WorldWideScience

Sample records for cell suspension grafts

  1. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B;

    1998-01-01

    Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7......-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar...... similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days...

  2. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  3. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  4. Flocculation of chromite ore fines suspension using polysaccharide based graft copolymers

    Indian Academy of Sciences (India)

    N C Karmakar; B S Sastry; R P Singh

    2002-11-01

    Graft copolymers are being experimented at the laboratory scale as flocculants. All the four graft copolymers, viz. starch--polyacrylamide, amylopectin--polyacrylamide, sodium alginate--polyacylamide and carboxymethyl cellulose--polyacrylamide performed well as flocculants on chromite ore fines suspension. Amylopectin--polyacrylamide, in particular, performed superior to the rest of the series from the point of view of settling velocity of flocs which is the most important aspect in solid–liquid separation.

  5. Characterization of cell suspensions from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  6. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    . Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  7. Extracted Hair Follicle Outer Root Sheath Cell Suspension for Pigment Cell Restoration in Vitiligo

    OpenAIRE

    Anil Kumar; Sujata Mohanty; Kanika Sahni; Rajesh. Kumar; Somesh Gupta

    2013-01-01

    Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS) transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitilig...

  8. Suspensions of polymer-grafted nanoparticles with added polymers — Structure and effective pair-interactions

    OpenAIRE

    Chandran, Sivasurender; Saw, Shibu; Kandar, A. K.; Dasgupta, C; Sprung, M.; Basu, Jaydeep

    2015-01-01

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft col...

  9. Cell Suspension Culture of Neem Tree

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  10. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells, seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension.

  11. Solvent-mediated pathways to gelation and phase separation in suspensions of grafted nanoparticles

    KAUST Repository

    Anyfantakis, Manos

    2009-01-01

    We explore the role of the solvent medium on the interplay between gelation and phase separation in suspensions of organosilicate planar hybrids grafted with hydrocarbon chains. We establish their phase diagram by means of dynamic light scattering, rheology and visual observations, and different routes to gelation, depending on the solvent used. In agreement with earlier works, the solvent quality for the grafted chains at a given temperature controls the balance between attractions and repulsions, and hence the phase diagram of the nanoparticles and their tendency to gel. Here we show how to tune the suspension state and hence its rheology. For decane, a good solvent for the hydrocarbon chains, gelation occurs at rather low volume fractions in the presence of phase separation. This is due to the interdigitation of solvent molecules with the grafted chains, resulting in their crystalline packing that promotes the attraction between particles. For toluene, a solvent of reduced quality for the hydrocarbon chains, no interdigitation takes place, and hence gelation is triggered by clustering at higher volume fractions before phase separation. Our results support the generic picture of complex kinetic arrest/phase separation interplay in soft matter, where phase separation can proceed, be interrupted or be completely inhibited. A number of interesting possibilities for tailoring the rheology of grafted colloidal systems emerge. © 2009 The Royal Society of Chemistry.

  12. Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes.

    Science.gov (United States)

    Shao, Zhen; Yang, Youngjun; Lee, Hyunsuk; Kim, Jin Woong; Osuji, Chinedum O

    2012-11-15

    Titania nanoparticles were modified by free-radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) at the particle surface, resulting in the formation of a 1-2 nm thick polymer brush. The zwitterionic nature of the polymer layer suggests that the suspension stability is a delicate function of pH, as well as volume fraction, salt concentration and the presence of charged or un-charged additives which may act as depletants or to screen charge interactions in the system. In this context, we characterized the suspension rheology as a function of volume fraction, pH, ionic strength and the concentration of surfactants in the suspension. Near-neutral pH, the brush layer is effective in stabilizing particles against aggregation with Newtonian behavior observed for volume fractions approaching 14%. Flocculation of particles and an onset of shear-thinning behavior was observed on decreasing pH from near-neutral. Conversely, suspension stability was maintained on increasing pH from near-neutral. Likewise, flocculation could be quickly induced by the addition of salt and cationic surfactant in small amounts, but the suspensions displayed greater stability to anionic and non-ionic surfactant additives. These results have important implications for the successful formulation of complex fluids employing zwitterionic colloids. PMID:22909963

  13. Optical analysis of red blood cell suspension

    Science.gov (United States)

    Szołna, Alicja A.; Grzegorzewski, Bronisław

    2008-12-01

    The optical properties of suspensions of red blood cells (RBCs) were studied. Fresh human venues blood was obtained from adult healthy donors. RBCs were suspended in isotonic salt solution, and in autologous plasma. Suspensions with haematocrit 0.25 - 3% were investigated. Novel technique was proposed to determine the scattering coefficient μs for the suspensions. The intensity of He-Ne laser light transmitted through a wedge-shape container filled with a suspension was recorded. To find the dependence of the intensity on the thickness of the sample the container was moved horizontally. The dependence of μs on the haematocrit was determined for RBCs suspended in the isotonic salt solution. RBCs suspended in plasma tend to form rouleaux. For the RBCs suspended in plasma, the scattering coefficient as a function of time was obtained. It is shown that this technique can be useful in the study of rouleaux formation.

  14. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    Callus cultures of carnation, Dianthus caryophyllus L. ev. G. J. Sim, were grown on a synthetic medium of half strength Murashige and Skoog salts, 3 % sucrose, 100 mg/l of myo-inositol, 0.5 mg/l each of thiamin, HCl, pyridoxin, HCl and nicotinic acid and 10 g/l agar. Optimal concentrations of....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  15. DNA analysis of epithelial cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; Johnson, N.F.; Holland, L.M.

    1985-01-01

    Cell suspensions of skin were obtained by animals exposed by skin painting of several crude oils. DNA analysis of these cell suspensions labeled with mithramycin provide determination of percentages of cells in the G/sub 1/, S and G/sub 2/M phases of the cell cycle. Data acquired showed differences from control animals occurring as early as 7 days after treatment and persisting through 21 days afterwards. There was histological evidence of erythema and hyperplasia in shale oil-exposed skins. Flow cytometric analysis of DNA content in shale-oil-exposed skin cells showed an increased percentage of cycling cells plus evidence of aneuploidy. Similar data from simply abraded skin showed increased percentages of cycling cells, but no aneuploidy. The shale-oil-exposed group, when compared to a standard petroleum-exposed group, had significantly increased percentages of cycling cells. This early indication of differing response to different complex mixtures was also seen in long-term skin exposures to these compounds. Similar analytical techniques were applied to tracheal cell suspensions from ozone-exposed rats. 12 refs., 4 figs., 4 tabs. (DT)

  16. Adipose-derived regenerative cell (ADRC)-enriched fat grafting: optimal cell concentration and effects on grafted fat characteristics

    OpenAIRE

    Kakudo, Natsuko; Tanaka, Yoshihito; Morimoto, Naoki; Ogawa, Takeshi; Kushida, Satoshi; Hara, Tomoya; Kusumoto, Kenji

    2013-01-01

    Background To overcome the absorption of traditional fat grafting, techniques for adipose-derived regenerative cell (ADRC)-enriched fat grafting are currently being adapted for practical application. The Celution®800/CRS (Cytori Therapeutics, San Diego, CA) has enabled rapid grafting of the patient’s own freshly harvested ADRCs without requiring a culturing step. However, the optimal cell concentration and the effects of ADRCs on the characteristics of grafted fat after free fat grafting rema...

  17. Phosphatidylinositol species of suspension cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Heim, S.; Wagner, K.G.

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with (/sup 3/H)inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different /sup 3/H-labeled species by autoradiography. The ratio of (/sup 3/H)inositol incorporation into PI, PIP and PIP/sub 2/ was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound.

  18. STUDY ON SYNTHESIS OF SUPERABSORBENT OF STARCH-GRAFT-POLY(KAA- CO-AAm) BY INVERSE SUSPENSION COPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Synthesis of superabsorbent of starch-graft-poly(potassium acrylate-co-acrylamide) hasbeen studied by inverse suspension polymerization. In this paper, the effects of reaction conditions,such as, monomeric concentration, the amount of cross-linking agent, ratio of water to oil, reactiontemperature and the best condition being able to obtain the spherical resin were investigatedExperiments show that the water-absorbing resin is strong and capable of resisting pressure ofretain water. It keeps the shape of particles after absorbing water. ,Aftier mixing with soil, it does notbecome sticky, and the coos structure can better retain air. It just fit agriculture and forest. Inaddition, thermogravimetric analysis revealed the superior thermal stability of the grafted product,and its large size particles also reduces risk of air pollution.

  19. Dielectric Constant of Suspensions of Blood Cells

    Science.gov (United States)

    Mendelson, Kenneth; Ackmann, James

    1996-03-01

    Measurements of the complex dielectric constant of suspensions of blood cells have recently been reported by Ackmann, et al.(J. J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). At frequencies below 100 kHz, the real part of the dielectric constant (ɛ') goes through a maximum at a blood cell volume fraction of about 70%. Effective medium approximations do not agree well with this behavior. As a more realistic model, we are studying the grain consolidation model of Roberts and Schwartz(J. N. Roberts and L. M. Schwartz, Phys. Rev. B 31), 5990 (1985). We have used a finite element method to calculate the dielectric constant of this model for a cubic array of spheres. The simulations agree remarkably well with experiment. They suggest, however, that ɛ' may be showing oscillations rather than a simple maximum. Comparison of the simulated and experimental points suggests that this is not an artifact of the periodic array used in the model. Furthermore the simulations indicate that the maximum (or oscillations) disappears at low conductivities of the suspending fluid.

  20. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  1. Do Stem Cells Have an Effect When We Fat Graft?

    Science.gov (United States)

    Rinker, Brian D; Vyas, Krishna S

    2016-06-01

    Fat grafting has become a widely accepted modality of soft tissue restoration and has found applications in many areas of aesthetic and reconstructive plastic surgery. Numerous claims have been made regarding the regenerative effects of fat grafting on the recipient bed. The purpose of this paper is to survey the available literature to answer the question of whether fat grafting has a positive effect on the surrounding tissues. It has been convincingly demonstrated that fat grafts contain viable adipose-derived stem cells (ASCs). The fate of these cells is determined by the microenvironment of the recipient bed, but animal studies have shown that a large fraction of ASCs survive engraftment. Numerous clinical studies have demonstrated the positive effects of fat grafting on recipient tissues. Improvement in validated scar scores as well as scar stiffness measurements have been documented after fat grafting of burn scars. Fat grafting has also been convincingly demonstrated to improve the quality of irradiated tissues, as measured by validated clinical scales and staged histology. It is ultimately unclear whether ASCs are responsible for these effects, but the circumstantial evidence is weighty. Fat grafting is effective for volumizing and improving skin quality in the setting of radiation, burns, and other scars. The observed effects are likely due to ASCs, but the evidence does not support the routine use of ASC-enriched fat grafts. PMID:26545225

  2. Grafting

    International Nuclear Information System (INIS)

    The unique value of ionizing radiation for the initiation of grafting to backbone polymers is discussed. The principles of the technique are briefly reviewed. The conditions under which free radicals and ions participate in these reactions are examined. Examples of representative grafting processes are considered to illustrate where the technique can be of potential commercial value to a wide range of industries. The general principles of these grafting reactions are shown to be applicable to radiation induced rapid cure technology such as is provided by electron beam processing facilities. Grafting reactions initiated by UV are also treated and shown to be of importance because of the many similarities in properties of the ionizing radiation and UV systems, also the rapid industrial exploitation of EB and sensitized UV processing technology. Possible future trends in radiation grafting are outlined. (author)

  3. Suspensions

    Science.gov (United States)

    Braccini, Stefano

    2000-06-01

    Special suspension systems are used in gravitational wave detectors to reduce the transmission of seismic vibrations to test masses by many orders of magnitude. In ground-based interferometric antennas, this allows to detect gravitational signals even below a few tens of Hz, where seismic vibrations are very strong. The state of the art on this topic is presented. .

  4. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor;

    2012-01-01

    the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications. In...... the human studies, so-called cell assisted lipotransfer (CAL) increased the ASC concentration 2-5 times compared with non-manipulated fat grafts, which caused a questionable improvement in survival of fat grafts, compared with that of traditional lipofilling. In contrast, in two of the murine studies......Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...

  5. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    ammonium malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities...

  6. Structure-property relationships in vegetable cell wall suspensions

    OpenAIRE

    Sankaran, Ashwin Karthik

    2015-01-01

    Plant cell wall suspensions are widely present in daily food, such as soups, dressings and sauces. Cell walls of edible plants are made up of an intricate biopolymer network of mainly cellulose microfibrils, pectins, and hemicelluloses. Foodsnbsp;as soups, ketchup, etc are made up of cell wall components. Modern processing methods alter the chemical and physical nature of the cell wall which in turn affect the properties of the end product. There is a need in the industry to build a fundament...

  7. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    OpenAIRE

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  8. Metabolism of quercetin in cell suspension culture of Nicotiana tabacum

    International Nuclear Information System (INIS)

    Quercetin was oxidized on a rotating glassy-carbon electrode in phosphate-methanol buffer. The half-wave potentials for several pH were determined. Oxidation of quercetin by one of Nicotiana tabacum cell suspension cultures was carried out in vitro and final products were characterized by means of UV spectra and mass-spectrophotometry. Each product of oxidation was assayed for oxygen consumption inhibiting activity, using a 3 days old cell suspension culture of Nicotiana tabacum. Dimers and polymers showed strong inhibiting activity in O-2 consumption

  9. Graft rejection after hematopoietic cell transplantation with nonmyeloablative conditioning

    DEFF Research Database (Denmark)

    Masmas, T.N.; Petersen, S.L.; Madsen, H.O.; Ryder, L.P.; Kornblit, B.; Svejgaard, A.; Andersen, P.; Dickmeiss, E.; Vindelov, L.L.

    2008-01-01

    Graft rejection after hematopoietic cell transplantation (HCT) with nonmyeloablative conditioning is a rare but serious clinical problem. Graft rejection and salvage therapy in eight patients in a retrospective analysis of 124 consecutive patients is reported. The patients were conditioned with low......-dose fludarabine and total body irradiation (TBI). The association of pretransplantation risk factors with rejection and the effect of chimerism and graft-versus-host disease on rejection were analyzed. Overall survival (OS) and progression free survival (PFS) were compared between patients with and without......, patients are at greater risk of dying from infections and progression/relapse of their malignancy. Retransplantation is feasible and well tolerated after HCT with nonmyeloablative conditioning and should be performed without delay in patients with imminent and manifest graft rejection Udgivelsesdato: 2008/7...

  10. Graft-Derived Cell-Free DNA as a Marker of Transplant Graft Injury.

    Science.gov (United States)

    Oellerich, Michael; Walson, Philip D; Beck, Julia; Schmitz, Jessica; Kollmar, Otto; Schütz, Ekkehard

    2016-04-01

    Although short-term success after solid organ transplantation is good, long-term graft and recipient survival are both not satisfactory. Despite therapeutic drug monitoring (TDM) of immunosuppressive drugs (ISDs), both excessive and insufficient immunosuppression still do occur. There is a need for new biomarkers that, when combined with TDM, can be used to provide more effective and less toxic, personalized immunosuppression to improve long-term survival. Currently used methods are insufficient to rapidly, cost-effectively, and directly interrogate graft integrity after solid organ transplantation. However, because organ transplants are also genome transplants, measurement of graft-derived circulating cell-free DNA (GcfDNA) has shown promise as a way to improve both graft and recipient outcomes after solid organ transplantation through the early detection of severe graft injury, enabling an early intervention. A newly developed droplet digital polymerase chain reaction (ddPCR) method has advantages over expensive high-throughput sequencing methods to rapidly quantify GcfDNA percentages and absolute amounts. This procedure does not require donor DNA and therefore can be applied to any organ donor/recipient pair. The droplet digital polymerase chain reaction method allows for the early, sensitive, specific, and cost-effective direct assessment of graft integrity and can be used to define individual responses to ISDs including the minimal ISD exposures necessary to prevent rejection. This is especially important in patients undergoing ISD switches due to ISD toxicity, infections, or malignancies. Although prospective, multicenter clinical trials in liver, heart, and kidney transplantation have not been completed, early results suggest that GcfDNA can be combined with TDM to guide changes in immunosuppression to provide more effective, and less toxic treatment. Personalized immunosuppression will shift emphasis in transplantation from reaction to prevention and could

  11. Optical methods for diagnostic of cell-tissue grafts

    Science.gov (United States)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  12. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  13. Allogeneic split-skin grafting in stem cell transplanted patients

    DEFF Research Database (Denmark)

    Olsen, Jan Kyrre Berg; Vindeløv, Lars; Schmidt, G.;

    2008-01-01

    SUMMARY: We present a unique case of a bone marrow stem cell transplanted (BMT) patient with cutaneous chronic Graft versus Host Disease (cGvHD) who underwent successful allogeneic split-thickness skin graft (STSG) transplantation. BMT had previously been carried out due to myelodysplasia and non......). Allogeneic skin grafts are known to be acutely rejected. Successful allogeneic STSG has only been reported in sporadic cases of identical twins (isotransplantation). This case is the first to demonstrate what works in theory: the immune system of a stem cell transplanted patient with 100% or mixed stable...... donor chimaerism will not recognise skin from the stem cell donor as foreign. Due to advances in haematology, the number of BMT patients and their long-term survival is expected to increase. cGvHD, predisposing to skin problems and ulcerations, complicates up to 70% of cases of BMT. In BMT patients...

  14. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease

    OpenAIRE

    ZHENG, HONG; Matte-Martone, Catherine; Li, Hongmei; Anderson, Britt E.; Venketesan, Srividhya; Sheng Tan, Hung; Jain, Dhanpat; McNiff, Jennifer; Shlomchik, Warren D.

    2008-01-01

    Much of the efficacy of allogeneic hematopoietic stem cell transplantation (alloSCT) in curing hematologic malignancies is due to a graft-versus-leukemia (GVL) effect mediated by donor T cells that recognize recipient alloantigens on leukemic cells. Donor T cells are also important for reconstituting immunity in the recipient. Unfortunately, donor T cells can attack nonmalignant host tissues and cause graft-versus-host disease (GVHD). We previously reported that donor CD4+ effector memory T c...

  15. Breast reconstruction after nipple/areola-sparing mastectomy using cell-enhanced fat grafting

    OpenAIRE

    Calabrese C; Orzalesi L; Casella D.; Cataliotti L

    2009-01-01

    BACKGROUND: The success of fat grafting in breast reconstruction depends on fat retention. The use of stem-cells-enriched fat graft is an alternative method for graft stability. CASE REPORT: A case of nipple-areola sparing mastectomy double stage reconstruction with the use of stem cells enhanced fat graft is reported. CONCLUSIONS: Fat grafting is growing as a new and promising tool in reconstruction following nipple and areola sparing mastectomies as a way to restore a suffici...

  16. Cells adhesion and growth on gold nanoparticle grafted glass

    International Nuclear Information System (INIS)

    The surface of glass substrate was plasma treated, coated by gold nano-structures and subsequently grafted with nanoparticles. The samples were plasma treated, sputtered with Au nanostructures which was followed by grafting with biphenyl-4,4′-dithiol (BPD) and then gold nanoparticles. The wettability, optical and chemical properties and surface morphology were studied. The adhesion and proliferation of vascular smooth muscle cells (VSMCs) on the samples were investigated in-vitro as well. Grafting of gold nanoparticles with the dithiol increases the UV–vis absorbance, the surface becomes more hydrophobic, rougher and more rugged compared to pristine, sputtered and only dithiol treated surface. Gold nano-particles bound over dithiol and Au nanostructures cause better cell proliferation than purely BPD treated or pristine glass.

  17. Automated single cell isolation from suspension with computer vision

    OpenAIRE

    Rita Ungai-Salánki; Tamás Gerecsei; Péter Fürjes; Norbert Orgovan; Noémi Sándor; Eszter Holczer; Robert Horvath; Bálint Szabó

    2016-01-01

    Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1–2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any...

  18. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  19. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain

    Science.gov (United States)

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  20. Graft Copolymerization of Acrylic Acid onto Fungal Cell Wall Structural Polysaccharide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acrylic acid was graft-copolymerized onto Rhi. oryzae's cell wall structural polysacchaxide directly and efficiently in aqueous solution with ceric ammonium nitrate as initiator. The maximal grafting percentage of 135.5% was obtained under the condition of [Ce4+]=5mmol.L-1, [AA]=1mol.L-1, T=60°C and t=3h. Graft copolymerization was suggested to proceed through free radical reaction mechanism. Grafting occurred primarily on chitosan. Acrylic acid was also attempted to be grafted onto Asp. niger cell wall structural polysaccharide, and only 44.2% of grafting percentage was resulted.

  1. Immunophenotyping of hematopoietic progenitor cells: Comparison between cord blood and adult mobilized blood grafts

    OpenAIRE

    2011-01-01

    AIM: To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 908) using flow cytometry analysis.

  2. Impurity of stem cell graft by murine embryonic fibroblasts – implications for cell-based therapy of the central nervous system

    Directory of Open Access Journals (Sweden)

    Marek eMolcanyi

    2014-09-01

    Full Text Available Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts – MEFs. Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.33% ± 2.81 of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed.

  3. Ascorbic acid improves embryonic cardiomyoblast cell survival and promotes vascularization in potential myocardial grafts in vivo

    OpenAIRE

    Martinez, E. C.; Wang, J; Gan, S U; Singh, R.; Lee, C. N.; Kofidis, T

    2010-01-01

    Organ restoration via cell therapy and tissue transplantation is limited by impaired graft survival. We tested the hypothesis that ascorbic acid (AA) reduces cell death in myocardial grafts both in vitro and in vivo and introduced a new model of autologous graft vascularization for later transplantation. Luciferase (Fluc)- and green fluorescent protein (GFP)-expressing H9C2 cardiomyoblasts were seeded in gelatin scaffolds to form myocardial artificial grafts (MAGs). MAGs were supplemented wit...

