant in MSC-mediated therapies.Although MSCs for cell therapy have been shown to be safe and effective,there are still challenges that need to be tackled before their wide application in the clinic.

  8. Stem cell therapy for myocardial infarction

    NARCIS (Netherlands)

    A.D. Moelker (Amber)

    2007-01-01

    textabstractCoronary heart disease and heart failure continue to be significant burdens to healthcare systems in the Western world and are predicted to become so in emerging economies. Despite mixed results in both experimental and clinical studies, stem cell therapy is a promising option for

  9. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  10. Progress and prospects in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xiu-ling XU; Fei YI; Hui-ze PAN; Shun-lei DUAN; Zhi-chao DING; Guo-hong YUAN; Jing QU

    2013-01-01

    In the past few years,progress being made in stem cell studies has incontestably led to the hope of developing cell replacement based therapy for diseases deficient in effective treatment by conventional ways.The induced pluripotent stem cells (iPSCs) are of great interest of cell therapy research because of their unrestricted self-renewal and differentiation potentials.Proof of principle studies have successfully demonstrated that iPSCs technology would substantially benefit clinical studies in various areas,including neurological disorders,hematologic diseases,cardiac diseases,liver diseases and etc.On top of this,latest advances of gene editing technologies have vigorously endorsed the possibility of obtaining disease-free autologous cells from patient specific iPSCs.Here in this review,we summarize current progress of stem cell therapy research with special enthusiasm in iPSCs studies.In addition,we compare current gene editing technologies and discuss their potential implications in clinic application in the future.

  11. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  12. 28. Embryonic and adult stem cell therapy.

    Science.gov (United States)

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  13. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  14. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  15. Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death.

    Science.gov (United States)

    Zhou, H; Miyaji, T; Kato, A; Fujigaki, Y; Sano, K; Hishida, A

    1999-12-01

    To clarify the pathophysiologic role of apoptosis in acute renal failure (ARF), we examined whether the attenuation of cisplatin-induced ARF is associated with the change in the degree of apoptotic cell death. The administration of cisplatin (CDDP) (6 mg/kg body weight) in rats induced ARF at day 5, as manifested by a significant increase in serum creatinine (Scr) and tubular damage. CDDP-induced apoptotic cell death was confirmed by electron microscopic examination, agarose gel electrophoresis, and increased cells positive for TaT-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) in the outer medulla of the kidney. Treatment with dimethylthiourea (DMTU)--a scavenger of hydroxyl radicals--or glycine abrogated CDDP-induced increases in Scr, the tubular damage score, and the number of TUNEL-positive cells. Pretreatment with uranyl acetate (UA) induced a significant expression of Bcl-2 in the kidney and ameliorated CDDP-induced increases in Scr, the tubular damage score, and TUNEL-positive cells in the outer stripe of the outer medulla. Our findings indicate (1) that the attenuation of CDDP-induced ARF was associated with less apoptotic cell death and (2) that the induction of the anti-apoptotic protein Bcl-2 attenuated apoptosis and tubular damage. Our results suggest that apoptotic cell death may play an important role in the development of cisplatin-induced ARF. PMID:10595794

  16. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  17. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  18. Stem cell therapy for retinal diseases

    Institute of Scientific and Technical Information of China (English)

    Jose Mauricio Garcia,; Luisa Mendon?a; Rodrigo Brant; Murilo Abud; Caio Regatieri; Bruno Diniz

    2015-01-01

    In this review, we discuss about current knowledgeabout stem cell (SC) therapy in the treatment of retinaldegeneration. Both human embryonic stem cell andinduced pluripotent stem cell has been growth inculture for a long time, and started to be explored inthe treatment of blinding conditions. The Food andDrug Administration, recently, has granted clinical trialsusing SC retinal therapy to treat complex disorders, asStargardt's dystrophy, and patients with geographicatrophy, providing good outcomes. This study'sintent is to overview the critical regeneration of thesubretinal anatomy through retinal pigment epitheliumtransplantation, with the goal of reestablish importantpathways from the retina to the occipital cortex of thebrain, as well as the differentiation from pluripotentquiescent SC to adult retina, and its relationshipwith a primary retinal injury, different techniques oftransplantation, management of immune rejection andtumorigenicity, its potential application in improvingpatients' vision, and, finally, approaching future directionsand challenges for the treatment of several conditions.

  19. Radiation therapy for intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shingo; Hayakawa, Kazushige; Tsuchiya, Miwako; Arai, Masahiko; Kazumoto, Tomoko; Niibe, Hideo; Tamura, Masaru

    1988-04-01

    The results of radiation therapy in 31 patients with intracranial germ cell tumors have been analyzed. The five-year survival rates were 70.1 % for germinomas and 38.1 % for teratomas. Three patients with germinoma have since died of spinal seeding. The prophylactic irradiation of the spinal canal has been found effective in protecting spinal seeding, since no relapse of germinoma has been observed in cases that received entire neuraxis iradiation, whereas teratomas and marker (AFP, HCG) positive tumors did not respond favorably to radiation therapy, and the cause of death in these patients has been local failure. Long-term survivors over 3 years after radiation therapy have been determined as having a good quality of life.

  20. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  1. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  2. Stem cell therapy: From bench to bedside

    International Nuclear Information System (INIS)

    Several countries have increased efforts to develop medical countermeasures to protect against radiation toxicity due to acts of bio-terrorism as well as cancer treatment. Both acute radiation injuries and delayed effects such as cutaneous effects and impaired wound repair depend, to some extent, on angiogenesis deficiency. Vascular damage influences levels of nutrients, oxygen available to skin tissue and epithelial cell viability. Consequently, the evolution of radiation lesions often becomes uncontrolled and surgery is the final option-amputation leading to a disability. Therefore, the development of strategies designed to promote healing of radiation injuries is a major therapeutic challenge. Adult mesenchymal stem cell therapy has been combined with surgery in some cases and not in others and successfully applied in patients with accidental radiation injuries. Although research in the field of radiation skin injury management has made substantial progress in the past 10 y, several strategies are still needed in order to enhance the beneficial effect of stem cell therapy and to counteract the deleterious effect of an irradiated tissue environment. This review summarises the current and evolving advances concerning basic and translational research based on stem cell therapy for the management of radiological burns. (authors)

  3. Renal Preservation Therapy for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yichun Chiu

    2012-01-01

    Full Text Available Renal preservation therapy has been a promising concept for the treatment of localized renal cell carcinoma (RCC for 20 years. Nowadays partial nephrectomy (PN is well accepted to treat the localized RCC and the oncological control is proved to be the same as the radical nephrectomy (RN. Under the result of well oncological control, minimal invasive method gains more popularity than the open PN, like laparoscopic partial nephrectomy (LPN and robot assisted laparoscopic partial nephrectomy (RPN. On the other hand, thermoablative therapy and cryoablation also play an important role in the renal preservation therapy to improve the patient procedural tolerance. Novel modalities, but limited to small number of patients, include high-intensity ultrasound (HIFU, radiosurgery, microwave therapy (MWT, laser interstitial thermal therapy (LITT, and pulsed cavitational ultrasound (PCU. Although initial results are encouraging, their real clinical roles are still under evaluation. On the other hand, active surveillance (AS has also been advocated by some for patients who are unfit for surgery. It is reasonable to choose the best therapeutic method among varieties of treatment modalities according to patients' age, physical status, and financial aid to maximize the treatment effect among cancer control, patient morbidity, and preservation of renal function.

  4. Stem Cell Therapy for Degenerative Disc Disease

    Directory of Open Access Journals (Sweden)

    Doniel Drazin

    2012-01-01

    Full Text Available Low back pain is widely recognized as one of the most prevalent pathologies in the developed world. In the United States, low back pain is the most common health problem for adults under the age of 50, resulting in significant societal and personal costs. While the causes of low back pain are myriad, it has been significantly associated with intervertebral disc (IVD degeneration. Current first-line therapies for IVD degeneration such as physical therapy and spinal fusion address symptoms, but do not treat the underlying degeneration. The use of tissue engineering to treat IVD degeneration provides an opportunity to correct the pathological process. Novel techniques are currently being investigated and have shown mixed results. One major avenue of investigation has been stem cell injections. Mesenchymal stem cells (MSCs have shown promise in small animal models, but results in larger vertebrates have been mixed.

  5. Cell therapies for pancreatic beta-cell replenishment.

    Science.gov (United States)

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo

    2016-01-01

    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes. PMID:27400873

  6. Renal Preservation Therapy for Renal Cell Carcinoma

    OpenAIRE

    Yichun Chiu; Allen W. Chiu

    2012-01-01

    Renal preservation therapy has been a promising concept for the treatment of localized renal cell carcinoma (RCC) for 20 years. Nowadays partial nephrectomy (PN) is well accepted to treat the localized RCC and the oncological control is proved to be the same as the radical nephrectomy (RN). Under the result of well oncological control, minimal invasive method gains more popularity than the open PN, like laparoscopic partial nephrectomy (LPN) and robot assisted laparoscopic partial nephrectomy...

  7. Targeted therapy for metastatic renal cell carcinoma

    OpenAIRE

    Patel, P H; Chaganti, R.S.K.; Motzer, R J

    2006-01-01

    Metastatic renal cell carcinoma (RCC) has historically been refractory to cytotoxic and hormonal agents; only interleukin 2 and interferon alpha provide response in a minority of patients. We reviewed RCC biology and explored the ways in which this understanding led to development of novel, effective targeted therapies. Small molecule tyrosine kinase inhibitors, monoclonal antibodies and novel agents are all being studied, and phase II studies show promising activity of sunitinib, sorafenib a...

  8. Stem Cell Therapy for Heart Disease

    OpenAIRE

    Puliafico, Shannon B.; Penn, Marc S.; Silver, Kevin H.

    2013-01-01

    Coronary artery disease is the leading cause of death in Americans. After myocardial infarction, significant ventricular damage persists despite timely reperfusion and pharmacological management. Treatment is limited, as current modalities do not cure this damage. In the past decade, stem cell therapy has emerged as a promising therapeutic solution to restore myocardial function. Clinical trials have demonstrated safety and beneficial effects in patients suffering from acute myocardial infarc...

  9. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  10. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  11. Concise Review: Stem Cell Therapy for Muscular Dystrophies

    OpenAIRE

    Wilschut, Karlijn J.; Ling, Vivian B.; Bernstein, Harold S.

    2012-01-01

    Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. This article reviews the current state of research on myogenic stem cells and identifies the important challenges that must be addressed as stem cell therapy is brought to the clinic.

  12. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Eva Mathieu

    Full Text Available BACKGROUND: To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC hydrogel seeded with MSC (MSC+hydrogel could preserve cardiac function and attenuate left ventricular (LV remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDING: Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. CONCLUSION/SIGNIFICANCE: These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.

  13. Cell-based therapy - navigating troubled waters.

    Science.gov (United States)

    Pepper, Michael S

    2010-05-04

    Cells and engineered tissue can be used to treat an increasing number of diseases. This development, together with promising pre-clinical data in regenerative medicine, has raised the expectations of many patients. However, this situation tends to make people vulnerable to the lures of companies that abuse the stem cell promise. The problem is compounded by people's propensity to believe that the healing powers of positive thinking, large sums of money and foreign institutions are greater than those of therapies developed through well-tested, properly constructed, clinical trials.

  14. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  15. Muscling up damaged hearts through cell therapy

    Institute of Scientific and Technical Information of China (English)

    Chi Van Dang

    2006-01-01

    @@ Molecular and cellular processes gleaned from the most fundamental of biomedical studies are now harnessed for their potential healing properties. In the US and throughout the world, millions of patients suffer from myocardial infarction and many succumb to the morbidity and mortality of the ensuing cardiac failure, a protracted condition in need of healing. While pharmacological agents have been the mainstay intervention that ameliorates cardiac failure through increased contractility or reduction of cardiac workload, these agents do not inherently heal the wounds inflicted by poor perfusion of the affected cardiac tissue.Cell therapy, however, holds the promise of repleting the damage heart with new contractile cells that can be engineered to secrete concoctions that promote healing by recruiting new blood vessel development or angiogenesis.Such cell therapeutic promise has already been fulfilled for many decades for hematological diseases through transplantation of bone marrow stem cells, which are now more broadly implicated for their healing potential of other tissues.

  16. Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.

    Science.gov (United States)

    Pissarek, M; Reichelt, C; Krauss, G J; Illes, P

    1998-11-23

    /ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.

  17. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  18. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  19. New Insights into Diabetes Cell Therapy.

    Science.gov (United States)

    Lysy, Philippe A; Corritore, Elisa; Sokal, Etienne M

    2016-05-01

    Since insulin discovery, islet transplantation was the first protocol to show the possibility to cure patients with type 1 diabetes using low-risk procedures. The scarcity of pancreas donors triggered a burst of studies focused on the production of new β cells in vitro. These were rapidly dominated by pluripotent stem cells (PSCs) demonstrating diabetes-reversal potential in diabetic mice. Subsequent enthusiasm fostered a clinical trial with immunoisolated embryonic-derived pancreatic progenitors. Yet safety is the Achilles' heel of PSCs, and a whole branch of β cell engineering medicine focuses on transdifferentiation of adult pancreatic cells. New data showed the possibility to chemically stimulate acinar or α cells to undergo β cell neogenesis and provide opportunities to intervene in situ without the need for a transplant, at least after weighing benefits against systemic adverse effects. The current studies suggested the pancreas as a reservoir of facultative progenitors (e.g., in the duct lining) could be exploited ex vivo for expansion and β cell differentiation in timely fashion and without the hurdles of PSC use. Diabetes cell therapy is thus a growing field not only with great potential but also with many pitfalls to overcome for becoming fully envisioned as a competitor to the current treatment standards.

  20. Stem Cell Therapy for Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Gunduz E

    2011-01-01

    Full Text Available IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone followed autologous stem cell transplantation (SCT. After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI and coronary artery bypass grafting (CABG was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 µg/kg/day granulocyte colony-stimulating factor (G-CSF subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric

  1. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    OpenAIRE

    Xiaofeng Liu; Jie Zhou; Morad Dirhem Naji Abid; Huanhuan Yan; Hao Huang; Limin Wan; Zuohua Feng; Juan Chen

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on th...

  2. Advances in Stem Cell Therapy for Leukemia.

    Science.gov (United States)

    Tian, Hong; Qu, Qi; Liu, Liming; Wu, Depei

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called "dual transplantation," has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor-mobilized donor peripheral blood stem cells after chemotherapy, the so called "microtransplantation", has been shown to promote the graft-versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation.

  3. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shuai Wu

    Full Text Available Several studies suggest that mesenchymal stem cells (MSCs possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.

  4. Insulin therapy for pre-hyperglycemic beta-cell endoplasmic reticulum crowding.

    Directory of Open Access Journals (Sweden)

    Afaf Absood

    Full Text Available Insulin therapy improves β-cell function in early stages of diabetes by mechanisms that may exceed alleviation of glucotoxicity. In advance type 2 diabetes, hyperglycemia causes β-cell damage and ultimately β-cell loss. At such an advanced stage, therapeutic modalities are often inadequate. Growing evidence indicates that in early stages of type-2 diabetes and some types of monogenic diabetes linked with malfunctioning endoplasmic-reticulum (ER, the β-cell ER fails to process sufficient proinsulin once it becomes overloaded. These changes manifest with ER distention (ER-crowding and deficiency of secretory granules. We hypothesize that insulin therapy may improves β-cell function by alleviating ER-crowding. To support this hypothesis, we investigated pre-diabetic β-cell changes in hProC(A7Y-CpepGFP transgenic mice that develop prolonged pre-diabetes due to proinsulin dysmaturation and ER-crowding. We attenuated the β-cell ER proinsulin synthesis with a treat-to-target insulin therapy while avoiding hypoglycemia and weight gain. Alleviation of ER-crowding resulted in temporary improvement in proinsulin maturation, insulin secretion and glucose tolerance. Our observations suggest that alleviation of pre-diabetic ER-crowding using a treat-to-target insulin therapy may improve β-cell function and may prevent further metabolic deterioration.

  5. Adenovirus-mediated interteukin-13 gene therapy attenuates acute kidney allograft injury

    NARCIS (Netherlands)

    Sandovici, Maria; Deelmani, Leo E.; van Goor, Harry; Helfrich, Wijnand; de Zeeuw, Dick; Henning, Robert H.

    2007-01-01

    Background Kidney transplantation is possible by virtue of systemic immunosuppression, which is in turn accompanied by serious side effects. The search for novel therapeutic agents and strategies is ongoing. Here we investigate the effects of adenovirus-mediated gene therapy with interleukin (IL)-13

  6. Systemic gene therapy with interleukin-13 attenuates renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Sandovici, M.; Henning, R. H.; van Goor, H.; Helfrich, W.; de Zeeuw, D.; Deelman, L. E.

    2008-01-01

    Ischemia-reperfusion injury is a leading cause of acute renal failure and a major determinant in the outcome of kidney transplantation. Here we explored systemic gene therapy with a modified adenovirus expressing Interleukin (IL)-13, a cytokine with strong anti-inflammatory and cytoprotective proper

  7. Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension

    OpenAIRE

    Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M.; Andrew H. Baker; MacLean, Margaret R.

    2012-01-01

    Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmo...

  8. Kallikrein-kinin in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Julie; Chao; Grant; Bledsoe; Lee; Chao

    2014-01-01

    The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells(MSCs), endothelial progenitor cells(EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.

  9. T-cell-directed therapies in systemic lupus erythematosus.

    Science.gov (United States)

    Nandkumar, P; Furie, R

    2016-09-01

    Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials.

  10. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells

    Directory of Open Access Journals (Sweden)

    Song T

    2015-08-01

    Full Text Available Tao Song,1 Hui Li,2 Zhiliang Tian,3 Chaojiu Xu,4 Jingfang Liu,1 Yong Guo1 1Department of Neurosurgery, Xiangya Hospital, Central South University, 2Department of Immunology and Microbiology, Medical School of Jishou University, 3Department of Neurosurgery, 4Department of Oncology, The Hospital of Xiangxi Autonomous Prefecture, Jishou, People’s Republic of China Background: Resistance to temozolomide (TMZ in glioma is modulated by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT. This study aimed to examine the effects of fluoxetine (FLT on MGMT expression in glioma cells and to investigate its underlying mechanisms.Materials and methods: Expression of MGMT, GluR1, or IκB kinase β (IKKβ was attenuated using short hairpin RNA-mediated gene knockdown. The 3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to evaluate the growth inhibition induced by FLT or TMZ. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL was conducted to detect apoptotic cells. Western blotting was conducted to analyze the protein expression of MGMT, IKKβ, and NF-κB/p65 following FLT treatment. The murine subcutaneous xenograft model was used to evaluate the combinational effect of TMZ and FLT.Results: FLT markedly reduced MGMT expression in glioma cells, which was independent of GluR1 receptor function. Further, FLT disrupted NF-κB/p65 signaling in glioma cells and consequently attenuated NF-κB/p65 activity in regulating MGMT expression. Importantly, FLT sensitized MGMT-expressing glioma cells to TMZ, as FLT enhanced TMZ’s ability to impair the in vitro tumorigenic potential and to induce apoptosis in glioma cells. Knockdown of MGMT or IKKβ expression abolished the synergistic effect of FLT with TMZ in glioma cells, which suggested that FLT might sensitize glioma cells to TMZ through down-regulation of MGMT expression. Consistently, TMZ combined with FLT markedly attenuated NF

  11. Stem Cell-Based Cell Therapy for Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Meiling Jin

    2014-01-01

    Full Text Available Glomerulonephritis (GN, characterized by immune-mediated inflammatory changes in the glomerular, is a common cause of end stage renal disease. Therapeutic options for glomerulonephritis applicable to all cases mainly include symptomatic treatment and strategies to delay progression. In the attempt to yield innovative interventions fostering the limited capability of regeneration of renal tissue after injury and the uncontrolled pathological process by current treatments, stem cell-based therapy has emerged as novel therapy for its ability to inhibit inflammation and promote regeneration. Many basic and clinical studies have been performed that support the ability of various stem cell populations to ameliorate glomerular injury and improve renal function. However, there is a long way before putting stem cell-based therapy into clinical practice. In the present article, we aim to review works performed with respect to the use of stem cell of different origins in GN, and to discuss the potential mechanism of therapeutic effect and the challenges for clinical application of stem cells.

  12. Cell-Based Therapy for Silicosis.

    Science.gov (United States)

    Lopes-Pacheco, Miquéias; Bandeira, Elga; Morales, Marcelo M

    2016-01-01

    Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis. PMID:27066079

  13. Cell-Based Therapy for Silicosis

    Directory of Open Access Journals (Sweden)

    Miquéias Lopes-Pacheco

    2016-01-01

    Full Text Available Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis.

  14. The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis.

    Science.gov (United States)

    Ishikawa, Tomomi; Kitano, Hisataka; Mamiya, Atsushi; Kokubun, Shinichiro; Hidai, Chiaki

    2016-07-01

    Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner. PMID:27129300

  15. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  16. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  17. Present and future cell therapies for pancreatic beta cell replenishment

    Institute of Scientific and Technical Information of China (English)

    Juan Domínguez-Bendala; Camillo Ricordi

    2012-01-01

    If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanoptimal approaches to immunosuppression,recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation.Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention.Progress in stem cell research over the past decade,coupled with our decades-long experience with islet transplantation,is shaping the future of cell therapies for the treatment of diabetes.Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration,including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  18. Low-Level Laser Therapy Attenuates LPS-Induced Rats Mastitis by Inhibiting Polymorphonuclear Neutrophil Adhesion

    OpenAIRE

    Wang, Yueqiang; HE, Xianjing; HAO, Dandan; Yu, Debin; LIANG, Jianbin; QU, Yanpeng; Sun, Dongbo; Yang, Bin; YANG, Keli; Wu, Rui; WANG, Jianfa

    2014-01-01

    ABSTRACT The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a rat model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms. The rat model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. The results showed that LPS-induced secretion of IL-1β and IL-8 significantly decreased after LLLT (650 nm, 2.5 mW, 30 mW/cm2). LLLT also inhibited intercellular adhesion molecule-1 (ICAM-1) expressi...

  19. Stem cell therapy for severe autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Marmont Alberto M.

    2002-01-01

    Full Text Available Intense immunosuppresion followed by alogenic or autogenic hematopoietic stem cell transplantation is a relatively recent procedure which was used for the first time in severe, refractory cases of systemic lupus erythematosus. Currently three agressive procedures are used in the treatment of autoimmune diseases: high dose chemotherapy without stem cell rescue, intense immunosuppression with subsequent infusion of the alogenic hematopoietic stem cell transplantation combined with or without the selection of CD34+ cells, and the autogenic hematopoietic stem cell transplantation. Proof of the graft-versus-leukemia effect observed define SCT as a form of immunotherapy, with additional evidence of an similar Graft-vs-Autoimmunity effect which is suggestive of a cure for autoimmune diseases in this type of therapy. The use of alogenic SCT improved due to its safety compared to autogenic transplantations. In this report, data of multiply sclerosis and systemic lupus erythematosus are reported, with the conclusion that Immunoablation followed by SCT is clearly indicated in such cases.

  20. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Both nature and induced regulatory T (Treg lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+FoxP3(+ and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  1. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Science.gov (United States)

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  2. Radiation Therapy for Cutaneous T-Cell Lymphomas.

    Science.gov (United States)

    Tandberg, Daniel J; Craciunescu, Oana; Kelsey, Chris R

    2015-10-01

    Radiation therapy is an extraordinarily effective skin-directed therapy for cutaneous T-cell lymphomas. Lymphocytes are extremely sensitive to radiation and a complete response is generally achieved even with low doses. Radiation therapy has several important roles in the management of mycosis fungoides. For the rare patient with unilesional disease, radiation therapy alone is potentially curative. For patients with more advanced cutaneous disease, radiation therapy to local lesions or to the entire skin can effectively palliate symptomatic disease and provide local disease control. Compared with other skin-directed therapies, radiation therapy is particularly advantageous because it can effectively penetrate and treat thicker plaques and tumors. PMID:26433843

  3. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    Science.gov (United States)

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer. PMID:25804437

  4. Towards a quantitative, measurement-based estimate of the uncertainty in photon mass attenuation coefficients at radiation therapy energies.

    Science.gov (United States)

    Ali, E S M; Spencer, B; McEwen, M R; Rogers, D W O

    2015-02-21

    In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy-i.e. 100 keV (orthovoltage) to 25 MeV-using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ∼0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative 'envelope of uncertainty' of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).

  5. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    Science.gov (United States)

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood. PMID:25204635

  6. The Cell Therapy Catapult: growing a U.K. cell therapy industry generating health and wealth.

    Science.gov (United States)

    Thompson, Keith; Foster, Emma Palmer

    2013-12-01

    In a recent report on the regenerative medicine sector, the U.K. House of Lords made several recommendations to enable the United Kingdom to become a global leader in this important industry. Its recommendations in this regard were many and various, covering the regulatory system, clinical trials, manufacturing, funding, approval, and reimbursement. In its mission to tackle what it sees as three main types of barriers to the development of the cell therapy industry in the United Kingdom, the Cell Therapy Catapult is tackling many of these issues. Established as a center of excellence in the United Kingdom in 2012, the Cell Therapy Catapult is a research organization expected to grow to a team of around 100 experts. Its core financing of £ 70 million over the next 5 years is provided by the Technology Strategy Board, the United Kingdom's innovation agency, and with additional contract research income and access to collaborative funds, the Catapult expects to build up to annual revenues of around £ 30 million. Along with its sister Catapult programs in other areas of the economy, the Cell Therapy Catapult was established after identification of the massive early-stage expertise the country has, as well as an acute market failure-the lack of expertise to translate early-stage cell therapy research into commercial success. In this article, in addition to showing our progress so far, we will discuss the hurdles the industry faces-grouped into business, manufacturing/supply chain issues, and clinical/regulatory issues-and what we are doing to help the United Kingdom leap over them. PMID:24304073

  7. Present and future cell therapies for pancreatic beta cell replenishment

    OpenAIRE

    Domínguez-Bendala, Juan; Ricordi, Camillo

    2012-01-01

    If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this ...