  4. Stem cell grafting in parkinsonism--why, how and when.

    Science.gov (United States)

    de Munter, Johannes P J M; Melamed, Eldad; Wolters, Erik Ch

    2014-01-01

    Parkinson's disease is a devastating, progressive neurodegenerative disorder that affects the central and peripheral nervous systems. Although recent advancements have led to a better understanding of the disorder, there is currently no long-term disease-modifying strategy. Recently, preclinical data have identified the significant effects of pluripotent stem cell grafting in 6-OHDA and MPTP animal models of motor parkinsonism; there have also been some clinical data in patients with motor parkinsonism. Pluripotent stem cells can nestle in affected organs and can differentiate into a variety of cells, including neural (dopamine producing) cells. Depending on the environment into which they are grafted, these stem cells can also influence immune responses by regulating the activity of B-cells, T-cells, and NK-cells. Pluripotent stem cells can also produce chemotrophins, including BDNF (brain-derived neurotrophic factor), GDNF (glial-derived neurotrophic factor), NGF (nerve growth factor), TGF-β (transforming growth factor-β), IGF-1 (insulin-like growth factor 1), NT-3 (neurotrophin 3), and SCF-1 (stem cell factor 1). Influencing these trophic factors can influence plasticity. This article explores the potential of pluripotent stem cells in the treatment of PD. We will explore the utilization of pluripotent stem cells in the immunomodulation of B-cells, T-cells and NK-cells, the transdifferentiation of pluripotent stems cells into DA-cells, and the secretion of trophic factors and its relation to plasticity. We will also cover how best to conduct a clinical trial, which stem cells can be safely used in patients, what are the methods of induction before application, and how to re-apply stem cells in patients by intravasal, intrathecal or intracerebral methods. Finally, we will describe how to objectively record the clinical results. PMID:24262169

  5. Automated single cell isolation from suspension with computer vision.

    Science.gov (United States)

    Ungai-Salánki, Rita; Gerecsei, Tamás; Fürjes, Péter; Orgovan, Norbert; Sándor, Noémi; Holczer, Eszter; Horvath, Robert; Szabó, Bálint

    2016-01-01

    Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1-2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any tissue cell type. Combination of 1 μm positioning precision, adaptive cell targeting and below 1 nl liquid handling precision resulted in an unprecedented accuracy and efficiency in robotic single cell isolation. Single cells were injected either into the wells of a miniature plate with a sorting speed of 3 cells/min or into standard PCR tubes with 2 cells/min. We could isolate labeled cells also from dense cultures containing ~1,000 times more unlabeled cells by the successive application of the sorting process. We compared the efficiency of our method to that of single cell entrapment in microwells and subsequent sorting with the automated micropipette: the recovery rate of single cells was greatly improved. PMID:26856740

  6. Automated single cell isolation from suspension with computer vision

    Science.gov (United States)

    Ungai-Salánki, Rita; Gerecsei, Tamás; Fürjes, Péter; Orgovan, Norbert; Sándor, Noémi; Holczer, Eszter; Horvath, Robert; Szabó, Bálint

    2016-01-01

    Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1–2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any tissue cell type. Combination of 1 μm positioning precision, adaptive cell targeting and below 1 nl liquid handling precision resulted in an unprecedented accuracy and efficiency in robotic single cell isolation. Single cells were injected either into the wells of a miniature plate with a sorting speed of 3 cells/min or into standard PCR tubes with 2 cells/min. We could isolate labeled cells also from dense cultures containing ~1,000 times more unlabeled cells by the successive application of the sorting process. We compared the efficiency of our method to that of single cell entrapment in microwells and subsequent sorting with the automated micropipette: the recovery rate of single cells was greatly improved. PMID:26856740

  7. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kasálková-Slepičková, N.; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, Lucie; Rimpelová, S.; Švorčík, V.

    2012-01-01

    Roč. 272, FEB 1 (2012), s. 391-395. ISSN 0168-583X. [International Conference on Ion Beam Modification of Materials /17./. Montreal, 22.08.2010-27.08.2010] R&D Projects: GA ČR(CZ) GAP108/10/1106; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509 Keywords : polyenthyne * gold nanoparticles * grafting * cell proliferation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.266, year: 2012

  8. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  9. IFN-γ and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity

    OpenAIRE

    Lu, Ying; Giver, Cynthia R.; Sharma, Akshay; Li, Jian Ming; Darlak, Katarzyna A.; Owens, Lauren M.; Roback, John D.; Galipeau, Jacques; Waller, Edmund K.

    2012-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) can eradicate chemorefractory leukemia through the graft-versus-leukemia (GVL) activity of donor T cells. However, the clinical success of allo-HSCT is limited by the graft-versus-host disease (GVHD) activity of donor T cells. We have reported previously that donor bone marrow precursors of plasmacytoid dendritic cells (pre-pDCs) can activate donor T cells toward T-helper 1 immune polarization in murine allogeneic HSCT. To optimize the...

  10. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  11. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  12. Graft rejection after hematopoietic cell transplantation with nonmyeloablative conditioning.

    Science.gov (United States)

    Masmas, Tania N; Petersen, Søren L; Madsen, Hans O; Ryder, Lars P; Kornblit, Brian; Svejgaard, Arne; Andersen, Pernille; Dickmeiss, Ebbe; Vindeløv, Lars L

    2008-07-01

    Graft rejection after hematopoietic cell transplantation (HCT) with nonmyeloablative conditioning is a rare but serious clinical problem. Graft rejection and salvage therapy in eight patients in a retrospective analysis of 124 consecutive patients is reported. The patients were conditioned with low-dose fludarabine and total body irradiation (TBI). The association of pretransplantation risk factors with rejection and the effect of chimerism and graft-versus-host disease on rejection were analyzed. Overall survival (OS) and progression free survival (PFS) were compared between patients with and without rejection. Retransplantation was performed with increased TBI conditioning for all patients, and with increased mycophenolate mofetil doses for recipients with HLA-identical sibling donors. No known pretransplantation risk factors were confirmed in this study. Rejection episodes were unevenly distributed over time. The storage temperature of the apheresis products was identified as a risk factor for rejection. Storage of the apheresis products at 5 degrees C diminished the risk of rejection. Low donor T cell chimerism at Day +14 significantly increased the risk of rejection. Seven patients were retransplanted. All but one engrafted successfully, but with decreased OS and PFS. Two patients received pentostatin infusion prior to donor lymphocyte infusions in unsuccessful attempts at reversing rejection. Storage temperature and donor chimerism had a significant effect on rejection. Following rejection, patients are at greater risk of dying from infections and progression/relapse of their malignancy. Retransplantation is feasible and well tolerated after HCT with nonmyeloablative conditioning and should be performed without delay in patients with imminent and manifest graft rejection. PMID:18383319

  13. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation.

    Science.gov (United States)

    Okamura, Aiko; Itayagoshi, Midori; Hagiwara, Taeko; Yamaguchi, Manae; Kanamori, Toshiyuki; Shinbo, Toshio; Wang, Pi-Chao

    2005-04-01

    We developed a novel selective cell-separation method based on using a poly(N-isopropylacrylamide)-graft-polypropylene (PNIPAAm-g-PP) membrane containing adsorbed monoclonal antibody specific to the target cell. This membrane was prepared by plasma-induced polymerization and soaking in an antibody solution at 37 degrees C. Poly(N-isopropylacrylamide) has a thermoresponsive phase transition: at 32 degrees C water-insoluble (hydrophobic) and water-soluble (hydrophilic) states interconvert. Adsorption of antibody onto PNIPAAm-g-PP membrane at 37 degrees C and its desorption at 4 degrees C was verified by fluorescence-microscopy of the PNIPAAm-g-PP membrane after soaking it in fluorescein-conjugated goat anti-mouse IgG in phosphate-buffered saline. PNIPAAm-g-PP membranes containing adsorbed anti-mouse CD80 monoclonal antibody preferentially captured mouse-CD80 transfected cells at 37 degrees C compared with membranes lacking antibody or containing anti-mouse CD86 monoclonal antibody. Detachment of captured cells from PNIPAAm-g-PP membranes was facilitated by washing at 4 degrees C because of the thermoresponsive phase transition of PNIPAAm. With this method, mouse CD80- or mouse CD86-transfected cells were enriched from a 1:1 cell suspension to 72% or 66%, simply and with high yield. PMID:15475058

  14. Separating graft-versus-leukemia from graft-versus-host disease in allogeneic hematopoietic stem cell transplantation

    OpenAIRE

    Li, Jian-Ming; Giver, Cynthia R.; Lu, Ying; Hossain, Mohammad S.; Akhtari, Mojtaba; Waller, Edmund K.

    2009-01-01

    Routine methods to maximize the graft-versus-leukemia (GvL) activity of allogeneic hematopoietic stem cell transplantation (HSCT) without the detrimental effects of graft-versus-host disease (GvHD) are lacking. Depletion or inhibition of alloreactive T cells is partially effective in preventing GvHD, but usually leads to decreased GvL activity. The current model for the pathophysiology of acute GvHD describes a series of immune pathways that lead to activation of donor T cells and inflammator...

  15. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    Science.gov (United States)

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  16. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  17. Prosthetic graft infection: limitations of indium white blood cell scanning

    International Nuclear Information System (INIS)

    The lack of a rapid, noninvasive, and accurate method to confirm or rule out prosthetic graft infection continues to constitute a compelling and vexing clinical problem. A host of adjunctive diagnostic techniques has been used in the past, but early promising results subsequently have usually not yielded acceptable sensitivity (reflecting false negatives) and specificity (reflecting false positive) data. White blood cell (WBC) indium 111 scanning has recently been added to this list. The utility and accuracy of 111In WBC scans were assessed by retrospective review of WBC scan results in 70 patients undergoing evaluation for possible prosthetic graft infection over a 7-year period. Operative and autopsy data (mean follow-up, 18 months for survivors with negative scans) were used to confirm the 22 positive, 45 negative, and three equivocal WBC scans. The false positive rate (+/- 70% confidence limits) was 36% +/- 6% (n = 8) among the 22 patients with positive scans (44% +/- 6% [11 of 25] if the three equivocal scans are included as false positive), yielding a specificity of 85% +/- 5% and an overall accuracy rate of 88% +/- 4% (80% +/- 5% and 84% +/- 5%, respectively, if the three equivocal cases are considered as false positive). All three patients with equivocal scans ultimately were judged not to have prosthetic graft infection. As implied by the high accuracy rate, the sensitivity of the test was absolute (100% [14 of 14]); there were no false negative results

  18. Metal supported tubular solid oxide fuel cells fabricated by suspension plasma spray and suspension high velocity oxy-fuel spray

    Science.gov (United States)

    Yoo, Yeong; Wang, Youliang; Deng, Xiaohua; Singh, Devinder; Legoux, Jean-Gabriel

    2012-10-01

    Low temperature (LT) metal supported solid oxide fuel cells (SOFCs) have many advantages in comparison to conventional electrode or electrolyte supported type SOFCs. NRC has demonstrated high performance LT metal supported planar SOFCs fabricated by either wet colloidal spray/sintering or suspension thermal spray. The combination of tubular configuration and metal supported SOFCs may produce more unique and very attractive advantages such as easy and inexpensive sealing method and materials, high specific and volumetric power density, cost-effective fabrication, enhanced robustness, rapid start up, red-ox cycle tolerance and potential use for a pressurized integrated system. In this paper, thin film solid electrolyte of Sm0.2Ce0.8O1.90 (SDC) and NiO-SDC composite anode on sintered porous tubular metal supports were deposited by suspension HVOF spray and suspension plasma spray, respectively on sintered porous tubular metal support. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode on the SDC electrolyte was formed by wet colloidal spray and subsequent sintering process as the final fabrication step. The detailed investigation of suspension and process-related parameters for suspension thermal spray was performed in order to produce thin and crack-free SDC thin film coatings. The electrochemical performance of single cells was demonstrated.

  19. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection.

    Science.gov (United States)

    Zhuang, Quan; Liu, Quan; Divito, Sherrie J; Zeng, Qiang; Yatim, Karim M; Hughes, Andrew D; Rojas-Canales, Darling M; Nakao, A; Shufesky, William J; Williams, Amanda L; Humar, Rishab; Hoffman, Rosemary A; Shlomchik, Warren D; Oberbarnscheidt, Martin H; Lakkis, Fadi G; Morelli, Adrian E

    2016-01-01

    Successful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells. We show that donor DCs that accompany heart or kidney grafts are rapidly replaced by recipient DCs. The DCs originate from non-classical monocytes and form stable, cognate interactions with effector T cells in the graft. Eliminating recipient DCs reduces the proliferation and survival of graft-infiltrating T cells and abrogates ongoing rejection or rejection mediated by transferred effector T cells. Therefore, host DCs that infiltrate transplanted organs sustain the alloimmune response after T-cell activation has already occurred. Targeting these cells provides a means for preventing or treating rejection. PMID:27554168

  20. Preparation of Single Cell Suspensions from Mouse Aorta

    Science.gov (United States)

    Hu, Desheng; Yin, Changjun; Mohanta, Sarajo K.; Weber, Christian; Habenicht, Andreas J. R.

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by lipid deposition, plaque formation, and immune cell infiltration. Innate and adaptive immune cells infiltrate the artery during development of the disease. Moreover, advanced disease leads to formation of artery tertiary lymphoid organs in the adventitia (Grabner et al., 2009; Hu et al., 2015). Various and diverse types of immune cells have been identified in the aorta adventitia vs atherosclerotic plaques (Elewa et al., 2016; Galkina et al., 2006; Lotzer et al., 2010; Mohanta et al., 2016; Mohanta et al., 2014; Moos et al., 2005; Srikakulapu et al., 2016; Zhao et al., 2004). There are conflicting reports on the number and subtypes of immune cells in the aorta depending on the age of the animals, the protocol that is used to obtain single cell suspensions, and the dietary conditions of the mice (Campbell et al., 2012; Clement et al., 2015; Galkina et al., 2006; Kyaw et al., 2012). The number of immune cells in the aorta differs as much as tenfold using different protocols (Butcher et al., 2012; Galkina et al., 2006; Gjurich et al., 2015; Grabner et al., 2009; Hu et al., 2015). These discrepant results call for a protocol that robustly documents bona fide aorta cells rather than those in the surrounding tissues or blood. Critical methodological hurdles include the removal of adjacent adipose tissue and small paraaortic lymph nodes lining the entire aortic tree that are not visible by the naked eye. A dissection microscope is therefore recommended. Moreover protocols of aorta preparations should ascertain that lymphocyte aggregates referred to as fat associated lymphoid clusters (FALCs) (Benezech et al., 2015; Elewa et al., 2015) that are often present at the border between the adipose tissue and the adventitia are removed before enzyme digestion. We propose - besides other approaches (Hu et al., 2015; Mohanta et al., 2014) - a combination of immunohistochemical staining and

  1. Graft-infiltrating cells expressing a CD200 transgene prolong allogeneic skin graft survival in association with local increases in Foxp3(+)Treg and mast cells.

    Science.gov (United States)

    Gorczynski, Reginald M; Chen, Zhiqi; Khatri, Ismat; Yu, Kai

    2011-12-01

    Expression of the molecule CD200 has been reported to increase allograft survival by suppression of inflammation and acquired immunity. In previous studies we have shown that increased skin and cardiac allograft survival in transgenic mice over-expressing CD200 (CD200(tg)) occurs in association with increased intra-graft expression of mRNAs for genes associated with altered T cell subset differentiation. We investigated changes in graft-infiltrating cells, Treg and mast cells in skin grafts post transplantation into control or CD200(tg) mice, using focused gene array and real-time PCR to assess altered gene expression, and FACS, immunohistology and MLC to determine numbers/function of those cells. Graft-infiltrating cells isolated from CD200(tg) recipients suppressed induction of CTL from control lymph node cells in vitro, and contained increased numbers of infiltrating, non-degranulating, mast cells and Foxp3(+)Treg. Mast cells were also evident in graft tissue of control animals, but there these cells showed evidence for degranulation, and fewer Foxp3(+)Treg were present than was the case of CD200(tg) mice. The infusion of a competitive inhibitor of CD200:CD200R interactions, CD200(tr), at high concentrations (50μg/mouse iv) caused rapid rejection of grafts in CD200(tg) mice, mast cell degranulation within graft tissue, and a decrease in Treg infiltrates. These effects were attenuated by simultaneous infusion of the mast cell stabilizer, sodium cromoglycate. We conclude that CD200 expression contributes to graft prolongation through local suppression of mast cell degranulation, attraction/expansion of Treg, and attenuation of T cell effector activation. PMID:21801836

  2. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.

    2003-06-24

    Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

  3. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.;

    2006-01-01

    analysed showed calcofluor-stained appositions. However, in habituated and dehabituated cells, appositions were not recognized by an anticallose antibody. This finding suggested the accumulation of an extracellular polysaccharide different to callose, probably a 1,4-ß-glucan in these cell lines......The effects of the cellulose inhibitor dichlobenil on the cell wall composition and structure during the habituation/dehabituation process of suspension-cultured bean cells were assessed. A range of techniques were used including cell wall fractionation, sugar analysis, immunofluorescence and...... fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...

  4. Induction of Apoptosis in Protoplasts and Suspension Cultures of Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many studies have showed that apoptosis exists in plants. Our study shows that (1) menadione(VK3) induces apoptosis in suspension cultures of carrot cells; (2) heat shock induces apoptosis in suspension cultures of tobacco cells; and (3) ethrel induces apoptosis in carrot protoplasts. Some important indications of apoptosis were observed, including DNA laddering, TUNEL-positive reaction, condensation and degradation of nuclei.

  5. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O; Welinder, K G

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  6. Optimal graft source for allogeneic hematopoietic stem cell transplant: bone marrow or peripheral blood?

    Science.gov (United States)

    Adhikari, Janak; Sharma, Priyadarshani; Bhatt, Vijaya Raj

    2016-08-01

    Peripheral blood (PB), compared with bone marrow graft, has higher stem cell content, leads to faster engraftment and is more convenient for collection. Consequently, the use of PB graft has significantly increased in recent years. Although the use of PB graft is acceptable or even preferred to bone marrow graft in matched related donor allogeneic transplant due to a possibility of improved survival, PB graft increases the risk of chronic graft-versus-host disease and associated long-term toxicities in the setting of matched unrelated donor allogeneic transplant. In haploidentical transplant, mitigation of graft-versus-host disease with the use of post-transplant cyclophosphamide is a hypothesis-generating possibility; however, available studies have significant limitations to draw any definite conclusion. PMID:27168462

  7. Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N., E-mail: nadine.wolf@zae-bayern.de [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Stubhan, T. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Manara, J.; Dyakonov, V. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Brabec, C.J. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Renewable Energies, Haberstraße 2a, 91058 Erlangen (Germany)

    2014-08-01

    Aluminum doped zinc oxide (AZO) nanoparticles were redispersed in isopropyl alcohol and stabilized with different stabilizers and mixtures of stabilizers that allow for electronically functional particles. The size of the redispersed nanoparticles was small enough to use these suspensions to build interfacial layers in inverted polymer-fullerene solar cells. The performance of these devices was found to depend on the stabilizer used in the nanoparticle suspension. The best performance was obtained with an AZO interfacial layer built with a 3,6,9-trioxadecanoic acid and polyvinylpyrrolidone stabilized nanoparticle suspension. - Highlights: • Preparation of stable aluminum doped zinc oxide nanoparticle suspensions • Different stabilizers were used to stabilize these nanoparticle suspensions. • The material was used as interfacial layers in inverted polymer solar cells. • The performance of these devices depends on the stabilizer used in the suspension.

  8. Cell therapy of hip osteonecrosis with autologous bone marrow grafting

    Directory of Open Access Journals (Sweden)

    Hernigou Philippe

    2009-01-01

    Full Text Available Background: One of the reasons for bone remodeling leading to an insufficient creeping substitution after osteonecrosis in the femoral head may be the small number of progenitor cells in the proximal femur and the trochanteric region. Because of this lack of progenitor cells, treatment modalities should stimulate and guide bone remodeling to sufficient creeping substitution to preserve the integrity of the femoral head. Core decompression with bone graft is used frequently in the treatment of osteonecrosis of the femoral head. In the current series, grafting was done with autologous bone marrow obtained from the iliac crest of patients operated on for early stages of osteonecrosis of the hip before collapse with the hypothesis that before stage of subchondral collapse, increasing the number of progenitor cells in the proximal femur will stimulate bone remodeling and creeping substitution and thereby improve functional outcome. Materials and Methods: Between 1990 and 2000, 342 patients (534 hips with avascular osteonecrosis at early stages (Stages I and II were treated with core decompression and autologous bone marrow grafting obtained from the iliac crest of patients operated on for osteonecrosis of the hip. The percentage of hips affected by osteonecrosis in this series of 534 hips was 19% in patients taking corticosteroids, 28% in patients with excessive alcohol intake, and 31% in patients with sickle cell disease. The mean age of the patients at the time of decompression and autologous bone marrow grafting was 39 years (range: 16-61 years. The aspirated marrow was reduced in volume by concentration and injected into the femoral head after core decompression with a small trocar. To measure the number of progenitor cells transplanted, the fibroblast colony forming unit was used as an indicator of the stroma cell activity. Results: Patients were followed up from 8 to 18 years. The outcome was determined by the changes in the Harris hip score

  9. Comparison of the oxygen exchange between photosynthetic cell suspensions and detached leaves of Euphorbia characias L

    International Nuclear Information System (INIS)

    Using a mass-spectrometric 16O2/18O2-isotope technique, we compared the nature and the relative importance of oxygen exchange in photomixotrophic (PM) and photoautotrophic (PA) suspensions of Euphorbia characias L. with those in intact leaves of the same species. Young and mature leaves, dividing and nondividing cell suspensions were characterized in short-term experiments. On chlorophyll basis, the gross photosynthetic activities at CO2 saturating concentration of PA and PM suspensions varied little from those of leaves. On dry weight basis, gross photosynthesis of PA suspensions was equal to that of leaves because of their similar chlorophyll content. This was not the case in PM suspensions where gross photosynthesis was lower and largely varied during the growth cycle. The CO2 compensation point of PA cells was much higher than that of leaves. Oxygen uptakes were analyzed in terms of mitochondrial respiration, photorespiration and light stimulation of oxygen uptake (LSOU), often identified to Mehler-type reactions. In Pa and PM suspensions, mitochondrial respiration rates were higher than in leaves by a factor of 1.5 to 4.5. In PM suspensions, photorespiration and LSOU were observed only in nondividing cells. Photorespiration and LSOU rates were comparable in PA suspensions and leaves. Our results demonstrate that photorespiration of PA suspensions has not been affected by the 2% CO2 concentration imposed during 2 years of culture

  10. Composite vascular grafts with high cell infiltration by co-electrospinning.

    Science.gov (United States)

    Tan, Zhikai; Wang, Hongjie; Gao, Xiangkai; Liu, Tong; Tan, Yongjun

    2016-10-01

    There is an increasing demand for functional small-diameter vascular grafts (diameterpolycaprolactone, gelatin, and polyvinyl alcohol (PVA) by co-electrospinning, and the scaffolds were further functionalized by immobilizing heparin on them. The PVA fibers degraded rapidly in vivo and generated electrospun scaffolds with high porosity, which significantly enhanced cell proliferation and infiltration. The mechanical properties of the grafts are suitable for use in artery replacement. Heparin functionalization of the grafts yielded a good antithrombogenic effect, which was demonstrated in platelet adhesion tests. Moreover, in vitro and in vivo results demonstrated that the heparin release from the grafts enhanced the growth of endothelial cells, which is important for the endothelium of implanted grafts. The results of this study indicate that our method is effective and controllable for the fabrication of vascular grafts that meet the clinical requirements for blood vessel transplantation. PMID:27287133

  11. The use of radionuclide angiography to study blood flow through endothelial cell seeded extrathoracic bypass grafts in the dog

    International Nuclear Information System (INIS)

    Endothelial seeding of vascular grafts has been shown to decrease graft thrombogenicity and prolong longevity when implanted in vivo. Previous studies have utilized anatomic grafts to study endothelialization and healing, Anatomic thoracoabdominal grafts do not allow for sequential biopsy for evaluation of individual grafts nor do they approximate the environment for long bypass grafts used in limb salvage, This study evaluated the use of an extra-anatomic aortic bypass graft to assess the healing of endothelial cell seeded expanded polytetrafluoroethylene (ePTFE), Radionuclide angiography was used to evaluate graft patency and quantify blood flow through the graft, Dogs underwent placement of an extra-anatomic 60 cm long, 8 mm internal diameter, graft seeded with autologous endothelium. Grafts were biopsied from 2 weeks up to 1 year, Radionuclide studies were performed postimplantation and following each graft biopsy, Graft placement and biopsies were well tolerated in all dogs, Biopsied segments of graft allowed for sequential studies of the healing of implanted grafts by scanning electron and light microscopy, Flow through the implanted graft was close to 50% of the total caudal abdominal aortic flow, No significant difference in graft flow was noted either between animals or over time

  12. Effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts

    International Nuclear Information System (INIS)

    Vascular grafts lined with endothelial cells (EC) grown to confluence in culture before implantation may provide a thromboresistant flow surface. Growth of EC on and their adherence to currently available prosthetic materials under conditions of flow are two impediments remaining in the development of such a graft. To address these problems, 22 polytetrafluoroethylene grafts (PTFE) (5 cm by 4 mm inside diameter) were pretreated with collagen and fibronectin, seeded with 2 to 3 X 10(6) bovine aortic EC per graft, and placed in tissue culture (seeded grafts). Twenty-two grafts pretreated with collagen and fibronectin alone served as controls. After 2 weeks morphologic studies revealed that 20/22 seeded grafts were lined with a confluent endothelial layer. Indium 111-oxine was then used to label the EC-seeded grafts. After exposure to either low (25 ml/min) or high (200 ml/min) flow rates for 60 minutes in an in vitro circuit, examination of the luminal surface of the graft by light microscopy and scanning electron microscopy revealed minimal loss of EC. These findings were corroborated by radionuclide scans that showed an insignificant loss of the EC-associated indium label during exposure to flow (7% low flow, 11% high flow). Pretreatment of PTFE grafts with collagen and fibronectin thus promotes both attachment and adherence of EC even under flow conditions

  13. Effectiveness of the Lower Eyelid Suspension Using Fascia Lata Graft for the Treatment of Lagophthalmos due to Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Selam Yekta Sendul

    2015-01-01

    Full Text Available Purpose. To evaluate of functional and cosmetic effectiveness of lower eyelid sling technique with fascia lata graft in patients with lagophthalmos due to facial paralysis. Material and Method. Ten patients with a mean age of 55.1±19.77 years who underwent lower eyelid sling surgery with a fascia lata graft between September 2011 and January 2014 were included in this prospective study. Preoperatively and postoperatively patients were evaluated in terms of corneal epithelial defects, Schirmer’s test, and tear break-up time (TBUT. Cosmetically, vertical eyelid aperture, margin reflex distances 1 and 2 (MRD1 and MRD2 and scleral show were evaluated preoperatively and postoperatively. Results. One patient had facial paralysis on the right side whereas the other 9 patients had facial paralysis on the left side. Preoperatively, 3 patients were detected with corneal ulcer, whereas 7 patients were detected with persistent corneal epithelial defects localized in the lower half of the cornea. In the 3 patients with preoperative corneal ulcer, the ulcer recovered with corneal opacity, whereas in the 7 patients with punctate epitheliopathy, postoperative corneal transparency was obtained. Discussion. Lower eyelid sling technique with fascia lata graft is an effective technique for the repositioning of the lower eyelid and preventing the corneal complications.