  8. Stem cell therapy for Alzheimer's disease.

    Science.gov (United States)

    Abdel-Salam, Omar M E

    2011-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which impairs the memory and intellectual abilities of the affected individuals. Loss of episodic as well as semantic memory is an early and principal feature. The basal forebrain cholinergic system is the population of neurons most affected by the neurodegenerative process. Extracellular as well as intracellular deposition of beta-amyloid or Abeta (Abeta) protein, intracellular formation of neurofibrillary tangles and neuronal loss are the neuropathological hallmarks of AD. In the last few years, hopes were raised that cell replacement therapy would provide cure by compensating the lost neuronal systems. Stem cells obtained from embryonic as well as adult tissue and grafted into the intact brain of mice or rats were mostly followed by their incorporation into the host parenchyma and differentiation into functional neural lineages. In the lesioned brain, stem cells exhibited targeted migration towards the damaged regions of the brain, where they engrafted, proliferated and matured into functional neurones. Neural precursor cells can be intravenously administered and yet migrate into brain damaged areas and induce functional recovery. Observations in animal models of AD have provided evidence that transplanted stem cells or neural precursor cells (NPCs) survive, migrate, and differentiate into cholinergic neurons, astrocytes, and oligodendrocytes with amelioration of the learning/memory deficits. Besides replacement of lost or damaged cells, stem cells stimulate endogenous neural precursors, enhance structural neuroplasticity, and down regulate proinflammatory cytokines and neuronal apoptotic death. Stem cells could also be genetically modified to express growth factors into the brain. In the last years, evidence indicated that the adult brain of mammals preserves the capacity to generate new neurons from neural stem/progenitor cells. Inefficient adult neurogenesis may contribute to the

  9. Managing particulates in cell therapy: Guidance for best practice.

    Science.gov (United States)

    Clarke, Dominic; Stanton, Jean; Powers, Donald; Karnieli, Ohad; Nahum, Sagi; Abraham, Eytan; Parisse, Jean-Sebastien; Oh, Steve

    2016-09-01

    The intent of this article is to provide guidance and recommendations to cell therapy product sponsors (including developers and manufacturers) and their suppliers in the cell therapy industry regarding particulate source, testing, monitoring and methods for control. This information is intended to help all parties characterize the processes that generate particulates, understand product impact and provide recommendations to control particulates generated during manufacturing of cell therapy products. PMID:27426934

  10. [Retinal Cell Therapy Using iPS Cells].

    Science.gov (United States)

    Takahashi, Masayo

    2016-03-01

    Progress in basic research, starting with the work on neural stem cells in the middle 1990's to embryonic stem (ES) cells and induced pluripotent stem (iPS) cells at present, will lead the cell therapy (regenerative medicine) of various organs, including the central nervous system to a big medical field in the future. The author's group transplanted iPS cell-derived retinal pigment epithelial (RPE) cell sheets to the eye of a patient with exudative age-related macular degeneration (AMD) in 2014 as a clinical research. Replacement of the RPE with the patient's own iPS cell-derived young healthy cell sheet will be one new radical treatment of AMD that is caused by cellular senescence of RPE cells. Since it was the first clinical study using iPS cell-derived cells, the primary endpoint was safety judged by the outcome one year after surgery. The safety of the cell sheet has been confirmed by repeated tumorigenisity tests using immunodeficient mice, as well as purity of the cells, karyotype and genetic analysis. It is, however, also necessary to prove the safety by clinical studies. Following this start, a good strategy considering cost and benefit is needed to make regenerative medicine a standard treatment in the future. Scientifically, the best choice is the autologous RPE cell sheet, but autologous cell are expensive and sheet transplantation involves a risky part of surgical procedure. We should consider human leukocyte antigen (HLA) matched allogeneic transplantation using the HLA 6 loci homozyous iPS cell stock that Prof. Yamanaka of Kyoto University is working on. As the required forms of donor cells will be different depending on types and stages of the target diseases, regenerative medicine will be accomplished in a totally different manner from the present small molecule drugs. Proof of concept (POC) of photoreceptor transplantation in mouse is close to being accomplished using iPS cell-derived photoreceptor cells. The shortest possible course for treatment

  11. Mesenchymal stem cell therapy and lung diseases.

    Science.gov (United States)

    Akram, Khondoker M; Samad, Sohel; Spiteri, Monica; Forsyth, Nicholas R

    2013-01-01

    Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event. PMID:22772131

  12. Attenuated total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells.

    Science.gov (United States)

    Lane, Randy; See, Seong S

    2012-09-01

    Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used to find the structural differences between cancerous breast cells (MCF-7 line) and normal breast cells (MCF-12F line). Gold nanoparticles were prepared and the hydrodynamic diameter of the gold nanoparticles found to be 38.45 nm. The Gold nanoparticles were exposed to both MCF-7 and MCF-12F cells from lower to higher concentrations. Spectroscopic studies founds nanoparticles were within the cells, and increasing the nanoparticles concentration inside the cells also resulted in sharper IR peaks as a result of localized surface Plasmon resonance. Asymmetric and symmetric stretching and bending vibrations between phosphate, COO-, CH2 groups were found to give negative shifts in wavenumbers and a decrease in peak intensities when going from noncancerous to cancerous cells. Cellular proteins produced peak assignments at the 1542 and 1644 cm(-1) wavenumbers which were attributed to the amide I and amide II bands of the polypeptide bond of proteins. Significant changes were found in the peak intensities between the cell lines in the spectrum range from 2854-2956 cm(-1). Results show that the concentration range of gold nanoparticles used in this research showed no significant changes in cell viability in either cell line. Therefore, we believe ATR-FTIR and gold nanotechnology can be at the forefront of cancer diagnosis for some time to come.

  13. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    Science.gov (United States)

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  14. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  15. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Science.gov (United States)

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  16. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

    Directory of Open Access Journals (Sweden)

    LM Benneker

    2014-05-01

    Full Text Available Intervertebral disc (IVD degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

  17. CELL THERAPY FOR INTERVERTEBRAL DISC REPAIR: ADVANCING CELL THERAPY FROM BENCH TO CLINICS

    Science.gov (United States)

    Benneker, L.M.; Andersson, G.; Iatridis, J.C.; Sakai, D.; Härtl, R.; Ito, K.; Grad, S.

    2016-01-01

    Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encourageing results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium “Where Science meets Clinics”, sponsored by the AO Foundation and held in Davos, Switzerland, from September 5–7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imageing methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neurogenesis. Discogenic pain, originating from “black discs” or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in outline order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects. PMID:24802611

  18. Stem Cell Therapy: A New Treatment for Burns?

    OpenAIRE

    Gauglitz, Gerd G.; Marc G. Jeschke; Mohammed Al Shehab; Anna Arno; Blit, Patrick H.; Smith, Alexandra H.

    2011-01-01

    Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells) or artificially obtained (induced pluripotent stem cells or iPSCs) and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, ...

  19. Recent advances in cell-based therapy for Parkinson disease

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Cooper, Oliver; Vinuela, Angel;

    2008-01-01

    In this review, the authors discuss recent advances in the field of cell therapy for Parkinson disease (PD). They compare and contrast recent clinical trials using fetal dopaminergic neurons. They attribute differences in cell preparation techniques, cell type specification, and immunosuppression...... in enrichment and purification strategies of stem cell-derived dopaminergic midbrain neurons. They conclude that recent advances in cell therapy for PD will create a viable long-term treatment option for synaptic repair for this debilitating disease....

  20. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    OpenAIRE

    Toshihiro Kushibiki; Takeshi Hirasawa; Shinpei Okawa; Miya Ishihara

    2015-01-01

    Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT...

  1. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  2. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    Directory of Open Access Journals (Sweden)

    Hui Cai

    2016-01-01

    Full Text Available Reducing β amyloid- (Aβ- induced microglial activation is believed to be effective in treating Alzheimer’s disease (AD. Microglia can be activated into classic activated state (M1 state or alternative activated state (M2 state, and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1. In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1 expression, IL-10, brain-derived neurotrophic factor (BDNF, and glial cell-derived neurotrophic factor (GDNF releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1.

  3. Melatonin attenuates 1-methyl-4-phenylpyridinium-induced PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    Jin-feng BAO; Ren-gang WU; Xiao-ping ZHANG; Yan SONG; Chang-ling LI

    2005-01-01

    Aim: To explore the effect of melatonin on PC12 cell death induced by 1-methyl-4-phenylpyridinium (MPP+). Methods: MTT assay, lactate dehydrogenase (LDH)efflux assay, and immunohistochemistry methods were used to measure neurotoxicity of PC 12 cells treated acutely with MPP+ in low glucose and high glucose conditions, and to assess the neuroprotective effect of melatonin on PC 12 cell death induced by MPP+. Results: In a low glucose condition, MPP+ significantly induced PC 12 cell death, which showed time and concentration dependence. In a serum-free low glucose condition, the percentages of viability of cells treated with MPP+ for 12, 24, 48, 72, and 96 h were 85.1%, 75.4%, 64.9%, 28.15%, and 9%, respectively. The level of LDH in the culture medium increased and tyrosine hydroxylase positive (TH+) cell count decreased. However, in a serum-free high glucose condition, MPP+ did not significantly induce PC12 cell death compared with control at various concentrations and time regimens. When the cells were preincubated with melatonin 250 μmol/L for 48, 72, and 96 h in a serum-free low glucose condition, cell survival rate significantly increased to 78.1%, 58.8%, and 31.6%, respectively. Melatonin abolished the LDH leakage of cells treated with MPP+ and increased TH+ cells count. Conclusion: MPP+ caused concentrationdependent PC12 cell death. The level of glucose was an important factor to MPP+induced dopaminergic PC12 cell death. Low glucose level could potentiate MPP+toxicity, while high glucose level could reduce the toxicity. In addition, melatonin attenuated PC12 cell death induced by MPP+.

  4. Systemic adjuvant therapies in renal cell carcinoma.

    Science.gov (United States)

    Buti, Sebastiano; Bersanelli, Melissa; Donini, Maddalena; Ardizzoni, Andrea

    2012-10-01

    Renal cell carcinoma (RCC) is one of the ten most frequent solid tumors worldwide. Recent innovations in the treatment of metastatic disease have led to new therapeutic approaches being investigated in the adjuvant setting. Observation is the only current standard of care after radical nephrectomy, although there is evidence of efficacy of adjuvant use of vaccine among all the strategies used. This article aims to collect published experiences with systemic adjuvant approaches in RCC and to describe the results of past and ongoing phase III clinical trials in this field. We explored all the systemic treatments, including chemotherapy, immunotherapy and targeted drugs while alternative approaches have also been described. Appropriate selection of patients who would benefit from adjuvant therapies remains a crucial dilemma. Although the international guidelines do not actually recommend any adjuvant treatment after radical surgery for RCC, no conclusions have yet been drawn pending the results of the promising ongoing clinical trials with the target therapies. The significant changes that these new drugs have made on advanced disease outcome could represent the key to innovation in terms of preventing recurrence, delaying relapse and prolonging survival after radical surgery for RCC. PMID:25992216

  5. Systemic adjuvant therapies in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sebastiano Buti

    2012-10-01

    Full Text Available Renal cell carcinoma (RCC is one of the ten most frequent solid tumors worldwide. Recent innovations in the treatment of metastatic disease have led to new therapeutic approaches being investigated in the adjuvant setting. Observation is the only current standard of care after radical nephrectomy, although there is evidence of efficacy of adjuvant use of vaccine among all the strategies used. This article aims to collect published experiences with systemic adjuvant approaches in RCC and to describe the results of past and ongoing phase III clinical trials in this field. We explored all the systemic treatments, including chemotherapy, immunotherapy and targeted drugs while alternative approaches have also been described. Appropriate selection of patients who would benefit from adjuvant therapies remains a crucial dilemma. Although the international guidelines do not actually recommend any adjuvant treatment after radical surgery for RCC, no conclusions have yet been drawn pending the results of the promising ongoing clinical trials with the target therapies. The significant changes that these new drugs have made on advanced disease outcome could represent the key to innovation in terms of preventing recurrence, delaying relapse and prolonging survival after radical surgery for RCC.

  6. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy

    OpenAIRE

    Yalvac, M E; Arnold, W D; Braganza, C; Chen, L.; Mendell, J R; Sahenk, Z

    2015-01-01

    The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulat...

  7. Cell therapy in congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Congestive heart failure (CHF) has emerged as a major worldwide epidemic and its main causes seem to be the aging of the population and the survival of patients with post-myocardial infarction. Cardiomyocyte dropout (necrosis and apoptosis) plays a critical role in the progress of CHF; thus treatment of CHF by exogenous cell implantation will be a promising medical approach. In the acute phase of cardiac damage cardiac stem cells (CSCs) within the heart divide symmetrically and/or asymmetrically in response to the change of heart homeostasis, and at the same time homing of bone marrow stem cells (BMCs) to injured area is thought to occur, which not only reconstitutes CSC population to normal levels but also repairs the heart by differentiation into cardiac tissue. So far, basic studies by using potential sources such as BMCs and CSCs to treat animal CHF have shown improved ventricular remodelling and heart function. Recently, however, a few of randomized, double-blind, placebo-controlled clinical trials demonstrated mixed results in heart failure with BMC therapy during acute myocardial infarction.

  8. Mesenchymal stem cell therapy for heart disease.

    Science.gov (United States)

    Gnecchi, Massimiliano; Danieli, Patrizia; Cervio, Elisabetta

    2012-08-19

    Mesenchymal stem cells (MSC) are adult stem cells with capacity for self-renewal and multi-lineage differentiation. Initially described in the bone marrow, MSC are also present in other organs and tissues. From a therapeutic perspective, because of their easy preparation and immunologic privilege, MSC are emerging as an extremely promising therapeutic agent for tissue regeneration and repair. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSC to engraft and differentiate into cardiomyocytes and vascular cells. Most importantly, engrafted MSC secrete a wide array of soluble factors that mediate beneficial paracrine effects and may greatly contribute to cardiac repair. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. In this review we will focus on the current understanding of MSC biology and MSC mechanism of action in cardiac repair. PMID:22521741

  9. Bromoenol Lactone Attenuates Nicotine-Induced Breast Cancer Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Lindsay E Calderon

    Full Text Available Calcium independent group VIA phospholipase A2 (iPLA2β and Matrix Metalloproteinase-9 (MMP-9 are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2β mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL to attenuate the severity of nicotine-induced breast cancer was examined.We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2β dependent manner. These results suggest that iPLA2β plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05 and nicotine-induced tumor growth (p<0.01. Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis.The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2β dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis.

  10. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential

    Directory of Open Access Journals (Sweden)

    Kun-Chun Chiang

    2016-04-01

    Full Text Available Regarding breast cancer treatment, triple negative breast cancer (TNBC is a difficult issue. Most TNBC patients die of cancer metastasis. Thus, to develop a new regimen to attenuate TNBC metastatic potential is urgently needed. MART-10 (19-nor-2α-(3-hydroxypropyl-1α,25(OH2D3, the newly-synthesized 1α,25(OH2D3 analog, has been shown to be much more potent in cancer growth inhibition than 1α,25(OH2D3 and be active in vivo without inducing obvious side effect. In this study, we demonstrated that both 1α,25(OH2D3 and MART-10 could effectively repress TNBC cells migration and invasion with MART-10 more effective. MART-10 and 1α,25(OH2D3 induced cadherin switching (upregulation of E-cadherin and downregulation of N-cadherin and downregulated P-cadherin expression in MDA-MB-231 cells. The EMT(epithelial mesenchymal transition process in MDA-MB-231 cells was repressed by MART-10 through inhibiting Zeb1, Zeb2, Slug, and Twist expression. LCN2, one kind of breast cancer metastasis stimulator, was also found for the first time to be repressed by 1α,25(OH2D3 and MART-10 in breast cancer cells. Matrix metalloproteinase-9 (MMP-9 activity was also downregulated by MART-10. Furthermore, F-actin synthesis in MDA-MB-231 cells was attenuated as exposure to 1α,25(OH2D3 and MART-10. Based on our result, we conclude that MART-10 could effectively inhibit TNBC cells metastatic potential and deserves further investigation as a new regimen to treat TNBC.

  11. Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus

    Directory of Open Access Journals (Sweden)

    Zhou Haibo

    2011-08-01

    Full Text Available Abstract Background Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers. Methods In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses. Results CD45(+CD56(-CD16(+ neutrophils and CD45(+CD56(+ NK cells comprised median 4.62% (range 0.33-14.52 and 23.27% (18.29-33.97, respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+ NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce

  12. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury.

    Science.gov (United States)

    Silveira, Paulo Cesar Lock; Scheffer, Debora da Luz; Glaser, Viviane; Remor, Aline Pertile; Pinho, Ricardo Aurino; Aguiar Junior, Aderbal Silva; Latini, Alexandra

    2016-01-01

    The purpose of this work was to investigate the effect of early and long-term low-level laser therapy (LLLT) on oxidative stress and inflammatory biomarkers after acute-traumatic muscle injury in Wistar rats. Animals were randomly divided into the following four groups: control group (CG), muscle injury group (IG), CG + LLLT, and IG + LLLT: laser treatment with doses of 3 and 5 J/cm(2). Muscle traumatic injury was induced by a single-impact blunt trauma in the rat gastrocnemius. Irradiation for 3 or 5 J/cm(2) was initiated 2, 12, and 24 h after muscle trauma induction, and the treatment was continued for five consecutive days. All the oxidant markers investigated. namely thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase, were increased as soon as 2 h after muscle injury and remained increased up to 24 h. These alterations were prevented by LLLT at a 3 J/cm(2) dose given 2 h after the trauma. Similarly, LLLT prevented the trauma-induced proinflammatory state characterized by IL-6 and IL-10. In parallel, trauma-induced reduction in BDNF and VEGF, vascular remodeling and fiber-proliferating markers, was prevented by laser irradiation. In order to test whether the preventive effect of LLLT was also reflected in muscle functionality, we tested the locomotor activity, by measuring distance traveled and the number of rearings in the open field test. LLLT was effective in recovering the normal locomotion, indicating that the irradiation induced biostimulatory effects that accelerated or resolved the acute inflammatory response as well as the oxidant state elicited by the muscle trauma. PMID:26983894

  13. Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths.

    Science.gov (United States)

    Lai, Bo-Lun; Sheu, Rong-Jiun; Lin, Uei-Tyng

    2015-05-01

    Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets (iron, graphite, tissue, and copper) and shielding materials (concrete, iron, and lead) were generated by performing Monte Carlo simulations for 100-300 MeV protons. Possible applications and a proper use of the data set were demonstrated through a practical case study, in which shielding analysis on a typical proton treatment room was conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, this study demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. This case study proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton therapy accelerators. PMID:25811254

  14. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  15. Towards stem-cell therapy in the endocrine pancreas

    NARCIS (Netherlands)

    Gangaram-Panday, Shanti T.; Faas, Marijke M.; de Vos, Paul

    2007-01-01

    Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation.

  16. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar, Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  17. MS Stem Cell Therapy Succeeds but Poses Risks

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159285.html MS Stem Cell Therapy Succeeds But Poses Risks Toxic side effects ... HealthDay News) -- A treatment combining chemotherapy and a stem cell transplant could represent a major advance against aggressive ...

  18. Cell Targeting in Anti-Cancer Gene Therapy

    OpenAIRE

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene th...

  19. Development of gene and stem cell therapy for ocular neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Jing-Xue; Zhang; Ning-Li; Wang; Qing-Jun; Lu

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.

  20. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  1. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    International Nuclear Information System (INIS)

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53−/− NE-4Cs). We determined the effect of LPS as a model of inflammation in p53−/− NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53−/− NE-4Cs and in LPS-stimulated JMJD2A-kd p53−/− NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53−/− NE4C cells. • Finding JMJD2

  2. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  3. Stem Cell Therapy for Myocardial Infarction: Are We Missing Time?

    NARCIS (Netherlands)

    K.W. ter Horst

    2010-01-01

    The success of stem cell therapy in myocardial infarction (MI) is modest, and for stem cell therapy to be clinically effective fine-tuning in regard to timing, dosing, and the route of administration is required. Experimental studies suggest the existence of a temporal window of opportunity bound by

  4. Personalized Therapy of Small Cell Lung Cancer.

    Science.gov (United States)

    Schneider, Bryan J; Kalemkerian, Gregory P

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials. PMID:26703804

  5. Present and future of allogeneic natural killer cell therapy

    Directory of Open Access Journals (Sweden)

    Okjae eLim

    2015-06-01

    Full Text Available Natural killer (NK cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA-haploidentical hematopoietic stem cell transplantation revealed the anti-tumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor (KIR ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions.

  6. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy.

    Science.gov (United States)

    Yalvac, M E; Arnold, W D; Braganza, C; Chen, L; Mendell, J R; Sahenk, Z

    2016-01-01

    The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulatory effects of NT-3 raised considerations of potential efficacy in the SAPP model that could be applicable to CIDP. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 25-week-old SAPP mice. Measurable NT-3 levels were found in the serum at 7-week postgene delivery. The outcome measures included functional, electrophysiological and histological assessments. At week 32, NT-3-treated mice showed increased hind limb grip strength that correlated with improved compound muscle action potential amplitude. Myelinated fiber density was 1.9 times higher in the NT-3-treated group compared with controls and the number of demyelinated axons was significantly lower. The remyelinated nerve fiber population was significantly increased. These improved histopathological parameters from scAAV1.tMCK.NT-3 treatment occurred in the setting of reduced sciatic nerve inflammation. Collectively, these findings suggest a translational application to CIDP. PMID:26125608

  7. Potential benefits of cell therapy in coronary heart disease.

    Science.gov (United States)

    Grimaldi, Vincenzo; Mancini, Francesco Paolo; Casamassimi, Amelia; Al-Omran, Mohammed; Zullo, Alberto; Infante, Teresa; Napoli, Claudio

    2013-11-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies. PMID:23834957

  8. Potential benefits of cell therapy in coronary heart disease.

    Science.gov (United States)

    Grimaldi, Vincenzo; Mancini, Francesco Paolo; Casamassimi, Amelia; Al-Omran, Mohammed; Zullo, Alberto; Infante, Teresa; Napoli, Claudio

    2013-11-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies.

  9. Dental stem cells: a future asset of ocular cell therapy.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  10. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice.

    Science.gov (United States)

    Wang, Yungang; Tian, Jie; Tang, Xinyi; Rui, Ke; Tian, Xinyu; Ma, Jie; Ma, Bin; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-03-29

    Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.

  11. Cell therapy to remove excess copper in Wilson's disease.

    Science.gov (United States)

    Gupta, Sanjeev

    2014-05-01

    To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease.

  12. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  13. Quantitative measurement on optical attenuation coefficient of cell lines 5-8F and 6-10B using optical coherence tomography

    Science.gov (United States)

    Li, Jianghua; Shen, Zhiyuan; He, Yonghong; Tu, Ziwei; Xia, Yunfei; Chen, Changshui; Liu, Songhao

    2012-10-01

    Oncogenesis and metastasis of tumor are difficult to detect during the clinic therapy. To explore the optical properties of tumorigenesis and metastasis in nasopharyngeal carcinoma (NPC), we assessed the NPC cell lines 5-8F and 6-10B by optical coherence tomography (OCT): first, the OCT images of the two different types of cell pellets were captured. Second, by fitting Beer's law to the averaged A-scans in these OCT datasets, the attenuation coefficients (μt) of the cells were extracted. The median attenuation coefficients (interquartile range (IQR)) of 5-8F and 6-10B were 6.79 mm-1 (IQR 6.52 to 7.23 mm-1) versus 8.06 mm-1 (IQR 7.65 to 8.40 mm-1), respectively (p < 0.01, df = 39). Subsequently, the results were compared with those obtained by polarization sensitive OCT, which further confirmed that the quantitative OCT analysis (by μt) could differentiate the oncogenesis and metastasis NPC cell lines in real time non-invasively.

  14. Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells.

    Science.gov (United States)

    Wang, Xiaolin; Wu, Guang; Cao, Guangxin; Yang, Lei; Xu, Haifei; Huang, Jian; Hou, Jianquan

    2015-09-01

    Zoledronic acid (ZA) is the current standard of care for the therapy of patients with bone metastasis or osteoporosis. ZA inhibits the prenylation of small guanosine‑5'-triphosphate (GTP)‑binding proteins, such as Ras, and thus inhibit Ras signaling. The present study demonstrated that ZA inhibited cell proliferation and the pentose phosphate pathway (PPP) in bladder cancer cells. In addition, the expression of glucose‑6‑phosphate dehydrogenase (G6PD, the rate‑limiting enzyme of the PPP) was found to be inhibited by ZA. Furthermore, the stability of TAp73, which activates the expression G6PD was decreased in zoledronic acid treated cells. Decreased levels of Ras‑GTP and phosphorylated‑extracellular signal-regulated kinase 1/2 were also observed following treatment with ZA. This may be due to the fact that activated Ras was reported to stabilize TAp73 inducing its accumulation. The inhibition of Ras activity by PT inhibitor II also significantly reduced the levels of TAp73 and G6PD and the PPP flux. Moreover, knockdown of TAp73, attenuated the PPP flux and eliminated the affection of ZA on the PPP flux. In conclusion, it was proposed that ZA can inhibit stability of TAp73 and attenuate the PPP via blocking Ras signaling in bladder cancer cells.

  15. Stem cell therapy in oral and maxillofacial region: An overview

    Directory of Open Access Journals (Sweden)

    P M Sunil

    2012-01-01

    Full Text Available Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.

  16. Three-dimensional approach to stem cell therapy.

    OpenAIRE

    Oh, Il-Hoan; Kim, Dong-Wook

    2002-01-01

    Recent progress in stem cell research is opening a new hope for cell therapy in regenerative medicine. Two breakthroughs were made in the stem cell era, one, new discoveries in multi-potentiality of adult stem cells beyond the traditionally appreciated extent, and the other, establishment of pluripotent stem cell from human embryo. In addition to the newly identified multi-potentiality of adult stem cells, their ability to be trans-differentiated toward other tissue types (stem cell plasticit...