  14. The root canal system: A channel through which we can seed cells into grafts

    OpenAIRE

    Cheng, Gu; Li, Zu-bing

    2014-01-01

    Bone tissue engineering is bringing hope to patients with jawbone defects, but this technology works well only for small- to moderate-sized jawbone defects. For large segmental jawbone defects, it is difficult to form the functional vascular networks within the graft due to limited diffusion of nutrition and uneven distribution of seed cells. From the standpoint of bionics, seed cells should be continuously transmitted into the graft to replace the necrotic cells during the entire process of ...

  15. Alloantigen expression on non-hematopoietic cells reduces graft-versus-leukemia effects in mice

    OpenAIRE

    Asakura, Shoji; Hashimoto, Daigo; Takashima, Shuichiro; Sugiyama, Haruko; Maeda,Yoshinobu; Akashi, Koichi; Tanimoto, Mitsune; Teshima, Takanori

    2010-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is used effectively to treat a number of hematological malignancies. Its beneficial effects rely on donor-derived T cell–targeted leukemic cells, the so-called graft-versus-leukemia (GVL) effect. Induction of GVL is usually associated with concomitant development of graft-versus-host disease (GVHD), a major complication of allogeneic HSCT. The T cells that mediate GVL and GVHD are activated by alloantigen presented on host antigen-pres...

  16. Transplantation of autologous noncultured epidermal cell suspension in treatment of patients with stable vitiligo

    Institute of Scientific and Technical Information of China (English)

    XU Ai-e; WEI Xiao-dong; CHENG Dong-qing; ZHOU He-fen; QIAN Guo-pei

    2005-01-01

    @@ Treatment of vitiligo by transplantation of noncultured melanocytes containing keratino-cytes has been successful since 1992,1 We report the encouraging results of autologous epidermal cell suspension in the treatment of 24 patients with stable vitiligo since 1998.

  17. A phytochemical study of lignans in whole plants and cell suspension cultures of Anthriscus sylvestris

    NARCIS (Netherlands)

    Koulman, A; Kubbinga, M.E.; Batterman, S; Woerdenbag, H.J.; Pras, N.; Woolley, J.G.; Quax, Wim

    2003-01-01

    In the roots of Anthriscus sylvestris 12 different lignans were detected. Arctigenin, dimethylmatairesinol, dimethylthujaplicatin, podophyllotoxin, 7-hydroxyyatein and 7-hydroxyanhydropodorhizol have not been previously reported to be present in A. sylvestris. In the cell suspension cultures, which

  18. OPTIMIZATION OF A MICROFLUIDIC DEVICE FOR DIFFUSION-BASED EXTRACTION OF DMSO FROM A CELL SUSPENSION

    OpenAIRE

    Fleming Glass, K. K.; Longmire, E. K.; Hubel, A.

    2008-01-01

    This study considers the use of a two-stream microfluidic device for extraction of dimethyl sulphoxide (DMSO) from a cryopreserved cell suspension. The DMSO diffuses from a cell suspension stream into a neighboring wash stream flowing in parallel. The model of Fleming et al.[14] is employed to determine and discuss optimal geometry and operating conditions for a case requiring removal of 95% DMSO from suspension streams with volumetric flow rates up to 2.5 ml/min. The effects of Peclet number...

  19. Novel expansion techniques for skin grafts

    Science.gov (United States)

    Kadam, Dinesh

    2016-01-01

    The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117

  20. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells

    International Nuclear Information System (INIS)

    Cancer stem cell (CSC) hypothesis has not been well demonstrated by the lack of the most convincing evidence concerning a single cell capable of giving rise to a tumor. The scarcity in quantity and improper approaches for isolation and purification of CSCs have become the major obstacles for great development in CSCs. Here we adopted suspension culture combined with anticancer regimens as a strategy for screening breast cancer stem cells (BrCSCs). BrCSCs could survive and be highly enriched in non-adherent suspension culture while chemotherapeutic agents could destroy most rapidly dividing cancer cells and spare relatively quiescent BrCSCs. TM40D murine breast cancer cells were cultured in serum-free medium. The expression of CD44+CD24- was measured by flow cytometry. Cells of passage 10 were treated in combination with anticancer agents pacilitaxel and epirubicin at different peak plasma concentrations for 24 hours, and then maintained under suspension culture. The rate of apoptosis was examined by flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining method. Selected cells in different amounts were injected subcutaneously into BALB/C mice to observe tumor formation. Cells of passage 10 in suspension culture had the highest percentage of CD44+CD24- (about 77 percent). A single tumor cell in 0.35 PPC could generate tumors in 3 of 20 BALB/C mice. Suspension culture combined with anticancer regimens provides an effective means of isolating, culturing and purifying BrCSCs

  1. Disposable orbitally shaken TubeSpin bioreactor 600 for Sf9 cell cultivation in suspension.

    Science.gov (United States)

    Monteil, Dominique T; Shen, Xiao; Tontodonati, Giulia; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2016-07-15

    Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension. PMID:27130502

  2. Increased T cell glucose uptake reflects acute rejection in lung grafts

    OpenAIRE

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the graft...

  3. The significance of non-T cell pathways in graft rejection--implications for transplant tolerance

    Science.gov (United States)

    Li, Xian Chang

    2010-01-01

    Both innate and adaptive immune cells are actively involved in the initiation and destruction of allotransplants, there is a true need now to look beyond T cells in the allograft response, examining various non-T cell types in transplant models and how such cell types interact with T cells in determining the fate of an allograft. Studies in this area may lead to further improvement in transplant outcomes. SUMMARY The “T cell-centric paradigm” has dominated transplant research for decades. While T cells are undeniably quintessential in allograft rejection, recent studies have demonstrated unexpected roles for non-T cells such as NK cells, B cells, macrophage and mast cells in regulating transplant outcomes. It has been shown that depending on models, context, and tolerizing protocols, the innate immune cells contribute significantly to both graft rejection and graft acceptance. Some innate immune cells are potent inflammatory cells directly mediating graft injury while others regulate effector programs of alloreactive T cells and ultimately determine whether the graft is rejected or accepted. Furthermore, when properly activated, some innate immune cells promote the induction of Foxp3+ Tregs whereas others readily kill them, thereby differentially affecting the induction of tolerance. In addition, B cells can induce graft damage by producing alloantibodies or by promoting T cell activation. However, B cells also contribute to transplant tolerance by acting as regulatory cells or by stimulating Foxp3+ Tregs. These new findings unravel unexpected complexities for non-T cells in transplant models and may have important clinical implications. In this overview, we highlight recent advances on the role of B cells, NK cells, dendritic cells, and macrophages in the allograft response, and discuss whether such cells can be therapeutically targeted for the induction of transplant tolerance. PMID:20686444

  4. [Metabolic characteristics and kinetic model of recombinant CHO cells in serum-free suspension batch culture].

    Science.gov (United States)

    Liu, Xingmao; Liu, Hong; Ye, Lingling; Li, Shichong; Wu, Benchuan; Wang, Haitao; Xie, Jing; Chen, Zhaolie

    2010-01-01

    By using the cell density, cell viability, Pro-UK activity, specific consumption rate of glucose (q(glc)), specific production rate of lactate (q(lac)), yield of lactate to glucose (Y(lac/glc)) and as the evaluation indexes, the growth and metabolism characteristics of pro-urokinase (Pro-UK) expressing CHO cells in serum-free suspension batch culture were examined and compared to those in serum-containing suspension batch culture. We observed hardly differences in growth and metabolism characteristics between the CHO cell populations grown in serum-free suspension batch culture and serum-containing suspension batch culture. The optimal mathematical model parameters for the CHO cells grown in suspension batch culture were obtained by non-linear programming of data representing the growth, substrate consumption and product formation of the CHO cells during logarithmic growth phase using MATLAB software, and the kinetic model of the cell growth and metabolism in serum-free culture were established. PMID:20353097

  5. [Fertility preservation in boys: spermatogonial stem cell transplantation and testicular grafting].

    Science.gov (United States)

    Goossens, E; Tournaye, H

    2013-09-01

    Spermatogonial stem cells (SSC) are the founder cells of spermatogenesis and are responsible for the lifelong production of spermatozoa. The cryopreservation and transplantation of these cells has been proposed as a fertility preservation strategy for young boys at risk for stem cell loss, i.e. patients undergoing chemotherapy for cancer or as a conditioning treatment for bone marrow transplantation. To prevent lifelong sterility in boys, two fertility restoration strategies are being developed: the injection of SSC and the grafting of testicular tissue containing SSC. Depending on the disease of the patient one of these two approaches will be applicable. Grafting has the advantage that SSC can reside within their natural niche, preserving the interactions between germ cells and their supporting cells and may therefore be regarded as the first choice strategy. However, in cases where the risk for malignant contamination of the testicular tissue is real, e.g. leukemia, transplantation of SSC by injection is preferable over grafting. PMID:23972916

  6. Membrane cell grafts, fresh and frozen to cover full thickness wounds in athymic nude mice

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    objective: To find a new way to cover full-thickness wounds. Methods: Biobrane(r), an adherent, flexible temporary wound dressing was incubated with cultured human keratinocytes. The cells adhered quickly forming "membrane-celgrafts" (MCG). Some of the grafts were frozen and after thawing viability was verified with a XTT colorimetric assay.MCGs, fresh and cryopreserved, were transplanted on full thickness wounds created on athymic nude mice. Conventional cultured epidermal grafts (CEG) and wounds without cell grafts served as control. Results: MCGs resulted in a differentiated epithelium of human phenotype and immunohistochemistry, immunofluorescence and electronmicroscopy were performed.Compared with CEG-grafted sites a reduced wound contraction was noticed and complete remodelling of the basement membrane zone was found. Conclusion: The efficiency of the easy, uncomplicated production, cryopreservation and use as well as the short culture period could lead to a new approach in the treatment of burn and chronic wounds.

  7. Rheological properties of sheared vesicle and cell suspensions

    OpenAIRE

    Lamura, A.; Gompper, G.

    2014-01-01

    Numerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid. Both...

  8. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    High molecular weight polybenzimidazole (PBI) was synthesized and grafted with benzimidazole pendant groups. The high molecular weight of PBI resulted in good film-forming properties and superior tensile strength. With a phosphoric acid doping level (ADL) of 13.1, a tensile strength of 16 MPa was...... achieved at room temperature. Grafting of benzimidazole moieties onto the PBI macromolecular chain introduced additional basic sites which allowed the membrane to achieve higher phosphoric acid uptakes. A molar acid conductivity, defined as the specific conductivity of each mole of doping acid, was...

  9. Ultrasound-mediated gene transfection: A comparison between cells irradiated in suspension and attachment status

    Science.gov (United States)

    Zhang, Yiwei; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2012-10-01

    Sonoporation, in the presence of microbubbles, is a promising nonviral gene transfection method. Although the mechanism is not yet fully understood, shock waves emitted by cavitation bubbles have been known to play an important role in creating pores on cell membranes. This work investigates the gene transfection efficiency and influencing parameters of cells in two different statuses: attachment and suspension based on the fact that cells in suspension have more bubbles surrounding them and that shock wave has distinct effects on hit objects whether the object is attached to a rigid wall or not. Fibroblast cells (NIH3T3), both in attachment and suspension, and green fluorescent protein (GFP) plasmid were exposed to variations in acoustic pressure (0.6-1.2 MPa) and 10% duty cycle at fixed settings of 2 MHz central frequency, 5 kHz pulse repetition frequency and 1 minute insonation time, in the presence of 10% v/v microbubbles (Sonazoid, a commercialized product of ultrasound contrast agent). The transfection efficiency and cell viability are compared for two statuses and a distribution map of GFP transfected cells as well as viable cells over the well bottom is given for attachment status. The results show that cells irradiated in suspension status has higher transfection ratio as well as viability than those irradiated in attachment status with the same intensity and that the transfected cells of attachment status experiment are highly concentrated near the center of the well.

  10. Long-Term, Stable Differentiation Of Human Embryonic Stem Cell-Derived Neural Precursors Grafted Into The Adult Mammalian Neostriatum

    OpenAIRE

    Nasonkin, I; Mahairaki, V.; Xu, L.; Hatfield, G.; Cummings, B.J.; Eberhart, C.; Ryugo, D.; Maric, D; Bar, E; Koliatsos, V E

    2009-01-01

    Stem-cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to s...

  11. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Songtao Gao

    2014-01-01

    Full Text Available Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI, neural electrophysiology (NEP, histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P0.05. Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.

  12. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  13. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    Science.gov (United States)

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  14. The formation of electronically excited species in the human multiple myeloma cell suspension.

    Science.gov (United States)

    Rác, Marek; Sedlářová, Michaela; Pospíšil, Pavel

    2015-01-01

    In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls (3)(R = O)*. The kinetics of (3)(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of (3)(R = O)*, the formation of singlet oxygen ((1)O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of (1)O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of (1)O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of (3)(R = O)* and (1)O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed. PMID:25744165

  15. Acid-Fast Staining and Petroff Hausser Chamber Counting of Mycobacterial Cells in Liquid Suspension

    OpenAIRE

    Treuer, Robin; Haydel, Shelley E.

    2011-01-01

    Accurate and rapid cell counts of mycobacterial species in culture are difficult to obtain. Here, a method using modified Kinyoun acid-fast staining was adapted for use with a Petroff-Hausser sperm and bacteria cell counting chamber by using a liquid suspension staining technique. Cell counts obtained by this method were compared to viable cell counts by agar plate counting, revealing accurate correlation.

  16. Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor β loci sequences

    OpenAIRE

    Michálek, J.; Collins, R. H.; Durrani, H. P.; Václavková, P.; Ruff, L. E.; Douek, D C; Vitetta, E S

    2003-01-01

    Although graft-versus-host (GVH) disease (GVHD) is usually associated with graft versus leukemia (GVL), GVL can occur in the absence of clinical GVHD. There is evidence to suggest that GVL and GVH are mediated by different clones of T cells. The objective of this study was to identify the two types of T cells based on their receptor sequences. To this end we used irradiated nonleukemic cells from recipients as stimulator cells in a primary mixed leukocyte reaction (MLR). The activated CD4+ do...

  17. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field.

    Science.gov (United States)

    Korohoda, Włodzimierz; Grys, Maciej; Madeja, Zbigniew

    2013-03-01

    Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0-1000 V/cm for a selected duration in the range 10-1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in

  18. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Jong, de A.J.; Yakimova, E.T.; Kapchina, V.M.; Woltering, E.J.

    2002-01-01

    Camptothecin, a topo isomerase-I inhibitor used in cancer therapy, induces apoptosis in animal cells. In tomato (Lycopersicon esculentum Mill.) suspension cells, camptothecin induces cell death that is accompanied by the characteristic nuclear morphological changes such as chromatin condensation and

  19. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    International Nuclear Information System (INIS)

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  20. Inhibition of carcinoma formation and of vascular invasion in grafts of radiation-initiated thyroid clonogens by unirradiated thyroid cells

    International Nuclear Information System (INIS)

    Quantitative transplantation techniques have been employed to study radiogenic cancer initiation frequency and cell interactions during promotion/progression in grafted clonogenic rat thyroid epithelial cells. The graft recipients were surgically thyroidectomized. Radiogenic initiation is a common cellular event; one of ∼ 32 surviving 5-Gy-irradiated thyroid clonogens gave rise to cancer in grafts initially containing ∼ 11 clonogens per transplantation site. The efficiency of promotion/progression is inversely related to grafted irradiated cell number. As the number of transplanted surviving irradiated clonogens was increased progressively from ∼ 11 to ∼ 720 clonogens per graft site, the carcinoma frequency per grafted clonogen progressively decreased to one per ∼ 920. Addition of unirradiated thyroid cells to the transplant inocula further suppressed promotion/progression of radiation-initiated thyroid clonogens. Furthermore, the probability of vascular invasion, a reflection of metastatic potential in carcinomas which arose from irradiated grafted thyroid clonogens, was reduced by addition of unirradiated thyroid cells to the transplant inocula. Assays of thyroid stimulating hormone (TSH) titers in the sera of thyroidectomized rats 44 weeks after transplantation of clonogenic thyroid cells indicate that the suppression of neoplastic promotion/progression observed with increased numbers of cells per graft site is due at least in part to feed-back inhibition of TSH production by thyroid hormone of graft origin. (author)

  1. Neural Stem Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy

    Science.gov (United States)

    Hattiangady, Bharathi; Shetty, Ashok K.

    2016-01-01

    Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ~30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the efficacy of transplantation of NSCs in a rat model of chronic TLE, NSCs derived from the embryonic medial ganglionic eminence (MGE) are taken as an example in this article. The topics comprise description of the required materials, reagents and equipment, and protocols for expanding MGE-NSCs in culture, generating chronically epileptic rats, the intrahippocampal grafting, the post-grafting evaluation of the effects of NSC grafts on spontaneous recurrent seizures and cognitive impairments, analyses of the yield and the fate of graft-derived cells, and the effects of NSC grafts on the host hippocampus. PMID:21913169

  2. FIBULA AND ILIAC BONE GRAFTING WITH INTERNAL FIXATION FOR GAINT CELL TUMOUR OF PROXIMAL TIBIA

    OpenAIRE

    Nishant Gaonkar; Takale; Kolekar; Vaibhav Koli; Jimit Shah

    2015-01-01

    Middle aged old female with swelling in left knee suggestive of giant cell tumour was treated with excisional biopsy with curettage, phenol cauterisation , bone graft and proximal tibia locking plate fixation. Sample sent for histopathology was consistent with diagnosis of giant cell tumour. No recurrence has been seen after 1 year of follow up.

  3. FIBULA AND ILIAC BONE GRAFTING WITH INTERNAL FIXATION FOR GAINT CELL TUMOUR OF PROXIMAL TIBIA

    Directory of Open Access Journals (Sweden)

    Nishant Gaonkar

    2015-02-01

    Full Text Available Middle aged old female with swelling in left knee suggestive of giant cell tumour was treated with excisional biopsy with curettage, phenol cauterisation , bone graft and proximal tibia locking plate fixation. Sample sent for histopathology was consistent with diagnosis of giant cell tumour. No recurrence has been seen after 1 year of follow up.

  4. DRUG RESISTANT ALLOREACTIVE T CELLS MAY CONTRIBUTE TO HUMAN GRAFT REJECTION

    Science.gov (United States)

    The objective of our study was to determine whether resistance to immunosuppressive drugs by transplant recipient's T cells could contribute to continued graft rejection, in spite of immunosuppressive therapy. he T cell lines used in this series of experiments were originally est...

  5. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  6. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  7. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shafa Mehdi

    2011-12-01

    Full Text Available Abstract Background Embryonic stem cells (ESCs can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs. However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC

  8. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    Science.gov (United States)

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  9. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    OpenAIRE

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  10. Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line

    International Nuclear Information System (INIS)

    Melanoma is a malignant tumor with high invasive and metastatic properties. Though radiation is the major therapy for melanoma, its radio-resistance has been shown to severely influence the clinical outcome. So it is imperative to enhance the sensitivity of uveal melanoma cells to radiotherapy. Previously, we found that the cell cycle of 92-1 uveal melanoma cells was suspended and remained unchanged for up to 5 days after exposure to 10 Gy of X-rays, which might be relevant to the high radio-sensitivity of 92-1 cells. To further investigate the cell cycle suspension-associated proteins, we employed two analyses with stable isotope labeling with amino acids in cell culture technology and two-dimensional liquid chromatography tandem mass spectrometry. Cells were incubated for 15 h or 48 h after irradiation with 10 Gy of X-rays. We identified a total of 737 proteins at 15 h (Group A) and 530 proteins at 48 h post-irradiation (Group B). The gene ontology biological pathway was used to obtain a systems level view of proteome changes in 92-1 cells under cell cycle suspension. We further selected the significantly changed proteins for investigation of their potential contribution to cell cycle suspension, growth arrest and cell senescence. These proteins are involved in the cell cycle, stress response, glycolysis and the tricarboxylic acid cycle, etc. Our study expected to reveal potential marker proteins associated with cell suspension induced by irradiation, which might contribute to understanding the mechanism beyond the cell cycle suspension. (author)

  11. Grafting Genetically Modified Cells to the Damaged Brain: Restorative Effects of NGF Expression

    Science.gov (United States)

    Rosenberg, Michael B.; Friedmann, Theodore; Robertson, Robin C.; Tuszynski, Mark; Wolff, Jon A.; Breakefield, Xandra O.; Gage, Fred H.