  17. Stem cell-based therapy for erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hong; XIA Shu-jie

    2011-01-01

    Objective To review the effect of stem cells in erectile dysfunction as well as their application to the therapy of erectile dysfunction.Data sources The data used in the present article were mainly from PubMed with relevant English articles published from 1974 to 2011.The search terms were "stem cells" and "erectile dysfunction".Study selection Articles regarding the role of stem cells in erectile dysfunction and their application to the therapy of erectile dysfunction were selected.Results Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types.Meanwhile,in preclinical experiments,therapeutic gene-modified stem cells have been approved to offer a novel strategy for cell therapy and gene therapy of erectile dysfunction.Conclusion The transplantation of stem cells has the potential to provide cell types capable of restoring normal function after injury or degradation inerectile dysfunction.However,a series of problems,such as the safety of stem cells transplantation,their application in cell therapy and gene therapy of erectile dysfunction need further investigation.

  18. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy

  19. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  20. 4-Phenylbutyric Acid Attenuates Pancreatic Beta-Cell Injury in Rats with Experimental Severe Acute Pancreatitis.

    Science.gov (United States)

    Hong, Yu-Pu; Guo, Wen-Yi; Wang, Wei-Xing; Zhao, Liang; Xiang, Ming-Wei; Mei, Fang-Chao; Abliz, Ablikim; Hu, Peng; Deng, Wen-Hong; Yu, Jia

    2016-01-01

    Endoplasmic reticulum (ER) stress is a particular process with an imbalance of homeostasis, which plays an important role in pancreatitis, but little is known about how ER stress is implicated in severe acute pancreatitis (SAP) induced pancreatic beta-cell injury. To investigate the effect of 4-phenylbutyric acid (4-PBA) on the beta-cell injury following SAP and the underlying mechanism, twenty-four Sprague-Dawley rats were randomly divided into sham-operation (SO) group, SAP model group, and 4-PBA treatment group. SAP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. 4-PBA or normal saline was injected intraperitoneally for 3 days in respective group before successful modeling. Results showed that 4-PBA attenuated the following: (1) pancreas and islet pathological injuries, (2) serum TNF-α and IL-1β, (3) serum insulin and glucose, (4) beta-cell ultrastructural changes, (5) ER stress markers (BiP, ORP150, and CHOP), Caspase-3, and insulin expression in islet. These results suggested that 4-PBA mitigates pancreatic beta-cell injury and endocrine disorder in SAP, presumably because of its role in inhibiting excessive endoplasmic reticulum stress. This may serve as a new therapeutic target for reducing pancreatic beta-cell injury and endocrine disorder in SAP upon 4-PBA treatment. PMID:27656209

  1. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    Science.gov (United States)

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation. PMID:27181404

  2. Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun Jeong Lim; Jong Chul Rhee; Young Mee Bae; Wan Joo Chun

    2007-01-01

    AIM: To investigate the combined chemotherapeutic effects of celecoxib when used with 5-FU in vitro.METHODS: Two human colon cancer cell lines (HCT-15and HT-29) were treated with 5-FU and celecoxib, alone and in combination. The effects of each drug were evaluated using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry,and western blotting.RESULTS: 5-FU and celecoxib showed a dosedependent cytotoxic effect. When treated with 10-3mol/L 5-FU (IC50) and celecoxib with its concentration ranging from 10-8 mol/L to 10-4 mol/L of celecoxib,cells showed reduced cytotoxic effect than 5-FU(10-3 mol/L) alone. Flow cytometry showed that celecoxib attenuated 5-FU induced accumulation of cells at subG1 phase. Western blot analyses for caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage showed that celecoxib attenuated 5-FU induced apoptosis. Western blot analyses for cell cycle molecules showed that G2/M arrest might be possible cause of 5-FU induced apoptosis and celecoxib attenuated 5-FU induced apoptosis via blocking of cell cycle progression to the G2/M phase,causing an accumulation of cells at the G1/S phase.CONCLUSION: We found that celecoxib attenuated cytotoxic effect of 5-FU. Celecoxib might act via inhibition of cell cycle progression, thus preventing apoptosis induced by 5-FU.

  3. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  4. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    Science.gov (United States)

    Elshikha, Ahmed S; Lu, Yuanqing; Chen, Mong-Jen; Akbar, Mohammad; Zeumer, Leilani; Ritter, Andrea; Elghamry, Hanaa; Mahdi, Mahmoud A; Morel, Laurence; Song, Sihong

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans. PMID:27232337

  5. Cell-based therapies and imaging in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, Frank M. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Munich (Germany); Schachinger, Volker; Dimmeler, Stefanie [University of Frankfurt, Department of Molecular Cardiology, Frankfurt (Germany)

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application. (orig.)

  6. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P mixed cell culture, whereas cold water immersion significantly (P groups, whereas training session performance was significantly (P group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. PMID

  7. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    2016-01-01

    Full Text Available CD4+CD25+Foxp3+ regulatory T cells (Treg cells have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI. We hypothesize that the interleukin- (IL- 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1 attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th cells among the CD4+Foxp3− T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.

  8. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  9. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  10. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  11. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    Science.gov (United States)

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  12. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria

    Institute of Scientific and Technical Information of China (English)

    SONG Ying; LI Meng; LI Ji-cheng; WEI Er-qing

    2006-01-01

    Background: Edaravone had been validated to effectively protect against ischemic injuries. In this study, we investigated the protective effect of edaravone by observing the effects on anti-apoptosis, regulation of Bcl-2/Bax protein expression and recovering from damage to mitochondria after OGD (oxygen-glucose deprivation)-reperfusion. Methods: Viability of PC 12cells which were injured at different time of OGD injury, was quantified by measuring MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) staining. In addition, PC 12 cells' viability was also quantified after their preincubation in different concentration of edaravone for 30 min followed by (OGD). Furthermore, apoptotic population of PC12 cells that reinsulted from OGD-reperfusion with or without preincubation with edaravone was determined by flow cytometer analysis,electron microscope and Hoechst/PI staining. Finally, change of Bcl-2/Bax protein expression was detected by Westem blot.Results: (1) The viability of PC 12 cells decreased with time (1~12 h) after OGD. We regarded the model of OGD 2 h, then replacing DMEM (Dulbecco's Modified Eagle's Medium) for another 24 h as an OGD-reperfusion in this research. Furthermore,most PC12 cells were in the state of apoptosis after OGD-reperfusion. (2) The viability of PC12 cells preincubated with edaravone at high concentrations (1,0.1, 0.01 μmol/L) increased significantly with edaravone protecting PC 12 cells from apoptosis after OGD-reperfusion injury. (3) Furthermore, edaravone attenuates the damage of OGD-reperfusion on mitochondria and regulated Bcl-2/Bax protein imbalance expression after OGD-reperfusion. Conclusion: Neuroprotective effects of edaravone on ischemic or other brain injuries may be partly mediated through inhibition of Bcl-2/Bax apoptotic pathways by recovering from the damage of mitochondria.

  13. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  14. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  15. Advances in sickle cell therapies in the hydroxyurea era.

    Science.gov (United States)

    Field, Joshua J; Nathan, David G

    2014-01-01

    In the hydroxyurea era, insights into mechanisms downstream of erythrocyte sickling have led to new therapeutic approaches for patients with sickle cell disease (SCD). Therapies have been developed that target vascular adhesion, inflammation and hemolysis, including innovative biologics directed against P-selectin and invariant natural killer T cells. Advances in hematopoietic stem cell transplant and gene therapy may also provide more opportunities for cures in the near future. Several clinical studies are underway to determine the safety and efficacy of these new treatments. Novel approaches to treat SCD are desperately needed, since current therapies are limited and rates of morbidity and mortality remain high. PMID:25549232

  16. Induction of Apoptosis by Functionalized Fullerene-based Sonodynamic Therapy in HL-60 cells.

    Science.gov (United States)

    Yumita, Nagahiko; Watanabe, Takahiro; Chen, Fu-Shih; Momose, Yasunori; Umemura, Shin-Ichiro

    2016-06-01

    Ultrasound has been widely utilized for medical diagnosis and therapy due to its ability to penetrate deep-seated tissue with less attenuation of energy and minimal undesirable side-effects. Functionalized fullerenes, such as polyhydroxy fullerene (PHF), have attracted particular attention due to their water solubility and potential application in tumor imaging and therapy as carbon nanomaterials. The present study investigated sonodynamically-induced apoptosis using PHF. Cell suspensions were treated with 2-MHz continuous ultrasound in the presence of PHF for 3 min and apoptosis was assessed by cell morphology using confocal microscopy, fragmentation of DNA (ladder pattern after agarose-gel electrophoresis) and caspase-3 activation. Cells were ultrasound-irradiated from the bottom of the culture dishes under the following condition: frequency, 2 MHz; output power, 3 W/cm(2) Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells after sonodynamic exposure (ultrasound and PHF) was significantly higher than produced from other treatments, such as ultrasound alone and PHF alone. Furthermore, DNA fragmentation, caspase-3 activation and enhanced 2,2,6,6-tetramethyl-4-piperidinyloxy (4oxoTEMPO) formation were observed in the sonodynamically-treated cells. Histidine, a well-known reactive oxygen scavenger, significantly inhibited sonodynamically-induced apoptosis, caspase-3 activation and 4oxoTEMPO formation. Sonodynamic therapy with PHF induced apoptosis that was characterized by a series of typical morphological features, such as shrinkage of the cell and fragmentation into membrane-bound apoptotic bodies, in HL-60 cells. The significant inhibition of sonodynamically-induced apoptosis, caspase-3 activation, and 4oxoTEMPO formation due to histidine and tryptophan suggests that reactive oxygen species, such as singlet oxygen, are involved in the sonodynamic induction of apoptosis. These findings indicate that PHF

  17. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  18. Satureja khuzestanica attenuates apoptosis in hyperglycemic PC12 cells and spinal cord of diabetic rats.

    Science.gov (United States)

    Kaeidi, Ayat; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Sheibani, Vahid; Rasoulian, Bahram; Hajializadeh, Zahra; Pasban-Aliabadi, Hamzeh

    2013-01-01

    Several studies have indicated the involvement of oxidative stress and high glucose-induced cell death in the development of diabetic neuropathy. Satureja khuzestanica has been recommended in the literature as a remedy for the treatment of diabetes, and also contains antioxidant agents. Here, we investigated the possible neuroprotective effects of Satureja khuzestanica extract (SKE) on in vitro and in vivo models of diabetic neuropathy pain. High-glucose-induced damage to pheochromocytoma (PC12) cells and in streptozotocin-induced diabetic rats was studied. Tail-flick and rotarod treadmill tests were used to access nociceptive threshold and motor coordination, respectively. Cell viability was determined by MTT assay. Activated caspase 3 and Bax/Bcl-2 ratio-biochemical markers of apoptosis-were evaluated using immunoblotting. We found that elevating the glucose in the medium (to 4× normal) increased cell toxicity and caspase-3 activation in PC12 cells. Incubation with SKE (200 and 250 μg/ml) decreased cell damage. Furthermore, the diabetic rats developed neuropathy, which was evident from thermal hyperalgesia and motor deficit. Administering SKE at a daily dose of between 50 and 200 mg/kg to the diabetic animals for 3 weeks ameliorated hyperglycemia, weight loss, hyperalgesia, and motor deficit, inhibited caspase 3 activation, and decreased the Bax/Bcl-2 ratio. The results suggest that SKE exerts neuroprotective effects against hyperglycemia-induced cellular damage. The mechanisms of these effects may be related to (at least in part) the prevention of neural apoptosis, and the results suggest that Satureja has the therapeutic potential to attenuate side effects of diabetes, such as neuropathy.

  19. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

    Science.gov (United States)

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-01-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275] PMID:26592933

  20. Lacidipine Attenuates Apoptosis via a Caspase-3 Dependent Pathway in Human Kidney Cells

    Directory of Open Access Journals (Sweden)

    Aiqi Zhang

    2013-10-01

    Full Text Available Background: Acute kidney injury (AKI is common in hospitalised patients and has a poor prognosis. Therefore, new therapeutic strategies are anticipated. Lacidipine, a novel third-generation dihydropyridine calcium channel blocker, has been demonstrated effective for hypertension. However, its potential effect on renal injury remains unknown. In the present study, an in vitro model of renal ischemia reperfusion (I/R injury was used to investigate the protective effect and underlying mechanisms of lacidipine on human kidney cell (HKC apoptosis. Methods: HKCs were subjected to adenosine triphosphate (ATP depletion and recovery (0.01 µM AA, depletion for 2 h and recovery for 30 min, with or without lacidipine (1 µM and 10 µM, 24 h, then cell viability and apoptosis were determined using the cell counting kit-8 (CCK-8 assay and Annexin V flow cytometry. The expression of Bcl-2, Bax, and cytochrome c (cyt c was examined by western blot. Results: Antimycin A (AA was found to induce apoptosis of HKCs. The proportion of early apoptosis and activity of caspase-3 peaked at 30 min after ATP depletion and recovery and were attenuated by lacidipine. The expression of cyt c and Bax was decreased, while that of Bcl-2 was increased significantly in lacidipine treated group. Conclusion: We conclude that lacidipine protects HKCs against apoptosis induced by ATP depletion and recovery by regulating the caspase-3 pathway.

  1. Stem cell therapy in treatment of different diseases.

    Science.gov (United States)

    Larijani, Bagher; Esfahani, Ensieh Nasli; Amini, Peyvand; Nikbin, Behrouz; Alimoghaddam, Kamran; Amiri, Somayeh; Malekzadeh, Reza; Yazdi, Nika Mojahed; Ghodsi, Maryam; Dowlati, Yahya; Sahraian, Mohammad Ali; Ghavamzadeh, Ardeshir

    2012-01-01

    Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia). In this paper the goal is evaluation of cell therapy in treatment of Parkinson's disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  2. Stem Cell Therapy in Treatment of Different Diseases

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sahraian

    2012-02-01

    Full Text Available Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia. In this paper the goal is evaluation of cell therapy in treatment of Parkinsons disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  3. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.;

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  4. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  5. Stem-cell-based therapy and lessons from the heart.

    NARCIS (Netherlands)

    Passier, R.; van Laake, L.W.; Mummery, C.L.

    2008-01-01

    The potential usefulness of human embryonic stem cells for therapy derives from their ability to form any cell in the body. This potential has been used to justify intensive research despite some ethical concerns. In parallel, scientists have searched for adult stem cells that can be used as an alte

  6. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    NARCIS (Netherlands)

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited nu

  7. Cell therapy strategies and improvements for muscular dystrophy

    OpenAIRE

    Quattrocelli, Mattia; Cassano, Marco; Crippa, Stefania; Perini, Ilaria; Sampaolesi, Maurilio

    2010-01-01

    Understanding stem cell commitment and differentiation is a critical step towards clinical translation of cell therapies. In past few years, several cell types have been characterized and transplanted in animal models for different diseased tissues, eligible for a cell-mediated regeneration. Skeletal muscle damage is a challenge for cell- and gene-based therapeutical approaches, given the unique architecture of the tissue and the clinical relevance of acute damages or dystrophies. In this rev...

  8. Cell therapy for liver diseases: current medicine and future promises.

    Science.gov (United States)

    Alejandra, Meza-Ríos; Juan, Armendáriz-Borunda; Ana, Sandoval-Rodríguez

    2015-06-01

    Liver diseases are a major health problem worldwide since they usually represent the main causes of death in most countries, causing excessive costs to public health systems. Nowadays, there are no efficient current therapies for most hepatic diseases and liver transplant is infrequent due to the availability of organs, cost and risk of transplant rejection. Therefore, alternative therapies for liver diseases have been developed, including cell-based therapies. Stem cells (SCs) are characterized by their self-renewing capacity, unlimited proliferation and differentiation under certain conditions into tissue- or organ-specific cells with special functions. Cell-based therapies for liver diseases have been successful in experimental models, showing anti-inflammatory, antifibrogenic and regenerative effects. Nowadays, clinical trials using SCs for liver pathologies are increasing in number, and those that have reached publication have achieved favorable effects, encouraging us to think that SCs will have a potential clinical use in a short time.

  9. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    Science.gov (United States)

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  10. Dimethylfumarate attenuates restenosis after acute vascular injury by cell-specific and Nrf2-dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Chang Joo Oh

    2014-01-01

    Full Text Available Excessive proliferation of vascular smooth muscle cells (VSMCs and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF, an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF−E2-related factor 2 (Nrf2-NAD(PH quinone oxidoreductase 1 (NQO1 activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1 or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2–NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease.

  11. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone.

    Science.gov (United States)

    St Louis, Derek; Romero, Roberto; Plazyo, Olesya; Arenas-Hernandez, Marcia; Panaitescu, Bogdan; Xu, Yi; Milovic, Tatjana; Xu, Zhonghui; Bhatti, Gaurav; Mi, Qing-Sheng; Drewlo, Sascha; Tarca, Adi L; Hassan, Sonia S; Gomez-Lopez, Nardhy

    2016-02-01

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator-activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4(+) T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for

  12. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Science.gov (United States)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  13. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  14. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  15. Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF-κB/p65 Activation

    Science.gov (United States)

    Jiang, Wenkai; Zhou, Lin

    2016-01-01

    Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies.

  16. Slow-Cycling Therapy-Resistant Cancer Cells

    OpenAIRE

    Moore, Nathan; Houghton, JeanMarie; Lyle, Stephen

    2011-01-01

    Tumor recurrence after chemotherapy is a major cause of patient morbidity and mortality. Recurrences are thought to be secondary to small subsets of cancer cells that are better able to survive traditional forms of chemotherapy and thus drive tumor regrowth. The ability to isolate and better characterize these therapy-resistant cells is critical for the future development of targeted therapies aimed at achieving more robust and long-lasting responses. Using a novel application for the prolife...

  17. Stem Cell Based Gene Therapy in Prostate Cancer

    OpenAIRE

    Jae Heon Kim; Hong Jun Lee; Yun Seob Song

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new ...

  18. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    OpenAIRE

    Gabriel eGonzales-Portillo; Stephanny eReyes; Daniela eAguirre; Pabon, Mibel M.; Borlongan, Cesar V.

    2014-01-01

    Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with str...

  19. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Portillo

    2014-08-01

    Full Text Available Treatments for neonatal hypoxic ischemic encephalopathy (HIE have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke providing insights on the potential of cell therapy, currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS, which have been recently modified to Baby STEPS to cater for the neonatal symptoms of HIE. These guidelines recognized that neonatal HIE exhibits distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials, and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.

  20. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  1. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling.

    Science.gov (United States)

    Martire, Alessandra; Bedada, Fikru B; Uchida, Shizuka; Pöling, Jochen; Krüger, Marcus; Warnecke, Henning; Richter, Manfred; Kubin, Thomas; Herold, Susanne; Braun, Thomas

    2016-09-01

    Mesenchymal stem cells (MSC) have been used to treat different clinical conditions although the mechanisms by which pathogenetic processes are affected are still poorly understood. We have previously analyzed the homing of bone marrow-derived MSC to diseased tissues characterized by a high degree of mononuclear cell infiltration and postulated that MSC might modulate inflammatory responses. Here, we demonstrate that MSC mitigate adverse tissue remodeling, improve organ function, and extend lifespan in a mouse model of inflammatory dilative cardiomyopathy (DCM). Furthermore, MSC attenuate Lipopolysaccharide-induced acute lung injury indicating a general role in the suppression of inflammatory processes. We found that MSC released sTNF-RI, which suppressed activation of the NFκBp65 pathway in cardiomyocytes during DCM in vivo. Substitution of MSC by recombinant soluble TNF-R partially recapitulated the beneficial effects of MSC while knockdown of TNF-R prevented MSC-mediated suppression of the NFκBp65 pathway and improvement of tissue pathology. We conclude that sTNF-RI is a major part of the paracrine machinery by which MSC effect local inflammatory reactions. PMID:27435289

  2. Hypoxia attenuates anti-Aspergillus fumigatus immune responses initiated by human dendritic cells.

    Science.gov (United States)

    Fliesser, Mirjam; Wallstein, Marion; Kurzai, Oliver; Einsele, Hermann; Löffler, Jürgen

    2016-08-01

    Aspergillus fumigatus is an opportunistic mould that causes invasive pulmonary aspergillosis (IPA), a life-threatening infection in immunocompromised patients. During the course of IPA, localised areas of tissue hypoxia occur. Bacterial infection models revealed that hypoxic microenvironments modulate the function of host immune cells. However, the influence of hypoxia on anti-fungal immunity has been largely unknown. We evaluated the impact of hypoxia on the human anti-A. fumigatus immune response. Human monocyte-derived dendritic cells (DCs) were stimulated in vitro with germ tubes of A. fumigatus under normoxia or hypoxia (1% O2 ), followed by analysis of DC viability, maturation and cytokine release. While DC viability was unaffected, hypoxia attenuated cytokine release from DCs and maturation of DCs upon stimulation with A. fumigatus. These data suggest that hypoxia at the site of A. fumigatus infection inhibits full activation and function of human DCs. Thereby, this study identified hypoxia as a crucial immune-modulating factor in the human anti-fungal immune response that might influence the course and outcome of IPA in immunocompromised patients. PMID:27005862

  3. Morphine Attenuates Apically-Directed Cytokine Secretion from Intestinal Epithelial Cells in Response to Enteric Pathogens

    Directory of Open Access Journals (Sweden)

    Amanda J. Brosnahan

    2014-04-01

    Full Text Available Epithelial cells represent the first line of host immune defense at mucosal surfaces. Although opioids appear to increase host susceptibility to infection, no studies have examined opioid effects on epithelial immune functions. We tested the hypothesis that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2 monolayers in response to enteropathogens. Both entero-adherent Escherichia coli O157:H7 and entero-invasive Salmonella enterica serovar Typhimurium increased apically-directed IL-6 secretion and bi-directional IL-8 secretion from epithelial monolayers, but only IL-6 secretion evoked by E. coli was reduced by morphine acting through a naloxone-sensitive mechanism. Moreover, the respective type 4 and 5 Toll-like receptor agonists, lipopolysaccharide and flagellin, increased IL-8 secretion from monolayers, which was also attenuated by morphine pretreatment. These results suggest that morphine decreases cytokine secretion and potentially phagocyte migration and activation directed towards the mucosal surface; actions that could increase host susceptibility to some enteric infections.

  4. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  5. Astragalus Polysaccharide Attenuated Iron Overload-Induced Dysfunction of Mesenchymal Stem Cells via Suppressing Mitochondrial ROS

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-09-01

    Full Text Available Background/Aims: Bone marrow-derived mesenchymal stem cells (BMSCs have the ability to differentiate into multilineage cells such as osteoblasts, chondrocytes, and cardiomyocytes. Dysfunction of BMSCs in response to pathological stimuli participates in the development of diseases such as osteoporosis. Astragalus polysaccharide (APS is a major active ingredient of Astragalus membranaceus, a commonly used anti-aging herb in traditional Chinese medicine. The aim of this study was to investigate whether APS protects against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Methods: BMSCs were exposed to ferric ammonium citrate (FAC with or without different concentrations of APS. The viability and proliferation of BMSCs were assessed by CCK-8 assay and EdU staining. Cell apoptosis, senescence and pluripotency were examined utilizing TUNEL staining, β-galactosidase staining and qRT-PCR respectively. The reactive oxygen species (ROS level was assessed in BMSCs with a DCFH-DA probe and MitoSOX Red staining. Results: Firstly, we found that iron overload induced by FAC markedly reduced the viability and proliferation of BMSCs, but treatment with APS at 10, 30 and 100 μg/mL was able to counter the reduction of cell proliferation. Furthermore, exposure to FAC led to apoptosis and senescence in BMSCs, which were partially attenuated by APS. The pluripotent genes Nanog, Sox2 and Oct4 were shown to be downregulated in BMSCs after FAC treatment, however APS inhibited the reduction of Nanog, Sox2 and Oct4 expression. Further study uncovered that APS treatment abrogated the increase of intracellular and mitochondrial ROS level in FAC-treated BMSCs. Conclusion: Treatment of BMSCs with APS to impede mitochondrial ROS accumulation can remarkably inhibit apoptosis, senescence, and the reduction of proliferation and pluripotency of BMSCs caused by FAC-induced iron overload.

  6. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  7. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  8. The translational imperative: Making cell therapy simple and effective ☆

    Science.gov (United States)

    Prestwich, Glenn D.; Erickson, Isaac E.; Zarembinski, Thomas I.; West, Michael; Tew, William P.

    2012-01-01

    The current practice of cell therapy, in which multipotent or terminally differentiated cells are injected into tissues or intravenously, is inefficient. Few therapeutic cells are retained at the site of administration and engraftment is low. An injectable and biologically appropriate vehicle for delivery, retention, growth and differentiation of therapeutic cells is needed to improve the efficacy of cell therapy. We focus on a hyaluronan-based semi-synthetic extracellular matrix (sECM), HyStem®, which is a manufacturable, approvable and affordable clinical product. The composition of this sECM can be customized for use with mesenchymal stem cells as well as cells derived from embryonic or induced pluripotent sources. In addition, it can support therapeutic uses of progenitor and mature cell populations obtained from skin, fat, liver, heart, muscle, bone, cartilage, nerves and other tissues. This overview presents four pre-clinical uses of HyStem® for cell therapy to repair injured vocal folds, improve post-myocardial infarct heart function, regenerate damaged liver tissue and restore brain function following ischemic stroke. Finally, we address the real-world limitations – manufacture, regulation, market acceptance and financing – surrounding cell therapy and the development of clinical combination products. PMID:22776825

  9. The translational imperative: making cell therapy simple and effective.

    Science.gov (United States)

    Prestwich, Glenn D; Erickson, Isaac E; Zarembinski, Thomas I; West, Michael; Tew, William P

    2012-12-01

    The current practice of cell therapy, in which multipotent or terminally differentiated cells are injected into tissues or intravenously, is inefficient. Few therapeutic cells are retained at the site of administration and engraftment is low. An injectable and biologically appropriate vehicle for delivery, retention, growth and differentiation of therapeutic cells is needed to improve the efficacy of cell therapy. We focus on a hyaluronan-based semi-synthetic extracellular matrix (sECM), HyStem®, which is a manufacturable, approvable and affordable clinical product. The composition of this sECM can be customized for use with mesenchymal stem cells as well as cells derived from embryonic or induced pluripotent sources. In addition, it can support therapeutic uses of progenitor and mature cell populations obtained from skin, fat, liver, heart, muscle, bone, cartilage, nerves and other tissues. This overview presents four pre-clinical uses of HyStem® for cell therapy to repair injured vocal folds, improve post-myocardial infarct heart function, regenerate damaged liver tissue and restore brain function following ischemic stroke. Finally, we address the real-world limitations - manufacture, regulation, market acceptance and financing - surrounding cell therapy and the development of clinical combination products. PMID:22776825

  10. T- and B-Cell-Mediated Protection Induced by Novel, Live Attenuated Pertussis Vaccine in Mice. Cross Protection against Parapertussis

    OpenAIRE

    Pascal Feunou Feunou; Julie Bertout; Camille Locht

    2010-01-01

    BACKGROUND: Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccin...