    1988-12-01

    Fibroblasts were genetically modified to secrete nerve growth factor (NGF) by infection with a retroviral vector and then implanted into the brains of rats that had surgical lesions of the fimbria-fornix. The grafted cells survived and produced sufficient NGF to prevent the degeneration of cholinergic neurons that would die without treatment. In addition, the protected cholinergic cells sprouted axons that projected in the direction of the cellular source of NGF. These results indicate that a combination of gene transfer and intracerebral grafting may provide an effective treatment for some disorders of the central nervous system.

  12. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation1

    OpenAIRE

    Auletta, Jeffery J.; Eid, Saada K.; Wuttisarnwattana, Patiwet; Silva, Ines; Metheny, Leland; Keller, Matthew D.; Guardia-Wolff, Rocio; Liu, Chen; Wang, Fangjing; Bowen, Theodore; Lee, Zhenghong; Solchaga, Luis A; Ganguly, Sudipto; Tyler, Megan; Wilson, David L.

    2015-01-01

    We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T-cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72h; and target tissues harvested fr...

  13. DIGLUCOSYLATION OF SALICYL ALCOHOL BY CELL SUSPENSION CULTURES OF SOLANUM LACINIATUM

    Institute of Scientific and Technical Information of China (English)

    ACHMAD SYAHRANI; FRANSISCA HARTUTI; GUNAWAN INDRAYANTO; ALISTAIR L.WILKINS

    2001-01-01

    A new biotransformation product, salicyl alcohol-7-O-β-D-(β-l,6-D-glucopyranosyl)-gluco pyranoside was isolated from cell suspension cultures of Solanum laciniatum, following administration of salicyl alcohol, and its structure was elucidated using a combination of one and two-dimensional 1H and 13C-NMR data, and positive and negative ion ESMS data.

  14. Usefulness of embryogenic cell suspension for the induction and selection of mutants in Musa spp

    Czech Academy of Sciences Publication Activity Database

    Roux, N.; Toloza, A.; Doležel, Jaroslav; Swennen, R.; Lepoivre, P.; Zapata-Arias, F. J.

    2002. s. 17-18. [ FAO /IAEA Research Co-ordination Meeting on Cellular Biology and Biotechnology Including Mutation Techniques for Creation of New Useful Banana Genotypes /4./. 24.09.2002-28.09.2002, Leuven] Institutional research plan: CEZ:AV0Z5038910 Keywords : cell suspension * mutagenesis * Musa spp. Subject RIV: EB - Genetics ; Molecular Biology

  15. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions.

    Science.gov (United States)

    Broggi, Achille; Cigni, Clara; Zanoni, Ivan; Granucci, Francesca

    2016-01-01

    The skin is a barrier organ that interacts with the external environment. Being continuously exposed to potential microbial invasion, the dermis and epidermis home a variety of immune cells in both homeostatic and inflammatory conditions. Tools to obtain skin cell release for cytofluorimetric analyses are, therefore, very useful in order to study the complex network of immune cells residing in the skin and their response to microbial stimuli. Here, we describe an efficient methodology for the digestion of mouse skin to rapidly and efficiently obtain single-cell suspensions. This protocol allows maintenance of maximum cell viability without compromising surface antigen expression. We also describe how to take and digest skin samples from different anatomical locations, such as the ear, trunk, tail, and footpad. The obtained suspensions are then stained and analyzed by flow cytometry to discriminate between different leukocyte populations. PMID:27166881

  16. Polyglycerol dendrimers immobilized on radiation grafted poly-HEMA hydrogels: Surface chemistry characterization and cell adhesion

    International Nuclear Information System (INIS)

    Radiation induced grafting of poly(2-hydroxyethylmethacrylate) (PHEMA) on low density polyethylene (LDPE) films and subsequent immobilization of poly(glycerol) dendrimer (PGLD) has been performed with the aim to improve cell adhesion and proliferation on the surface of the polymer, in order to enhance their properties for bone tissue engineering scaffolding applications. Radiation grafting of PHEMA onto LDPE was promoted by γ-ray radiation. The covalent immobilization of PGLD on LDPE-g-PHEMA surface was performed by using a dicyclohexyl carbodiimide (DCC)/N,N-dimethylaminopyridine (DMAP) method. The occurrence of grafting polymerization of PHEMA and further immobilization of PGLD was quantitatively confirmed by photoelectron spectroscopy (XPS) and fluorescence, respectively. The LDPE-g-PHEMA surface topography after PGLD coupling was studied by atomic force microscopy (AFM). The hydrophilicity of the LDPE-g-PHEMA film was remarkably improved compared to that of the ungrafted LDPE. The core level XPS ESCA spectrum of PHEMA-grafted LDPE showed two strong peaks at 286.6 eV (from hydroxyl groups and ester groups) and 289.1 eV (from ester groups) due to PHEMA brushes grafted onto LDPE surfaces. The results from the cell adhesion studies show that MCT3-E1 cells tended to spread more slowly on the LDPE-g-PHEMA than on the LDPE-g-PHEMA-i-PGLD. - Highlights: • Radiation-grafted PHEMA hydrogels have been obtained by simultaneous gamma-irradiation of LDPE and HEMA monomer. • PGLD dendrimer was immobilized onto PHEMA for application in tissue engineering. • The microstructural characterization of LDPE-g-PHEMA-i-PGLD by RMN, XPS, AFM and MALDI-TOF are made. • Measurements of water uptake and contact angle of LDPE-g-PHEMA are compared to those of LDPE-g-PHEMA-i-PGLD. • The MC3T-E1 osteoblast cell adhesion and growth on LDPE-g-PHEMA-i-PGLD were studied

  17. Analysis of impedance measurements of a suspension of microcapsules using a variable length impedance measurement cell

    Directory of Open Access Journals (Sweden)

    Dejan Krizaj

    2012-10-01

    Full Text Available Electrical impedance measurements of the suspensions have to take into account the double layer impedance that is due to a very thin charged layer formed at the electrode-electrolite interface. A dedicated measuring cell that enables variation of the distance between the electrodes was developed for investigation of electrical properties of suspensions using two electrode impedance measurements. By varying the distance between the electrodes it is possible to separate the double layer and the suspension impedance from the measured data. From measured and extracted impedances electrical lumped models have been developed. The error of non inclusion of the double layer impedance has been analyzed. The error depends on the frequency of the measurements as well as on the distance between the electrodes.

  18. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    XU Chang-jie(徐昌杰); CHEN Kun-song(陈昆松); FERGUSON Ian B.

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple cell death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  19. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Storb, Rainer; Gyurkocza, Boglarka; Storer, Barry E;

    2013-01-01

    We designed a minimal-intensity conditioning regimen for allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematologic malignancies unable to tolerate high-intensity regimens because of age, serious comorbidities, or previous high-dose HCT. The regimen allows the pures...

  20. Alpha/Beta T-Cell Depleted Grafts as an Immunological Booster to Treat Graft Failure after Hematopoietic Stem Cell Transplantation with HLA-Matched Related and Unrelated Donors

    Directory of Open Access Journals (Sweden)

    E. Rådestad

    2014-01-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation is associated with several complications and risk factors, for example, graft versus host disease (GVHD, viral infections, relapse, and graft rejection. While high levels of CD3+ cells in grafts can contribute to GVHD, they also promote the graft versus leukemia (GVL effect. Infusions of extra lymphocytes from the original stem cell donor can be used as a treatment after transplantation for relapse or poor immune reconstitution but also they increase the risk for GVHD. In peripheral blood, 95% of T-cells express the αβ T-cell receptor and the remaining T-cells express the γδ T-cell receptor. As αβ T-cells are the primary mediators of GVHD, depleting them from the graft should reduce this risk. In this pilot study, five patients transplanted with HLA-matched related and unrelated donors were treated with αβ T-cell depleted stem cell boosts. The majority of γδ T-cells in the grafts expressed Vδ2 and/or Vγ9. Most patients receiving αβ-depleted stem cell boosts increased their levels of white blood cells, platelets, and/or granulocytes 30 days after infusion. No signs of GVHD or other side effects were detected. A larger pool of patients with longer follow-up time is needed to confirm the data in this study.

  1. Heparanase promotes engraftment and prevents graft versus host disease in stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Menachem Bitan

    Full Text Available BACKGROUND: Heparanase, endoglycosidase that cleaves heparan sulfate side chains of heparan sulfate proteoglycans, plays important roles in cancer metastasis, angiogenesis and inflammation. DESIGN AND METHODS: Applying a mouse model of bone marrow transplantation and transgenic mice over-expressing heparanase, we evaluated the effect of heparanase on the engraftment process and the development of graft-versus-host disease. RESULTS: Analysis of F1 mice undergoing allogeneic bone marrow transplantation from C57BL/6 mice demonstrated a better and faster engraftment in mice receiving cells from donors that were pretreated with heparanase. Moreover, heparanase treated recipient F1 mice showed only a mild appearance of graft-versus-host disease and died 27 days post transplantation while control mice rapidly developed signs of graft-versus-host disease (i.e., weight loss, hair loss, diarrhea and died after 12 days, indicating a protective effect of heparanase against graft-versus-host disease. Similarly, we applied transgenic mice over-expressing heparanase in most tissues as the recipients of BMT from C57BL/6 mice. Monitoring clinical parameters of graft-versus-host disease, the transgenic mice showed 100% survival on day 40 post transplantation, compared to only 50% survival on day 14, in the control group. In vitro and in vivo studies revealed that heparanase inhibited T cell function and activation through modulation of their cytokine repertoire, indicated by a marked increase in the levels of Interleukin-4, Interleukin-6 and Interleukin-10, and a parallel decrease in Interleukin-12, tumor necrosis factor-alfa and interferon-gamma. Using point mutated inactive enzyme, we found that the shift in cytokine profile was independent of heparanase enzymatic activity. CONCLUSIONS: Our results indicate a significant role of heparanase in bone marrow transplantation biology, facilitating engraftment and suppressing graft-versus-host disease, apparently

  2. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    徐昌杰; 陈昆松; FERGUSONIanB

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple celi death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  3. Establishment of rabbit model with VX2 cell pyriformsinus grafting tumor%兔梨状隐窝VX2瘤模型的建立及解剖与影像学观察

    Institute of Scientific and Technical Information of China (English)

    韩秀丽; 陈万军; 王兆鹏

    2012-01-01

    Objective To establish a rabbit model with pyriformsinus carcinoma (PSC) grown from grafted VX2 tumor cells to serve as an animal research tool system for experimental study of hypolaryngeal carcinoma. Methods Grafting tumor was prepared with VX2 tumour cells among New Zealand rabbits for several generations at first, and then, grafting tumor was taken made into a suspension with the tissue pieces at a size of 1 mm3 or so. (in the cell density about 1~2× 106/ml cells). After that, the tissue suspension was injected into pyriformsinus mucosa of 17 rabbits under direct laryngoscope to grow PSC. Following tumor suspension injected, all these rabbits were given CT scanning regularly to detect the growing status, and tumor tissues were collected to do histological assays to identify if the grafting tumor model of VX2 cells established successfully based on the analysis of tumor growing rate and their behaviour characteristics. Results Two to four weeks late following the tumor tissue suspension injected, Grafting tumors were successfully grown in piriform recess among 16 rabbits, as confirmed by CT images and histological evidences meaning that the model was prepared successfully. The growing rate of grafting tumor was 94.1% (16/17), while 90% of the animals with PSC died in 4 weeks following tumour cells grafting. Conclusions It is suggested that the preparing procedures for PSC model are practicable by using tissue suspension, made from the grafting tumors of VX2 cells prepared among Zealand rabbits at first, injecting into the mucosa of piriform recess of rabbits under direct laryngoscope. This kind of animal model can be utilized in the research field of hypolaryngeal carcinoma.%目的 建立兔梨状隐窝VX2移植瘤模型.方法 先以VX2细胞在新西兰大白兔制备移植瘤并传代,再将兔移植瘤制备组织悬液(组织块约1mm3大小,约含1~2×106/ml个细胞),直达喉镜下接种于17只兔梨状隐窝,然后行影像学观察及瘤

  4. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N [Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: m.gruene@lzh.de [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2011-03-15

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  5. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  6. Development of Human Fetal Mesenchymal Stem Cell Mediated Tissue Engineering Bone Grafts

    OpenAIRE

    Zhang, Zhiyong; Teoh, Swee-Hin; Choolani, Mahesh; Chan, Jerry

    2010-01-01

    By combining an inter-disciplinary approach in scaffold technology, bioreactor development and stem cell biology, we have generated an effective bone graft through the seeding of highly proliferative and osteogenic hfMSC onto the osteoconductive PCL-TCP scaffold matrix, and maturing the hfMSC mediated PCL-TCP scaffold under biaxial rotating bioreactor (Figure 9). Our ongoing animal experiment showed that this hfMSC mediated TE bone graft can be used to heal critical sized femoral defect in a ...

  7. Targeting cancer cells through Mn(Ⅱ)-dpa grafted silica nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The unique properties of paramagnetic nanoscale metal-organic frameworks provide them with high potential as key probes and vectors in the next generation of biomedical applications.To increase the nanoparticle targeting at the tumor site,the grafting of Mn(Ⅱ)-dpa (dpa =di(picolyl)amines) on oxide nanoparticles (SiO2) is proposed.The new Mn(Ⅱ)-dpa-grafted silica nanoparticles can enhance the MR imaging area in cancer tissues and perturb the Ca2+-loaded mitochondria swelling.Experimental results indicate the cancer cells may be targeted through possible intracellular Ca2+ signaling mitochondria accumulating in vivo.

  8. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  9. Serum-Free Suspension Culture of MDCK Cells for Production of Influenza H1N1 Vaccines

    Science.gov (United States)

    Huang, Ding; Peng, Wen-Juan; Ye, Qian; Liu, Xu-Ping; Zhao, Liang; Fan, Li; Xia-Hou, Kang; Jia, Han-Jing; Luo, Jian; Zhou, Lin-Ting; Li, Bei-Bei; Wang, Shi-Lei; Xu, Wen-Ting; Chen, Ze; Tan, Wen-Song

    2015-01-01

    Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted. PMID:26540170

  10. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun;

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...

  11. Interleukin-10 spot-forming cells as a novel biomarker of chronic graft-versus-host disease

    OpenAIRE

    Hirayama, Masahiro; Azuma, Eiichi; Nakagawa-Nakazawa, Atsuko; Kumamoto, Tadashi; Iwamoto, Shotaro; Amano, Keishiro; Tamaki, Shigehisa; Usui, Eiji; Komada, Yoshihiro

    2013-01-01

    Although there are National Institutes of Health consensus criteria for the global assessment of chronic graft-versus-host disease, no validated biomarkers have been established for this disease. Furthermore, whereas the role of T cells, B cells, and dendritic cells in chronic graft-versus-host disease has been established, the contribution of monocytes has not been clearly addressed. Using an enzyme-linked immunospot assay, we measured the spot-forming cells for interferon-γ, interleukin-4, ...

  12. Production of bioactive human granulocyte-colony stimulating factor in transgenic rice cell suspension cultures

    DEFF Research Database (Denmark)

    Hong, Shin-Young; Kwon, Tae-Ho; Jang, Yong-Suk;

    2006-01-01

    Human granulocyte-colony stimulating factor (hG-CSF), a human cytokine, was expressed in transgenic rice cell suspension culture. The hG-CSF gene was cloned into the rice expression vector containing the promoter, signal peptide, and terminator derived from a rice alpha-amylase gene Amy3D. Using...... particle bombardment-mediated transformation, hG-CSF gene was introduced into the calli of rice (Oryza sativa) cultivar Dong-jin. Expression of the hG-CSF gene was confirmed by ELISA and Northern blot analysis. The amount of recombinant hG-CSF accumulated in culture medium from transgenic rice cell...... suspension culture on the sugar starvation was determined by time series ELISA. Biological activity of the plant derived hG-CSF was confirmed by measuring the proliferation of the AML-193 cells, and was similar to that of the commercial Escherichia coli-derived hG-CSF. In this paper, we discuss the...

  13. Allogeneic adipose-derived stem cells promote survival of fat grafts in immunocompetent diabetic rats.

    Science.gov (United States)

    Zhang, Jun; Bai, Xiaozhi; Zhao, Bin; Wang, Yunchuan; Su, Linlin; Chang, Peng; Wang, Xujie; Han, Shichao; Gao, Jianxin; Hu, Xiaolong; Hu, Dahai; Liu, Xiaoyan

    2016-05-01

    Autologous adipose-derived stem cells (ADSCs) can protect fat grafts in cell-assisted lipotransfer (CAL). However, diabetes alters the intrinsic properties of ADSCs and impairs their function so that they lack these protective effects. We investigate whether allogeneic ADSCs from healthy donors could protect fat grafts in immunocompetent diabetic rats. Syngeniec adipose tissues and ADSCs were derived from diabetic Lewis (LEW) rats, whereas allogeneic ADSCs were from healthy brown-Norway rats. A grafted mixture containing 0.7 ml granule fat and 0.3 ml 6 × 10(6) allogeneic/syngeneic ADSCs was injected subcutaneously on the skulls of diabetic LEW rats. Fat samples were harvested to evaluate the levels of injury and vascularization as shown by perilipin A, CD34 and VEGF at 14 days. The immune response was evaluated with a lymphocytotoxicity test and the CD4/CD8 ratio in peripheral blood at 14 days. The volume retention of fat grafts was measured at 3 months. Healthy allogeneic ADSCs increased the expression levels of perilipin A, CD34 and VEGF at 14 days. The volume retention of fat grafts was improved by allogeneic ADSCs at 3 months. ADSCs were demonstrated to have low immunogenicity by the lymphocyte proliferation test and immunophenotype including MHC and co-stimulatory markers. The lymphocytotoxicity test and CD4/CD8 ratio indicated no obvious immune response elicited by allogeneic ADSCs. Thus, healthy allogeneic ADSCs can promote the survival of fat grafts in this immunocompetent diabetic rat model, with little or no obvious immune rejection. PMID:26662284

  14. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sherazi, Tauqir A. [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Guiver, Michael D.; Kingston, David; Xue, Xinzhong [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Ahmad, Shujaat [PIEAS/PINSTECH, P O Nilore, Islamabad 45650 (Pakistan); Kashmiri, M. Akram [Department of Chemistry, Government College University, Lahore 54000 (Pakistan); Board of Intermediate and Secondary Education, Lahore 54000 (Pakistan)

    2010-01-01

    Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradiation using a {sup 60}Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion {sup registered} 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane-electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-type membranes for DMFC. (author)

  15. Foetal Cell Transplantation for Parkinson’s Disease: Focus on Graft-Induced Dyskinesia

    Directory of Open Access Journals (Sweden)

    Elisabetta Tronci

    2015-01-01

    Full Text Available Transplantation of dopamine- (DA- rich foetal ventral mesencephalic cells emerged as a promising therapy for Parkinson’s disease (PD, as it allowed significant improvement of motor symptoms in several PD patients in open-label studies. However, double-blind clinical trials have been largely disappointing. The general agreement in the field is that the lack of standardization of tissue collection and preparation, together with the absence of postsurgical immunosuppression, played a key role in the failure of these studies. Moreover, a further complication that emerged in previous studies is the appearance of the so-called graft-induced dyskinesia (GID, in a subset of grafted patients, which resembles dyskinesia induced by L-DOPA but in the absence of medication. Preclinical evidence pointed to the serotonin neurons as possible players in the appearance of GID. In agreement, clinical investigations have shown that grafted tissue may contain a large number of serotonin neurons, in the order of half of the DA cells; moreover, the serotonin 5-HT1A receptor agonist buspirone has been found to produce significant dampening of GID in grafted patients. In this paper, we will review the recent preclinical and clinical studies focusing on cell transplantation for PD and on the mechanisms underlying GID.

  16. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.

    Science.gov (United States)

    Cimrák, I

    2016-11-01

    Recently, computational modelling has been successfully used for determination of collision rates for rare cell capture in periodic obstacle arrays. The models were based on particle advection simulations where the cells were advected according to velocity field computed from two dimensional Navier-Stokes equations. This approach may be used under the assumption of very dilute cell suspensions where no mutual cell collisions occur. We use the object-in-fluid framework to demonstrate that even with low cell-to-fluid ratio, the optimal geometry of the obstacle array significantly changes. We show computational simulations for ratios of 3.5, 6.9 and 10.4% determining the optimal geometry of the periodic obstacle arrays. It was already previously demonstrated that cells in periodic obstacle arrays follow trajectories in two modes: the colliding mode and the zig-zag mode. The colliding mode maximizes the cell-obstacle collision frequency. Our simulations reveal that for dilute suspensions and for suspensions with cell-to-fluid ratio 3.5%, there is a range of column shifts for which the cells follow colliding trajectories. However we showed, that for 6.9 and 10.4%, the cells never follow colliding trajectories. PMID:27023645

  17. Spontaneous autologous graft-versus-host disease in plasma cell myeloma autograft recipients: flow cytometric analysis of hematopoietic progenitor cell grafts.

    Science.gov (United States)

    Lazarus, Hillard M; Sommers, Scott R; Arfons, Lisa M; Fu, Pingfu; Ataergin, S A; Kaye, N M; Liu, F; Kindwall-Keller, Tamila L; Cooper, Brenda W; Laughlin, Mary J; Creger, Richard J; Barr, Paul M; Gerson, Stanton L; Kaplan, David

    2011-07-01

    Nine plasma cell myeloma patients spontaneously developed histologically proven autologous graft-versus-host disease (GVHD) limited predominantly to the gastrointestinal tract within 1 month of initial autologous hematopoietic cell transplantation (AHCT) using high-dose melphalan conditioning. All recipients responded promptly to systemic and nonabsorbable oral corticosteroid therapy. All patients previously received systemic therapy with thalidomide, lenalidomide, or bortezomib before AHCT. Using enzymatic amplification staining-enhanced flow cytometry, we evaluated expression of selected transcription regulators, pathway molecules, and surface receptors on samples of the infused hematopoietic cell grafts. We demonstrated significantly enhanced expression of GATA-2, CD130, and CXCR4 on CD34(+) hematopoietic progenitor cells of affected patients compared with 42 unaffected AHCT controls. These 3 overexpressed markers have not been previously implicated in autologous GVHD. Although we did not specifically evaluate T cells, we postulate that exposure over time to the various immunomodulating therapies used for induction treatment affected not only the CD34(+) cells but also T cells or relevant T cell subpopulations capable of mediating GVHD. After infusion, the affected hematopoietic progenitor cells then encounter a host that has been further altered by the high-dose melphalan preparative regimen; such a situation leads to the syndrome. These surface markers could be used to develop a model to predict development of this syndrome. Autologous GVHD potentially is a serious complication of AHCT and should be considered in plasma cell myeloma patients with otherwise unexplained gastrointestinal symptoms in the immediate post-AHCT period. Prompt recognition of this condition and protracted treatment with nonabsorbable or systemic corticosteroids or the combination may lead to resolution. PMID:21440080

  18. Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures grown at low and high CO2

    International Nuclear Information System (INIS)

    Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybeans (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3-, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations

  19. Electrochemical grafting of TiO2-based photo-anodes and its effect in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Ruhland, Thomas Gerhard Aloysius

    2015-01-01

    transform infrared spectroscopy (ATR–FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). Implementation of electrochemically grafted TiO2 particles as photo-anodes in dye-sensitized solar cells (DSCs) showed that the grafted surface is...