  11. Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency

    OpenAIRE

    Ran Fu; Jian Li; Hua Zhong; Dehong Yu; Xianping Zeng; Mengxia Deng; Yueqi Sun; Weiping Wen; Huabin Li

    2014-01-01

    BACKGROUND: Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. METHOD: Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltrati...

  12. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors.

    Science.gov (United States)

    Mulryan, Kate; Ryan, Matthew G; Myers, Kevin A; Shaw, David; Wang, Who; Kingsman, Susan M; Stern, Peter L; Carroll, Miles W

    2002-10-01

    The human oncofetal antigen 5T4 (h5T4) is a transmembrane glycoprotein overexpressed by a wide spectrum of cancers, including colorectal, ovarian, and gastric, but with a limited normal tissue expression. Such properties make 5T4 an excellent putative target for cancer immunotherapy. The murine homologue of 5T4 (m5T4) has been cloned and characterized, which allows for the evaluation of immune intervention strategies in "self-antigen" in vivo tumor models. We have constructed recombinant vaccinia viruses based on the highly attenuated and modified vaccinia virus ankara (MVA strain), expressing h5T4 (MVA-h5T4), m5T4 (MVA-m5T4), and Escherichia coli LacZ (MVA-LacZ). Immunization of BALB/c and C57BL/6 mice with MVA-h5T4 and MVA-m5T4 constructs induced antibody responses to human and mouse 5T4, respectively. C57BL/6 and BALB/c mice vaccinated with MVA-h5T4 were challenged with syngeneic tumor line transfectants, B16 melanoma, and CT26 colorectal cells that express h5T4. MVA-h5T4-vaccinated mice showed significant tumor retardation compared with mice vaccinated with MVA-LacZ or PBS. In active treatment studies, inoculation with MVA-h5T4 was able to treat established CT26-h5T4 lung tumor and to a lesser extent B16.h5T4 s.c. tumors. Additionally, when C57BL/6 mice vaccinated with MVA-m5T4 were challenged with B16 cells expressing m5T4, resulting growth of the tumors was significantly retarded compared with control animals. Furthermore, mice vaccinated with MVA-m5T4 showed no signs of autoimmune toxicity. These data support the use of MVA-5T4 for tumor immunotherapy. PMID:12481437

  13. [Novelties in the diagnostics and therapy of hairy cell leukemia].

    Science.gov (United States)

    Sári, Eszter; Rajnai, Hajnalka; Dénes, Kitti; Bödör, Csaba; Csomor, Judit; Körösmezey, Gábor; Tárkányi, Ilona; Eid, Hanna; Nagy, Zsolt; Demeter, Judit

    2016-06-01

    Differential diagnosis of hairy cell leukemia (HCL) and related disorders (hairy cell leukemia variant and splenic marginal zone lymphoma) is of utmost importance since the treatment and prognosis of these lymphomas differ. Since 2011 diagnosis of hairy cell leukemia has been easier because of discovery of the disease defining somatic mutation BRAF V600E mutation, which has been also known as driver mutation in malignant melanoma. The presence of this mutation enabled targeted molecular therapy in HCL as well. As first line therapy purine nucleoside analogues are the gold standard, but refractory/relapsed patient are candidates for targeted BRAF-inhibitor therapy. This manuscript serves as guidance in making diagnosis and standard treatment of HCL, and summarizes newest data about molecular therapy, including our single center experience collected from 75 patients. PMID:27275640

  14. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  15. Extinction Models for Cancer Stem Cell Therapy

    OpenAIRE

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth

    2009-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...

  16. [Systemic therapy of metastatic renal cell carcinoma].

    Science.gov (United States)

    Maute, Luise; Bergmann, Lothar

    2016-04-01

    In metastatic ccRCC , the treatment options in 1st line treatment are still the tyrosinkinase inhibitors (TKI) pazopanib and sunitinib, for patients with low or intermediate risk additionally IFNα/bevacizumab and for high risk patients the mTOR inhibitor temsirolimus. In 2nd line following cytokine therapy, axitinib or pazopanib and following TKI /VEGF directed therapy axitinib or everolimus may be administered. New upcoming agents in RCC are the PD1 antibody nivolumab and the multikinase inhibitor Cabozantinib, which both showed an OS advantage compared to everolimus. After marketing authorization in Europe, these agents should therefore be preferred in 2nd and 3rd line therapy. Further agents are under investigation. PMID:27031198

  17. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  18. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bongkun; Kang, Soon-Suk [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Kang, Sang-Wook [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Anatomy and Cell Biology, Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Min, Bon-Hong [Department of Pharmacology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Song, Youngsup [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Anatomy and Cell Biology, Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Yoon, Seung-Yong [Department of Anatomy and Cell Biology, Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Chang, Eun-Ju, E-mail: ejchang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Anatomy and Cell Biology, Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of)

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  19. Methods for Stem Cell Production and Therapy

    Science.gov (United States)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  20. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  1. The Use of Pluripotent Stem Cell for Personalized Cell Therapies against Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Hye-Yeong Ha

    2011-01-01

    Full Text Available Although there are a number of weaknesses for clinical use, pluripotent stem cells are valuable sources for patient-specific cell therapies against various diseases. Backed-up by a huge number of basic researches, neuronal differentiation mechanism is well established and pluripotent stem cell therapies against neurological disorders are getting closer to clinical application. However, there are increasing needs for standardization of the sourcing pluripotent stem cells by establishing stem cell registries and banking. Global harmonization will accelerate practical use of personalized therapies using pluripotent stem cells.

  2. IGF-1 C Domain-Modified Hydrogel Enhances Cell Therapy for AKI.

    Science.gov (United States)

    Feng, Guowei; Zhang, Jimin; Li, Yang; Nie, Yan; Zhu, Dashuai; Wang, Ran; Liu, Jianfeng; Gao, Jie; Liu, Na; He, Ningning; Du, Wei; Tao, Hongyan; Che, Yongzhe; Xu, Yong; Kong, Deling; Zhao, Qiang; Li, Zongjin

    2016-08-01

    Low cell retention and engraftment after transplantation limit the successful application of stem cell therapy for AKI. Engineered microenvironments consisting of a hydrogel matrix and growth factors have been increasingly successful in controlling stem cell fate by mimicking native stem cell niche components. Here, we synthesized a bioactive hydrogel by immobilizing the C domain peptide of IGF-1 (IGF-1C) on chitosan, and we hypothesized that this hydrogel could provide a favorable niche for adipose-derived mesenchymal stem cells (ADSCs) and thereby enhance cell survival in an AKI model. In vitro studies demonstrated that compared with no hydrogel or chitosan hydrogel only, the chitosan-IGF-1C hydrogel increased cell viability through paracrine effects. In vivo, cotransplantation of the chitosan-IGF-1C hydrogel and ADSCs in ischemic kidneys ameliorated renal function, likely by the observed promotion of stem cell survival and angiogenesis, as visualized by bioluminescence imaging and attenuation of fibrosis. In conclusion, IGF-1C immobilized on a chitosan hydrogel provides an artificial microenvironment for ADSCs and may be a promising therapeutic approach for AKI. PMID:26869006

  3. Proceedings: international regulatory considerations on development pathways for cell therapies.

    Science.gov (United States)

    Feigal, Ellen G; Tsokas, Katherine; Viswanathan, Sowmya; Zhang, Jiwen; Priest, Catherine; Pearce, Jonathan; Mount, Natalie

    2014-08-01

    Regenerative medicine is a rapidly evolving field that faces novel scientific and regulatory challenges. In September 2013, the International Workshop on Regulatory Pathways for Cell Therapies was convened to discuss the nature of these challenges and potential solutions and to highlight opportunities for potential convergence between different regulatory bodies that might assist the field's development. The workshop discussions generated potentially actionable steps in five main areas that could mitigate cell therapy development pathway risk and accelerate moving promising therapies to patients. These included the need for convergence of regulatory guidelines on donor eligibility and suitability of lines for use in clinical trials and subsequent commercialization for cell therapies to move forward on a global basis; the need to challenge and encourage investigators in the regenerative medicine field to share information and provide examples of comparability studies related to master cell banks; the need for convergence of guidelines across regulatory jurisdictions on requirements for tumorigenicity studies, based on particular cell types and on biodistribution studies; the need to increase transparency in sharing clinical trial information more broadly and disseminating results more rapidly; and the need to establish a forum for sharing the experiences of various approaches being developed to expedite regulatory approvals and access for patients to innovative cell and regenerative therapies in the different regulatory jurisdictions and to assess their potential strengths and weaknesses.

  4. Stem cells therapy in cerebral palsy: A systematic review.

    Science.gov (United States)

    Kułak-Bejda, Agnieszka; Kułak, Piotr; Bejda, Grzegorz; Krajewska-Kułak, Elżbieta; Kułak, Wojciech

    2016-09-01

    The aim of this study was to systematically present the best available stem cell therapies for children with cerebral palsy (CP). The databases Medline, PubMed, EMBASE, and the Cochrane Controlled Trials Register for RCTs were searched for studies published from 1967 to August 2015. Systematic reviews, randomised controlled trials (RCTs), controlled trials, uncontrolled trials, cohort studies, open-label studies, and a meta-analysis were analysed. Of 360 articles, seven fulfilled the inclusion criteria: one RCT and six were open-label trials. In these studies, one application of stem cells for children with CP was typical, and the total number of cells administered to patients ranged from 10(6) to 10(8)/kg. Different routes of cell delivery were used, though in most studies motor development was applied as an indicator of primary outcomes. In three articles, neuroimaging studies were also implemented to confirm the efficacy of the therapies. Observation periods varied from 3months to 5years, and patients' tolerance of the therapy was generally good. Stem cell therapy may improve some symptoms in patients with CP, though larger studies are needed to examine the impact of stem cell therapy upon CP. PMID:27004672

  5. Regulatory landscape for cell therapy--EU view.

    Science.gov (United States)

    McBlane, James W

    2015-09-01

    This article addresses regulation of cell therapies in the European Union (EU), covering cell sourcing and applications for clinical trials and marketing authorisation applications. Regulatory oversight of cell sourcing and review of applications for clinical trials with cell therapies are handled at national level, that is, separately with each country making its own decisions. For clinical trials, this can lead to different decisions in different countries for the same trial. A regulation is soon to come into force that will address this and introduce a more efficient clinical trial application process. However, at the marketing authorisation stage, the process is pan-national: the Committee for Human Medicinal Products (CHMP) is responsible for giving the final scientific opinion on all EU marketing authorisation applications for cell therapies: favourable scientific opinions are passed to the European Commission (EC) for further consultation and, if successful, grant of a marketing authorisation valid in all 28 EU countries. In its review of applications for marketing authorisations (MAAs) for cell therapies, the CHMP is obliged to consult the Committee for Advanced Therapies (CAT), who conduct detailed scientific assessments of these applications, with assessment by staff from national regulatory authorities and specialist advisors to the regulators. PMID:25997566

  6. Interplay between CD8α+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses.

    Directory of Open Access Journals (Sweden)

    Dilnawaz Kapadia

    Full Text Available During the course of a microbial infection, different antigen presenting cells (APCs are exposed and contribute to the ensuing immune response. CD8α(+ dendritic cells (DCs are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm and are crucial for CD8(+ T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+ DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+ DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+ DCs primarily secrete low levels of TNFα while CD8α(+ DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+ DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS. Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.

  7. Stem Cell Therapy in Pediatric Neurological Disorders

    OpenAIRE

    Farnaz Torabian; Arvin Aghayi Nejad; Arash Akhavan Rezayat; Mehran Beiraghi Toosi; Ali Reza Attaei Nakhaie; Hamid Reza Rahimi

    2015-01-01

    Pediatric neurological disorders including muscular dystrophy, cerebral palsy, and spinal cord injury are defined as a heterogenous group of diseases, of which some are known to be genetic. The two significant features represented for stem cells, leading to distinguish them from other cell types are addressed as below: they can renew themselves besides the ability to differentiate into cells with special function as their potency. Researches about the role of stem cells in repair of damaged t...

  8. Bone marrow cells differentiation into organ cells using stem cell therapy.

    Science.gov (United States)

    Yang, Y-J; Li, X-L; Xue, Y; Zhang, C-X; Wang, Y; Hu, X; Dai, Q

    2016-07-01

    Bone marrow cells (BMC) are progenitors of bone, cartilage, skeletal tissue, the hematopoiesis-supporting stroma and adipocyte cells. BMCs have the potential to differentiate into neural cells, cardiac myocytes, liver hepatocytes, chondrocytes, renal, corneal, blood, and myogenic cells. The bone marrow cell cultures from stromal and mesenchymal cells are called multipotent adult progenitor cells (MAPCs). MAPCs can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and endoderm in vitro. It has been shown that the stem cells derived from bone marrow cells (BMCs) can regenerate cardiac myocytes after myocardial infarction (MI). Adult bone marrow mesenchymal stem cells have the ability to regenerate neural cells. Neural stem/progenitor cells (NS/PC) are ideal for treating central nervous system (CNS) diseases, such as Alzheimer's, Parkinson's and Huntington disease. However, there are important ethical issues about the therapeutic use of stem cells. Neurons, cardiac myocytes, hepatocytes, renal cells, blood cells, chondrocytes and adipocytes regeneration from BMCs are very important in disease control. It is known that limbal epithelial stem cells in the cornea can repair the eye sight and remove symptoms of blindness. Stem cell therapy (SCT) is progressing well in animal models, but the use of SCT in human remains to be explored further.

  9. Ethical issues in stem cell research and therapy.

    Science.gov (United States)

    King, Nancy Mp; Perrin, Jacob

    2014-07-07

    Rapid progress in biotechnology has introduced a host of pressing ethical and policy issues pertaining to stem cell research. In this review, we provide an overview of the most significant issues with which the stem cell research community should be familiar. We draw on a sample of the bioethics and scientific literatures to address issues that are specific to stem cell research and therapy, as well as issues that are important for stem cell research and therapy but also for translational research in related fields, and issues that apply to all clinical research and therapy. Although debate about the moral status of the embryo in human embryonic stem cell research continues to have relevance, the discovery of other highly multipotent stem cell types and alternative methods of isolating and creating highly multipotent stem cells has raised new questions and concerns. Induced pluripotent stem cells hold great promise, but care is needed to ensure their safety in translational clinical trials, despite the temptation to move quickly from bench to bedside. A variety of highly multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from amniotic fluid, umbilical cord blood, adipose tissue, or urine - present the opportunity for widespread biobanking and increased access. With these increased opportunities, however, come pressing policy issues of consent, control, and justice. The imperatives to minimize risks of harm, obtain informed consent, reduce the likelihood of the therapeutic misconception, and facilitate sound translation from bench to bedside are not unique to stem cell research; their application to stem cell research and therapy nonetheless merits particular attention. Because stem cell research is both scientifically promising and ethically challenging, both the application of existing ethical frameworks and careful consideration of new ethical implications are necessary as this broad and diverse field moves forward.

  10. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    Science.gov (United States)

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  11. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  12. Effect of three different dosages of magnesium sulfate on attenuating hemodynamic responses after electroconvulsive therapy: a randomized, double-blind, placebo-controlled trial

    International Nuclear Information System (INIS)

    Objective: The purpose of this randomized, double-blind, placebo-controlled crossover study was to compare the efficacy of three different dosages of MgSO/sub 4/ administration (10, 20, and 30 mg/kg) versus placebo on attenuation of cardiovascular response to electroconvulsive therapy (ECT). Methodology: Thirty-five adult patients scheduled for 8 ECT sessions were randomly assigned to be allocated twice into one of the four study groups: MgSO/sub 4/ 10 mg/kg (M10), MgSO/sub 4/ 20 mg/ kg (M20), MgSO/sub 4/ 30 mg/kg (M30), and placebo control (P). Systolic (SAP), diastolic (DAP) and mean arterial pressure (MAP) and heart rate (HR) were recorded at 0, 1, 3, and 10 minutes after termination of ECT-induced seizures. Duration of electroencephalographs (EEGs) and motor seizures and peak HR during convulsions were also recorded. Results: Changes in SAP, DAP, and MAP were significantly attenuated at 0, one, and three minutes after ECT in groups M20 and M30 compared with group P (P< 0.05). Peak HR changes were significantly less in groups M20 and M30 compared with groups M10 and P (P< 0.05). Duration of motor and EEG seizure activity was not significantly different among the four groups. Conclusion: Administration of either 20 or 30 mg/kg MgSO/sub 4/ significantly attenuated increased blood pressure and peak HR after ECT without decreasing seizure duration. (author)

  13. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  14. [Maintenance therapy for advanced non-small-cell lung cancer].

    Science.gov (United States)

    Saruwatari, Koichi; Yoh, Kiyotaka

    2014-08-01

    Maintenance therapy is a new treatment strategy for advanced non-small-cell lung cancer(NSCLC), and it consists of switch maintenance and continuation maintenance.Switch maintenance is the introduction of a different drug, not included as part of the induction therapy, immediately after completion of 4 cycles of first-line platinum-based chemotherapy.Continuation maintenance is a continuation of at least one of the drugs used in the induction therapy in the absence of disease progression.Several phase III trials have reported survival benefits with continuation maintenance of pemetrexed and switch maintenance of pemetrexed or erlotinib.Therefore, maintenance therapy has become a part of the standard first-line treatment for advanced NSCLC.However, further research is needed to elucidate the selection criteria of patients who may benefit the most from maintenance therapy. PMID:25132023

  15. DNA damage enhanced by the attenuation of SLD5 delays cell cycle restoration in normal cells but not in cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Gong

    Full Text Available SLD5 is a member of the GINS complex composed of PSF1, PSF2, PSF3 and SLD5, playing a critical role in the formation of the DNA replication fork with CDC45 in yeast. Previously, we had isolated a PSF1 orthologue from a murine hematopoietic stem cell DNA library and were then able to identify orthologues of all the other GINS members by the yeast two hybrid approach using PSF1 as the bait. These GINS orthologues may also function in DNA replication in mammalian cells because they form tetrameric complexes as observed in yeast, and gene deletion mutants of both PSF1 and SLD5 result in a lack of epiblast proliferation and early embryonic lethality. However, we found that PSF1 is also involved in chromosomal segregation in M phase, consistent with recent suggestions that homologues of genes associated with DNA replication in lower organisms also regulate cellular events other than DNA replication in mammalian cells. Here we analyzed the function of SLD5 other than DNA replication and found that it is active in DNA damage and repair. Attenuation of SLD5 expression results in marked DNA damage in both normal cells and cancer cells, suggesting that it protects against DNA damage. Attenuation of SLD5 delays the DNA repair response and cell cycle restoration in normal cells but not in cancer cells. These findings suggest that SLD5 might represent a therapeutic target molecule acting at the level of tumor stromal cells rather than the cancerous cells themselves, because development of the tumor microenvironment could be delayed or disrupted by the suppression of its expression in the normal cell types within the tumor.

  16. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation

    Science.gov (United States)

    Davis, Benjamin B.; Thompson, David A.; Howard, Laura L.; Morisseau, Christophe; Hammock, Bruce D.; Weiss, Robert H.

    2002-02-01

    Atherosclerosis, in its myriad incarnations the foremost killer disease in the industrialized world, is characterized by aberrant proliferation of vascular smooth muscle (VSM) cells in part as a result of the recruitment of inflammatory cells to the blood vessel wall. The epoxyeicosatrienoic acids are synthesized from arachidonic acid in a reaction catalyzed by the cytochrome P450 system and are vasoactive substances. Metabolism of these compounds by epoxide hydrolases results in the formation of compounds that affect the vasculature in a pleiotropic manner. As an outgrowth of our observations that urea inhibitors of the soluble epoxide hydrolase (sEH) reduce blood pressure in spontaneously hypertensive rats as well as the findings of other investigators that these compounds possess antiinflammatory actions, we have examined the effect of sEH inhibitors on VSM cell proliferation. We now show that the sEH inhibitor 1-cyclohexyl-3-dodecyl urea (CDU) inhibits human VSM cell proliferation in a dose-dependent manner and is associated with a decrease in the level of cyclin D1. In addition, cis-epoxyeicosatrienoic acid mimics the growth-suppressive activity of CDU; there is no evidence of cellular toxicity or apoptosis in CDU-treated cells when incubated with 20 μM CDU for up to 48 h. These results, in light of the antiinflammatory and antihypertensive properties of these compounds that have been demonstrated already, suggest that the urea class of sEH inhibitors may be useful for therapy for diseases such as hypertension and atherosclerosis characterized by exuberant VSM cell proliferation and vascular inflammation.

  17. Progress toward cell-directed therapy for phenylketonuria.

    Science.gov (United States)

    Harding, Co

    2008-08-01

    Phenylketonuria (PKU) is one of the most common inborn errors of metabolism with an annual incidence of approximately 1:16,000 live births in North America. Contemporary therapy relies upon lifelong dietary protein restriction and supplementation with phenylalanine-free medical foods. This therapy is expensive and unpalatable; dietary compliance is difficult to maintain throughout life. Non-adherence to the diet is associated with learning disabilities, adult-onset neurodegenerative disease, and maternal PKU syndrome. The fervent dream of many individuals with PKU is a more permanent cure for this disease. This paper will review ongoing efforts to develop viable cell-directed therapies, in particular cell transplantation and gene therapy, for the treatment of PKU. PMID:18498375

  18. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mauricio P. Pinto

    2016-09-01

    Full Text Available Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1 upregulation of compensatory/alternative pathways for angiogenesis; (2 vasculogenic mimicry; and (3 vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  19. The glial cell modulator ibudilast attenuates neuroinflammation and enhances retinal ganglion cell viability in glaucoma through protein kinase A signaling.

    Science.gov (United States)

    Cueva Vargas, Jorge L; Belforte, Nicolas; Di Polo, Adriana

    2016-09-01

    Glaucoma is a neurodegenerative disease and the leading cause of irreversible blindness worldwide. Vision deficits in glaucoma result from the selective loss of retinal ganglion cells (RGC). Glial cell-mediated neuroinflammation has been proposed to contribute to disease pathophysiology, but whether this response is harmful or beneficial for RGC survival is not well understood. To test this, we characterized the role of ibudilast, a clinically approved cAMP phosphodiesterase (PDE) inhibitor with preferential affinity for PDE type 4 (PDE4). Here, we demonstrate that intraocular administration of ibudilast dampened macroglia and microglia reactivity in the retina and optic nerve hence decreasing production of proinflammatory cytokines in a rat model of ocular hypertension. Importantly, ibudilast promoted robust RGC soma survival, prevented axonal degeneration, and improved anterograde axonal transport in glaucomatous eyes without altering intraocular pressure. Intriguingly, ocular hypertension triggered upregulation of PDE4 subtype A in Müller glia, and ibudilast stimulated cAMP accumulation in these cells. Co-administration of ibudilast with Rp-cAMPS, a cell-permeable and non-hydrolysable cAMP analog that inhibits protein kinase A (PKA), completely blocked ibudilast-induced neuroprotection. Collectively, these data demonstrate that ibudilast, a safe and well-tolerated glial cell modulator, attenuates gliosis, decreases levels of proinflammatory mediators, and enhances neuronal viability in glaucoma through activation of the cAMP/PKA pathway. This study provides insight into PDE4 signaling as a potential target to counter the harmful effects associated with chronic gliosis and neuroinflammation in glaucoma. PMID:27163643

  20. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    Science.gov (United States)

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  1. Stem cell research: paths to cancer therapies and regenerative medicine.

    Science.gov (United States)

    Weissman, Irving

    2005-09-21

    Most tissues in complex metazoans contain a rare subset of cells that, at the single-cell level, can self-renew and also give rise to mature daughter cells. Such stem cells likely in development build tissues and are retained in adult life to regenerate them. Cancers and leukemias are apparently not an exception: rare leukemia stem cells and cancer stem cells have been isolated that contain all of the tumorigenicity of the whole tumor, and it is their properties that will guide future therapies. None of this was apparent just 20 years ago, yet this kind of stem cell thinking already provides new perspectives in medical science and could usher in new therapies. Today, political, religious, and ethical issues surround embryonic stem cell and patient-specific pluripotent stem cell research and are center stage in the attempts by governments to ban these fields for discovery and potential therapies. These interventions require physicians and physician-scientists to determine for themselves whether patient welfare or personal ethics will dominate in their practices, and whether all aspects of stem cell research can be pursued in a safe and regulated fashion.

  2. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  3. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  4. Cell-permeable Tat-NBD peptide attenuates rat pancreatitis and acinus cell inflammation response

    Institute of Scientific and Technical Information of China (English)

    You-Ming Long; Ken Chen; Xue-Jin Liu; Wen-Rui Xie; Hui Wang

    2009-01-01

    AIM: To investigate the effects of Tat-NEMO-binding domain (NBD) peptide on taurocholate-induced pancreatitis and lipopolysaccharide (LPS)-stimulated AR42J acinus cells inflammatory response in rats. METHODS: Sodium taurocholate (5%) was used to induce the pancreatitis model. Forty-eight rats from the taurocholate group aeceuved an intravenous bolus of 13 mg/kg Tat-NBD (wild-type, WT) peptide, Tat-NBD (mutant-type, MT) peptide, NBD peptide or Tat peptide. The pancreatic histopathology was analyzed by hematoxylin staining. LPS was added to the culture medium to stimulate the AR42J cells. For pretreatment, cells were incubated with different peptides for 2 h before LPS stimulation. Expression of IL-1β and TNF-α mRNA was analyzed using a semi-quantitative reverse-transcript polymerase chain reaction (RT-PCR) method. IL-1β and TNF-α protein in culture medium were detected by enzyme linked immunosorbent assay (ELISA). NF-κB DNA-binding in pancreas was examined by electrophoretic mobility shift assays. P65 expression of AR42J was determined by Strept Actividin-Biotin Complex (SABC) method. RESULTS: Pretreatment with Tat-NBD (WT) peptide at a concentration of 13 mg/kg body wt showed beneficial effect in pancreaitis model. LPS (10 mg/L) resulted in an increase of IL-1β mRNA, IL-1β protein, TNF-α mRNA and TNF-α protein, whereas significantly inhibitory effects were observed when cells were incubated with Tat-NBD (WT). Consisting with p65 expression decrease analyzed by SABC method, NF-κB DNA-binding activity significantly decreased in Tat-NBD (WT) pretreatment group, especially at the largest dose. No significant changes were found in the control peptide group. CONCLUSION: Our result supports that active NF-κB participates in the pathogenesis of STC-induced acute pancreatitis in rats. Tat-NBD (WT) peptide has antiinflammatory effects in this model and inhibits the inflammation of acinus simulated by LPS.