  20. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  1. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  2. Innate memory CD4+ T cells suppress autoimmune graft-versus-host disease

    OpenAIRE

    Weishan Huang; Jianfang Hu; Laufer, Terri M.

    2013-01-01

    Chronic graft-versus-host disease (cGVHD) is the major complication post hematopoietic cell transplantation. Major histocompatibility complex class II (MHCII) mediated CD4+ T cell differentiation and function plays a critical role in cGVHD, and the lack of hematopoietic MHCII (H-MHCII) causes cGVHD in syngeneic irradiated murine recipients. We have studied this process using murine bone marrow transplant of MHCII deficient or sufficient donors. We find that irradiated WT recipients that recei...

  3. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  4. Susceptibility of adherent versus suspension target cells derived from adherent tissue culture lines to cell-mediated cytotoxicity in rapid 51Cr-release assays

    International Nuclear Information System (INIS)

    Preparation of target cells from tissue culture lines which grow adherent to tissue culture vessels is often desirable for tests of cell-mediated cytotoxicity (CMC). In the present study the authors used cells derived from adherent tissue culture lines to compare the merits of suspension vs. adherent target cells in short-term 51Cr-release assays. Cytotoxic activity of murine spleen cells sensitized in vitro against allogeneic spleen cells or syngeneic sarcoma cells was tested with fibroblast or sarcoma target cells. In parallel tests, aliquots of tissue culture lines were detached and used as either suspension or adherent target cells in CMC assays, matching the concentrations of suspension and adherent target cells. In both allogeneic and syngeneic combinations adherent target cells released less 51Cr spontaneously and were more susceptible to CMC than their suspension counterparts. (Auth.)

  5. Fuel cell membrane materials by chemical grafting of aromatic main-chain polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, P. [Department of Polymer Science and Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2005-04-01

    An extensive world-wide pursuit for new efficient fuel cell membranes materials is currently motivating research on proton-conducting ionomers based on durable aromatic main-chain polymers. In this context, most ionomers have been prepared either by direct sulfonation of polymers, using for example fuming sulfuric acid, or by direct polymerizations using different sulfonated monomers. Far less exploited are chemical grafting reactions carried out to introduce sulfonic acid units, or alternative acidic units, directly on the polymer main-chain, or on side-chains to the polymer main-chain. This versatile method offers very interesting possibilities, not only to control the degree and the site of sulfonation, but also when it comes to manipulating the molecular mobility of the sulfonic acid units and their distance from the polymer main-chain. The length and nature of the grafted units have shown to have a large influence on for example the water-uptake characteristics and conductivity of ionomer membranes, especially at temperatures above 100 C. Grafting can also be used to introduce other useful functions to the polymers, or to crosslink membranes. This paper reviews various grafting reactions carried out on aromatic main-chain polymers, especially polybenzimidazoles and polysulfones, to prepare membrane materials, as well as the characteristics of these materials regarding their use in fuel cells. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. The early diagnosis of kidney graft rejection with radioactive autologous bloodplatelets; importance of cell viability

    International Nuclear Information System (INIS)

    This study concerns the possible suitability of gamma camera scintigraphy after injection of 111In-labelled autologous thrombocytes as an early diagnostic method for the initial events of kidney graft rejection. The maintenance of cell function and viability after cell labelling appeared to be essential for the adequate interpretation of the results of subsequent in vivo measurements. Thrombocytes labelled according to the described procedure showed a normal collagen induced aggregation pattern and normal behaviour in vivo. A small group of individuals with well functioning kidneys, transplanted 4 - 6 months before, served as a control group. The transplanted kidneys could always be located on the scintigram taken 24 hours after 111In-thrombocyte injection. Increased accumulation of radioactive thrombocytes in the graft was observed in patients with clinical and biochemical signs of graft rejection. After adequate therapy, this accumulation decreased towards normal values. Concomitantly a reduced survival of circulating labelled platelets was found in periods with high kidney radioactivity and vice versa. However, in order to assess the value of the technique as an early indication of graft rejection more frequent measurements (i.e. 2 - 3 times a day) are necessary. A method using a portable crystal detector is now under investigation. Finally, it might be possible with this method to discriminate between various clinical courses (i.e. the type of rejection) after transplantation. (author)

  7. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  8. Research on Electric Impedance Spectroscopy of Living Cell Suspensions by a Chip with Microelectrodes

    Institute of Scientific and Technical Information of China (English)

    Xing Yang; Zhaoying Zhou; Mingfei Xiao; Ying Wu; Shangfeng Liu

    2006-01-01

    A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed. The substrate and the electrodes of the chip were made of glass and gold, respectively. The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline, culture medium, living cell suspension etc.) by scanning from 10Hz to 45kHz. A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension. An actual circuit was also built and tested to verify the 6-element circuit model proposed. The micro-EIS chip has several advantages including the use of small sample volumes, high resolution and ease of operation. It shows good application prospects in the areas of cellular electrophysiology, drug screening and bio-sensors etc.

  9. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    Directory of Open Access Journals (Sweden)

    Ilona Turek

    2015-09-01

    Full Text Available Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP, AtPNP-A (At2g18660 were assessed using quantitative proteomics employing tandem mass tag (TMT labeling and tandem mass spectrometry (LC–MS/MS. In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014 661 and have been deposited to the ProteomeXchange with identifier PXD001386.

  10. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    International Nuclear Information System (INIS)

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan®) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  11. C-27 AND C-3 GLUCOSYLATION OF DIOSGENIN BY CELL SUSPENSION CULTURES OF COSTUS SPECIOSUS

    Institute of Scientific and Technical Information of China (English)

    GUNAWAN INDRAYANTO; SITI ZUMAROH; ACHMAD SYAHRANI; ALISTAIR L. WILKINS

    2001-01-01

    3-O-[β-D-glucopyranosyl-(l″→ 2′)-β-D-glucopyranosyl], 27-O-β-D-glucopyranosyl-(25R)-spir ost-5-ene-3β,27-diol was isolated from cell suspension cultures of Costus speciosus, following incubation with diosgenin, and its structure was elucidated using a combination of one- and two-dimensional 1H and 13C NMR spectral data, and positive and negative ion ESMS spectral data.

  12. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization

    OpenAIRE

    Chanwun, Thitikorn; Muhamad, Nisaporn; Chirapongsatonkul, Nion; Churngchow, Nunta

    2013-01-01

    Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared as a single band on SDS-PAGE with molecular mass of 70 kDa. Surprisingly, this purified peroxidase also had polyphenol oxidase activity. However, the biochemical characteristics were only studied i...

  13. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Science.gov (United States)

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  14. Functional changes of dendritic cells derived from allogeneic partial liver graft undergoing acute rejection in rats

    Institute of Scientific and Technical Information of China (English)

    Ming-Qing Xu; Zhen-Xiang Yao

    2003-01-01

    AIM: To investigate functional change of dendritic cells (DCs)derived from allogeneic partial liver graft undergoing acuterejection in rats.METHODS: Allogeneic (SD rat to LEW rat) whole and 50 %partial liver transplantation were performed. DCs from livergrafts 0 hr and 4 days after transplantation were isolated andpropagated in the presence of GM-CSFin vitro. Morphologicalcharacteristics of DCs propagated for 4 days and 10 dayswere observed by electron rmicroscopy. Phenotypical featuresof DCs propagated for 10 days were analyzed by flowcytometry. Expression of IL-12 protein and IL-12 receptormRNA in DCs propagated for 10 days was also measured byWestern blotting and semiquantitative RT-PCR, respectively.Histological grading of rejection were determined.RESULTS: Allogeneic whole liver grafts showed no featuresof rejection at day 4 after transplantation. In contrast,allogeneic partial liver grafts demonstrated moderate tosevere rejection at day 4 after transplantation. DCs derivedfrom allogeneic partial liver graft 4 days after transplantationexhibited typical morphological characteristics of DC after 4days' culture in the presence of GM-CSF. DCs from allogeneicwhole liver graft 0 hr and 4 days after transplantation didnot exhibit typical morphological characteristics of DC untilafter 10 days' culture in the presence of GM-CSF. After 10days' propagationin vitro, DCs derived from allogeneic wholeliver graft exhibited features of immature DC, with absenceof CD40, CD80 and CD86 surface expression, and low levelsof IL-12 proteins (IL-12 p35 and IL-12 p40) and IL-12receptor (IL-12Rβ1 and IL-12Rβ2) mRNA, whereas DCs fromallogeneic partial liver graft 4 days after transplantationdisplayed features of mature DC, with high levels of CD40,CD80 and CD86 surface expression, and as a consequence,higher expression of IL-12 proteins (IL-12 p35 and IL-12 p40)and IL-12 receptors (IL-12Rβ1 and IL-12Rβ2) mRNA thanthose of DCs both from partial liver graft 0 hr and whole livergraft

  15. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    Science.gov (United States)

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions. PMID:26204775

  16. Dual biofunctional polymer modifications to address endothelialization and smooth muscle cell integration of ePTFE vascular grafts.

    Science.gov (United States)

    Bastijanic, Jennifer M; Kligman, Faina L; Marchant, Roger E; Kottke-Marchant, Kandice

    2016-01-01

    Expanded polytetrafluoroethylene (ePTFE) grafts were coated on the luminal surface with a cell-adhesive fluorosurfactant (FSP) polymer to promote endothelialization, followed by ethanol hydration to degas the pores and subsequent cell-adhesive, enzymatically degradable poly(ethylene glycol)-based hydrogel incorporation into the graft interstices to accommodate potential smooth muscle cell integration in the graft wall. The FSP coating on ePTFE was stable as demonstrated by a significantly reduced receding water contact angle on FSP-coated ePTFE (14.5 ± 6.4°) compared to uncoated ePTFE (105.3 ± 4.5°, P FSP presence. Localization of the FSP and hydrogel within the ePTFE graft construct was assessed using fluorescently labeled polymers, and demonstrated hydrogel infiltration throughout the thickness of the graft wall, with FSP coating limited to the lumen and adventitial surfaces. FSP at the luminal surface on dual-coated grafts was able to bind endothelial cells (EC) (98.7 ± 23.1 cells/mm(2) ) similar to fibronectin controls (129.4 ± 40.7 cells/mm(2) ), and significantly higher than uncoated ePTFE (31.6 ± 19 cells/mm(2,) P < 0.05). These results indicate that ePTFE grafts can be simultaneously modified with two different polymers that have potential to directly address both endothelialization and intimal hyperplasia. Such a construct is a promising candidate for an off-the-shelf synthetic graft for small-diameter graft applications. PMID:26177606

  17. The Role of Pattern-Recognition Receptors in Graft-Versus-Host Disease and Graft-Versus-Leukemia after Allogeneic Stem Cell Transplantation

    OpenAIRE

    Heidegger, Simon; van den Brink, Marcel R. M.; Haas, Tobias; Poeck, Hendrik

    2014-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential for certain aggressive hematopoietic malignancies. Its success is limited by acute graft-versus-host disease (GVHD), a life-threatening complication that occurs when allo-reactive donor T cells attack recipient organs. There is growing evidence that microbes and innate pattern-recognition receptors (PRRs) such as toll-like receptors (TLR) and nod-like receptors (NLR) are critically inv...

  18. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    Science.gov (United States)

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. PMID:26658353

  19. Preparation and characterization of radiation-grafted polymer electrolyte membrane for applications in fuel cells

    International Nuclear Information System (INIS)

    Polymer electrolyte membrane (PEM) is a key material that strongly affects the cell performance, cost and application prospect of the PEM fuel cell. The membrane acts as a separator to prevent mixing of the reactant gases and as an electrolyte for proton transportation. Radiation-grafted PEM has a special chemical structure, composing of fluorinated main chains and sulfonated side chains. The main chain acts as a stable backbone that gives the necessary strength, dimensional stability and gas barrier while the side chain gives the ability of proton transportation. In our study, the suitability of some base films, monomers and crosslinkers, as well as the preparation processes have been investigated in detail in order to develop a high performance radiation-grafted PEM. (authors)

  20. Pentostatin and Lymphocyte Infusion in Preventing Graft Rejection in Patients Who Have Undergone Donor Stem Cell Transplant

    Science.gov (United States)

    2016-02-29

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Graft Versus Host Disease; Hodgkin Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; Waldenstrom Macroglobulinemia

  1. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy.

    Science.gov (United States)

    Upadhya, Dinesh; Hattiangady, Bharathi; Shetty, Geetha A; Zanirati, Gabriele; Kodali, Maheedhar; Shetty, Ashok K

    2016-01-01

    Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc. PMID:27532817

  2. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2012-12-01

    Full Text Available Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles, electronics (high-resolution imaging, logical circuits on the molecular level and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases or imaging (contrast agents. Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs and modified magnetic nanoparticles (MNPs on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis — total protein content, thiols — reduced (GSH and oxidized (GSSG glutathione, phytochelatins PC2-5, glutathione S-transferase (GST activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension

  3. Neural Stem Cell Grafting Counteracts Hippocampal Injury-Mediated Impairments in Mood, Memory, and Neurogenesis

    OpenAIRE

    Hattiangady, Bharathi; Shetty, Ashok K.

    2012-01-01

    Hippocampal injury typically leads to mood and memory impairments associated with reduced and aberrant neurogenesis in the dentate gyrus. This study examined whether subventricular zone-neural stem cell (SVZ-NSC) grafting after hippocampal injury would counteract impairments in mood, memory, and neurogenesis. Analyses through forced swim, water maze, and novel object recognition tests revealed significant impairments in mood and memory function in animals that underwent injury and sham-grafti...

  4. Polysulfone Functionalized With Phosphonated Poly(pentafluorostyrene) Grafts for Potential Fuel Cell Applications

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja;

    2012-01-01

    of PFS onto PSU backbone is performed via the “click”‐chemistry approach. In a final step, the PFS‐grafts are subjected to the post phosphonation. The copolymers are evaluated as membranes for potential fuel cell applications through thermal analyses, water uptake, and conductivity measurements. The...... proposed synthetic route opens the possibility to tune copolymers’ hydrophilic–hydrophobic balance to obtain membranes with an optimal balance between proton conductivity and mechanical properties....

  5. Voriconazole-Induced Periostitis Mimicking Chronic Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation

    OpenAIRE

    Sweiss, Karen; Oh, Annie; Rondelli, Damiano; Patel, Pritesh

    2016-01-01

    Voriconazole is an established first-line agent for treatment of invasive fungal infections in patients undergoing allogeneic stem cell transplantation (ASCT). It is associated with the uncommon complication of periostitis. We report this complication in a 58-year-old female undergoing HSCT. She was treated with corticosteroids with minimal improvement. The symptoms related to periostitis can mimic chronic graft-versus-host disease in patients undergoing HSCT and clinicians should differentia...

  6. Etanercept for steroid-refractory acute graft versus host disease following allogeneic hematopoietic stem cell transplantation

    OpenAIRE

    Park, Joo Han; Lee, Hyo Jung; Kim, Sei Rhan; Song, Ga Won; Lee, Seung Kyong; Park, Sun Young; Kim, Ki Chan; Hwang, Sun Hyuk; Park, Joon Seong

    2014-01-01

    Background/Aims The treatment for steroid-refractory acute graft versus host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT) needs to be standardized. We report our clinical experience with etanercept for steroid-refractory acute GVHD. Methods Eighteen patients who underwent allo-SCT and presented with steroid-refractory acute GVHD at Ajou University Hospital were studied retrospectively. They were given 25 mg of etanercept subcutaneously twice weekly for 4 weeks. The cli...

  7. Regulation of Cytoplasmic and Vacuolar Volumes by Plant Cells in Suspension Culture

    DEFF Research Database (Denmark)

    Owens, Trevor; Poole, Ronald J

    1979-01-01

    Quantitative microscopical measurements have been made of the proportion of cell volume occupied by cytoplasm in a cell suspension culture derived from cotyledons of bush bean (cv. Contender). On a 7-day culture cycle, the content of cytoplasm varies from 25% at the time of transfer to 45% at the...... start of the phase of rapid cell division. If the culture is continued beyond 7 days, the vacuole volume reaches 90% of cell volume by day 12.Attempts to measure relative cytoplasmic volumes by compartmental analysis of nonelectrolyte efflux were unsuccessful. The proportion of cell volume occupied by...... cytoplasm is roughly correlated with protein content, but shows no correlation with cell size or with intracellular concentrations of K or Na. The most striking observation is that the growth of cytoplasmic volume for the culture as a whole appears to be constant throughout the culture cycle, despite...

  8. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    International Nuclear Information System (INIS)

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg·L-1 and IAA 0.2 mg·L-1 in the dark, and was increased by adding 1 μM Cu2+ and 100 μM methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg·L-1 and IAA 0.2 mg·L-1 in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of γ radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS (β-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs

  9. The new approaches to preservation of graft cell integrity in preservation for transplantation.

    Science.gov (United States)

    Gewartowska, Magdalena; Olszewski, Waldemar L

    2005-01-01

    Restoration of cell plasma membrane integrity after injury is essential for the survival of animal cells. In case of graft preservation or during chemotherapy in cancer, cell membrane integrity and the process of its repair are disrupted. Cytoprotective substances are important in such cases, as well as in other diseases, for example in myocardial infarction, acute insults and in chronic neurodegenerative diseases. Hyperosmolarity is a condition in which cell membrane stability may be damaged in vivo but preserved in the in vitro conditions. Hypertonicity causes water leaving from cells by osmosis, decreasing cell volume and increasing of intracellular ionic strength. High intracellular ionic strength perturbs cellular function by decreasing the rates of biochemical reaction. We review the new experimentally studied cytoprotective substances and their application in cell membrane protection. Moreover, we present our data on the effects of hyperosmolarity and its protective effect on cell internal structure. PMID:17037081

  10. The formation of electronically excited species in the human multiple myeloma cell suspension

    OpenAIRE

    Rác, Marek; Sedlářová, Michaela; Pospíšil, Pavel

    2015-01-01

    In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls 3(R = O)*. The kinetics of 3(R = O)* formation in the real time, as measured by one-dimensional ultra-wea...

  11. Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture

    DEFF Research Database (Denmark)

    Hong, Shin-Young; Lee, Tae-Sup; Kim, Ju; Jung, Jae-Ho; Choi, Chang-Woon; Kim, Tae-Geum; Kwon, Tae-Ho; Jang, Yong-Suk; Yang, Moon-Sik

    The tumor-associated glycoprotein 72 (TAG 72) has been shown to be expressed in the majority of human adenocarcinomas. In an effort to develop a technique for the safe and inexpensive production of large quantities of anti-TAG 72 humanized antibody fragments (hzAb) as a future source of clinical......-grade proteins, we developed a transgenic rice cell suspension culture system. The in vivo assembly and secretion of hzAb were achieved in a transgenic rice cell culture under the control of the rice alpha amylase 3D (RAmy 3D) expression system, and the biological activities of plant-derived hzAb were determined...

  12. Histology of embryoid development in oil palm (Elaeis guineensis Jacq.) cell suspension culture

    OpenAIRE

    Songrat Tinnongjig; Kamnoon Kanchanapoom

    2001-01-01

    Embryos of oil palm (Elaeis guineensis Jacq.) variety tenera were cultured on Eeuwens or Y3 (1976; 1978) medium supplemented with 2 mg/l 2,4-D. Calluses were initiated from these embryos. The eight-weekold calluses derived from embryos were transferred to modified Y3 liquid medium devoid of 2,4-D and supplemented with NAA, BA and coconut water to establish cell suspension culture. After a period of culture,these cells were then subcultured to the same medium without plant growth regulators to...

  13. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense

    OpenAIRE

    Kreuzaler, Fritz; Ragg, Hermann; Fautz, Erich; David N Kuhn; Hahlbrock, Klaus

    1983-01-01

    DNAs complementary to poly(A)+ mRNAs from UV-irradiated cell suspension cultures of parsley (Petroselinum hortense) were inserted into pBR322 and used to transform Escherichia coli strain RR1. A clone containing a DNA complementary to chalcone synthase mRNA was identified by hybrid-selected and hybrid-arrested translation. Large and rapid changes in the amount of chalcone synthase mRNA in response to irradiation of the cells was detected by RNA blot hybridization experiments. The pattern of c...

  14. APOPTOSIS AND TAXOL PRODUCTION IN SUSPENSION CULTURES OF Taxus spp.CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    l.lntroductionSuspension cultures of Taxal chinensis var.mairei frequently accumulate Taxol (paclitaxel),which is clinically effective amineoplanic agent.TSXol is known to act by enhancing thePOlymeriZation of tubulin in the initiation andextension of microtubules, ac has been shown toinduce apoptosis in human and animal cellslll.Apoptosis, also known as programmed cell death, isthe active process of cell death which occurs duringdevelopment and in resPOnse tO enviboental cues ofa multicellular organism. In...

  15. Immune repertoire diversity in allogeneic stem cell transplantation and its implications for infections and the graft versus leukemia effect

    OpenAIRE

    Björklund, Andreas

    2014-01-01

    The beneficial graft versus leukemia effect (GVL) and its detrimental counterparts, graft versus host disease (GVHD) and susceptibility to infections, are all coupled to a multitude of events during the immune reconstitution (IR) after hematopoietic stem cell transplantation (HSCT). The general aim of this thesis has been to learn more about the IR in HSCT with a particular focus on the impact of infections, natural killer (NK) cell mediated GVL effects and the possibility to a...

  16. Lack of IL-21 signal attenuates graft-versus-leukemia effect in the absence of CD8 T-cells

    OpenAIRE

    Meguro, A; Ozaki, K.(Kobe University, 657-8501 , Kobe, Japan); Hatanaka, K.; Oh, I; K. Sudo; Ohmori, T; Matsu, H; Tatara, R; Sato, K.; Sakata, Y; Nakae, S; Leonard, WJ; Ozawa, Keiya

    2011-01-01

    Previously, we have shown that IL-21R-/- splenocytes ameliorate graft-versus-host disease (GVHD) as compared to wild type splenocytes. Here, we investigated whether or not IL-21R-/- splenocytes diminish the graft-versus-leukemia (GVL) effect. Surprisingly, IL-21R-/- splenocytes efficiently eliminate leukemic cells as well as wild type splenocytes, suggesting the retention of GVL effects in the absence of IL-21 signaling. To compare the GVL effect between IL-21R-/- and wild type cells, we titr...

  17. Donor Requirements for Regulatory T Cell Suppression of Murine Graft Versus Host Disease

    OpenAIRE

    Pierini, Antonio; Colonna, Lucrezia; Alvarez, Maite; Schneidawind, Dominik; Nishikii, Hidekazu; Baker, Jeanette; Pan, Yuqiong; Florek, Mareike; Kim, Byung-Su; Negrin, Robert S.