  5. Development of gene and stem cell therapy for ocular neurodegeneration

    OpenAIRE

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews t...

  6. Stem Cell Therapy to Treat Diabetes Mellitus

    OpenAIRE

    Liew, Chee Gee; Andrews, Peter W.

    2008-01-01

    Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these ...

  7. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  8. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency.

    Directory of Open Access Journals (Sweden)

    Ran Fu

    Full Text Available BACKGROUND: Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA-induced asthmatic mice models. METHOD: Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. RESULTS: We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. CONCLUSION: Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.

  9. The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.

    Science.gov (United States)

    Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G

    2012-01-01

    Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies.

  10. Emerging Stem Cell Therapies: Treatment, Safety, and Biology

    Directory of Open Access Journals (Sweden)

    Joel Sng

    2012-01-01

    Full Text Available Stem cells are the fundamental building blocks of life and contribute to the genesis and development of all higher organisms. The discovery of adult stem cells has led to an ongoing revolution of therapeutic and regenerative medicine and the proposal of novel therapies for previously terminal conditions. Hematopoietic stem cell transplantation was the first example of a successful stem cell therapy and is widely utilized for treating various diseases including adult T-cell leukemia-lymphoma and multiple myeloma. The autologous transplantation of mesenchymal stem cells is increasingly employed to catalyze the repair of mesenchymal tissue and others, including the lung and heart, and utilized in treating various conditions such as stroke, multiple sclerosis, and diabetes. There is also increasing interest in the therapeutic potential of other adult stem cells such as neural, mammary, intestinal, inner ear, and testicular stem cells. The discovery of induced pluripotent stem cells has led to an improved understanding of the underlying epigenetic keys of pluripotency and carcinogenesis. More in-depth studies of these epigenetic differences and the physiological changes that they effect will lead to the design of safer and more targeted therapies.

  11. Stem Cell Therapy: A New Treatment for Burns?

    Directory of Open Access Journals (Sweden)

    Gerd G. Gauglitz

    2011-10-01

    Full Text Available Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells or artificially obtained (induced pluripotent stem cells or iPSCs and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, but also as an adjunct to other strategies, such as organ transplantation or standard drug treatment. Regrettably, serious preclinical concerns remain and differentiation, cell fusion, senescence and signalling crosstalk with growth factors and biomaterials are still challenges for this promising multidisciplinary therapeutic modality. Severe burns have several indications for stem cell therapy, including enhancement of wound healing, replacement of damaged skin and perfect skin regeneration – incorporating skin appendages and reduced fibrosis –, as well as systemic effects, such as inflammation, hypermetabolism and immunosuppression. The aim of this review is to describe well established characteristics of stem cells and to delineate new advances in the stem cell field, in the context of burn injury and wound healing.

  12. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available Insulin-like growth factor 1 (IGF-1 and hepatocyte growth factor (HGF are two potent cell survival and regenerative factors in response to myocardial injury (MI. We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01. IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01 and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  13. Dynamic imaging for CAR-T-cell therapy.

    Science.gov (United States)

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans. PMID:27068944

  14. Nanoelectroablation therapy for murine basal cell carcinoma

    International Nuclear Information System (INIS)

    Highlights: ► Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. ► Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. ► Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. ► Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1+/−K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5–7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 ± 5 (SEM) mm3 shrunk by 76 ± 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  15. Nanoelectroablation therapy for murine basal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nuccitelli, Richard, E-mail: rich@bioelectromed.com [BioElectroMed Corp., 849 Mitten Rd., Suite 104, Burlingame, CA 94010 (United States); Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela [BioElectroMed Corp., 849 Mitten Rd., Suite 104, Burlingame, CA 94010 (United States); Chang, Kris S.; Epstein, Ervin H. [The Children' s Hospital Oakland Research Institute, Oakland, CA 94609 (United States); Tang, Jean Y. [The Children' s Hospital Oakland Research Institute, Oakland, CA 94609 (United States); Stanford University, Stanford, CA 94305 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. Black-Right-Pointing-Pointer Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. Black-Right-Pointing-Pointer Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. Black-Right-Pointing-Pointer Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1{sup +/-}K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 {+-} 5 (SEM) mm{sup 3} shrunk by 76 {+-} 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  16. Modeling of gene therapy for regenerative cells using intelligent agents.

    Science.gov (United States)

    Adly, Aya Sedky; Aboutabl, Amal Elsayed; Ibrahim, M Shaarawy

    2011-01-01

    Gene therapy is an exciting field that has attracted much interest since the first submission of clinical trials. Preliminary results were very encouraging and prompted many investigators and researchers. However, the ability of stem cells to differentiate into specific cell types holds immense potential for therapeutic use in gene therapy. Realization of this potential depends on efficient and optimized protocols for genetic manipulation of stem cells. It is widely recognized that gain/loss of function approaches using gene therapy are essential for understanding specific genes functions, and such approaches would be particularly valuable in studies involving stem cells. A significant complexity is that the development stage of vectors and their variety are still not sufficient to be efficiently applied in stem cell therapy. The development of scalable computer systems constitutes one step toward understanding dynamics of its potential. Therefore, the primary goal of this work is to develop a computer model that will support investigations of virus' behavior and organization on regenerative tissues including genetically modified stem cells. Different simulation scenarios were implemented, and their results were encouraging compared to ex vivo experiments, where the error rate lies in the range of acceptable values in this domain of application.

  17. Reassessing target antigens for adoptive T cell therapy

    Science.gov (United States)

    Hinrichs, Christian S.; Restifo, Nicholas P.

    2014-01-01

    Adoptive T cell therapy can target and kill widespread malignant cells thereby inducing durable clinical responses in melanoma and selected other malignances. However, many commonly targeted tumor antigens are also expressed by healthy tissues, and T cells do not distinguish between benign and malignant tissues if both express the target antigen. As such, autoimmune toxicity from T-cell-mediated destruction of normal tissue has limited the development and adoption of this otherwise promising type of cancer therapy. A review of the unique biology of T-cell therapy and of recent clinical experience compels a reassessment of target antigens that traditionally have been viewed from the perspective of weaker immunotherapeutic modalities. In selecting target antigens for adoptive T-cell therapy, expression by tumors and not by essential healthy tissues is of paramount importance. The risk of autoimmune adverse events can be further mitigated by generating antigen receptors using strategies that reduce the chance of cross-reactivity against epitopes in unintended targets. In general, a circumspect approach to target selection and thoughtful preclinical and clinical studies are pivotal to the ongoing advancement of these promising treatments. PMID:24142051

  18. Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Arjen F. Nikkels

    2010-06-01

    Full Text Available Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methyl-aminolevulinate (MAL based photodynamic therapy (PDT resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence. Although spontaneous regression of cutaneous Langerhans cell histiocytosis is observed, the rapid effect of photodynamic therapy after several failures of other treatment suggests that photodynamic therapy was successful. As far as we know this is the first report of photodynamic therapy for refractory skin lesions. Larger series are needed to determine whether photodynamic therapy deserves a place in the treatment of multiresistant cutaneous Langerhans cell histiocytosis.

  19. Effect of Stem Cell Therapy on Adriamycin Induced Tubulointerstitial Injury

    Science.gov (United States)

    Zickri, Maha Baligh; Zaghloul, Somaya; Farouk, Mira; Fattah, Marwa Mohamed Abdel

    2012-01-01

    Background and Objectives It was postulated that adriamycin (ADR) induce renal tubulointerstitial injury. Clinicians are faced with a challenge in producing response in renal patients and slowing or halting the evolution towards kidney failure. The present study aimed at investigating the relation between the possible therapeutic effect of human mesenchymal stem cells (HMSCs), isolated from cord blood on tubular renal damage and their distribution by using ADR induced nephrotoxicity as a model in albino rat. Methods and Results Thirty three male albino rats were divided into control group, ADR group where rats were given single intraperitoneal (IP) injection of 5 mg/kg adriamycin. The rats were sacrificed 10, 20 and 30 days following confirmation of tubular injury. In stem cell therapy group, rats were injected with HMSCs following confirmation of renal injury and sacrificed 10, 20 and 30 days after HMSCs therapy. Kidney sections were exposed to histological, histochemical, immunohistochemical, morphometric and serological studies. In response to SC therapy, vacuolated cytoplasm, dark nuclei, detached epithelial lining and desquamated nuclei were noticed in few collecting tubules (CT). 10, 20 and 30 days following therapy. The mean count of CT showing desquamated nuclei and mean value of serum creatinine revealed significant difference in ADR group. The mean area% of Prussian blue+ve cells and that of CD105 +ve cells measured in subgroup S1 denoted a significant increase compared to subgroups S2 and S3. Conclusions ADR induced tubulointerstitial damage that regressed in response to cord blood HMSC therapy. PMID:24298366

  20. Immune therapy including dendritic cell based therapy in chronic hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Sk Md Fazle Akbar; Norio Horiike; Morikazu Onji

    2006-01-01

    Hepatitis B virus (HBV) infection is a global public health problem. Of the approximately 2 billion people who have been infected worldwide, more than 400 million are chronic carriers of HBV. Considerable numbers of chronic HBV carriers suffer from progressive liver diseases. In addition, all HBV carriers are permanent source of this virus. There is no curative therapy for chronic HBV carriers. Antiviral drugs are recommended for about 10% patients, however, these drugs are costly, have limited efficacy, and possess considerable side effects.Recent studies have shown that immune responses of the host to the HBV are critically involved at every stage of chronic HBV infection: (1) These influence acquisition of chronic HBV carrier state, (2) They are important in the context of liver damages, (3) Recovery from chronic HBV-related liver diseases is dependent on nature and extent of HBV-specific immune responses.However, induction of adequate levels of HBV-specific immune responses in chronic HBV carriers is difficult.During the last one decade, hepatitis B vaccine has been administered to chronic HBV carriers as a therapeutic approach (vaccine therapy). The present regimen of vaccine therapy is safe and cheap, but not so effective.A dendritic cell-based therapeutic vaccine has recently been developed for treating chronic HBV infection. In this review, we will discuss about the concept, scientific logics, strategies and techniques of development of HBV-specific immune therapies including vaccine therapy and dendritic cell-based vaccine therapy for treating chronic HBV infection.

  1. Bioactives of Artemisia dracunculus L. Mitigate the Role of Ceramides in Attenuating Insulin Signaling in Rat Skeletal Muscle Cells

    OpenAIRE

    Diana N Obanda; Hernandez, Amy; RIBNICKY, DAVID; Yu, Yongmei; Zhang, Xian H.; Wang, Zhong Q.; Cefalu, William T.

    2012-01-01

    Ectopic lipids in peripheral tissues have been implicated in attenuating insulin action in vivo. The botanical extract of Artemisia dracunculus L. (PMI 5011) improves insulin action, yet the precise mechanism is not known. We sought to determine whether the mechanism by which PMI 5011 improves insulin signaling is through regulation of lipid metabolism. After differentiation, cells were separately preincubated with free fatty acids (FFAs) and ceramide C2, and the effects on glycogen content, ...

  2. Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease.

    Directory of Open Access Journals (Sweden)

    Rita Cavaleiro

    2009-11-01

    Full Text Available Plasmacytoid dendritic cells (pDC provide an important link between innate and acquired immunity, mediating their action mainly through IFN-alpha production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-alpha production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-alpha inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-alpha levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of "attenuated" HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-alpha production does occur.

  3. Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases

    Science.gov (United States)

    ... to accelerate stem cell therapies for eye diseases Gene profiling technique to accelerate stem cell therapies for ... The method simultaneously measures the expression of multiple genes, allowing scientists to quickly characterize cells according to ...

  4. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  5. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  6. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    Several monoclonal antibodies targeting B cells have been tested as therapeutics for inflammatory rheumatic diseases. We review important observations from randomized clinical trials regarding the efficacy and safety of anti-B cell antibody-based therapies for rheumatoid arthritis, systemic lupus...... erythematosus, antineutrophil cytoplasmic antibody-associated vasculitis, polymyositis/dermatomyositis, and primary Sjögren's syndrome. For some anti-B cell agents, clinical benefits have been convincingly demonstrated, while other B cell-targeted therapies failed to improve outcomes when added to standard...... and functions in rheumatic disorders. Future studies should also evaluate how to maintain disease control by means of conventional and/or biologic immunosuppressants after remission-induction with anti-B cell antibodies....

  7. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway. PMID:27233246

  8. Mesenchymal stem cell therapy for acute radiation syndrome.

    Science.gov (United States)

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  9. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  10. Stem cells - biological update and cell therapy progress

    OpenAIRE

    GIRLOVANU, MIHAI; Susman, Sergiu; Soritau, Olga; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods t...

  11. Gene and stem cell therapy in peripheral arterial occlusive disease.

    Science.gov (United States)

    Kalka, C; Baumgartner, Iris

    2008-01-01

    Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.

  12. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  13. Stem Cell Therapy for Treatment of Ocular Disorders.

    Science.gov (United States)

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  14. Stem Cell Therapy for Treatment of Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Padma Priya Sivan

    2016-01-01

    Full Text Available Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  15. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  16. Advances in stem cell therapy for cardiovascular disease (Review).

    Science.gov (United States)

    Sun, Rongrong; Li, Xianchi; Liu, Min; Zeng, Yi; Chen, Shuang; Zhang, Peying

    2016-07-01

    Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease.

  17. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    Diabetes mellitus is a well-known risk factor for coronary artery disease (CAD), which can lead to acute myocardial infarction, chronic myocardial ischaemia and heart failure. Despite the advantages in medical treatment, percutaneous coronary intervention (PCI) and coronary artery bypass grafting...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...

  18. Cardiac stem cell therapy research in China

    Institute of Scientific and Technical Information of China (English)

    Junbo GE

    2006-01-01

    @@ For more than two decades, the morbidity and mortality of coronary artery disease (CAD) has been increasing rapidly in China. Despite tremendous advances in treatment strategies of CAD, heart failure after acute myocardial infarction (AMI) continues to be one of the greatest medical challenges throughout the world. In 1994, Soonpaa and colleagues first reported the possibility of cardiomyocytes implantation and suggested that intracardiac cell grafting might provide a useful approach for myocardial repair.1 Cell implantation has become a novel therapeutic option for ischemic cardiac injury and heart failure.

  19. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  20. Short-term intensive atorvastatin therapy improves endothelial function partly via attenuating perivascular adipose tissue inflammation through 5-lipoxygenase pathway in hyperlipidemic rabbits

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoqiao; Lin Yongqin; Luo Niansang; Chen Zhongqing; Gu Miaoning; Wang Jingfeng; Chen Yangxin

    2014-01-01

    Background Atherosclerosis is a kind of disease with multiple risk factors,of which hyperlipidemia is a major classical risk factor resulting in its pathogenesis and development.The aim of this study was to determine the effects of short-term intensive atorvastatin (IA) therapy on vascular endothelial function and explore the possible mechanisms that may help to explain the clinical benefits from short-term intensive statin therapy.Methods After exposure to high-fat diet (HFD) for 8 weeks,the animals were,respectively,treated with IA or low-dose atorvastatin (LA) for 5 days.Blood lipids,C-reactive protein (CRP),tumor necrosis factor-α (TNF-α),interleukin-6 (IL-6),nitric oxide (NO),endothelin-1 (ET-1),and endothelium-dependent vasorelaxation function were,respectively,measured.mRNA and protein expression of CRP,TNF-α,IL-6,macrophage chemoattractant protein-1 (MCP-1),and 5-lipoxygenase (5-LO) were also evaluated in pericarotid adipose tissue (PCAT) and cultured adipocytes.Results HFD increased serum inflammatory factor levels; induced significant hyperlipidemia and endothelial dysfunction,including imbalance between NO and ET-1; enhanced inflammatory factors and 5-LO expression; and promoted macrophage infiltration into adipose tissue.Five-day IA therapy could significantly decrease serum inflammatory factor levels and their expression in PCAT; restore the balance between NO and ET-1; and improve endothelial function and macrophage infiltration without significant changes in blood lipids.However,all of the above were not observed in LA therapy.In vitro experiment found that lipopolysaccharide (LPS) enhanced the expression of inflammatory factors and 5-LO in cultured adipocytes,which could be attenuated by short-time (6 hours) treatment of high-dose (5 pmol/L) but not low-dose (0.5 μmol/L) atorvastatin.In addition,inhibiting 5-LO by Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC,a potent and direct 5-LO inhibitor) could significantly downregulate the above

  1. Apocynin attenuates cholesterol oxidation product-induced programmed cell death by suppressing NF-κB-mediated cell death process in differentiated PC12 cells.

    Science.gov (United States)

    Lee, Da Hee; Nam, Yoon Jeong; Lee, Chung Soo

    2015-10-01

    Cholesterol oxidation products are suggested to be involved in neuronal degeneration. Apocynin has demonstrated to have anti-inflammatory and anti-oxidant effects. We assessed the effect of apocynin on the cholesterol oxidation product-induced programmed cell death in neuronal cells using differentiated PC12 cells in relation to NF-κB-mediated cell death process. 7-Ketocholesterol and 25-hydroxycholesterol decreased the levels of Bid and Bcl-2, increased the levels of Bax and p53, and induced loss of the mitochondrial transmembrane potential, release of cytochrome c and activation of caspases (-8, -9 and -3). 7-Ketocholesterol caused an increase in the levels of cytosolic and nuclear NF-κB p65, cytosolic NF-κB p50 and cytosolic phospho-IκB-α, which was inhibited by the addition of 0.5 μM Bay11-7085 (an inhibitor of NF-κB activation). Apocynin attenuated the cholesterol oxidation product-induced changes in the programmed cell death-related protein levels, NF-κB activation, production of reactive oxygen species, and depletion of GSH. The results show that apocynin appears to attenuate the cholesterol oxidation product-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that are mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the production of reactive oxygen species and depletion of GSH.

  2. Monoclonal T-cell receptors: new reagents for cancer therapy.

    Science.gov (United States)

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells. PMID:17637721

  3. Cell Internal Treatable Microplasma Jets in Cancer Therapies

    Science.gov (United States)

    Kim, Jae Young; Wei, Yanzhang; Li, Jinhua; Kim, Sung-O.

    2011-10-01

    We developed a 15- μm-sized, single-cellular-level, and cell-manipulatable microplasma jet device with a microcapillary glass tip and described its potential in physical cancer therapies. The microcapillary tip is a funnel shaped glass tube and its nozzle has an inner diameter of 15 μm and an outer diameter of 20 μm with 20 capillary angle. The electrical and optical properties of this plasma jet and apoptosis results of cultured murine B16F0 melanoma tumor cells and CL.7 fibroblast cells treated with the plasma jets were described. In spite of the small inner diameter and the low gas flow rate of the microplasma jet device, the generated plasma jets are stable enough to treat tumor cells. The microplasma jet was observed inducing apoptosis in cultured murine melanoma tumor cells in a dose-dependent manner. Furthermore, the percentage of apoptotic cells of murine melanoma tumor cells induced by this plasma device was approximately 2.5 times bigger than that of murine fibroblast cells as indicated by an Annex V-FITC method. This highly precise plasma medicine, which enables new directed cancer therapies, can be combined with current cell manipulation and cell culturing technologies without much difficulty.

  4. Gene and stem cell therapy of the hair follicle.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  5. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    OpenAIRE

    Zhipeng Zeng; Kunwu Yu; Long Chen; Weihua Li; Hong Xiao; Zhengrong Huang

    2016-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Treg cells) have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI). We hypothesize that the interleukin- (IL-) 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1) attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significant...

  6. Novel Therapies for Aggressive B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Kenneth A. Foon

    2012-01-01

    Full Text Available Aggressive B-cell lymphoma (BCL comprises a heterogeneous group of malignancies, including diffuse large B-cell lymphoma (DLBCL, Burkitt lymphoma, and mantle cell lymphoma (MCL. DLBCL, with its 3 subtypes, is the most common type of lymphoma. Advances in chemoimmunotherapy have substantially improved disease control. However, depending on the subtype, patients with DLBCL still exhibit substantially different survival rates. In MCL, a mature B-cell lymphoma, the addition of rituximab to conventional chemotherapy regimens has increased response rates, but not survival. Burkitt lymphoma, the most aggressive BCL, is characterized by a high proliferative index and requires more intensive chemotherapy regimens than DLBCL. Hence, there is a need for more effective therapies for all three diseases. Increased understanding of the molecular features of aggressive BCL has led to the development of a range of novel therapies, many of which target the tumor in a tailored manner and are summarized in this paper.

  7. Gene, Stem Cell, and Alternative Therapies for SCA 1

    Science.gov (United States)

    Wagner, Jacob L.; O'Connor, Deirdre M.; Donsante, Anthony; Boulis, Nicholas M.

    2016-01-01

    Spinocerebellar ataxia 1 is an autosomal dominant disease characterized by neurodegeneration and motor dysfunction. In disease pathogenesis, polyglutamine expansion within Ataxin-1, a gene involved in transcriptional repression, causes protein nuclear inclusions to form. Most notably, neuronal dysfunction presents in Purkinje cells. However, the effect of mutant Ataxin-1 is not entirely understood. Two mouse models are employed to represent spinocerebellar ataxia 1, a B05 transgenic model that specifically expresses mutant Ataxin-1 in Purkinje cells, and a Sca1 154Q/2Q model that inserts the polyglutamine expansion into the mouse Ataxin-1 locus so that the mutant Ataxin-1 is expressed in all cells that express Ataxin-1. This review aims to summarize and evaluate the wide variety of therapies proposed for spinocerebellar ataxia 1, specifically gene and stem cell therapies.

  8. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  9. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    Science.gov (United States)

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  10. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies

    OpenAIRE

    Shi, Yanhong

    2009-01-01

    Somatic cell nuclear transfer or therapeutic cloning has provided great hope for stem cell-based therapies. However therapeutic cloning has been experiencing both ethical and technical difficulties. Recent breakthrough studies using a combination of four factors to reprogram human somatic cells into pluripotent stem cells without using embryos or eggs led to an important revolution in stem cell research. Comparative analysis of human induced pluripotent stem cells and human embryonic stem cel...

  11. Eliminating Cancer Stem Cells in CML with Combination Transcriptional Therapy.

    Science.gov (United States)

    Carvajal, Luis A; Steidl, Ulrich

    2016-07-01

    Leukemia stem cells (LSCs) are resistant to current therapies used to treat chronic myeloid leukemia (CML). Abraham et al. (2016) have identified a molecular network critical for CML LSC survival and propose that simultaneously targeting two of their major transcriptional regulators, p53 and c-Myc, may facilitate their eradication. PMID:27392220

  12. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    NARCIS (Netherlands)

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  13. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment.

    Science.gov (United States)

    Ceccaldi, Caroline; Bushkalova, Raya; Alfarano, Chiara; Lairez, Olivier; Calise, Denis; Bourin, Philippe; Frugier, Celine; Rouzaud-Laborde, Charlotte; Cussac, Daniel; Parini, Angelo; Sallerin, Brigitte; Fullana, Sophie Girod

    2014-02-01

    Three-dimensional (3D) scaffolds hold great potential for stem cell-based therapies. Indeed, recent results have shown that biomimetic scaffolds may enhance cell survival and promote an increase in the concentration of therapeutic cells at the injury site. The aim of this work was to engineer an original polymeric scaffold based on the respective beneficial effects of alginate and chitosan. Formulations were made from various alginate/chitosan ratios to form opposite-charge polyelectrolyte complexes (PECs). After freeze-drying, the resultant matrices presented a highly interconnected porous microstructure and mechanical properties suitable for cell culture. In vitro evaluation demonstrated their compatibility with mesenchymal stell cell (MSC) proliferation and their ability to maintain paracrine activity. Finally, the in vivo performance of seeded 3D PEC scaffolds with a polymeric ratio of 40/60 was evaluated after an acute myocardial infarction provoked in a rat model. Evaluation of cardiac function showed a significant increase in the ejection fraction, improved neovascularization, attenuated fibrosis as well as less left ventricular dilatation as compared to an animal control group. These results provide evidence that 3D PEC scaffolds prepared from alginate and chitosan offer an efficient environment for 3D culturing of MSCs and represent an innovative solution for tissue engineering.

  14. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors.

    Science.gov (United States)

    Condelli, Valentina; Piscazzi, Annamaria; Sisinni, Lorenza; Matassa, Danilo Swann; Maddalena, Francesca; Lettini, Giacomo; Simeon, Vittorio; Palladino, Giuseppe; Amoroso, Maria Rosaria; Trino, Stefania; Esposito, Franca; Landriscina, Matteo

    2014-11-15

    Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery.

  15. Understanding the application of stem cell therapy in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Sharma RK

    2012-10-01

    Full Text Available Rakesh K Sharma, Donald J Voelker, Roma Sharma, Hanumanth K ReddyUniversity of Arkansas for Medical Sciences, Medical Center of South Arkansas, El Dorado, AR, USAAbstract: Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.Keywords: stem cell therapy, stem cell delivery, cardiovascular diseases, myocardial infarction, cardiomyopathy

  16. [Current cell therapy strategies for repairing the central nervous system].