    2015-01-01

    Adoptive transfer of freshly isolated natural occurring CD4+CD25+FoxP3+ regulatory T cells (Treg) prevents graft versus host disease (GvHD) in several animal models and following hematopoietic cell transplantation (HCT) in clinical trials. Donor derived Treg have been mainly used as they share the same MHC with conventional CD4+ and CD8+ T cells (Tcon) that are primarily responsible for GvHD. Third-party derived Treg are a promising alternative for cellular therapy as they can be prepared in ...

  18. Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers.

    Science.gov (United States)

    Wang, Qi; Liu, Pei; Liu, Peifeng; Gong, Tao; Li, Suming; Duan, Yourong; Zhang, Zhirong

    2014-02-01

    Biodegradable chitosan-graft-polylactide (PLA-CS) copolymers were prepared by the grafting of a poly(L-lactide) (PLLA) or poly(D-lactide) (PDLA) precursor to the backbone of chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⋅ HCl) and N-hydroxysuccinimide (NHS) as a coupling agent. The blood and cell compatibility of the graft copolymers were investigated in comparison to PLLA and PDLA homopolymers. The coagulation properties of PLA-CS were evaluated by hemolysis, plasma recalcification, dynamic blood clotting and protein absorption assays. PLA-CS copolymers present similar hemolysis ratio and plasma recalcification time as PLA, but slower dynamic blood clotting and lower protein absorption. The cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), agar diffusion and lactate dehydrogenase (LDH) experiments. All the samples presented no effect on the viability to cells. Inflammatory cytokine analysis using sandwich ELISAs revealed that PLA-CS would not stimulate inflammatory activity. PMID:24448591

  19. Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers

    International Nuclear Information System (INIS)

    Biodegradable chitosan-graft-polylactide (PLA–CS) copolymers were prepared by the grafting of a poly(L-lactide) (PLLA) or poly(D-lactide) (PDLA) precursor to the backbone of chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⋅ HCl) and N-hydroxysuccinimide (NHS) as a coupling agent. The blood and cell compatibility of the graft copolymers were investigated in comparison to PLLA and PDLA homopolymers. The coagulation properties of PLA–CS were evaluated by hemolysis, plasma recalcification, dynamic blood clotting and protein absorption assays. PLA–CS copolymers present similar hemolysis ratio and plasma recalcification time as PLA, but slower dynamic blood clotting and lower protein absorption. The cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), agar diffusion and lactate dehydrogenase (LDH) experiments. All the samples presented no effect on the viability to cells. Inflammatory cytokine analysis using sandwich ELISAs revealed that PLA–CS would not stimulate inflammatory activity. (paper)

  20. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    Science.gov (United States)

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  1. A population balance equation model of aggregation dynamics in Taxus suspension cell cultures.

    Science.gov (United States)

    Kolewe, Martin E; Roberts, Susan C; Henson, Michael A

    2012-02-01

    The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance. PMID:21910121

  2. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells.

    Science.gov (United States)

    Dohi, K; Nishikiori, M; Tamai, A; Ishikawa, M; Meshi, T; Mori, M

    2006-06-01

    Although suspension-cultured plant cells have many potential merits as sources of useful proteins, the lack of an efficient expression system has prevented using this approach. In this study, we established an inducible tomato mosaic virus (ToMV) infection system in tobacco BY-2 suspension-cultured cells to inducibly and efficiently produce a foreign protein. In this system, a modified ToMV encoding a foreign protein as replacement of the coat protein is expressed from stably transformed cDNA under the control of an estrogen-inducible promoter in transgenic BY-2 cells. Estrogen added to the culture activates an estrogen-inducible transactivator expressed constitutively from the transgene and induces transcription and replication of viral RNA. In our experiments, accumulation of viral RNA and expression of green fluorescent protein (GFP) encoded in the virus were observed within 24 h after induction. The amount of GFP reached approximately 10% of total soluble protein 4 d after induction. In contrast, neither viral RNA nor GFP were detected in uninduced cells. The inducible virus infection system established here should be utilized not only for the expression of foreign proteins, but also for investigations into the viral replication process in cultured plant cells. PMID:16421635

  3. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    Energy Technology Data Exchange (ETDEWEB)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru (Ochanomizu Univ., Tokyo (Japan))

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  4. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U-14C]glucose and [U-14C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  5. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective.

    Science.gov (United States)

    Saraceni, F; Shem-Tov, N; Olivieri, A; Nagler, A

    2015-07-01

    Although stem cell mobilization has been performed for more than 20 years, little is known about the effects of mobilizing agents on apheresis composition and the impact of graft cell subsets on patients' outcome. With the increasing use of plerixafor and the inclusion of poor mobilizers in autologous transplant procedures, new parameters other than CD34(+) stem cell dose are emerging; plerixafor seems to mobilize more primitive CD34(+)/CD38(-) stem cells compared with G-CSF, but their correlation with stable hematopoietic engraftment is still obscure. Immune recovery is as crucial as hematopoietic reconstitution, and higher T and natural killer cells infused within the graft have been correlated with better outcome in autologous transplant; recent studies showed increased mobilization of immune effectors with plerixafor compared with G-CSF, but further data are needed to clarify the clinical impact of these findings. In the allogeneic setting, much evidence suggests that mobilized T-cell alloreactivity is tempered by G-CSF, probably with the mediation of dendritic cells, even though no clear correlation with GVL and GVHD has been found. Plerixafor is not approved in healthy donors yet; early data suggest it might mobilize a GVHD protective balance of immune effectors, but further studies are needed to define its role in allogeneic transplant. PMID:25665044

  6. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  7. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  8. Aberrant Phenotype in Human Endothelial Cells of Diabetic Origin: Implications for Saphenous Vein Graft Failure?

    Directory of Open Access Journals (Sweden)

    Anna C. Roberts

    2015-01-01

    Full Text Available Type 2 diabetes (T2DM confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC cultured from T2DM and nondiabetic (ND patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV- EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30% and angiogenesis (~40% compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp., effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  9. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    Science.gov (United States)

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. PMID:27088188

  10. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    Science.gov (United States)

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. PMID:26774956

  11. Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells.

    Science.gov (United States)

    Castro, R; Fernandes, P; Laske, T; Sousa, M F Q; Genzel, Y; Scharfenberg, K; Alves, P M; Coroadinha, A S

    2015-09-01

    The potential of adherent Madin Darby Canine Kidney (MDCK) cells for the production of influenza viruses and canine adenovirus type 2 (CAV-2) for vaccines or gene therapy approaches has been shown. Recently, a new MDCK cell line (MDCK.SUS2) that was able to grow in suspension in a fully defined system was established. In this work, we investigated whether the new MDCK.SUS2 suspension cell line is suitable for the amplification of CAV-2 under serum-free culture conditions. Cell growth performance and CAV-2 production were evaluated in three serum-free media: AEM, SMIF8, and EXCELL MDCK. CAV-2 production in shake flasks was maximal when AEM medium was used, resulting in an amplification ratio of infectious particles (IP) of 142 IP out/IP in and volumetric and cell-specific productivities of 2.1 × 10(8) IP/mL and 482 IP/cell, respectively. CAV-2 production was further improved when cells were cultivated in a 0.5-L stirred tank bioreactor. To monitor infection and virus production, cells were analyzed by flow cytometry. A correlation between the side scatter measurement and CAV-2 productivity was found, which represents a key feature to determine the best harvesting time during process development of gene therapy vectors that do not express reporter genes. This work demonstrates that MDCK.SUS2 is a suitable cell substrate for CAV-2 production, constituting a step forward in developing a production process transferable to industrial scales. This could allow for the production of high CAV-2 titers either for vaccination or for gene therapy purposes. PMID:25994255

  12. Establishment of a murine graft-versus-myeloma model using allogeneic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Marilène Binsfeld

    Full Text Available Multiple myeloma (MM is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic graft-versus-host disease (GvHD.Balb/cJ mice were injected intravenously with luciferase-transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor or autologous (Balb/cJ donor transplant 30 days later. We observed a GvM effect in 94% of the allogeneic transplanted mice, as the luciferase signal completely disappeared after transplantation, whereas all the autologous transplanted mice showed myeloma progression. Lower serum paraprotein levels and lower myeloma infiltration in bone marrow and spleen in the allogeneic setting confirmed the observed GvM effect. In addition, the treated mice also displayed chronic GvHD symptoms. In vivo and in vitro data suggested the involvement of effector memory CD4 and CD8 T cells associated with the GvM response. The essential role of CD8 T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in reduced GvM effects. Finally, TCR Vβ spectratyping analysis identified Vβ families within CD4 and CD8 T cells, which were associated with both GvM effects and GvHD, whereas other Vβ families within CD4 T cells were associated exclusively with either GvM or GvHD responses.We successfully established an immunocompetent murine model of graft-versus-myeloma. This is the first murine GvM model using immunocompetent mice that develop MM which closely resembles human MM disease and that are treated after disease establishment with an allo-SCT. Importantly, using TCR Vβ spectratyping, we also demonstrated the presence of GvM unique responses

  13. Changes of Respiration Activities in Cells of Winter Wheat and Sugar Cane Suspension Cultures During Programmed Cell Death Process

    OpenAIRE

    I.V. Lyubushkina; A.V. Fedyaeva; Stepanov, A.V.; T.P. Pobezhimova

    2015-01-01

    Process of cell death in suspension cultures of winter wheat and sugar cane under high (50 °С) and negative (-8 °С) temperature treatment has been studied. It has been shown, that programmed cell death (PCD) process caused by the negative temperature in the culture of winter wheat was noted for slow rate of realization and it was carried out for 10 days. It has been state that rate of cell respiration was significantly higher than in the control culture. At the same time PCD processes induced...

  14. Histological observation on acellular nerve grafts co-cultured with Schwann cells for repairing defects of the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Sun; Jiangyi Tian; Xiaojie Tong; Xu Zhang; Zheng He

    2006-01-01

    BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts.OBJECTIVE: To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve.DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University.METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve.According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed.MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of

  15. Cultured keratinocyte grafting on various biologic matrices

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Objective: To make attempts to use cell constructs from subconfluent keratinocyte cultures, which contain a much glue (TissucollR) and directly applied onto full thickness wounds in athymic mice or combined with allogenic split thickness overgrafts and compared with cultured sheet grafts. This keratinocyte fibrin glue suspension (KFGS) has also been used in burns up to 88% burned TBSA as well as in chronic wounds. Keratinocytes were also seeded onto various biomaterials (BiobraneR, HYAFF LaserskinR, IntegraTM, TissuFascieR) as carriers. Results: Human suspended keratinocytes were effective to reorganize to skin in vivo both in nude mice and in patients and superior if compared to sheet grafts. 3~ 5 d after seeding onto various biomaterials, cell reached subconfluence and were ready for grafting. These cell-membrane constructs were always tured on microspheres in spinner cultures could increase the cell yield, and the subconfluently covered microspheres were directly grafted onto" the wound. Conclusion: These experiments demonstrated that keratinocytes can grow on a variety of carrier materials in vitro and these cell constructs were able to spontaneously reform a multilayer neoepithelium in vivo. The current screening looks for the ideal carrier for keratinocytes that also would serve as a temporary wound cover and induce dermis formation by tissue conduction which further may be enhanced by gene therapy.

  16. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells

    International Nuclear Information System (INIS)

    Gene electrotransfer is a non-viral gene delivery method that requires successful electroporation for DNA delivery into the cells. Changing the direction of the electric field during the pulse application improves the efficacy of gene delivery. In our study, we tested a pipette tip with integrated electrodes that enables changing the direction of the electric field for electroporation of cell suspension for gene electrotransfer. A new pipette tip consists of four cylindrical rod electrodes that allow the application of electric pulses in different electric field directions. The experiments were performed on cell suspension of CHO cells in phosphate buffer. Plasmid DNA encoding for green fluorescent protein (GFP) was used and the efficiency of gene electrotransfer was determined by counting cells expressing GFP 24 h after the experiment. Experimental results showed that the percentage of cells expressing GFP increased when the electric field orientation was changed during the application. The GFP expression was almost two times higher when the pulses were applied in orthogonal directions in comparison with single direction, while cell viability was not significantly affected. We can conclude that results obtained with the described pipette tip are comparable to previously published results on gene electrotransfer using similar electrode geometry and electric pulse parameters. The tested pipette tip, however, allows work with small volumes/samples and requires less cell manipulation

  17. Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture.

    Science.gov (United States)

    Wang, Songfeng; Cao, Siqi; Wang, Yongfeng; Jiang, Bingqi; Wang, Lianhong; Sun, Feifei; Ji, Rong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is the brominated flame retardant with the highest production volume and its bioaccumulation in environment has caused both human health and environmental concerns, however the fate and metabolism of TBBPA in plants is unknown. We studied the fate, metabolites, and transformation of (14)C-labeled TBBPA in rice cell suspension culture. During the incubation for 14 days, TBBPA degradation occurred continuously in the culture, accompanied by formation of one anisolic metabolite [2,6-dibromo-4-(2-(2-hydroxy)-propyl)-anisole] (DBHPA) (50% of the degraded TBBPA) and cellular debris-bound residues (46.4%) as well as mineralization (3.6%). The cells continuously accumulated TBBPA in the cytoplasm, while a small amount of DBHPA (2.1% of the initially applied TBBPA) was detectable inside the cells only at the end of incubation. The majority of the accumulated residues in the cells was attributed to the cellular debris-bound residues, accounting for 70-79% of the accumulation after the first incubation day. About 5.4% of the accumulation was associated with cell organelles, which contributed 7.5% to the cellular debris-bound residues. Based on the fate and metabolism of TBBPA in the rice cell suspension culture, a type II ipso-substitution pathway was proposed to describe the initial step for TBBPA degradation in the culture and balance the fate of TBBPA in the cells. To the best of our knowledge, our study provides for the first time the insights into the fate and metabolism of TBBPA in plants and points out the potential role of type II ipso-hydroxylation substitution in degradation of alkylphenols in plants. Further studies are required to reveal the mechanisms for the bound-residue formation (e.g., binding of residues to specific cell wall components), nature of the binding, and toxicological effects of the bound residues and DBHPA. PMID:27105166

  18. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  19. In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension.

    Science.gov (United States)

    Takeuchi, Ryohei; Kuruma, Yosuke; Sekine, Hidekazu; Dobashi, Izumi; Yamato, Masayuki; Umezu, Mitsuo; Shimizu, Tatsuya; Okano, Teruo

    2016-08-01

    Cell sheets have shown a remarkable ability for repairing damaged myocardium in clinical and preclinical studies. Although they demonstrate a high degree of viability as engrafted cells in vivo, the reason behind their survivability is unclear. In this study, the survival and vascularization of rat cardiac cell sheets transplanted in the subcutaneous tissue of athymic rats were investigated temporally. The cell sheets showed significantly higher survival than cell suspensions for up to 12 months, using an in vivo bioluminescence imaging system to detect luciferase-positive transplanted cells. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay also showed a smaller number of apoptotic cells in the cell sheets than in the cell suspensions at 1 day. Rapid vascular formation and maturation were observed inside the cell sheets using an in vivo imaging system. Leaky vessels appeared at 6 h, red blood cells flowing through functional vessels appeared at 12 h, and morphologically matured vessels appeared at 7 days. In addition, immunostaining of cell sheets with nerve/glial antigen-2 (NG2) showed that vessel maturity increased over time. Interestingly, these results correlated with the dynamics of cell sheet mRNA expression. Genes related to endothelial cells (ECs) proliferation, migration and vessel sprouting were highly expressed within 1 day, and genes related to pericyte recruitment and vessel maturation were highly expressed at 3 days or later. This suggested that the cell sheets could secrete appropriate angiogenic factors in a timely way after transplantation, and this ability might be a key reason for their high survival. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24470393

  20. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    OpenAIRE

    Songtao Gao; Yan Zheng; Qiqing Cai; Zhansheng Deng; Weitao Yao; Jiaqiang Wang; Xin Wang; Peng Zhang

    2014-01-01

    Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and tra...

  1. Valproic Acid Ameliorates Graft-versus-Host Disease by Downregulating Th1 and Th17 Cells.

    Science.gov (United States)

    Long, Jun; Chang, Li; Shen, Yan; Gao, Wen-Hui; Wu, Yue-Nv; Dou, Han-Bo; Huang, Meng-Meng; Wang, Ying; Fang, Wei-Yue; Shan, Jie-Hui; Wang, Yue-Ying; Zhu, Jiang; Chen, Zhu; Hu, Jiong

    2015-08-15

    Graft-versus-host disease (GVHD) is the major complication after allogeneic bone marrow transplantation. Valproic acid (VPA) was described as a histone deacetylase inhibitor that had anti-inflammatory effects and reduced the production of proinflammatory cytokines in experimental autoimmune disease models. Using well-characterized mouse models of MHC-mismatched transplantation, we studied the effects of VPA on GVHD severity and graft-versus-leukemia (GVL) activity. Administration of VPA significantly attenuated the clinical severity of GVHD, the histopathology of GVHD-involved organs, and the overall mortality from GVHD. VPA downregulated Th1 and Th17 cell responses and cytokine production in vitro and in vivo, whereas its effect on GVHD was regulatory T cell independent. The effect of VPA was related to its ability to directly reduce the activity of Akt, an important regulator of T cell immune responses. Importantly, when mice received lethal doses of host-type acute leukemia cells, administration of VPA did not impair GVL activity and resulted in significantly improved leukemia-free survival. These findings reveal a unique role for VPA as a histone deacetylase inhibitor in reducing the donor CD4(+) T cells that contribute to GVHD, which may provide a strategy to reduce GVHD while preserving the GVL effect. PMID:26179902

  2. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  3. Prevalence of Endogenous CD34+ Adipose Stem Cells Predicts Human Fat Graft Retention in a Xenograft Model

    Science.gov (United States)

    Philips, Brian J.; Grahovac, Tara L.; Valentin, Jolene E.; Chung, Christopher W.; Bliley, Jacqueline M.; Pfeifer, Melanie E.; Roy, Sohini B.; Dreifuss, Stephanie; Kelmendi-Doko, Arta; Kling, Russell E.; Ravuri, Sudheer K.; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Fat grafting is a promising technique for soft-tissue augmentation, although graft retention is highly unpredictable and factors that affect graft survival have not been well defined. Because of their capacity for differentiation and growth factor release, adipose-derived stem cells may have a key role in graft healing. The authors’ objective was to determine whether biological properties of adipose-derived stem cells present within human fat would correlate with in vivo outcomes of graft volume retention. Methods Lipoaspirate from eight human subjects was processed using a standardized centrifugation technique and then injected subcutaneously into the flanks of 6-week-old athymic nude mice. Graft masses and volumes were measured, and histologic evaluation, including CD31+ staining for vessels, was performed 8 weeks after transplantation. Stromal vascular fraction isolated at the time of harvest from each subject was analyzed for surface markers by multi-parameter flow cytometry, and also assessed for proliferation, differentiation capacity, and normoxic/hypoxic vascular endothelial growth factor secretion. Results Wide variation in percentage of CD34+ progenitors within the stromal vascular fraction was noted among subjects and averaged 21.3 ± 15 percent (mean ± SD). Proliferation rates and adipogenic potential among stromal vascular fraction cells demonstrated moderate interpatient variability. In mouse xenograft studies, retention volumes ranged from approximately 36 to 68 percent after 8 weeks, with an overall average of 52 ± 11 percent. A strong correlation (r = 0.78, slope = 0.76, p < 0.05) existed between stromal vascular fraction percentage of CD34+ progenitors and high graft retention. Conclusion Inherent biological differences in adipose tissue exist between patients. In particular, concentration of CD34+ progenitor cells within the stromal vascular fraction may be one of the factors used to predict human fat graft retention. (Plast

  4. Electrochemistry of a ferrocene-grafted cell-penetrating peptide

    International Nuclear Information System (INIS)

    A cationic cell-penetrating peptide (CPP) labeled with both a ferrocenyl (Fc) moiety and a biotin (B) was successfully synthesized and investigated by electrochemistry. This original CPP derivative noted as Fc-CPP-B could be electrochemically detected, at a micromolar concentration, at a naked gold bead electrode. The presence of a biotin tag in the Fc-CPP-B complex allowed its complexation with avidin, which was itself tethered to a thiolated self-assembled monolayer. Such an avidin-modified gold surface, characterized by atomic force microscopy (AFM), allowed the immobilization of Fc-CPP-B onto the electrode surface, which greatly enhanced its electrochemical detection. Nevertheless, under these conditions the electrogenerated ferrocenium cation could not be reduced during the backward scan, indicating its unexpected reactivity when tethered within the avidin environment. In terms of detection and redox probe regeneration the best results were obtained at a glassy carbon electrode modified with a cation-exchange polymer. Ion-exchange voltammetry, performed under these conditions, allowed the pre-concentration of the peptide at the electrode surface thanks to the net positive charge of the CPP derivative. Interestingly, the anionic character of the polymer contributed to retain the electrogenerated cation Fc+ in the film so that it could be reduced back to its original neutral form during the reverse voltammetric scans.

  5. Skin graft

    Science.gov (United States)

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  6. Grafting of Vinyl Pyrrolidone/Styrene onto Ethylene/Chlorotrifluoroethylene Membrane for Proton ExchangeMembrane Fuel Cell

    International Nuclear Information System (INIS)

    Highlights: • Gamma irradiation was used as a tool for membranes grafting. • Sty and VP were grafted ECTFE. • The membranes were characterized using; FT-IR, TGA and SEM. • The membranes were investigated for their ability into the PEMFCusing different techniques. • The highest fuel cell performance was at 75 °C and more durableup to 450 hours. - Abstract: Simultaneous gamma irradiation was proved to be an effective tool for ethylene/ chlorotrifluoroethylene grafting by styrene and vinyl pyrrolidone with different ratios. It was found that; the optimum grafting yield was 81% by using 40 kGy gamma irradiation dose when the binary monomers ratio was 1:1 (styrene: vinyl pyrrolidone). The grafted membranes were investigated for chemical structure by FT-IR and thermal properties by thermal gravimetric analysis. The mechanical properties were studied by measuring tensile strength while morphological structure was characterized by scanning electron microscope. The membranes’ free volume sizes were determined using positron annihilation lifetime spectroscopy (PALS). Ion exchange capacity, water uptake and membranes thickness were investigated and proton conductivity was evaluated. The optimum temperature for attaining the maximum fuel cell performance was at 75 °C while it reduced by decreasing the temperature to 50 °C or increasing it to 85 °C. The fuel cell performance based highest yield of the grafted membrane was more durable than compressed Nr.118 (commercial membranes) up to 450 hours

  7. Stimulating the production of homoisoflavonoids in cell suspension cultures of Caesalpinia pulcherrima using cork tissue.