    Science.gov (United States)

    Féron, F

    2007-09-01

    One of the chief contemporary goals of neurologists and neuroscientists is to find a way to overcome the debilitating effects of brain diseases, especially neurodegenerative diseases. Since very few molecules have been found to be efficient in curing the patients and even halting the progression of the symptoms, cell therapy is now seen as an attractive alternative. Two therapeutic strategies are currently under investigation: i) the "substitution" strategy, based on grafts of cells capable of differentiating in the appropriate cells and restoring lost functions and ii) the "neuroprotective" or "conservative" strategy aiming to increase the resistance of spared cells to the toxicity of their environment and to reinforce the body's own mechanisms of healing. Twenty years ago, foetal neuroblasts were the first cells to be transplanted in the brains of patients with Parkinson's or Huntington disease. A phase II clinical trial is presently conducted in France for the latter disorder. However, the numerous ethical and technical issues raised by the use of embryonic and foetal cells have directed the focus of clinicians and researchers towards substitute cell types. In this review, we summarise the main findings of the most recent basic studies and clinical trials based on: i) the grafting of surrogate adult cells such as bone marrow mesenchymal stem cells and olfactory ensheathing cells; ii) the potential therapeutic applications of neuropoiesis - the persistent neurogenesis in the brain - as a source for tissue engraftment and as self-repair by a person's own indigenous population of pluripotent cells and iii) immune-based therapy (autologous activated macrophages and T cell vaccination) as well as administration of immunomodulatory molecules. Unexpectedly, it has been found that undifferentiated adult stem cells can display immune-like functions when they home in on an inflamed brain area while immune cells and immunosuppressors can improve functional and

  17. Systemic adjuvant therapies in renal cell carcinoma

    OpenAIRE

    Sebastiano Buti; Melissa Bersanelli; Maddalena Donini; Andrea Ardizzoni

    2012-01-01

    Renal cell carcinoma (RCC) is one of the ten most frequent solid tumors worldwide. Recent innovations in the treatment of metastatic disease have led to new therapeutic approaches being investigated in the adjuvant setting. Observation is the only current standard of care after radical nephrectomy, although there is evidence of efficacy of adjuvant use of vaccine among all the strategies used. This article aims to collect published experiences with systemic adjuvant approaches in RCC and to d...

  18. Stem cell-based therapy in neural repair.

    Science.gov (United States)

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Dan-Yen; Chiu, Ing-Ming

    2013-01-01

    Cell-based therapy could aid in alleviating symptoms or even reversing the progression of neurodegenerative diseases and nerve injuries. Fibroblast growth factor 1 (FGF1) has been shown to maintain the survival of neurons and induce neurite outgrowth. Accumulating evidence suggests that combination of FGF1 and cell-based therapy is promising for future therapeutic application. Neural stem cells (NSCs), with the characteristics of self-renewal and multipotency, can be isolated from embryonic stem cells, embryonic ectoderm, and developing or adult brain tissues. For NSC clinical application, several critical problems remain to be resolved: (1) the source of NSCs should be personalized; (2) the isolation methods and protocols of human NSCs should be standardized; (3) the clinical efficacy of NSC transplants must be evaluated in more adequate animal models; and (4) the mechanism of intrinsic brain repair needs to be better characterized. In addition, the ideal imaging technique for tracking NSCs would be safe and yield high temporal and spatial resolution, good sensitivity and specificity. Here, we discuss recent progress and future development of cell-based therapy, such as NSCs, induced pluripotent stem cells, and induced neurons, in neurodegenerative diseases and peripheral nerve injuries. PMID:23806879

  19. CAR T Cell Therapy: A Game Changer in Cancer Treatment.

    Science.gov (United States)

    Almåsbak, Hilde; Aarvak, Tanja; Vemuri, Mohan C

    2016-01-01

    The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation. PMID:27298832

  20. Myocardium repair with stem cell therapy

    International Nuclear Information System (INIS)

    With the aim of assessing the efficacy of bone marrow-derived stem cells transplantation in patients with myocardial infarction and severe chronic heart failure through nuclear cardiology techniques, 15 revascularized patients were studied: nine (Group I) received autologous bone marrow-derived stem cells. The other six were controls (Group II). All underwent a clinical evaluation, radionuclide ventriculography, and gated-SPECT myocardial perfusion scintigraphy (MIBI-technetium99m, two-day protocol: dipyridamole - rest), before and three months after the procedure. At three months there was a clinical improvement in 89% of patients from Group I. The left ventricular ejection fraction increased: from 32±9% to 44±13% (p=0.03; Group I) and from 38±2% to 48±14% (p NS; Group II). The peak filling rate improved from 120±11 to 196±45 EDV/sec (p=0.03; Group I). The dipyridamole summed score diminished significantly only in Group I (from 35±5 to 23±14; p=0.02). The perfusion improvement was related to the implantation site in 60% of cases. We conclude that the bone marrow-derived stem cells transplantation is effective in patients with severe chronic heart failure of ischemic origin (au)

  1. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.

    Science.gov (United States)

    Pogue, Sarah L; Taura, Tetsuya; Bi, Mingying; Yun, Yong; Sho, Angela; Mikesell, Glen; Behrens, Collette; Sokolovsky, Maya; Hallak, Hussein; Rosenstock, Moti; Sanchez, Eric; Chen, Haiming; Berenson, James; Doyle, Anthony; Nock, Steffen; Wilson, David S

    2016-01-01

    Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. PMID:27611189

  2. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases. PMID:19523328

  3. Effects of verteporfin-mediated photodynamic therapy on endothelial cells

    Science.gov (United States)

    Kraus, Daniel; Chen, Bin

    2015-03-01

    Photodynamic therapy (PDT) is a treatment modality in which cytotoxic reactive oxygen species are generated from oxygen and other biological molecules when a photosensitizer is activated by light. PDT has been approved for the treatment of cancers and age-related macular degeneration (AMD) due to its effectiveness in cell killing and manageable normal tissue complications. In this study, we characterized the effects of verteporfin-PDT on SVEC mouse endothelial cells and determined its underlying cell death mechanisms. We found that verteporfin was primarily localized in mitochondria and endoplasmic reticulum (ER) in SVEC cells. Light treatment of photosensitized SVEC cells induced a rapid onset of cell apoptosis. In addition to significant structural damages to mitochondria and ER, verteporfin-PDT caused substantial degradation of ER signaling molecules, suggesting ER stress. These results demonstrate that verteporfin-PDT triggered SVEC cell apoptosis by both mitochondrial and ER stress pathways. Results from this study may lead to novel therapeutic approaches to enhance PDT outcome.

  4. Stem cell-based therapies for HIV/AIDS.

    Science.gov (United States)

    Pernet, Olivier; Yadav, Swati Seth; An, Dong Sung

    2016-08-01

    One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials. PMID:27151309

  5. Cell therapy medicinal product regulatory framework in Europe and its application for MSC based therapy development

    Directory of Open Access Journals (Sweden)

    Janis eAncans

    2012-08-01

    Full Text Available Advanced therapy medicinal products (ATMPs, including cell therapy products, form a new class of medicines in the European Union. Since ATMPs are at the forefront of scientific innovation in medicine, specific regulatory framework has been developed for these medicines and implemented from 2009. The Committee for Advanced Therapies (CAT has been established at European Medicines Agency (EMA for centralized classification, certification and evaluation procedures, and other ATMP related tasks. Guidance documents, initiatives and interaction platforms are available to make the new framework more accessible for small and medium-sized enterprises, academia, hospitals and foundations. Good understanding of centralised and national components of the regulatory system is required to plan product development. It is in the best interests of cell therapy developers to utilise provided resources starting with the preclinical stage. Whilst there have not been mesenchymal stem cell (MSC based medicine authorisations in the EU, three MSC products have received marketing approval in other regions since 2011. Information provided on regulatory requirements, procedures and initiatives is aimed to facilitate MSC based medicinal product development and authorisation in the EU.

  6. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  7. Key developments in stem cell therapy in cardiology.

    Science.gov (United States)

    Schulman, Ivonne H; Hare, Joshua M

    2012-11-01

    A novel therapeutic strategy to prevent or reverse ventricular remodeling, the substrate for heart failure and arrhythmias following a myocardial infarction, is the use of cell-based therapy. Successful cell-based tissue regeneration involves a complex orchestration of cellular and molecular events that include stem cell engraftment and differentiation, secretion of anti-inflammatory and angiogenic mediators, and proliferation of endogenous cardiac stem cells. Recent therapeutic approaches involve bone marrow-derived mononuclear cells and mesenchymal stem cells, adipose tissue-derived stem cells, cardiac-derived stem cells and cell combinations. Clinical trials employing mesenchymal stem cells and cardiac- derived stem cells have demonstrated efficacy in infarct size reduction and regional wall contractility improvement. Regarding delivery methods, the safety of catheter-based, transendocardial stem cell injection has been established. These proof-of-concept studies have paved the way for ongoing pivotal trials. Future studies will focus on determining the most efficacious cell type(s) and/or cell combinations and the mechanisms underlying their therapeutic effects.

  8. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  9. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation

    OpenAIRE

    Mills, Kingston; Raverdeau, Mathilde

    2013-01-01

    PUBLISHED Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significan...

  10. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  11. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...... with initial versus delayed radiotherapy. No survival differences in the larger study of the two studies were detected, which compared alternating with sequential delivery of radiotherapy (n = 335). The optimal way to deliver radiotherapy still must be defined. Two small, randomized studies on dose intensity...

  12. Stem cells and regenerative therapies for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Farrell K

    2012-07-01

    Full Text Available Krista Farrell, Roger A BarkerCambridge Centre for Brain Repair, University of Cambridge, Cambridge, UKAbstract: Currently the mainstay of Parkinson’s disease (PD therapy is the pharmacological replacement of the loss of the dopaminergic nigrostriatal pathway using drugs such as dopamine agonists and levodopa. Whilst these drugs effectively ameliorate some of the motor features of PD, they do not improve many of the nonmotor features that arise secondary to pathology outside of this system, nor do they slow the progressive neurodegeneration that is a characteristic of the disease. Regenerative therapies for PD seek to fill this therapeutic gap, with cell transplantation being the most explored approach to date. A number of different cell sources have been used in this therapeutic approach, but to date, the most successful has been the use of fetal ventral mesencephalic (VM tissue that contains within it the developing nigral dopaminergic cells. Cell transplantation for PD was pioneered in the 1980–1990s, with several successful open-label trials of fetal VM transplantation in patients with relatively advanced PD. Whilst these findings were not replicated in two subsequent double-blind sham-surgery controlled trials, there were reasons to explain this outside of the one drawn at the time that these therapies are ineffective. Indeed all these studies have provided evidence that following the transplantation of fetal VM tissue, dopaminergic cells can survive long term, produce dopamine, and bring about clinical improvements in younger patients over many years. The use of fetal tissue, irrespective of its true efficacy, will never become a widely available therapy for PD for a host of practical and ethical reasons, and thus much work has been put in recently to exploring the utility of stem cells as a source of nigral dopaminergic neurons. In this respect, the advent of embryonic stem cell and induced pluripotent cells has heralded a new era in

  13. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    Science.gov (United States)

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  14. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  15. Importance of the stem cell microenvironment forophthalmological cell-based therapy

    Institute of Scientific and Technical Information of China (English)

    Peng-Xia Wan; Bo-Wen Wang; Zhi-Chong Wang

    2015-01-01

    Cell therapy is a promising treatment for diseasesthat are caused by cell degeneration or death. Thecells for clinical transplantation are usually obtainedby culturing healthy allogeneic or exogenous tissue invitro . However, for diseases of the eye, obtaining theadequate number of cells for clinical transplantationis difficult due to the small size of tissue donors andthe frequent needs of long-term amplification ofcells in vitro , which results in low cell viability aftertransplantation. In addition, the transplanted cells oftendevelop fibrosis or degrade and have very low survival.Embryonic stem cells (ESCs) and induced pluripotentstem cells (iPS) are also promising candidates for celltherapy. Unfortunately, the differentiation of ESCs canbring immune rejection, tumorigenicity and undesireddifferentiated cells, limiting its clinical application.Although iPS cells can avoid the risk of immune rejectioncaused by ES cell differentiation post-transplantation,the low conversion rate, the risk of tumor formationand the potentially unpredictable biological changesthat could occur through genetic manipulation hinderits clinical application. Thus, the desired clinical effectof cell therapy is impaired by these factors. Recentresearch findings recognize that the reason for lowsurvival of the implanted cells not only depends on theseeded cells, but also on the cell microenvironment,which determines the cell survival, proliferation andeven reverse differentiation. When used for cell therapy,the transplanted cells need a specific three-dimensionalstructure to anchor and specific extra cellular matrixcomponents in addition to relevant cytokine signalingto transfer the required information to support theirgrowth. These structures present in the matrix inwhich the stem cells reside are known as the stem cellmicroenvironment. The microenvironment interactionwith the stem cells provides the necessary homeostasisfor cell maintenance and growth. A large number ofstudies

  16. Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown.

    Directory of Open Access Journals (Sweden)

    Gerald A Cheadle

    Full Text Available BACKGROUND: Intestinal barrier failure may lead to systemic inflammation and distant organ injury in patients following severe injury. Enteric glia cells (EGCs have been shown to play an important role in maintaining gut barrier integrity through secretion of S-Nitrosoglutathione (GSNO. We have recently shown than Vagal Nerve Stimulation (VNS increases EGC activation, which was associated with improved gut barrier integrity. Thus, we sought to further study the mechanism by which EGCs prevent intestinal barrier breakdown utilizing an in vitro model. We postulated that EGCs, through the secretion of GSNO, would improve intestinal barrier function through improved expression and localization of intestinal tight junction proteins. METHODS: Epithelial cells were co-cultured with EGCs or incubated with GSNO and exposed to Cytomix (TNF-α, INF-γ, IL-1β for 24 hours. Barrier function was assessed by permeability to 4kDa FITC-Dextran. Changes in tight junction proteins ZO-1, occludin, and phospho-MLC (P-MLC were assessed by immunohistochemistry and immunoblot. KEY RESULTS: Co-culture of Cytomix-stimulated epithelial monolayers with EGCs prevented increases in permeability and improved expression and localization of occludin, ZO-1, and P-MLC. Further, treatment of epithelial monolayers with GSNO also prevented Cytomix-induced increases in permeability and exhibited a similar improvement in expression and localization of occludin, ZO-1, and P-MLC. CONCLUSIONS & INFERENCES: The addition of EGCs, or their secreted mediator GSNO, prevents epithelial barrier failure after injury and improved expression of tight junction proteins. Thus, therapies that increase EGC activation, such as VNS, may be a novel strategy to limit barrier failure in patients following severe injury.

  17. Mesenchymal stem cell-based therapy for type 1 diabetes.

    Science.gov (United States)

    Wu, Hao; Mahato, Ram I

    2014-03-01

    Diabetes has increasingly become a worldwide health problem, causing huge burden on healthcare system and economy. Type 1 diabetes (T1D), traditionally termed "juvenile diabetes" because of an early onset age, is affecting 5-10% of total diabetic population. Insulin injection, the predominant treatment for T1D, is effective to ameliorate the hyperglycemia but incompetent to relieve the autoimmunity and to regenerate lost islets. Islet transplantation, an experimental treatment for T1D, also suffers from limited supply of human islets and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. Mesenchymal stem cell (MSC) based cell therapy is among one of them. MSCs are a type of adult stem cells residing in bone marrow, adipose tissue, umbilical cord blood, and many other tissues. MSCs, with self-renewal potential and transdifferentiation capability, can be expanded in vitro and directed to various cell lineages with relatively less efforts. MSCs have well-characterized hypoimmunogenicity and immunomodulatory effect. All these features make MSCs attractive for treating T1D. Here, we review the properties of MSCs and some of the recent progress using MSCs as a new therapeutic in the treatment of T1D. We also discuss the strength and limitations of using MSC therapy in human trials.

  18. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    Science.gov (United States)

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy. PMID:25860803

  19. Gold nanocages for imaging and therapy of prostate cancer cells

    Science.gov (United States)

    Sironi, Laura; Avvakumova, Svetlana; Galbiati, Elisabetta; Locarno, Silvia A.; Macchi, Chiara; D'Alfonso, Laura; Ruscica, Massimiliano; Magni, Paolo; Collini, Maddalena; Romeo, Sergio; Chirico, Giuseppe; Prosperi, Davide

    2016-04-01

    Gold nanocages (AuNCs) have been shown to be a useful tool both for imaging and hyperthermia therapy of cancer, thanks to their outstanding optical properties, low toxicity and facile functionalization with targeting molecules, including peptides and antibodies. In particular, hyperthermia is a minimally invasive therapy which takes advantage of the peculiar properties of gold nanoparticles to efficiently convert the absorbed light into heat. Here, we use AuNCs for the selective targeting and imaging of prostate cancer cells. Moreover, we report the hyperthermic effect characterization of the AuNCs both in solution and internalized in cells. Prostate cancer cells were irradiated at different exposure times, with a pulsed near infrared laser, and the cellular viability was evaluated by confocal microscopy.

  20. Trimodal therapy in squamous cell carcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Matuschek C

    2011-10-01

    Full Text Available Abstract Patients with ESCC (squamous cell carcinoma of the esophagus are most commonly diagnosed with locally advanced tumor stages. Early metastatic disease and late diagnosis are common reasons responsible for this tumor's poor clinical outcome. The prognosis of esophageal cancer is very poor because patients usually do not have symptoms in early disease stages. Squamous cell carcinoma of the esophagus frequently complicates patients with multiple co-morbidities and these patients often require interdisciplinary diagnosis and treatment procedures. At present time, neoadjuvant radiation therapy and chemotherapy followed by surgery are regarded as the international standard of care. Meta-analyses have confirmed that this approach provides the patient with better local tumor control and an increased overall survival rate. It is recommended that patients with positive tumor response to neoadjuvant therapy and who are poor surgical candidates should consider definitive radiochemotherapy without surgery as a treatment option. In future, EGFR antibodies may also be administered to patients during therapy to improve the current treatment effectiveness. Positron-emission tomography proves to be an early response-imaging tool used to evaluate the effect of the neoadjuvant therapy and could be used as a predictive factor for the survival rate in ESCC. The percentage proportions of residual tumor cells in the histopathological analyses represent a gold standard for evaluating the response rate to radiochemotherapy. In the future, early response evaluation and molecular biological tests could be important diagnostic tools in influencing the treatment decisions of ESCC patients.

  1. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  2. Stem cell therapy in the management of shoulder rotatorcuff disorders

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Rotator cuff tears are frequent shoulder problems thatare usually dealt with surgical repair. Despite improvedsurgical techniques, the tendon-to-bone healing rateis unsatisfactory due to difficulties in restoring thedelicate transitional tissue between bone and tendon.It is essential to understand the molecular mechanismsthat determine this failure. The study of the molecularenvironment during embryogenesis and during normalhealing after injury is key in devising strategies to geta successful repair. Mesenchymal stem cells (MSC) candifferentiate into different mesodermal tissues and havea strong paracrine, anti-inflammatory, immunoregulatoryand angiogenic potential. Stem cell therapy is thus apotentially effective therapy to enhance rotator cuffhealing. Promising results have been reported with theuse of autologous MSC of different origins in animalstudies they have shown to have better healing properties,increasing the amount of fibrocartilage formationand improving the orientation of fibrocartilage fibers withless immunologic response and reduced lymphocyteinfiltration. All these changes lead to an increase inbiomechanical strength. However, animal research is stillinconclusive and more experimental studies are neededbefore human application. Future directions includeexpanded stem cell therapy in combination with growthfactors or different scaffolds as well as new stem celltypes and gene therapy.

  3. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  4. Knockdown of IRF6 Attenuates Hydrogen Dioxide-Induced Oxidative Stress via Inhibiting Mitochondrial Dysfunction in HT22 Cells.

    Science.gov (United States)

    Guo, Xiao-Min; Chen, Bo; Lv, Jian-Meng; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-10-01

    Oxidative stress-induced cell damage is involved in many neurological diseases. Interferon regulatory factor 6 (IRF6), a member of the IRF family of transcription factors, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the regulation and function of IRF6 in central nervous system remain unknown. This study aimed to investigate the role of IRF6 in hydrogen peroxide (H2O2)-induced oxidative neuronal injury in HT22 mouse hippocampal cells. Treatment with H2O2 significantly increased the expression of IRF6 at both mRNA and protein levels, and knockdown of IRF6 using specific small interfering RNA reduced H2O2-induced cytotoxicity, as evidenced by increased cell viability and decreased apoptosis. Knockdown of IRF6 attenuated intracellular reactive oxygen species (ROS) generation and lipid peroxidation, and also preserved endogenous antioxidant enzyme activities. The inhibitory effect of IRF6 knockdown on mitochondrial dysfunction was demonstrated by reduced mitochondrial oxidative level, preserved mitochondrial membrane potential (MMP) and ATP generation, as well as attenuated mitochondrial swelling. In addition, down-regulation of IRF6 inhibited the activation of mitochondrial apoptotic factors, whereas IRF6 knockdown together with caspase inhibitors had no extra effect on cell viability and LDH release. These results suggest that knockdown of IRF6 has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on preservation of mitochondrial function. PMID:26620051

  5. Lycopene attenuates Aβ1-42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease.

    Science.gov (United States)

    Chen, Wei; Mao, Liuqun; Xing, Huanhuan; Xu, Lei; Fu, Xiang; Huang, Liyingzi; Huang, Dongling; Pu, Zhijun; Li, Qinghua

    2015-11-01

    Growing evidence suggests concentration of lycopene was reduced in plasma of patients with Alzheimer disease (AD). Lycopene, a member of the carotenoid family, has been identified as an antioxidant to attenuate oxidative damage and has neuroprotective role in several AD models. However, whether lycopene is involved in the pathogenesis of AD and molecular underpinnings are elusive. In this study, we found that lycopene can significantly delay paralysis in the Aβ1-42-transgenic Caenorhabditis elegans strain GMC101. Lycopene treatment reduced Aβ1-42 secretion in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw). Next, we found lycopene can down-regulate expression level of β-amyloid precursor protein(APP) in APPsw cells. Moreover, lycopene treatment can not change endogenous reactive oxygen species level and apoptosis in APPsw cells. However, lycopene treatment protected against H2O2-induced oxidative stress and copper-induced damage in APPsw cells. Collectively, our data support that elevated lycopene contributes to the lower pathogenesis of AD. Our findings suggest that increasing lycopene in neurons may be a novel approach to attenuate onset and development of AD.

  6. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  7. iPS cell therapy for Parkinson's disease.

    Science.gov (United States)

    Takahashi, Jun

    2016-08-01

    The aim of stem cell therapy for Parkinson's disease (PD) is to reconstruct local synapse formation and/or induce the release of dopamine and cytokines from grafted cells in the putamen. Fetal ventral-midbrain cells reportedly relieve the neurological symptoms of PD patients. However, induced pluripotent stem cells (iPSCs) are expected to provide an alternative donor cell population because of their capacity for self-renewal and pluripotency. A protocol to generate dopaminergic (DA) neurons from iPSCs has been developed, and human ESCs were proven to function in the brains of rat and monkey PD models. We have developed a method of isolating DA neuron progenitors as a donor cell population, which allows safe and efficient transplantation. PMID:27599427

  8. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy.

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S; Burke, Martin; McNally, Elizabeth M

    2010-01-01

    A 41-year-old male with cardiomyopathy from an inherited beta myosin heavy-chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart.

  9. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S.; Burke, Martin; McNally, Elizabeth M.

    2010-01-01

    A 41 year old male with cardiomyopathy from an inherited β myosin heavy chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart. PMID:19026577

  10. Microbiota modulation of myeloid cells in cancer therapy

    Science.gov (United States)

    Goldszmid, Romina S.; Dzutsev, Amiran; Viaud, Sophie; Zitvogel, Laurence; Restifo, Nicholas P.; Trinchieri, Giorgio

    2015-01-01

    Myeloid cells represent a major component of the tumor microenvironment where they play divergent dual roles: they can induce antitumor immune responses but mostly they promote immune evasion, tumor progression and metastases formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview we discuss recent advances on the effects of the commensal microbiota on myeloid-cell function and how that impacts the response to cancer therapy. PMID:25660553

  11. Stem cell therapy for cardiovascular disease : answering basic questions regarding cell behavior

    NARCIS (Netherlands)

    Bogt, Koen Elzert Adriaan van der

    2010-01-01

    Stem cell therapy has raised enthusiasm as a potential treatment for cardiovascular diseases. However, questions remain about the in vivo behavior of the cells after transplantation and the mechanism of action with which the cells could potentially alleviate disease symptoms. The objective of the re

  12. Engineering a clinically-useful matrix for cell therapy.

    Science.gov (United States)

    Prestwich, Glenn D

    2008-01-01

    The design criteria for matrices for encapsulation of cells for cell therapy include chemical, biological, engineering, marketing, regulatory, and financial constraints. What is required is a biocompatible material for culture of cells in three-dimensions (3-D) that offers ease of use, experimental flexibility to alter composition and compliance, and a composition that would permit a seamless transition from in vitro to in vivo use. The challenge is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild a given tissue. Our approach is to deconstruct the ECM to a few modular components that can be reassembled into biomimetic materials that meet these criteria. These semi-synthetic ECMs (sECMs) employ thiol-modified derivatives of hyaluronic acid (HA) that can form covalently crosslinked, biodegradable hydrogels. These sECMs are "living" biopolymers, meaning that they can be crosslinked in the presence of cells or tissues to enable cell therapy and tissue engineering. Moreover, the sECMs allow inclusion of the appropriate biological cues needed to simulate the complexity of the ECM of a given tissue. Taken together, the sECM technology offers a manufacturable, highly reproducible, flexible, FDA-approvable, and affordable vehicle for cell expansion and differentiation in 3-D. PMID:19279714

  13. Risk factors in the development of stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hermsen Harm PH

    2011-03-01

    Full Text Available Abstract Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience or potential/theoretical risks (i.e. risks observed in animal studies include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC. Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC in

  14. Transplantation and Stem Cell Therapy for Cerebellar Degenerations.

    Science.gov (United States)

    Cendelin, Jan

    2016-02-01

    Stem cell-based and regenerative therapy may become a hopeful treatment for neurodegenerative diseases including hereditary cerebellar degenerations. Neurotransplantation therapy mainly aims to substitute lost cells, but potential effects might include various mechanisms including nonspecific trophic effects and stimulation of endogenous regenerative processes and neural plasticity. Nevertheless, currently, there remain serious limitations. There is a wide spectrum of human hereditary cerebellar degenerations as well as numerous cerebellar mutant mouse strains that serve as models for the development of effective therapy. By now, transplantation has been shown to ameliorate cerebellar function, e.g. in Purkinje cell degeneration mice, Lurcher mutant mice and mouse models of spinocerebellar ataxia type 1 and type 2 and Niemann-Pick disease type C. Despite the lack of direct comparative studies, it appears that there might be differences in graft development and functioning between various types of cerebellar degeneration. Investigation of the relation of graft development to specific morphological, microvascular or biochemical features of the diseased host tissue in various cerebellar degenerations may help to identify factors determining the fate of grafted cells and potential of their functional integration. PMID:26155762

  15. Treating hearing disorders with cell and gene therapy

    Science.gov (United States)

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  16. Inflammatory mediators: Parallels between cancer biology and stem cell therapy

    Directory of Open Access Journals (Sweden)

    A Patel

    2009-02-01

    Full Text Available Shyam A Patel1,2,3, Andrew C Heinrich2,3, Bobby Y Reddy2, Pranela Rameshwar21Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA; 2Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA; 3These authors contributed equally to this workAbstract: Inflammation encompasses diverse molecular pathways, and it is intertwined with a wide array of biological processes. Recently, there has been an upsurge of interest in the interactions between mediators of inflammation and other cells such as stem cells and cancer cells. Since tissue injuries are associated with the release of inflammatory mediators, it would be difficult to address this subject without considering the implications of their systemic effects. In this review, we discuss the effects of inflammatory reactions on stem cells and extrapolate on information pertaining to cancer biology. The discussion focuses on integrins and cytokines, and identifies the transcription factor, nuclear factor-kappa B (NFκB as central to the inflammatory response. Since stem cell therapy has been proposed for type II diabetes mellitus, metabolic syndrome, pulmonary edema, these disorders are used as examples to discuss the roles of inflammatory mediators. We propose prospects for future research on targeting the NFκB signaling pathway. Finally, we explore the bridge between inflammation and stem cells, including neural stem cells and adult stem cells from the bone marrow. The implications of mesenchymal stem cells in regenerative medicine as pertaining to inflammation are vast based on their anti-inflammatory and immunosuppressive effects. Such features of stem cells offer great potential for therapy in graft-versus-host disease, conditions with a significant inflammatory component, and tissue regeneration.Keywords: mesenchymal stem cells, cancer, cytokines

  17. Combined antiretroviral therapy attenuates hepatic extracellular matrix remodeling in HIV patients assessed by novel protein fingerprint markers

    DEFF Research Database (Denmark)

    Leeming, Diana J; Anadol, Evrim; Schierwagen, Robert;

    2014-01-01

    and fibrosis using transient elastography (Fibroscan). RESULTS: C3M, BGM, C4M and P4NP 7S were significantly elevated in HIV patients compared to controls and correlated to HIV viral loads and inversely to cART duration. C4M, P4NP 7S and ELM were lower in patients under cART therapy and in patients without HIV...

  18. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells.

    Science.gov (United States)

    Liu, Mi-Hua; Lin, Xiao-Long; Yuan, Cong; He, Jun; Tan, Tian-Ping; Wu, Shao-Jian; Yu, Shan; Chen, Li; Liu, Jun; Tian, Wei; Chen, Yu-Dan; Fu, Hong-Yun; Li, Jian; Zhang, Yuan

    2016-01-01

    Doxorubicin (DOX) is a widely used chemotherapeutic agent, which can give rise to severe cardiotoxicity, limiting its clinical use. Preliminary evidence suggests that hydrogen sulfide (H2S) may exert protective effects on DOX‑induced cardiotoxicity. Therefore, the aim of the present study was to investigate whether peroxiredoxin III is involved in the cardioprotection of H2S against DOX‑induced cardiotoxicity. The results demonstrated that DOX not only markedly induced injuries, including cytotoxicity and apoptosis, it also increased the expression levels of peroxiredoxin III. Notably, pretreatment with sodium hydrosulfide significantly attenuated the DOX‑induced decrease in cell viability and increase in apoptosis, and also reversed the increased expression levels of peroxiredoxin III in H9c2 cardiomyocytes. In addition, pretreatment of the H9c2 cells with N‑acetyl‑L‑cysteine, a scavenger of reactive oxygen species, prior to exposure to DOX markedly decreased the expression levels of peroxiredoxin III. In conclusion, the results of the present study suggested that exogenous H2S attenuates DOX‑induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells. In the present study, the apoptosis of H9c2 cardiomyocytes was assessed using an methyl thiazolyl tetrazolium assay and Hoechst staining. The levels of Prx III and cystathionine-γ-lyase were examined by western blotting.

  19. Perinatal stem-cell and gene therapy for hemoglobinopathies.

    Science.gov (United States)

    Surbek, Daniel; Schoeberlein, Andreina; Wagner, Anna

    2008-08-01

    Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated. PMID:18420474

  20. [Academic cell therapy facilities are challenged by European regulation on advanced therapy medicinal products].

    Science.gov (United States)

    Chabannon, Christian; Sabatier, Florence; Rial-Sebbag, Emmanuelle; Calmels, Boris; Veran, Julie; Magalon, Guy; Lemarie, Claude; Mahalatchimy, Aurélie

    2014-05-01

    Regulation (EC) n° 1394/2007 from the European Parliament and the Council describes a new category of health products termed « Advanced Therapy Medicinal Products » (ATMPs). ATMPs derive from cell engineering, tissue engineering or genetic manipulations, and can in some instances be combined with medical devices. ATMPs are distributed and administered to patients, after biotechnology or pharmaceutical companies have obtained a marketing authorization that is granted by the European Commission on the basis of the European Medicines Agency (EMA) assessment. Seven years after the publication of the regulation, few of these therapies have received a marketing authorization, and even fewer have met commercial success, suggesting that a number of medical and economic issues still need to be sorted out in order to achieve sustainability in this field. The coexistence of three sets of rules for three categories of health products that are biologically and medically related - ATMPs, ATMPs produced under the hospital exemption rule, and cell therapy products (CTPs) (a specific legal category in France) that have long been used in hematopoietic cell transplantation - constitutes a complex regulatory framework. This situation raises significant issues for historical as well as emerging operators in this moving field that are discussed thereafter.

  1. Colonic cancer cell polyamine synthesis after photodynamic therapy

    International Nuclear Information System (INIS)

    PhotoDynamic Therapy is a new concept for cancer treatment based on the interaction between light and a sensitizer, hematoporphyrin derivative (HPD) selectively retained by tumor cells which becomes toxic after light exposure. This effect decreases cell growth, through complex pathways. The aim of this study was to determine whether cellular polyamines, Put (Putrescine), Spd (Spermidine) and Spm (Spermine) were modified after PDT or not. These cations of small molecular weight are essential for cell growth and differentiation of normal and neoplastic cells. In this study intracellular contents of Put, Spd and Spm were determined on 2 sublines of rat colonic cancer cells cloned from the same rat cancer and forming progressive (PROb) and regressive (REGb) tumors. (author). 12 refs., 2 figs

  2. Cytotoxicity of dihydroartemisinin toward Molt-4 cells attenuated by N-tert-butyl-alpha-phenylnitrone and deferoxamine.

    Science.gov (United States)

    Chan, Ho Wing; Singh, Narendra P; Lai, Henry C

    2013-10-01

    Derivatives of artemisinin, a compound extracted from the wormwood Artemisia annua L, have potent anticancer properties. The anticancer mechanisms of artemisinin derivatives have not been fully-elucidated. We hypothesize that the cytotoxicity of these compounds is due to the free radicals formed by interaction of their endoperoxide moiety with intracellular iron in cancer cells. The effects of N-tert-butyl-alpha-phenylnitrone (PBN), a spin-trap free radical scavenger, and deferoxamine (DX), an iron chelating agent, on the in vitro cytotoxicity of dihyroartemisinin (DHA) toward Molt-4 human T-lymphoblastoid leukemia cells were investigated in the present study. Dihydroartemisinin effectively killed Molt-4 cells in vitro. Its cytotoxicity was significantly attenuated by PBN and DX. Based on the data of our present and previous studies, we conclude that one anticancer mechanism of dihydroartemisinin is the formation of toxic-free radicals via an iron-mediated process. PMID:24123007

  3. Neural stem cells and cell replacement therapy: making the right cells.

    Science.gov (United States)

    Bithell, Angela; Williams, Brenda P

    2005-01-01

    The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.

  4. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

    Science.gov (United States)

    Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Bhat, Rakesh; Anwar-Mohamed, Anwar; Logan, Michael; Lund, Garry; Addison, William R; Lehner, Richard; Kneteman, Norman M

    2016-01-22

    Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis. PMID:26627833

  5. Gene Therapy In Squamous Cell Carcinoma – A Short Review

    Directory of Open Access Journals (Sweden)

    Soma Susan Varghese

    2011-07-01

    Full Text Available Oral cancer remains one of the leading causes of death world wide. Various means to destroy tumor cells preferentially have been developed; gene therapy is one among them with less treatment morbidity. Gene therapy involves the transfer of therapeutic or working copy of genes into a specific cell of an individual in order to repair a faulty copy of gene. The alteration can be accomplished by repairing or replacing the damaged DNA by various strategies and vectors. To date genetically altered viruses are commonly used as gene delivery vehicle (vector which has an advantage of evolutionary selection of host-virus relation. Non viral vectors which include the physical transfection of genes can be accomplished by electrophoration, microinjection, or use of ballistic particles and chemical transfection by forming liposomes.

  6. Stem cell therapy: a novel treatment option for cerebral malaria?

    Science.gov (United States)

    Wang, Wei; Qian, Hui; Cao, Jun

    2015-01-01

    Cerebral malaria, a severe form of the disease, is one of the most severe complications of infection with Plasmodium parasites and a leading cause of malaria mortality. Currently available antimalarial therapy has proven insufficient to prevent neurological complications and death in all cases of cerebral malaria. Souza and colleagues observed that transplantation of bone marrow-derived mesenchymal stromal cells (BM-MSCs) increased survival, reduced parasitemia, decreased malaria pigment accumulation in the spleen, liver and kidney, elevated Kupffer cell count in liver, alleviated renal injury and lung inflammation, and improved lung mechanics in an experimental mouse model of cerebral malaria. Although plenty of challenges lie ahead, their findings show the promise of BM-MSC therapy for the treatment of cerebral malaria. PMID:26253514

  7. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    Science.gov (United States)

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-01

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. PMID:27105818

  8. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor.

    Science.gov (United States)

    Tong, Bei; Yuan, Xusheng; Dou, Yannong; Wu, Xin; Wang, Yuhui; Xia, Yufeng; Dai, Yue

    2016-10-01

    Sinomenine (SIN), an anti-arthritis drug, has previously been proven to exert immunomodulatory activity in rats by inducing intestinal regulatory T-cells (Treg cells). Here, we assessed the effect of SIN on the generation and function of Treg cells in autoimmune arthritis, and the underlying mechanisms in view of aryl hydrocarbon receptor (AhR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from naive T-cells were analyzed by flow cytometric analysis. The AhR agonistic effect of SIN was tested by analyzing the activation of downstream signaling pathways and target genes. The dependence of intestinal Treg cell induction and arthritis alleviation by SIN on AhR activation was confirmed in a mouse collagen-induced arthritis (CIA) model. SIN promoted the differentiation and function of intestinal Treg cells in vitro. It induced the expression and activity of AhR target gene, promoted AhR/Hsp90 dissociation and AhR nuclear translocation, induced XRE reporter activity, and facilitated AhR/XRE binding in vitro, displaying the potential to be an agonist of AhR. In CIA mice, SIN induced the generation of intestinal Treg cells, and facilitated the immunosuppressive function of these Treg cells as shown by an adoptive transfer test. In addition, the induction of intestinal Treg cells and the anti-arthritic effect of SIN in CIA mice could be largely diminished by the AhR antagonist resveratrol. SIN attenuates arthritis by promoting the generation and function of Treg cells in an AhR-dependent manner. PMID:27617398

  9. Regenerative Medicine for the Kidney: Renotropic Factors, Renal Stem/Progenitor Cells, and Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Akito Maeshima

    2014-01-01

    Full Text Available The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  10. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy

    OpenAIRE

    Lee B. Rivera; David Meyronet; Valérie Hervieu; Mitchell J. Frederick; Emily Bergsland; Gabriele Bergers

    2015-01-01

    Antiangiogenic therapy is commonly used in the clinic, but its beneficial effects are short-lived, leading to tumor relapse within months. Here, we found that the efficacy of angiogenic inhibitors targeting the VEGF/VEGFR pathway was dependent on induction of the angiostatic and immune-stimulatory chemokine CXCL14 in mouse models of pancreatic neuroendocrine and mammary tumors. In response, tumors reinitiated angiogenesis and immune suppression by activating PI3K signaling in all CD11b+ cells...

  11. Progress and challenges with clinical cell therapy in neurorestoratology

    OpenAIRE

    Huang H; Mao G; Chen L; Liu A

    2015-01-01

    Hongyun Huang,1–3 Gengsheng Mao,1 Lin Chen,4,5 Aibing Liu11General Hospital of Chinese People's Armed Police Forces,2Beijing Rehabilitation Hospital of Capital Medical University, 3Beijing Hongtianji Neuroscience Academy, 4Tsinghua University Yuquan Hospital, 5Medical Center, Tsinghua University, Beijing, People's Republic of ChinaAbstract: Cell therapies in the treatment of central nervous system disease and injury, such as spinal cord injury, multiple sclerosis, sequelae of st...

  12. Progress and challenges with clinical cell therapy in neurorestoratology

    OpenAIRE

    Huang, Hongyun

    2015-01-01

    Hongyun Huang,1–3 Gengsheng Mao,1 Lin Chen,4,5 Aibing Liu11General Hospital of Chinese People's Armed Police Forces,2Beijing Rehabilitation Hospital of Capital Medical University, 3Beijing Hongtianji Neuroscience Academy, 4Tsinghua University Yuquan Hospital, 5Medical Center, Tsinghua University, Beijing, People's Republic of ChinaAbstract: Cell therapies in the treatment of central nervous system disease and injury, such as spinal cord injury, multiple sclerosis, se...

  13. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  14. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions.

  15. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  16. Photodynamic therapy for basal cell skin cancer ENT-organs

    Directory of Open Access Journals (Sweden)

    V. N. Volgin

    2014-01-01

    Full Text Available Results of photodynamic therapy in 96 patients with primary and recurrent basal cell skin cancer of ENT-organs are represented. For photodynamic therapy the Russian-made photosensitizer Photoditazine at dose of 0.6–1.4 mg/kg was used. Parameters were selected taking into account type and extent of tumor and were as follows: output power – 0.1–3.0 W, power density – 0.1–1.3 W/cm2, light dose – 100–400 J/cm2. The studies showed high efficacy of treatment for primary and recurrent basal cell skin cancer of nose, ear and external auditory canal – from 87.5 to 94.7% of complete regression. Examples of efficacy of the method are represented in the article. High efficacy and good cosmetic effects allowed to make a conclusion about perspectivity of photodynamic therapy for recurrent basal cell skin cancer of ENT-organs. 

  17. Therapies targeting cancer stem cells: Current trends and future challenges

    Institute of Scientific and Technical Information of China (English)

    Denisa; L; Dragu; Laura; G; Necula; Coralia; Bleotu; Carmen; C; Diaconu; Mihaela; Chivu-Economescu

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells(CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a longlasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of mi RNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers.

  18. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  19. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    OpenAIRE

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PM...

  20. Atorvastatin therapy during the peri-infarct period attenuates left ventricular dysfunction and remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xian-Liang Tang

    Full Text Available Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI. Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14 received oral atorvastatin (10 mg/kg/d daily for 3 wk before and 4 wk after MI, while group I (n = 12 received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF and fractional area change (FAC were higher while LV end-diastolic volume (LVEDV and LV end-systolic and end-diastolic diameters (LVESD and LVEDD were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dt(max, end-systolic elastance (Ees, and preload recruitable stroke work (PRSW and lower LV end-diastolic pressure (LVEDP. Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis.

  1. Targeting insulin-producing beta cells for regenerative therapy.

    Science.gov (United States)

    Migliorini, Adriana; Roscioni, Sara S; Lickert, Heiko

    2016-09-01

    Pancreatic beta cells differ in terms of glucose responsiveness, insulin secretion and proliferative capacity; however, the molecular pathways that regulate this cellular heterogeneity are unknown. We have identified the Wnt-planar cell polarity (PCP) effector Flattop (FLTP) as a biomarker that identifies mature beta cells in the islets of Langerhans. Interestingly, three-dimensional architecture and Wnt-PCP ligands are sufficient to trigger mouse and human beta cell maturation. These results highlight the fact that novel biomarkers shed light on the long-standing mystery of beta cell heterogeneity and identify the Wnt-PCP pathway as triggering beta cell maturation. Understanding heterogeneity in the islets of Langerhans might allow targeting of beta cell subpopulations for regenerative therapy and provide building principles for stem cell-derived islets. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ). PMID:27412250

  2. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  3. Allogenic benefit in stem cell therapy: cardiac repair and regeneration.

    Science.gov (United States)

    Al-Daccak, R; Charron, D

    2015-09-01

    Stem cell (SC)-based therapies are a developing mean to repair, restore, maintain, or enhance organ functioning through life span. They are in particular a fast track to restore function in failing heart. Various types of SCs have been used in experimental and clinical studies showing the potential of these cells to revolutionize the treatment of heart diseases. Autologous cells have been privileged to overpass immunological barriers. The field has progressed tremendously and the hurdles, which have been largely overlooked in the excitement over the expected benefit the immunogenicity, have been revealed. Also, manufacturing of patient-specific clinical grade SC product, whether adult stem or reprogrammed induced pluripotent SCs, and the availability of these cells in sufficient amounts and status when needed is questionable. In contrast, adult SCs derived from healthy donors, thus allogeneic, have the advantage to be immediately available as an 'off-the-shelf' therapeutic product. The challenge is to overcome the immunological barriers to their transplantation. Recent research provided new insights into the mode of action and immune behavior of SCs in autologous as well as allogeneic settings. Lessons are learned and immune paradigms are changing: allogenicity, if balanced could be part of the dynamic and durable mechanisms that are critical to sustain cardiac regeneration and repair. We discuss the hurdles, lessons, and advances accomplished in the field through the progressive journey of cardiac-derived stem/progenitor cells toward allogeneic cardiac regenerative/reparative therapy. PMID:26206374

  4. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy.

    Science.gov (United States)

    Huang, Guo-Hao; Xu, Qing-Fu; Cui, You-Hong; Li, Ningning; Bian, Xiu-Wu; Lv, Sheng-Qing

    2016-05-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long-term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients. PMID:27171351

  5. Human parthenogenetic embryonic stem cells: one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    HAO Jie; HU WanWan; SHENG Chao; YU Yang; ZHOU Qi

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or in duced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine.

  6. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem(iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies.However,the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells.Embryonic stem cells(ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy.Recent studies on human parthenogenetic embryonic stem cells(hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics,but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions.To generate various pluripotent stem cells,diverse reprogramming techniques and approaches will be developed and integrated.This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology,and ultimately benefit cell therapy and regenerative medicine.

  7. Cinacalcet attenuates hypercalcemia observed in mice bearing either Rice H-500 Leydig cell or C26-DCT colon tumors.

    Science.gov (United States)

    Colloton, Matthew; Shatzen, Edward; Wiemann, Bernadette; Starnes, Charlie; Scully, Sheila; Henley, Charles; Martin, David

    2013-07-15

    Excessive secretion of parathyroid hormone-related protein (PTHrP) by tumors stimulates bone resorption and increases renal tubular reabsorption of calcium, resulting in hypercalcemia of malignancy. We investigated the ability of cinacalcet, an allosteric modulator of the calcium-sensing receptor, to attenuate hypercalcemia by assessing its effects on blood ionized calcium, serum PTHrP, and calcium-sensing receptor mRNA in mice bearing either Rice H-500 Leydig cell or C26-DCT colon tumors. Cinacalcet effectively decreased hypercalcemia in a dose- and enantiomer-dependent manner; furthermore, cinacalcet normalized phosphorus levels, but did not affect serum PTHrP. Ribonuclease protection assay results demonstrated presence of PTHrP receptor, but not calcium-sensing receptor mRNA in C26-DCT tumors. The mechanism by which cinacalcet lowered serum calcium was investigated in parathyroidectomized rats (i.e., without PTH) made hypercalcemic by PTHrP. Cinacalcet attenuated PTHrP-mediated elevations in blood ionized calcium, which were accompanied by increased plasma calcitonin. Taken together these results suggest that the cinacalcet-mediated decrease in serum calcium is not the result of a direct effect on tumor cells, but rather is the result of increased calcitonin release. In summary, cinacalcet effectively reduced tumor-mediated hypercalcemia and corrected hypophosphatemia in mice. Further investigation of cinacalcet for treatment of hypercalcemia of malignancy is warranted.

  8. Tailored antihypertensive drug therapy prescribed to older women attenuates circulating levels of interleukin-6 and tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Toledo JO

    2015-01-01

    Full Text Available Juliana O Toledo,1 Clayton F Moraes,2,3 Vinícius C Souza,2 Audrey C Tonet-Furioso,2 Luís CC Afonso,4 Cláudio Córdova,3 Otávio T Nóbrega1,2 1Graduate Program in Health Sciences, 2Graduate Program in Medical Sciences, University of Brasília, Brasília, 3Graduate Program in Gerontology, Catholic University of Brasília, Brasília, 4Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil Objective: To test the hypothesis that antihypertensive drug therapy produces anti-inflammatory effects in clinical practice, this study investigated circulating levels of selected proinflammatory mediators (interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], and interferon-γ [INF-γ] in response to multivariate drug directions for blood pressure (BP control.Methods: Prospective study involving 110 hypertensive, community-dwelling older women with different metabolic disorders. A short-term BP-lowering drug therapy was conducted according to current Brazilian guidelines on hypertension, and basal cytokine levels were measured before and after intervention.Results: Interventions were found to represent current hypertension-management practices in Brazil and corresponded to a significant reduction in systolic and diastolic BP levels in a whole-group analysis, as well as when users and nonusers of the most common therapeutic classes were considered separately. Considering all patients, mean IL-6 and TNF-α levels showed a significant decrease in circulating concentrations (P<0.01 at the endpoint compared with baseline, whereas the mean INF-γ level was not significantly different from baseline values. In separate analyses, only users of antagonists of the renin–angiotensin system and users of diuretics exhibited the same significant treatment-induced reduction in serum IL-6 and TNF-α observed in the whole group.Conclusion: Our data demonstrates that a clinically guided antihypertensive treatment is effective in

  9. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  10. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hong [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); Wu, Xinyi, E-mail: xywu8868@163.com [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  11. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells

    NARCIS (Netherlands)

    S.A.J. Chamuleau; K.R. Vrijsen; D.G. Rokosh; X.L. Tang; J.J. Piek; R. Bolli

    2009-01-01

    Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells.

  12. Specific features of attenuated light transmission by liquid-crystal twist cells in constant and alternating electric fields

    Science.gov (United States)

    Konshina, E. A.; Amosova, L. P.

    2012-07-01

    Optical transmission characteristics of dual-frequency nematic liquid crystal (NLC) twist cells with different alignment layers (rubbed polyimide and obliquely deposited cerium dioxide) have been studied in constant and alternating electric fields. It has been established that a change in the optical (twist effect) threshold and dynamic range of attenuated transmission depend both on the boundary conditions (that influence the screening of applied voltage) and on the parameters of the applied electric field. The maximum dynamic range (49.5 dB) has been obtained in the cell with a CeO2 alignment layer controlled by a constant potential. In the case of an alternating electric field, the dynamic range decreases because of reduced effective voltage.

  13. Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    Directory of Open Access Journals (Sweden)

    Philipp Koehler

    2012-01-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells.

  14. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  15. Autologous bone marrow cell therapy for peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Botti C

    2012-09-01

    Full Text Available C Botti, C Maione, A Coppola, V Sica, G CobellisDepartment of General Pathology, Second University of Naples, Naples, ItalyAbstract: Inadequate blood supply to tissues caused by obstruction of arterioles and/or capillaries results in ischemic injuries – these injuries can range from mild (eg, leg ischemia to severe conditions (eg, myocardial infarction, stroke. Surgical and/or endovascular procedures provide cutting-edge treatment for patients with vascular disorders; however, a high percentage of patients are currently not treatable, owing to high operative risk or unfavorable vascular involvement. Therapeutic angiogenesis has recently emerged as a promising new therapy, promoting the formation of new blood vessels by the introduction of bone marrow–derived stem and progenitor cells. These cells participate in the development of new blood vessels, the enlargement of existing blood vessels, and sprouting new capillaries from existing blood vessels, providing evidence of the therapeutic utility of these cells in ischemic tissues. In this review, the authors describe peripheral arterial disease, an ischemic condition affecting the lower extremities, summarizing different aspects of vascular regeneration and discussing which and how stem cells restore the blood flow. The authors also present an overview of encouraging results from early-phase clinical trials using stem cells to treat peripheral arterial disease. The authors believe that additional research initiatives should be undertaken to better identify the nature of stem cells and that an intensive cooperation between laboratory and clinical investigators is needed to optimize the design of cell therapy trials and to maximize their scientific rigor. Only this will allow the results of these investigations to develop best clinical practices. Additionally, although a number of stem cell therapies exist, many treatments are performed outside international and national regulations and many

  16. Could cells from menstrual blood be a new source for cell-based therapies?

    Science.gov (United States)

    Zhang, Man-Jing; Liu, Bin; Xia, Wei; Sun, Zhi-Yong; Lu, Kai-Hua

    2009-03-01

    Human endometrium is a highly regenerative tissue and contains a low number of cells which have high replicative ability and differentiation efficiency. This has been identified by many scientists. When the fresh growth of tissue and blood vessels is shed during each menstrual cycle, some cells with regenerative capabilities are present. Reports have also indicated that these cells possess the capacity to trans-differentiate into mesodermal, ectodermal and endodermal lineages by using standard commercially available culture reagents and methodologies. Given the ease of extraction and pluripotency of this cell population, we propose it as a novel alternative to current cells sources for cell-based therapies. PMID:19101090

  17. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    International Nuclear Information System (INIS)

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  18. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  19. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Angélique Lebouvier

    2015-11-01

    SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products.