    Science.gov (United States)

    Zhao, Ping; Iwamoto, Yuko; Kouno, Isao; Egami, Yasukuni; Yamamoto, Hirobumi

    2004-09-01

    It has previously been demonstrated that cork tissue increases the efficiency of the production of lipophilic secondary metabolites in diverse plant cell suspension cultures. In the present study, three new homoisoflavonoids--named dihydrobonducellin, 2'-methoxydihydrobonducellin, and 2'-methoxybonducellin--and bonducellin and isobonducellin were isolated from Caesalpinia pulcherrima cultured cells coincubated with cork tissue. Cork tissue increased the production of 2'-methoxybonducellin by about 7-fold relative to control cells, and more than 80% of the product was recoverable from the cork tissue. When cork tissue and methyl jasmonate or yeast extract were added simultaneously to the medium, the amount of 2'-methoxybonducellin produced increased further. The production of the other four homoisoflavonoids was enhanced by variable amounts. Our results indicate that the addition of cork tissue would be an effective technique for investigating formation of secondary metabolites that usually accumulate only in trace amounts. PMID:15381409

  8. Suspension cell culture in microgravity and development of a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  9. Histology of embryoid development in oil palm (Elaeis guineensis Jacq. cell suspension culture

    Directory of Open Access Journals (Sweden)

    Songrat Tinnongjig

    2001-11-01

    Full Text Available Embryos of oil palm (Elaeis guineensis Jacq. variety tenera were cultured on Eeuwens or Y3 (1976; 1978 medium supplemented with 2 mg/l 2,4-D. Calluses were initiated from these embryos. The eight-weekold calluses derived from embryos were transferred to modified Y3 liquid medium devoid of 2,4-D and supplemented with NAA, BA and coconut water to establish cell suspension culture. After a period of culture,these cells were then subcultured to the same medium without plant growth regulators to induce embryoid formation. The calluses and embryoids were harvested at various times, fixed, sectioned, stained and examined microscopically. Histological study revealed that embryoid occurred from meristematic cells with dense cytoplasm along the callus clumps.

  10. Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures

    Science.gov (United States)

    Corbin, Jasmine M.; Hashimoto, Bryce I.; Karuppanan, Kalimuthu; Kyser, Zachary R.; Wu, Liying; Roberts, Brian A.; Noe, Amy R.; Rodriguez, Raymond L.; McDonald, Karen A.; Nandi, Somen

    2016-01-01

    An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE. PMID:27066048

  11. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Lee, Young Keun; Chung, Byung Yeoup; Lee, Young Bok; Hwang Hye Yeon

    2004-10-01

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg{center_dot}L{sup -1} and IAA 0.2 mg{center_dot}L{sup -1} in the dark, and was increased by adding 1 {mu}M Cu{sup 2+} and 100 {mu}M methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg{center_dot}L{sup -1} and IAA 0.2 mg{center_dot}L{sup -1} in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of {gamma} radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS ({beta}-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs.

  12. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  13. Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

    OpenAIRE

    Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Choi, Eun Young; Min, Chang-Ki

    2015-01-01

    Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2b) → B6D2F1 (H-2b/d), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic ...

  14. Radiosensitivity of stromal cells human bone marrow precursors, irradiated in vitro inside bone and in cell suspension and a modifying effect of hypoxia

    International Nuclear Information System (INIS)

    A study was made of radiosensitivity of human bone marrow cells that form fibroblast colonies within monolayer cultures (CFUsub(f)) after exposure to 60Co-γ-radiation under different conditions: in pieces of an extirpated bone and in a cell suspension. Dose survival curves for CFUsub(f) obtained from both variants of the experiment vary merkedly in the value of median lethal dose (Dsub(O)) which constitute.s 89 rad for cell suspension and 328 rad for bone pieces. Radioresistance of CFUsub(f) increases (sub(o)=126 rad) in the suspension bubbled with argon whereas substitution of the atmosphere with argon does not influence the sensitivity of CFU irradiated in bone. The observed distinctions in radiosensitivity of human bone marrow CFU irradiated in suspension and bone pieces are probably related to different oxygen status of cells at time of irradiation. Maximum value of the oxygen effect for CFUsub(f) is 3.7

  15. Production of Gymnemic Acid from Cell Suspension Cultures of Gymnema sylvestre.

    Science.gov (United States)

    Nagella, Praveen; Dandin, Vijayalaxmi S; Murthy, Hosakatte Niranjana

    2016-01-01

    Gymnema sylvestre R. Br. is a popular herbal medicine. It has been used in ayurvedic system of medicine for thousands of years. It is popularly called as "Gur-mar" for its distinctive property of temporarily destroying the taste of sweetness and is used in the treatment of diabetes. The leaves of gymnema possess antidiabetic, antimicrobial, anti-hypercholesterolemic, anti-sweetener, anti-inflammatory, and hepatoprotective properties and have traditional uses in the treatment of asthma, eye complaints, and snake bite. The leaves contain triterpene saponins such as gymnemic acid which is an active ingredient of Gymnema. Since the cultivation of G. sylvestre is a very slow process and the content of gymnemic acid depends on the environmental factors, cell suspension culture is sought as an alternative means for the production of Gymnema biomass and to enhance the gymnemic acid content. In this chapter, the methods employed for the induction of callus and subsequent establishment of cell suspension cultures for the production of biomass and analysis of gymnemic acid using high performance liquid chromatography are described. PMID:27108321

  16. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  17. A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Camila Oliveira Goulart

    Full Text Available Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process.Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury.Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group, Schwann cell grafts (3×105/2 µL; SC group, treadmill training (TMT group, and treadmill training and Schwann cell grafts (TMT + SC group. Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis.Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons.These data provide evidence that this combination of therapeutic strategies can significantly improve functional

  18. Bioimpedance analysis for the characterization of breast cancer cells in suspension.

    Science.gov (United States)

    Guofeng Qiao; Wei Wang; Wei Duan; Fan Zheng; Sinclair, A J; Chatwin, C R

    2012-08-01

    The bioimpedance spectroscopy (BIS) technique is potentially a useful tool to differentiate malignancy based on the variation of electrical properties presented by different tissues and cells. The different tissues and cells present variant electrical resistance and reactance when excited at different frequencies. The main purpose of this area of research is to use impedance measurements over a low-frequency bandwidth ranging from 1 kHz to 3 MHz to 1) differentiate the pathological stages of cancer cells under laboratory conditions and 2) permit the extraction of electrical parameters related to cellular information for further analysis. This provides evidence to form the basis of bioimpedance measurement at the cellular level and aids the potential future development of rapid diagnostics from biopsy materials. Three cell lines, representing normal breast epithelia and different pathological stages of breast cancer, have been measured using a standard impedance analyzer driving a four-electrode chamber filled with different cell suspensions. We identify the specific BIS profile for each cell type and determine whether these can be differentiated. In addition, the electrical parameters, e.g., the intracellular conductivity, membrane capacitance/capacity, characteristic frequency, are extracted by the use of equivalent circuit models and physical models to provide details of the cell electric signatures for further analysis of cancer cell pathology. PMID:22692870

  19. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Seyedi

    2016-04-01

    Full Text Available Objective: Worldwide, diabetes mellitus (DM is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs into IPCs and measured insulin production. Materials and Methods: In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12 medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC and the chemiluminesence immunoassay (CLIA. Results: Reverse transcription-polymerase chain reaction (RT-PCR showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion: We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation.

  20. Treatment of Graft-versus-Host Disease with Naturally Occurring T Regulatory Cells

    OpenAIRE

    Trzonkowski, Piotr; Dukat-Mazurek, Anna; Bieniaszewska, Maria; Marek-Trzonkowska, Natalia; Dobyszuk, Anita; Juścińska, Jolanta; Dutka, Magdalena; Myśliwska, Jolanta; Hellmann, Andrzej

    2013-01-01

    A significant body of evidence suggests that treatment with naturally occurring CD4+CD25+ T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of deat...

  1. Voriconazole-Induced Periostitis Mimicking Chronic Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Karen Sweiss

    2016-01-01

    Full Text Available Voriconazole is an established first-line agent for treatment of invasive fungal infections in patients undergoing allogeneic stem cell transplantation (ASCT. It is associated with the uncommon complication of periostitis. We report this complication in a 58-year-old female undergoing HSCT. She was treated with corticosteroids with minimal improvement. The symptoms related to periostitis can mimic chronic graft-versus-host disease in patients undergoing HSCT and clinicians should differentiate this from other diagnoses and promptly discontinue therapy.

  2. Immune Mechanisms of Mesenchymal Stem Cell Therapy for Acute Graft versus Host Disease

    OpenAIRE

    Tobin, Laura M.

    2012-01-01

    The aim of this work was to investigate the role of Mesenchymal stem cells (MSC) in the modulation of immune responses, focusing on suppression and induction of immune tolerance. To date, MSC therapy has proved beneficial for the treatment of inflammatory and autoimmune diseases, such as acute Graft versus Host Disease (aGvHD) and Crohn’s disease. However, the exact mechanisms of therapeutic benefit remain unclear. The key goals of this study were to identify the role of MSC derived soluble a...

  3. Improvement of Parkinsonian behavior with co-grafts of Schwann cells and neural stem cells in the rat

    Institute of Scientific and Technical Information of China (English)

    Ying Xia; Chengchuan Jiang; Zhongliang Ding; Yang Wang; Bin Xu; Linyin Feng

    2008-01-01

    BACKGROUND: Due to the lack of autograft transplant rejection, Schwann cells (SCs) can promote the proliferation of embryonic stem cells and the induction of dopaminergic neurons. Mesencephalic stem cells can be induced to produce dopaminergic neurons. The therapeutic effects of co-grafts of SCs and neural stem cells (NSCs) deserves further study and verification in Parkinsonian animal models.OBJECTIVE: To investigate the effects of Schwann cells and mesencephalic NSC co-grafts in Parkinsonian animal models on animal behavior and histology.DESIGN: Randomized controlled experiment.SETTING: Fudan University; Institute of Neuroscience, Chinese Academy of Sciences.MATERIALS: The following animals were obtained from the Experimental Animal Center, Shanghai Institute for Biological Science, Chinese Academy of Sciences: 5 Sprague-Dawley rats, embryonic day (E) 13–16; 16 neonatal Sprague-Dawley rats, postnatal day 1–3; and 18 adult SD rats of both genders. Animal experimentation met animal ethical approval.METHODS: The experiment was performed at the Department of Anatomy, Histology and Embryology, Shanghai Medical Center, Fudan University from September 2005 to January 2007. The mesencephalic NSCs were obtained from the brains of SD rats at E 13–16, and SCs were harvested from the sciatic nerves of neonatal rats at day 1–3. Hemiparkinsonian rats (n =18) were selected for transplantation after estimating rotational behavior in response to apomorphine and were randomly assigned to three groups: control group, NSC group, and co-graft group. There were 6 rats in each group. Either phosphate buffered saline (PBS), NSCs, or SCs plus NSCs were transplanted into the right neostriatum of Parkinsonian rats, respectively.MAIN OUTCOME MEASURES: ① Rotational behavior was induced by apomorphine (0.05 mg/kg, I.p.) 2, 4, 6, 8, and 10 weeks after transplantation, and the number of rotations were counted. ② Differentiation and survival of dopaminergic neurons in the right

  4. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    Science.gov (United States)

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Ramadan, Abdulraouf; Zhang, Qing; Choi, Sung W.; Zhang, Peng; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir; Paczesny, Sophie

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA– transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  5. Induction of Graft-versus-host Disease and In Vivo T Cell Monitoring Using an MHC-matched Murine Model

    OpenAIRE

    Anthony, Bryan A.; Hadley, Gregg A.

    2012-01-01

    Graft-versus-host disease (GVHD) is the limiting barrier to the broad use of bone marrow transplant as a curative therapy for a variety of hematological deficiencies. GVHD is caused by mature alloreactive T cells present in the bone marrow graft that are infused into the recipient and cause damage to host organs. However, in mice, T cells must be added to the bone marrow inoculum to cause GVHD. Although extensive work has been done to characterize T cell responses post transplant, bioluminesc...

  6. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  7. A system and methodology for high-content visual screening of individual intact living cells in suspension

    Science.gov (United States)

    Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer

    2007-02-01

    Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.

  8. Metabolism of soil-related phenolic compounds in plants and cell suspension cultures

    International Nuclear Information System (INIS)

    Various specifically 14C-labelled benzoic and cinnamic acids were added to the nutrient solutions of sterile-cultured seedlings and cell suspension cultures of different plant species, and tested for metabolic reaction. On the basis of 14CO2-formation and isolated 14C-labelled metabolites, the decarboxylation and O-demethylation reactions were shown to be restricted to specific substituted groups of the aromatic ring. Decarboxylation of substituted phenolic acids could only be observed when the aromatic acids possessed a hydroxyl group in the para position. The O-demethylation reactions were shown to be specific for para methoxyl groups. The ring cleavage reaction was found to be specific for ortho dihydroxy compounds. The methoxyl group in the 4-position was also split if the carboxyl group in the para position was modified to a C3-side chain or even to an alcohol group. The C3-side chain had been split much faster than the alkyl-aryl-ether bonds by demethylation reaction. In addition, various polycyclic hydrocarbons specifically labelled with 14C were added to the nutrient solutions of seedlings and cell suspension cultures of plants, and tested for metabolic reaction. These polyaromatic compounds are absorbed only by the roots. As autoradiographic studies show, there is no transport into the sprouts, apart from anthracene which can be detected in the upper organs also. Experiments with different cell cultures indicate that the absorbed polyaromatic hydrocarbons are metabolized to a less extent. Most of the absorbed activity can be isolated as the applied compound. Compared with other cell cultures tested, those of Chenopodium rubrum behaved quite differently. Absorbed benzo(a)pyrene was not extractable with organic solvents but was mainly detected in the form of water-soluble compounds. By means of high-pressure liquid chromatography these oxygenated derivatives were detected and analysed. (author)

  9. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells.

    Science.gov (United States)

    Thompson, J E; Fry, S C

    2000-07-01

    Neutral xyloglucan was purified from the cell walls of suspension-cultured rose (Rosa sp. 'Paul's Scarlet') cells by alkali extraction, ethanol precipitation and anion-exchange chromatography on 'Q-Sepharose FastFlow'. The procedure recovered 70% of the total xyloglucan at about 95% purity in the neutral fraction. The remaining 30% of the xyloglucan was anionic, as demonstrated both by anion-exchange chromatography at pH 4.7 and by high-voltage electrophoresis at pH 6.5. Alkali did not cause neutral xyloglucan to become anionic, indicating that the anionic nature of the rose xyloglucan was not an artefact of the extraction procedure. Pre-incubation of neutral [3H]xyloglucan with any of ten non-radioactive acidic polysaccharides did not cause the radioactive material to become anionic as judged by electrophoresis, indicating that stable complexes between neutral xyloglucan and acidic polysaccharides were not readily formed in vitro. The anionic xyloglucan did not lose its charge in the presence of 8 M urea or after a second treatment with NaOH, indicating that its anionic nature was not due to hydrogen-bonding of xyloglucan to an acidic polymer. Proteinase did not affect the anionic xyloglucan, indicating that it was not associated with an acidic protein. Cellulase converted the anionic xyloglucan to the expected neutral nonasaccharide and heptasaccharide, indicating that the repeatunits of the xyloglucan did not contain acidic residues. Endo-polygalacturonase converted about 40% of the anionic xyloglucan to neutral material. Arabinanase and galactanase also converted appreciable proportions of the anionic xyloglucan to neutral material. These results show that about 30% of the xyloglucan in the cell walls of suspension-cultured rose cells exists in covalently-linked complexes with acidic pectins. PMID:10945222

  10. Influences of Plant Growth Regulators,Basal Media and Carbohydrate Levels on Cell Suspension Culture of Panax ginseng

    Institute of Scientific and Technical Information of China (English)

    TangWei; WuJiongyuan; 等

    1995-01-01

    A cell suspension culture of Panax ginseng which may be continuously subcultured has been established.Embryogenic callus derived from clutured young leaves was used to initiate the culture,Plant growth regulators,basal medium formula and carbohydrate levels were examined to determine their various effects on suspension culture cell growth and development ,The best selection of plant growth regulator,basal medium and carbohydrate level is 2mg/L 2,4-D:0.5mg/L KT,MS and 3% sucrose respectively.

  11. Restriction specificity of virus-specific cytotoxic T cells from thymectomised irradiated bone marrow chimeras reconstituted with thymus grafts

    International Nuclear Information System (INIS)

    Adult-thymectomised lethally irradiated mice A that were reconstituted with T-cell-depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of (B X C)F1 origin generated virus-specific T cells restricted to B alone; adult-thymectomised and lethally irradiated (A X B)F1 mice that were reconstituted with T-cell depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of A and of B origin generated virus-specific T cells restricted to A or to B. These results do not reveal obvious suppressive influences of host or stem-cell origin that might have explained results obtained with various irradiated bone marrow or thymus chimeras, they indicate that the thymus' influence on maturing T cells is one of the limiting steps in the selection of T cells' restriction specificities. (Auth.)

  12. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts

    International Nuclear Information System (INIS)

    Biocompatible ceramic fillers are capable of sustaining bone formation in the proper environment. The major drawback of these scaffolding materials is the absence of osteoinductivity. To overcome this limitation, bioengineered scaffolds combine osteoconductive components (biomaterials) with osteogenic features such as cells and growth factors. The bone marrow mesenchymal stromal cells (BMMSCs) and the β-tricalcium phosphate (β-TCP) are well-known and characterized in this regard. The present study was conducted to compare the properties of novel octacalcium phosphate ceramic (OCP) granules with β-TCP (Cerasorb®), gingiva-derived mesenchymal stromal cells (GMSCs) properties with the BMMSCs and osteogenic and angiogenic properties of a bioengineered composite based on OCP granules and the GMSCs. This study demonstrates that GMSCs and BMMSCs have a similar osteogenic capacity. The usage of OCP ceramic granules in combination with BMMSCs/GMSCs significantly affects the osteo- and angiogenesis in bone grafts of ectopic models. (paper)

  13. Cytocompatibility Evaluation of Grafted IKVAV PLEOF Hydrogels with Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    LI Binbin; ZHANG Ping; YIN Yixia; QIU Tong; TAO Yuan; WANG Xinyu; LI Shipu

    2014-01-01

    The novel hydrogels-grafted IKVAV poly (lactide-co-ethylene oxide-co-fumarate) (PLEOF) hydrogels (GIPHs) were developed. The rat bone marrow mesenchymal stem cells (BMMSCs) were employed, and the cell vitality and apoptosis assays were carried out to evaluate the cytocomptibility of GIPHs. Our data demonstrated that the influence of GIPHs on the proliferation of BMMSCs was in a concentration and time dependent manner. The proliferative ability of BMMSCs in GIPHs-treated group (100μg/mL) after 72 h presented a maximum response which was 30.1%more than that of control group. The numbers of apoptotic cells in GIPHs-treated group (100μg/mL) were just as much as that of control group after 24 h treatment. The GIPHs are able to provide an appropriate environment for BMMSCs survival and proliferation.

  14. Phenotypic characterization of mononuclear inflammatory cells following equine hydroxyapatite/collagen block grafting in rats

    International Nuclear Information System (INIS)

    To measure the inflammatory changes associated with the implantation of an equine hydroxyapatite and collagen-containing block graft (eHAC block) in a rodent model system, an eHAC block graft was implanted subcutaneously in rats. Control groups included saline, turpentine oil, and human mineralized particulate allograft (hMPA). Animals were sacrificed and tissue samples obtained after three days, as well as after 1, 2, 4 and 8 weeks. A panel of immunologic probes was used to identify circulatory monocytic cells (ED1), resident mononuclear phagocytes (ED2), mononuclear phagocytes of lymphoid origin (ED3), expression of Ia antigen (OX6), T-cells (OX19), and B-cells (OX33). Immunocytochemical localization was performed and mononuclear cells localized with each immunologic probe counted. Rat sera obtained after eight weeks were used for nitrocellulose dot-blotting to assess circulating anti-equine immunoglobulins. Statistical analysis was performed using two-way analysis of variance, in conjunction with the Bonferroni correction to account for multiple comparisons. A transient increase in monocytes at 3 days and 1 week was observed in all groups, but was significantly higher in the turpentine control (P < 0.0001). A significant increase in the numbers of mononuclear cells detected with clones ED2 and ED3 was observed in specimens from the turpentine group, in contrast to the other groups in the 3 day to 4 week interval (P < 0.0001), as well as within all time periods (P < 0.0001). A statistically significant difference in numbers of ED3-positive cells was observed in the hMPA group compared to the saline and the eHAC block groups after one week (P < 0.0001). Significantly more OX6-positive cells were observed in the turpentine group, compared to other groups (3 days to 1 week; P < 0.0001). T-lymphocytes were essentially absent except for rats given turpentine (after 1 week). No B-lymphocyte response was found and none of the rats developed systemic anti

  15. Cell layer-electrospun mesh composites for coronary artery bypass grafts.

    Science.gov (United States)

    Erndt-Marino, Josh D; Becerra-Bayona, Silvia; McMahon, Rebecca E; Goldstein, Aaron S; Hahn, Mariah S

    2016-09-01

    This work investigates the potential of cell layer-electrospun mesh constructs as coronary artery bypass grafts. These cell-mesh constructs were generated by first culturing a confluent layer of 10T½ smooth muscle progenitor cells on a high strength electrospun mesh with uniaxially aligned fibers. Cell-laden mesh sheets were then wrapped around a cylindrical mandrel such that the mesh fibers were aligned circumferentially. The resulting multi-layered constructs were then cultured for 4 wks in media supplemented with TGF-β1 and ascorbic acid to support 10T½ differentiation toward a smooth muscle cell-like fate as well as to support elastin and collagen production. The underlying hypothesis of this work was that extracellular matrix (ECM) deposited by the cell layers would act as an adhesive agent between the individual mesh layers, providing strength to the construct as well as a source for structural elasticity at low strains. In addition, the structural anisotropy of the mesh would inherently guide desired circumferential cell and ECM alignment. Results demonstrate that the cell-mesh constructs exhibited a J-shaped circumferential stress-strain response similar to that of native coronary artery, while also displaying acceptable tensile strength. Furthermore, associated 10T½ cells and deposited collagen fibers showed a high degree of circumferential alignment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2200-2209, 2016. PMID:27101019

  16. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease.

    Science.gov (United States)

    Flynn, Ryan; Allen, Jessica L; Luznik, Leo; MacDonald, Kelli P; Paz, Katelyn; Alexander, Kylie A; Vulic, Ante; Du, Jing; Panoskaltsis-Mortari, Angela; Taylor, Patricia A; Poe, Jonathan C; Serody, Jonathan S; Murphy, William J; Hill, Geoffrey R; Maillard, Ivan; Koreth, John; Cutler, Corey S; Soiffer, Robert J; Antin, Joseph H; Ritz, Jerome; Chao, Nelson J; Clynes, Raphael A; Sarantopoulos, Stefanie; Blazar, Bruce R

    2015-06-25

    Novel therapies for chronic graft-versus-host disease (cGVHD) are needed. Aberrant B-cell activation has been demonstrated in mice and humans with cGVHD. Having previously found that human cGVHD B cells are activated and primed for survival, we sought to further evaluate the role of the spleen tyrosine kinase (Syk) in cGVHD in multiple murine models and human peripheral blood cells. In a murine model of multiorgan system, nonsclerodermatous disease with bronchiolitis obliterans where cGVHD is dependent on antibody and germinal center (GC) B cells, we found that activation of Syk was necessary in donor B cells, but not T cells, for disease progression. Bone marrow-specific Syk deletion in vivo was effective in treating established cGVHD, as was a small-molecule inhibitor of Syk, fostamatinib, which normalized GC formation and decreased activated CD80/86(+) dendritic cells. In multiple distinct models of sclerodermatous cGVHD, clinical and pathological disease manifestations were not eliminated when mice were therapeutically treated with fostamatinib, though both clinical and immunologic effects could be observed in one of these scleroderma models. We further demonstrated that Syk inhibition was effective at inducing apoptosis of human cGVHD B cells. Together, these data demonstrate a therapeutic potential of targeting B-cell Syk signaling in cGVHD. PMID:25852057

  17. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions.