  20. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.

    Science.gov (United States)

    Cirone, Pasquale; Bourgeois, Jacqueline M; Shen, Feng; Chang, Patricia L

    2004-10-01

    An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated. PMID:15585110

  1. Targeted therapy in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shou-Ching Tang

    2004-01-01

    @@ 1 Introduction Recent progress in molecular biology has enabled us to better understand the molecular mechanism underlying pathogenesis of human malignancy including lung cancer. Sequencing of human genome has identified many oncogenes and tumor suppressor genes,giving us a better understanding of the molecular events leading to the formation, progression, metastasis, and the development of drug resistance in human lung cancer. In addition, many signal transduction pathways have been discovered that play important roles in lung cancer. Novel strategy of anti-cancer drug development now involves the identification and development of targeted therapy that interrupts one or more than one pathways or cross-talk among different signal transduction pathways. In addition, efforts are underway that combine the traditional cytotoxic (non-targeted) agents with the biological (targeted) therapy to increase the response rate and survival in patients with lung cancer, especially advanced non-small cell lung cancer (NSCLC).

  2. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    Institute of Scientific and Technical Information of China (English)

    Justin; D; Glenn; Katharine; A; Whartenby

    2014-01-01

    Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.

  3. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism.

    Science.gov (United States)

    Kim, Hun Sik; Kwon, Hyung-Joon; Kim, Gye Eun; Cho, Mi-Hyang; Yoon, Seung-Yong; Davies, Alexander J; Oh, Seog Bae; Lee, Heuiran; Cho, Young Keol; Joo, Chul Hyun; Kwon, Seog Woon; Kim, Sun Chang; Kim, Yoo Kyum

    2014-07-01

    The assessment of the biological activity of capsaicin, the compound responsible for the spicy flavor of chili pepper, produced controversial results, showing either carcinogenicity or cancer prevention. The innate immune system plays a pivotal role in cancer pathology and prevention; yet, the effect of capsaicin on natural killer (NK) cells, which function in cancer surveillance, is unclear. This study found that capsaicin inhibited NK cell-mediated cytotoxicity and cytokine production (interferon-γ and tumor necrosis factor-α). Capsaicin impaired the cytotoxicity of NK cells, thereby inhibiting lysis of standard target cells and gastric cancer cells by modulating calcium mobilization in NK cells. Capsaicin also induced apoptosis in gastric cancer cells, but that effect required higher concentrations and longer exposure times than those required to trigger NK cell dysfunction. Furthermore, capsaicin inhibited the cytotoxicity of isolated NK cells and of an NK cell line, suggesting a direct effect on NK cells. Antagonists of transient receptor potential vanilloid subfamily member 1 (TRPV1), a cognate capsaicin receptor, or deficiency in TRPV1 expression failed to prevent the defects induced by capsaicin in NK cells expressing functional TRPV1. Thus, the mechanism of action of capsaicin on NK cells is largely independent of TRPV1. Taken together, capsaicin may have chemotherapeutic potential but may impair NK cell function, which plays a central role in tumor surveillance. PMID:24743513

  4. Ac-cel, a novel antioxidant, protects against hydrogen peroxide-induced injury in PC12 cells via attenuation of mitochondrial dysfunction.

    Science.gov (United States)

    Guo, Xianjun; Chen, Yuting; Liu, Qunfang; Wu, Jian; Wang, Luoyi; Tang, Xican; Zhao, Weimin; Zhang, Haiyan

    2013-07-01

    Oxidative stress has been implicated in pathophysiology of many neurodegenerative diseases (ND) and increased oxidative stress is closely associated with mitochondrial dysfunction. As a result, looking for potent antioxidants, especially those targeting mitochondria, has become an attractive strategy in ND therapy. In this study, we explored protective effects and potential mechanism of Ac-cel, a novel compound, against hydrogen peroxide (H(2)O(2))-induced injury in PC12 cells. Pretreatment of PC12 cells with Ac-cel prior to 24 h of H(2)O(2) exposure markedly attenuated cytotoxicity induced by H(2)O(2) as evidenced by morphological changes and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Ac-cel also exhibited potent antiapoptotic effect demonstrated by results of annexin V and PI staining. The above beneficial effects of Ac-cel were accompanied by improved mitochondrial function, reduced caspase-3 cleavage as well as upregulated ratio of Bcl-2/Bax protein expression. Moreover, Ac-cel pretreatment markedly reversed intracellular reactive oxygen species (ROS) accumulation following 30 min of H(2)O(2) exposure in PC12 cells. Further, subcellular investigation indicated that Ac-cel significantly reduced production of mitochondrial ROS in isolated rat cortical mitochondria. Taken together, the present study, for the first time, reports that Ac-cel pretreatment inhibits H(2)O(2)-stimulated early accumulation of intracellular ROS possibly via reducing mitochondrial ROS production directly and leads to subsequent preservation of mitochondrial function. These results indicate that Ac-cel is a potential drug candidate for treatment of oxidative stress-associated ND.

  5. Photothermal Therapy of Cancer Cells mediated by Blue Hydrogel Nanoparticles

    Science.gov (United States)

    Curry, Taeyjuana; Epstein, Tamir; Kopelman, Raoul

    2012-10-01

    Coomassie Blue dye has been covalently linked into a polyacrylamide nanoparticle matrix, so as to form nontoxic, biologically compatible, biodegradable and cell-specific targetable nanoparticles for photothermal therapy (PTT) of cancer. The nanoparticles were found to be approximately 80-95 nm in diameter, with an absorbance value of 0.52. Using an inexpensive, low intensity LED array light source (590nm, 25mW/cm^2), with 20 minute excitation times, at 37 , PTT induced hyperthermia/thermolysis in HeLa cells, in vitro, resulting in virtually complete cell death when observed 3 hours after exposure. These multifunctional particles have been previously used in cancer delineation, for surgery, and in photoacoustic imaging studies; the addition of the PTT function now enables a multi-pronged medical approach to cancer.

  6. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  7. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical trials in pediatric populations, as well as challenges and considerations in the...

  8. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  9. Photothermal therapy of cancer cells using novel hollow gold nanoflowers

    Directory of Open Access Journals (Sweden)

    Han J

    2014-01-01

    Full Text Available Jing Han,1 Jinru Li,1 Wenfeng Jia,1 Liangming Yao,2 Xiaoqin Li,1 Long Jiang,1 Yong Tian21Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, 2Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: This article presents a new strategy for fabricating large gold nanoflowers (AuNFs that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanoparticles (AuNPs and growing their crystallites on the surface of vesicles. The localized surface plasmon-resonance spectrum of this type of AuNF can be easily modulated to the NIR region by controlling the size of the AuNFs. When the size of the AuNFs increased, biosafety under visible light improved and cytotoxicity increased under NIR irradiation. Experiments in vitro with HeLa cells and in vivo with small mice have been carried out, with promising results. The mechanism for this phenomenon is based on the hypothesis that it is difficult for larger AuNFs to enter the cell without NIR irradiation, but they enter the cell easily at the higher temperatures caused by NIR irradiation. We believe that these effects will exist in other types of noble metallic NPs and cancer cells. In addition, the affinity between AuNPs and functional biomolecules, such as aptamers and biomarkers, will make this type of AuNF a good recognition device in cancer diagnosis and therapy.Keywords: HeLa cells, endocytosis, cytotoxicity, AuNFs, NIR, cancer therapy

  10. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation.

    Science.gov (United States)

    Chen, Li; Huang, Tian-Gui; Meseck, Marcia; Mandeli, John; Fallon, John; Woo, Savio L C

    2007-12-01

    4T1 breast carcinoma is a highly malignant and poorly immunogenic murine tumor model that resembles advanced breast cancer in humans, and is refractory to most immune stimulation-based treatments. We hypothesize that the ineffectiveness of immune stimulatory treatment is mediated by the suppressive effects of CD4(+)CD25(+) regulatory T (Treg) cells, which can be attenuated by engaging the glucocorticoid-induced tumor necrosis factor receptor family-related protein with its natural ligand (GITRL); further, combination treatment with existing immune stimulation regimens will augment anti-tumor immunity and eradicate metastatic 4T1 tumors in mice.A soluble homodimeric form of mouse GITRL (mIg-mGITRLs) was molecularly constructed and used to treat orthotopic 4T1 tumors established in immune-competent, syngeneic Balb/c mice. When applied in combination with adenovirus-mediated intratumoral murine granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) gene delivery plus systemic 4-1BB activation, mIg-mGITRLs attenuated the immune-suppressive function of splenic Treg cells, which led to elevated interferon-gamma (IFN-gamma) production, tumor-specific cytolytic T-cell activities, tumor rejection and long-term survival in 65% of the animals without apparent toxicities. The results demonstrate that addition of mIg-mGITRLs to an immune-stimulatory treatment regimen significantly improved long-term survival without apparent toxicity, and could potentially be clinically translated into an effective and safe treatment modality for metastatic breast cancer in patients. PMID:17968355

  11. Attenuation fluctuations and local dermal reflectivity are indicators of immune cell infiltrate and epidermal hyperplasia in skin inflammation

    Science.gov (United States)

    Phillips, Kevin G.; Wang, Yun; Choudhury, Niloy; Levitz, David; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven

    2012-02-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses responsible for skin homeostasis. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of psoriasis remains under investigated. To elucidate the spatial-temporal morphological evolution of psoriasis we undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to non-invasively document dermal alterations due to immune cell infiltration and epidermal hyperplasia in an Imiquimod (IMQ) induced model of psoriasis-like inflammation in DBA2/C57Bl6 hybrid mice. Quantitative appraisal of dermal architectural changes was achieved through a three parameter fit of OCT axial scans in the dermis of the form A(z) = ρ exp(-mu;z +ɛ(z)). Ensemble averaging of the fit parameters over 2000 axial scans per mouse in each treatment arm revealed that the local dermal reflectivity ρ, decreased significantly in response to 6 day IMQ treatment (p = 0.0001), as did the standard deviation of the attenuation fluctuation std(ɛ(z)), (p = 0.04), in comparison to cream controls and day 1 treatments. No significant changes were observed in the average dermal attenuation rate, μ. Our results suggest these label-free OCT-based metrics can be deployed to investigate new therapeutic targets in animal models as well as aid in clinical staging of psoriasis in conjunction with the psoriasis area and severity index.

  12. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  13. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  14. Selenite benefits embryonic stem cells therapy in Parkinson's disease.

    Science.gov (United States)

    Tian, L-P; Zhang, S; Xu, L; Li, W; Wang, Y; Chen, S-D; Ding, J-Q

    2012-09-01

    Embryonic stem cells (ESC) transplantation is a potential therapeutic approach for Parkinson's disease (PD). However, one of the main challenges to this therapy is the post-transplantation survival of dopaminergic (DA) neurons. In this study, mouse ESC were differentiated into DA neurons by a modified serum free protocol. These ESC-derived neurons were then transplanted into striatum of 6-OHDA lesioned rat. The viability of grafted DA neurons was decreased, accompanied by activated microglia and high levels of proinflammatory factors, such as TNF-α and iNOS, in the graft niche. This suggested that the local neuroinflammation might be involved in the reduced cells viability. Selenite, the source of essential micronutrient selenium, could inhibit NF-κB p65 nuclear translocation and subsequently reduce iNOS, COX-2 and TNF-α expression in LPS-treated BV2 cells in a dose dependant manner. Before the transplantation of ESC-derived DA neurons, 6-OHDA lesioned rats were intraperitoneally injected with selenite. The expression levels of TNF-α and iNOS were decreased by 30% and 50%, respectively, in selenite treated group. The survival of implanted DA neurons and the rotational behavior of transplanted rats were also remarkably improved by selenite treatment. To sum up, selenite might benefit ESCs transplantation therapy in PD through anti-inflammation effects.

  15. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Vanessa M. Doulames

    2016-04-01

    Full Text Available Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.

  16. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    Science.gov (United States)

    Doulames, Vanessa M; Plant, Giles W

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  17. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  18. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. PMID:26486823

  19. Sorafenib and sunitinib: novel targeted therapies for renal cell cancer.

    Science.gov (United States)

    Grandinetti, Cheryl A; Goldspiel, Barry R

    2007-08-01

    Renal cell cancer (RCC) is a relatively uncommon malignancy, with 51,190 cases expected to be diagnosed in 2007. Localized disease is curable by surgery; however, locally advanced or metastatic disease is not curable in most cases and, until recently, had a limited response to drug treatment. Historically, biologic response modifiers or immunomodulating agents were tested in clinical trials based on observations that some cases of RCC can spontaneously regress. High-dose aldesleukin is approved by the United States Food and Drug Administration as a treatment for advanced RCC; however, the drug is associated with a high frequency of severe adverse effects. Responses have been observed with low-dose aldesleukin and interferon alfa, but with little effect on overall survival. Sorafenib and sunitinib are novel therapies that target growth factor receptors known to be activated by the hypoxia-inducible factor and the Ras-Raf/MEK/ERK pathways. These pathways are important in the pathophysiology of RCC. Sorafenib and sunitinib have shown antitumor activity as first- and second-line therapy in patients with cytokine-refractory metastatic RCC who have clear-cell histology. Although complete responses are not common, both drugs promote disease stabilization and increase progression-free survival. This information suggests that disease stabilization may be an important determinant for response in RCC and possibly other cancers. Sorafenib and sunitinib are generally well tolerated and are considered first- and second-line treatment options for patients with advanced clear cell RCC. In addition, sorafenib and sunitinib have shown promising results in initial clinical trials evaluating antitumor activity in patients who are refractory to other antiangiogenic therapy. The most common toxicities with both sorafenib and sunitinib are hand-foot syndrome, rash, fatigue, hypertension, and diarrhea. Research is directed toward defining the optimal use of these new agents. PMID:17655513

  20. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    Science.gov (United States)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  1. Inhibition of Pim-1 attenuates the proliferation and migration in nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Wei Jie; Qi-Yi He; Bo-Tao Luo; Shao-Jiang Zheng; Yue-Qiong Kong; Han-Guo Jiang; Ru-Jia Li; Jun-Li Guo; Zhi-Hua Shen

    2012-01-01

    Objective:To explore the role of proto-oncogenePim-1 in the proliferation and migration of nasopharyngeal carcinoma(NPC) cells.Methods:Pim-1 expressions inNPC cell lines CNE1,CNE1-GL,CNE-2Z andC666-1 were examined byRT-PCR, western blotting and immunoflucesence, respectively.AfterCNE1,CNE1-GL andC666-1 cells were treated with different concentrations ofPim-1 special inhibitor, quercetagetin, the cell viability, colony formation rate and migration ability were analyzed.Results:Pim-1 expression was negative in well-differentiatedCNE1 cells, whereas expressed weakly positive in poor-differentiated CNE-2Z cells and strongly positive in undifferentiatedC666-1 cells.Interestingly,CNE1-GL cells that derived fromCNE1 transfected with anEpsteinBarr virus latent membrane protein-1 over-expression plasmid displayed stronger expression ofPim-1.Treatment ofCNE1-GL and C666-1 cells with quercetagetin significantly decreased the cell viability, colony formation rate and migration ability but not theCNE1 cells.Conclusions:These findings suggest thatPim-1 overexpression contributes toNPC proliferation and migration, and targetingPim-1 may be a potential treatment for anti-Pim-1-expressedNPCs.

  2. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  3. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  5. Cell and gene therapy in Duchenne muscular dystrophy.

    Science.gov (United States)

    Morgan, J E

    1994-02-01

    Experiments in mice have supported the idea of treating Duchenne muscular dystrophy (DMD) by implanting normal muscle precursor cells into dystrophin-deficient muscles. However, similar experiments on DMD patients have had little success. Gene therapy for DMD, by introducing dystrophin constructs via retroviral or adenoviral vectors, has been shown to be possible in the mouse, but the efficiency and safety aspects of this technique will have to be carefully examined before similar experiments can be attempted in man. Direct injection of dystrophin cDNA constructs into mdx muscles has given rise to very low levels of dystrophin and this may be a possibility for the treatment of heart muscle. PMID:7514447

  6. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  7. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  8. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    NARCIS (Netherlands)

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Van Luijk, Peter; Limoli, Charles L.

    2014-01-01

    Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for re

  9. Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

    International Nuclear Information System (INIS)

    Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity. Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a 137Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure. Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups. ON 01210.Na treatment significantly

  10. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway.

    Science.gov (United States)

    Wang, Xiaorui; Miao, Junqiu; Yan, Chaoqun; Ge, Rui; Liang, Taigang; Liu, Enli; Li, Qingshan

    2016-10-20

    Dibutyltin (DBT) which was widely used as biocide and plastic stabilizer has been described as a potent neurotoxicant. Chitosan (CS), a natural nontoxic biopolymer, possesses a variety of biological activities including antibacterial, antifungal, free radical scavenging and neuroprotective activities. The present study was undertaken to investigate the protective effects of CS against DBT-induced apoptosis in rat pheochromocytoma (PC12) cells and the underlying mechanisms in vitro. Our results demonstrated that pretreatment with CS significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release induced by DBT in a dose-dependent manner. Meanwhile, DBT-induced cell apoptosis, mitochondrial membrane potential (MMP) disruption, and generation of intracellular reactive oxygen species (ROS) were attenuated by CS. Real-time PCR assay showed that DBT markedly enhanced the mRNA levels of Bax, Bad, cytochrome-c and Apaf-1, reduced the Bcl-2 and Bcl-xL mRNA levels, while these genes expression alteration could be partially reversed by CS treatment. Furthermore, CS also inhibited the DBT-inducted activation of caspase-9, and -3 at mRNA and protein expression levels. Taken together, these results suggested that CS could protect the PC12 cells from apoptosis induced by DBT through inhibition of the mitochondria-dependent pathway. PMID:27474647

  11. Maintaining clarity: Review of maintenance therapy in non-small cell lung cancer

    OpenAIRE

    Dearing, Kristen R; Sangal, Ashish; Weiss, Glen J

    2014-01-01

    The purpose of this article is to review the role of maintenance therapy in the treatment of advanced non-small cell lung cancer (NSCLC). A brief overview about induction chemotherapy and its primary function in NSCLC is provided to address the basis of maintenance therapies foundation. The development of how maintenance therapy is utilized in this population is discussed and current guidelines for maintenance therapy are reviewed. Benefits and potential pitfalls of maintenance therapy are ad...

  12. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  13. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors.

    Science.gov (United States)

    Huang, H-S; Chen, J; Chen, C-F; Ma, M-C

    2006-08-01

    We previously reported that oxidative stress and renal tubular damage occur in chronic hyperoxaluric rats. However, the in vivo responses of renal epithelial cells after vitamin E administration and their correlations with calcium oxalate (CaOx) crystal formation have not been evaluated. Male Wistar rats received 0.75% ethylene glycol (EG) for 7, 21, or 42 days to induce CaOx deposition (EG group). Another group of EG-treated rats received 200 mg kg(-1) of vitamin E intraperitoneally (EG+E group) to evaluate its effect on hyperoxaluria. Urinary electrolytes and biochemistry and levels of lipid peroxides and enzymes were examined, together with serum vitamin E levels. Levels of the tubular markers, alpha and mu glutathione S-transferase, proliferating cell nuclear antigen (PCNA), osteopontinin (OPN), and Tamm-Horsfall protein (THP) were also measured, and TUNEL staining was performed to examine the viability of the tubular epithelium. There were no significant differences between the two age-matched controls either untreated or given vitamin E. Compared to untreated controls, tubular cell death was increased at all time points in EG rats with a gradual increase in CaOx crystals, whereas the number of PCNA-positive cells was only significantly increased on day 21. In EG+E rats, tubular cell death was decreased compared to the EG group, and cell proliferation was seen at all time points, while CaOx crystal deposition was decreased, but hyperoxaluria, urinary lipid peroxides, and enzymuria were unaffected. Vitamin E supplement prevented the loss of OPN and THP in renal tissues by EG and the reduction in their levels in the urine. The beneficial effect of vitamin E in reducing CaOx accumulation is due to attenuation of tubular cell death and enhancement of the defensive roles of OPN and THP.

  14. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  15. Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation

    OpenAIRE

    Wei Xu; Qin Lan; Maogen Chen; Hui Chen; Ning Zhu; Xiaohui Zhou; Julie Wang; Huimin Fan; Chun-Song Yan; Jiu-Long Kuang; David Warburton; Dieudonnée Togbe; Bernhard Ryffel; Song-Guo Zheng; Wei Shi

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic...

  16. Dexmedetomidine Attenuates Bilirubin-Induced Lung Alveolar Epithelial Cell Death In Vitro and In Vivo*

    OpenAIRE

    Cui, Jian; Zhao, Hailin; Yi, Bin; Zeng, Jing; Lu, Kaizhi; Ma, Daqing

    2015-01-01

    Objective: To investigate bilirubin-induced lung alveolar epithelial cell injury together with the protection afforded by dexmedetomidine. Design: Prospective, randomized, controlled study. Setting: Research laboratory. Subjects: Sprague Dawley rats. Interventions: Alveolar epithelial A549 cell lines were cultured and received bilirubin (from 0 to 160 μM) to explore the protective pathway of dexmedetomidine on bilirubin-induced alveolar epithelial cell injury assessed by immunochemistry and f...

  17. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  18. Plumbagin attenuates cancer cell growth and osteoclast formation in the bone microenvironment of mice

    OpenAIRE

    Yan, Wei; Wang, Ting-Yu; Fan, Qi-ming; Du, Lin; Xu, Jia-ke; Zhai, Zan-jing; Li, Hao-wei; Tang, Ting-ting

    2014-01-01

    Aim: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice. Methods: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent prote...

  19. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    Science.gov (United States)

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.

  20. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    Science.gov (United States)

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3. PMID:26676112

  1. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes.

    Science.gov (United States)

    Abdelalim, Essam M; Bonnefond, Amélie; Bennaceur-Griscelli, Annelise; Froguel, Philippe

    2014-06-01

    Diabetes mellitus is the most prevailing disease with progressive incidence worldwide. To date, the pathogenesis of diabetes is far to be understood, and there is no permanent treatment available for diabetes. One of the promising approaches to understand and cure diabetes is to use pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PCSs (iPSCs). ESCs and iPSCs have a great potential to differentiate into all cell types, and they have a high ability to differentiate into insulin-secreting β cells. Obtaining PSCs genetically identical to the patient presenting with diabetes has been a longstanding dream for the in vitro modeling of disease and ultimately cell therapy. For several years, somatic cell nuclear transfer (SCNT) was the method of choice to generate patient-specific ESC lines. However, this technology faces ethical and practical concerns. Interestingly, the recently established iPSC technology overcomes the major problems of other stem cell types including the lack of ethical concern and no risk of immune rejection. Several iPSC lines have been recently generated from patients with different types of diabetes, and most of these cell lines are able to differentiate into insulin-secreting β cells. In this review, we summarize recent advances in the differentiation of pancreatic β cells from PSCs, and describe the challenges for their clinical use in diabetes cell therapy. Furthermore, we discuss the potential use of patient-specific PSCs as an in vitro model, providing new insights into the pathophysiology of diabetes.

  2. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine.

  3. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells

    Science.gov (United States)

    Yong, Yuan; Zhou, Liangjun; Gu, Zhanjun; Yan, Liang; Tian, Gan; Zheng, Xiaopeng; Liu, Xiaodong; Zhang, Xiao; Shi, Junxin; Cong, Wenshu; Yin, Wenyan; Zhao, Yuliang

    2014-08-01

    We have developed a simple and efficient strategy to fabricate WS2 nanosheets with low toxicity and good water solubility via a liquid exfoliation method by using H2SO4 intercalation and ultrasonication. The as-prepared WS2 nanosheets were employed not only as an NIR absorbing agent for photothermal therapy (PTT) but also as a photosensitizer (PS) carrier for photodynamic therapy (PDT) due to their sheet like structure that offers large surface area to load PS molecules. Moreover, singlet-oxygen generation of the PSs-WS2 complex could be finely controlled by NIR irradiation that could manipulate the PSs release behavior from WS2 nanosheets. The synergistic anti-tumor effect of WS2 nanosheets mediated PDT-PTT was also evaluated carefully and the results clearly showed that the efficacy of combined PDT-PTT treatment of cancer cells is significantly higher than those of PDT-only and PTT-only treatment, indicating enhanced efficiency of the combined therapeutic system. In addition, the WS2 could be used as a computed tomography (CT) contrast agent for bio-imaging since W atoms have strong X-ray attenuation ability, making them a multifunctional theranostic platform for simultaneous imaging-guided diagnosis and therapy.We have developed a simple and efficient strategy to fabricate WS2 nanosheets with low toxicity and good water solubility via a liquid exfoliation method by using H2SO4 intercalation and ultrasonication. The as-prepared WS2 nanosheets were employed not only as an NIR absorbing agent for photothermal therapy (PTT) but also as a photosensitizer (PS) carrier for photodynamic therapy (PDT) due to their sheet like structure that offers large surface area to load PS molecules. Moreover, singlet-oxygen generation of the PSs-WS2 complex could be finely controlled by NIR irradiation that could manipulate the PSs release behavior from WS2 nanosheets. The synergistic anti-tumor effect of WS2 nanosheets mediated PDT-PTT was also evaluated carefully and the results

  4. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.

    Science.gov (United States)

    Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R

    2016-09-01

    Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). PMID:27246858

  5. Translating stem cell therapies: the role of companion animals in regenerative medicine

    OpenAIRE

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell r...

  6. Cell Therapy in Patients with Critical Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Rita Compagna

    2015-01-01

    Full Text Available Critical limb ischemia (CLI represents the most advanced stage of peripheral arterial obstructive disease (PAOD with a severe obstruction of the arteries which markedly reduces blood flow to the extremities and has progressed to the point of severe rest pain and/or even tissue loss. Recent therapeutic strategies have focused on restoring this balance in favor of tissue survival using exogenous molecular and cellular agents to promote regeneration of the vasculature. These are based on stimulation of angiogenesis by extracellular and cellular components. This review article carries out a systematic analysis of the most recent scientific literature on the application of stem cells in patients with CLI. The results obtained from the detailed analysis of the recent literature data have confirmed the beneficial role of cell therapy in reducing the rate of major amputations in patients with CLI and improving their quality of life.

  7. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antiox