    Science.gov (United States)

    Wongchai, C; Chaidee, A; Pfeiffer, W

    2012-01-01

    Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. PMID:21974771

  18. Isolation and culture of protoplasts of Ma-phut (Garcinia dulcis derived from cell suspension culture

    Directory of Open Access Journals (Sweden)

    Sompong Te-chato

    2008-09-01

    Full Text Available Friable callus induced from young leaves of Ma-phut on Murashige and Skoog (MS medium containing 3% sucrose,1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/l benzyladenine (BA and 500 mg/l polyvinylpyrrolidone (PVP, was cultured in liquid medium with the same components. Various ages of cell suspension at weekly intervals were then incubated in various kinds and concentrations of cell wall digestion enzymes combined with 1% macerozyme R-10 on a rotary shaker at 100 rpm under 1500 lux illumination at 26±4oC. Purified protoplasts were cultured at various densities in MS medium (adjusted osmoticum to 0.4 M by mannitol supplemented with 3% sucrose and two types of auxin, 2,4-D and NAA at four concentrations (1, 2, 3 and 4 mg/l together with 1 mg/l BA. The results revealed that a four-day old cell suspension culture incubated in 2% cellulase Onozuka R-10 (CR10 in combination with 1% macerozyme R-10 gave an optimum result in both yield and viability of protoplasts at 5.7x106/1 ml PCV and 80%, respectively. Embedding protoplasts at a density of 2.5x105/ml in 0.2% phytagel containing MS medium supplemented with 3 mg/l NAA and 1 mg/l BA promoted the most effective division of the protoplasts (20%. The first division of the protoplasts was obtained after 2 days of culture and further divisions to form micro- and macro-colonies could be observed after 7-10 days of culture. However, callusformation and plantlet regeneration was not obtained.

  19. Combined HLA matched limbal stem cells allograft with amniotic membrane transplantation as a prophylactic surgical procedure to prevent corneal graft rejection after penetrating keratoplasty: case report

    Directory of Open Access Journals (Sweden)

    Paolo Capozzi

    2014-09-01

    Full Text Available Purpose. To determine if the use of combined HLA matched limbal stem cells allograft with amniotic membrane transplantation (AMT is a safe and effective prophylactic surgical procedure to prevent corneal graft after penetrating keratoplasty (PK. Methods. We report the case of a 17 years old patient with a history of congenital glaucoma, trabeculectomy and multiple corneal graft rejections, presenting total limbal cell deficiency. To reduce the possibility of graft rejection in the left eye after a new PK, a two step procedure was performed. At first the patient underwent a combined HLA matched limbal stem cells allograft (LAT and AMT and then, 10 months later, a new PK. Results. During 12 months of follow-up, the corneal graft remained stable and smooth, with no sign of graft rejection. Conclusions. In our patient, the prophylactic use of LAT from HLA-matched donors and AMT before PK, may result in a better prognosis of corneal graft survival.

  20. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation.

    Science.gov (United States)

    Auletta, Jeffery J; Eid, Saada K; Wuttisarnwattana, Patiwet; Silva, Ines; Metheny, Leland; Keller, Matthew D; Guardia-Wolff, Rocio; Liu, Chen; Wang, Fangjing; Bowen, Theodore; Lee, Zhenghong; Solchaga, Luis A; Ganguly, Sudipto; Tyler, Megan; Wilson, David L; Cooke, Kenneth R

    2015-02-01

    We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction. PMID:25336340

  1. MMSC-LIKE LIMBAL CELLS COTRANSPLANTATION PROMOTES LOCAL IMMUNOCORRECTION AND CORNEAL GRAFT TRANSPARENT RETENTION IN HIGH RISK KERATOPLASTY

    Directory of Open Access Journals (Sweden)

    S. A. Borzenok

    2014-01-01

    Full Text Available Aim was to evaluate clinical results of donor corneal graft survival in high-risk recipients in co-transplantation of preserved allogenic limbal grafts. Materials and methods. Two types of penetrative keratoplasties were carried out in patients with corneal graft opacities and high risk of rejection (n = 69. Co-transplantation of donor cornea and allogenic MMSC-like limbal cells in the form of limbal transplants was carried out in the 1st group (n = 36; in the 2nd group (n = 33 only the cornea was transplanted. Results. Observation of the patients during one year after surgery showed that the rate of transparent cornea engraftment increased in the 1st group (86,1 against 69,7% in the 2nd group. The density of endothelial cells was also higher in the 1st group (85,9 against 76,2% in the 2nd group. At the same time, progressive decreasing of pro-inflammatory cytokines (IL-6, IFNγ, TNFα and increasing of anti-inflammatory cytokines (IL-10, IL-1RA, TGFβ along with higher level of HLA-G5 were revealed in the recipients’ tear fluid in the 1st group in comparison to the 2nd group. Conclusion. Simultaneous transplantation of preserved limbal grafts with corneal graft in high-risk keratoplasty favors the transparent cornea engraftment, obviously, this is due to immunoregulatory activity of the MMSC-like limbal cells

  2. Autologous keratinocyte suspension in platelet concentrate accelerates and enhances wound healing – a prospective randomized clinical trial on skin graft donor sites: platelet concentrate and keratinocytes on donor sites

    OpenAIRE

    Guerid S.; Darwiche S.E.; Berger M.M.; Applegate L.A.; Benathan M.; Raffoul W.

    2013-01-01

    BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Laus...

  3. Cell suspension as a tool to study the biosynthesis of pilocarpine in Jaborandi.

    Science.gov (United States)

    Abreu, I N; Andreazza, N L; Sawaya, A C H F; Eberlin, M N; Mazzafera, P

    2007-11-01

    Jaborandi (Pilocarpus microphyllus) is a species that naturally occurs in the North and Northeast of Brazil, whose leaves produce pilocarpine (an imidazole alkaloid that has been used to treat glaucoma and xerostomy), the biosynthesis of which is still uncertain. The aim of this work was to establish cell lineages and select them according to an alkaloid profile similar to the one from Jaborandi leaves. The induction of callus was done in different culture media and growth regulators. Calluses from primary cultures or those subcultured several times were used as explants for the obtainment of six cell lineages. Alkaloids content analyses and growth curves showed that lines obtained from primary cultures produced more alkaloids and a better development. Cell lines from 12 subcultures presented a decrease in pilocarpine and pilosine production. After 24 subcultures, the production of alkaloids remained constant. ESI-MS analysis showed that cell culture extracts have the same alkaloid composition as extracts made from leaves. The results indicate that cell suspensions can be used as a model to study the biosynthesis of the imidazole alkaloid in P. microphyllus. PMID:17682964

  4. Characterisation of the membrane transport of pilocarpine in cell suspension cultures of Pilocarpus microphyllus.

    Science.gov (United States)

    Andreazza, Nathalia Luiza; Abreu, Ilka Nacif; Sawaya, Alexandra Christine Helena Frankland; Mazzafera, Paulo

    2015-03-01

    Pilocarpine is an alkaloid obtained from the leaves of Pilocarpus genus, with important pharmaceutical applications. Previous reports have investigated the production of pilocarpine by Pilocarpus microphyllus cell cultures and tried to establish the alkaloid biosynthetic route. However, the site of pilocarpine accumulation inside of the cell and its exchange to the medium culture is still unknown. Therefore, the aim of this study was to determine the intracellular accumulation of pilocarpine and characterise its transport across membranes in cell suspension cultures of P. microphyllus. Histochemical analysis and toxicity assays indicated that pilocarpine is most likely stored in the vacuoles probably to avoid cell toxicity. Assays with exogenous pilocarpine supplementation to the culture medium showed that the alkaloid is promptly uptaken but it is rapidly metabolised. Treatment with specific ABC protein transporter inhibitors and substances that disturb the activity of secondary active transporters suppressed pilocarpine uptake and release suggesting that both proteins may participate in the traffic of pilocarpine to inside and outside of the cells. As bafilomicin A1, a specific V-type ATPase inhibitor, had little effect and NH4Cl (induces membrane proton gradient dissipation) had moderate effect, while cyclosporin A and nifedipine (ABC proteins inhibitors) strongly inhibited the transport of pilocarpine, it is believed that ABC proteins play a major role in the alkaloid transport across membranes but it is not the exclusive one. Kinetic studies supported these results. PMID:25474486

  5. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures

    Science.gov (United States)

    Kamal, Khaled Y.; Hemmersbach, Ruth; Medina, F. Javier; Herranz, Raúl

    2015-04-01

    Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.

  6. In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica

    Indian Academy of Sciences (India)

    S Sujanya; B Poornasri Devi; Isha Sai

    2008-03-01

    The present study aimed to elucidate the effect of nutritional alteration on biomass content and azadirachtin production in cell suspensions of the elite neem variety crida-8. Variations in total nitrogen availability in the medium in terms of different ratios of nitrate:ammonium showed that the ratio 4:1 revealed a profound effect, leading to a 1.5-fold increase in the total extracellular azadirachtin production (5.59 mg/l) over the standard MS medium. Reduction in sucrose (15 mg/l) in the medium exhibited a reduction in biomass and absence of azadirachtin, whereas total phosphate reduction raised intracellular azadirachtin production (6.98 mg/l). An altered medium with a nitrate:ammonium ratio of 4:1 coupled with complete elimination of phosphate enhanced biomass by 36% (59.36 g/l).

  7. Stable-isotope labeling using an inducible viral infection system in suspension-cultured plant cells

    International Nuclear Information System (INIS)

    We established a novel strategy for preparing uniformly stable isotope-labeled proteins by using suspension-cultured plant cells and an inducible virus vector encoding the research target. By using this new method, we demonstrated the expression of three proteins, namely, Escherichia coli dihydrofolate reductase (DHFR), chicken calmodulin (CaM), and porcine protein kinase C-dependent protein phosphatase-1 inhibitor with a molecular mass of 17-kDa (CPI-17). In addition, we successfully expressed bovine pancreatic trypsin inhibitor (BPTI), which contains three pairs of disulfide bonds, as the soluble form. In the most efficient case, as little as 50 ml culture yielded 3-4 mg 15N-labeled protein suitable for NMR experiments. The 1H-15N HSQC spectra of all of these proteins clearly indicated that their structures were identical to those of their counterparts reported previously. Thus, the present results suggest that our novel protocol is a potential method for NMR sample preparation

  8. Polymer Electrolyte Membranes for Fuel Cells by Radiation Induced Grafting: State of the Art at Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Radiation induced grafting is a well established method for the preparation of polymer electrolyte membranes for fuel cells. This method allows the use of a wide variety of base films and monomers which may be tailored to the desired end-use. Since the method can be performed with low-cost starting materials, it offers the promise of cost-competitive membranes for the polymer electrolyte fuel cell (PEFC). Paul Scherrer Institut has been committed to developing fuel cell membranes by radiation grafting since 1992. Styrene based membranes using poly (tetrafluoroethylene-co-hexafluoropropylene) (FEP) and poly (ethylene-alt-tetrafluoroethylene) (ETFE) films as base material have been prepared by radiation grafting followed by sulfonation. Grafting parameters such as irradiation dose, reaction medium, temperature and time have been investigated in detail. The resulting grafted films and membranes have been characterized ex-situ for their thermal behaviour, composition, microstructure, fuel cell relevant properties, and membranes have been characterized in-situ and tested in low temperature PEFC. In addition, the use of α-methylstyrene (AMS), a substituted styrene monomer with protected α-position, for the preparation of alternative membranes of higher chemical stability has been investigated. The parameters of grafting were identified to have significant effect on the degree of grafting and were subsequently optimized [2]. The preparation steps and crosslinking affected thermal properties of the films. Small angle neutron scattering experiments revealed that the overall domain structure made up of crystalline and amorphous regimes of pristine polymer film is preserved. FTIR /ATR measurements indicated that radiation grafted films were more highly crosslinked in their near surface regions. The fuel cell performance of FEP based membranes was comparable to commercially available Nafion112 membranes of similar thickness and durability of several thousand hours. ETFE

  9. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an improved survival (44%) over animals receiving anti-theta-treated hind limb marrow (20%). These experiments demonstrate modest benefit for the use of cultured cells in bone marrow transplantation across major H-2 histocompatibility complex differences

  10. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  11. Metabolic cycles in primary metabolism of cell suspensions of Daucus carota L. analysed by C-NMR

    NARCIS (Netherlands)

    Krook, J.

    1999-01-01

    In the work described in this thesis, uptake and conversion of sugar by cells of batch-grown suspensions of Daucus carota L. were studied. Invasive techniques (measurements of enzyme activities and sugar and starch levels) and non-invasive techniques ( 13C-NMR) were used to

  12. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilev

    Full Text Available A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  13. [Producing Ad-IFN gamma by suspension culture of HEK293 cells in a disposable bioreactor].

    Science.gov (United States)

    Wu, Quande; Huang, Wenlin

    2014-11-01

    Adenovirus vectors are promising delivery systems for gene therapy. We established a new process for clinic trial of recombinant adenovirus vectors using a novel disposable bioreactor. The suspension HEK293 cells were inoculated into a 5 L disposable bioreactor with parameters control of pH, DO, agitation and temperature. After 6 days of a fed-batch culture, the final cell density reached 2.0 x 10(6) cells/mL. The culture was infected with Ad-IFNγ at an MOI of 30. The harvest was performed at approximately 48 h post-infection and crude viral lysate was obtained after 3 freeze/thaw cycles and centrifugation. The maximum titers of crude viral lysate was 1.49 x 10(13) Infectious units (IFU) and the bulk product specific was 3,800 IFU/cell. Purified Ad-IFNγ by anion-exchange chromatography and the final recovery of infectious unit reached 35.9%. The result demonstrates that an efficient and stable process of producing Ad-IFNγ using a disposable fed-batch bioreactor is established. PMID:25985530

  14. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    Science.gov (United States)

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B) irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase. PMID:20704760

  15. Establishment of Suspension Cell Culture from Agrobacterium-transformed Hairy Root Cells of Psammosilene tunicoides, an Endangered and Rare Medicinal Plant of China

    Directory of Open Access Journals (Sweden)

    Zhang Zong-Shen

    2015-08-01

    Full Text Available Psammosilene tunicoides is an important medicinal plant endemic in China. Its annual yield is severely limited due to slow growth, poor seed germination and excessive collection. To satisfy the growing market demands, it’s necessary to seek alternatives to field cultivation and wild resources of this endangered plant. Using Agrobacterium -transformed hairy roots as initial explants, here, we reported the development of a suspension cell culture system for P. tunicoides. Results showed the Agrobacterium -transformed hairy roots-derived suspension cells are fast in growth and strong in capacity for accumulation of bioactive metabolites. We established that 1/2MS was a suitable medium for culturing the hairy root-derived suspension cells and the optimal combination of phytohormones is 1.5 mg/L 2, 4-D+0.5 mg/L 6-BA+0.25 mg/L NAA+0.1 mg/L KT. Under this condition, the maximal biomass was achieved at the 20th day of culture with an average growth rate of 0.72 g/L/d; and the intracellular saponine content reached 0.92%, comparable to that of mother hairy roots. Compared with the normal P. tunicoides suspension cells, the hairy roots-derived suspension cells exhibited features of fast growth, short culture period and high concentration of saponines, suggesting that the large scale culture of hairy root-derived cells could be a feasible alternative to the wild resources of P. tunicoides.

  16. Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions

    OpenAIRE

    Chakraverty, Ronjon; Eom, Hyeon-Seok; Sachs, Jessica; Buchli, Jennifer; Cotter, Pete; Hsu, Richard; Zhao, Guiling; Sykes, Megan

    2006-01-01

    Following bone marrow transplantation, delayed donor leukocyte infusions (DLIs) can induce graft-versus-leukemia (GVL) effects without graft-versus-host disease (GVHD). These antitumor responses are maximized by the presence of host hematopoietic antigen-presenting cells (APCs) at the time of DLI. Using a tumor-protection model, we demonstrate here that GVL activity following administration of DLIs to established mixed chimeras is dependent primarily on reactivity to allogeneic MHC antigens r...

  17. Xyloglucan biosynthesis by Golgi membranes from suspension-cultured sycamore (Acer pseudoplatanus) cells

    International Nuclear Information System (INIS)

    Xyloglucan is a major hemicellulose polysaccharide in plant cell walls. Biosynthesis of such cell wall polysaccharides is closely linked to the process of plant cell growth and development. Xyloglucan polysaccharides consist of a β-1,4 glucan backbone synthesized by xyloglucan synthase and sidechains of xylose, galactose, and fucose added by other transferase enzymes. Most plant Golgi and plasma membranes also contain glucan synthases I ampersand II, which make β-1,4 and β-1,3 glucans, respectively. All of these enzymes have very similar activities. Cell walls on suspension-cultured cells from Acer pseudoplatanus (sycamore maple) were enzymatically softened prior to cell disruption by passing through a 30 μm nylon screen. Cell membranes from homogenates were separated by ultracentrifugation on top-loaded or flotation sucrose density gradients. Samples were collected by gradient fractionation and assayed for membrane markers and xyloglucan and glucan synthase activities. Standard marker assays (cyt. c reductase for eR, IDPase ampersand UDPase for Golgi, and eosin 5'-malelmide binding for plasma membrane) showed partial separation of these three membrane types. Golgi and plasma membrane markers overlapped in most gradients. Incorporation of 14C-labeled sugars from UDP-glucose and UDP-xylose was used to detect xyloglucan synthase, glucan synthases I ampersand II, and xylosyl transferase in Golgi membrane fractions. These activities overlapped, although distinct peaks of xyloglucan synthase and xylosyl transferase were found. Ca++ had a stimulatory effect on glucan synthases I ampersand II, while Mn++ had an inhibitory effect on glucan synthase I in the presence of Ca++. The similarity of these various synthase activities demonstrates the need for careful structural characterization of newly synthesized polysaccharides

  18. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures

    International Nuclear Information System (INIS)

    Studies were conducted to determine the herbicidal site of clomazone action in tolerant-soybean (Glycine max [L.] Merr. cv Corsoy) (SB-M) and susceptible-cotton (Gossypium hirsutum [L.] cv Stoneville 825) (COT-M) photomixotrophic cell suspension cultures. Although a 10 micromolar clomazone treatment did not significantly reduce the terpene or mixed terpenoid content (microgram per gram fresh weight) of the SB-M cell line, there was over a 70% reduction in the chlorophyll (Chl), carotenoid (CAR), and plastoquinone (PQ) content of the COT-M cell line. The tocopherol (TOC) content was reduced only 35.6%. Reductions in the levels of Chl, CAR, TOC, and PQ indicate that the site of clomazone action in COT-M cells is prior to geranylgeranyl pyrophosphate (GGPP). The clomazone treatment did not significantly reduce the flow of [14C]mevalonate ([14C]MEV) (nanocuries per gram fresh weight) into CAR and the three mixed terpenoid compounds of SB-M cells. Conversely, [14C]MEV incorporation into CAR and the terpene moieties of Chl, PQ, and TOC in COT-M cells was reduced at least 73%, indicating that the site of clomazone action must be after MEV. Sequestration of clomazone away from the chloroplast cannot account for soybean tolerance to clomazone since chloroplasts isolated from both cell lines incubated with [14C]clomazone contained a similar amount of radioactivity (disintegrations per minute per microgram of Chl). The possible site(s) of clomazone inhibition include mevalonate kinase, phosphomevalonate kinase, pyrophosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, and/or a prenyl transferase

  19. Bone Grafts

    Science.gov (United States)

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  20. Anaplerotic Metabolism of Alloreactive T Cells Provides a Metabolic Approach To Treat Graft-Versus-Host Disease

    OpenAIRE

    Glick, Gary D.; Rossignol, Rodrigue; Lyssiotis, Costas A.; Wahl, Daniel; Lesch, Charles; Sanchez, Brian; Liu, Xikui; Hao, Ling-Yang; Taylor, Clarke; Hurd, Alexander; Ferrara, James L. M.; Tkachev, Victor; Byersdorfer, Craig A.; Boros, Laszlo; Opipari, Anthony W.

    2014-01-01

    T-cell activation requires increased ATP and biosynthesis to support proliferation and effector function. Most models of T-cell activation are based on in vitro culture systems and posit that aerobic glycolysis is employed to meet increased energetic and biosynthetic demands. By contrast, T cells activated in vivo by alloantigens in graft-versus-host disease (GVHD) increase mitochondrial oxygen consumption, fatty acid uptake, and oxidation, with small increases of glucose uptake and aerobic g...

  1. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3.

    Directory of Open Access Journals (Sweden)

    Maria João Godinho

    Full Text Available We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs modified to express brain-derived neurotrophic factor (BDNF, a secretable form of ciliary neurotrophic factor (CNTF, or neurotrophin-3 (NT3. Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.

  2. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    OpenAIRE

    Edward Rockenstein; Paula Desplats; Kiren Ubhi; Michael Mante; Jazmin Florio; Anthony Adame; Stefan Winter; Hemma Brandstaetter; Dieter Meier; Eliezer Masliah

    2015-01-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NS...

  3. Ultrastructural and Extracellular Protein Changes in Cell Suspension Cultures of Populus euphratica Associated with Low Temperature-induced Cold Acclimation

    Institute of Scientific and Technical Information of China (English)

    Dai Huanqin; Lu Cunfu; Zhang Hui; Zhang Xujia

    2003-01-01

    Populus euphratica Olive is the only tree species that can grow in the saline land and also survive cold winters in northwest China, and it plays a very important role in stabilizing the vulnerable ecosystem there. A cell suspension culture was initiated from callus derived from plantlets of Populus euphratica. Cold acclimation was induced (LT50 of-17.5 ℃) in cell suspension at 4-5 ℃ in the dark for 30 days and the freezing tolerance increased from LT50 of-12.5 ℃ in nonacclimated cells to LT50 of-17.5 ℃ in cold-acclimated cells. Microvacuolation, cytoplasmic augmentation and accumulation of starch granules were observed in cells that were cold-acclimated by exposure to low temperatures. Several qualitative and quantitative changes in proteins were noted during cold acclimation. Antibodies to carrot extracellular (apoplastic) 36 kD antifreeze protein did not cross react on immunoelectroblots with extracellular proteins in cell suspension culture medium of Populus euphratica, indicating no common epitopes in the carrot 36 kD antifreeze protein and P euphratica extracellular proteins. The relationship of these changes to cold acclimation in Populus euphratica cell cultures was discussed.

  4. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Meyerstein, N

    2004-01-01

    The conductance and capacitance of flowing and quiescent red blood cell (RBC) suspensions were measured at a frequency of 0.2 MHz. The results demonstrate that the time-dependent changes in the conductance recorded during the aggregation process differ in nature for suspensions of short linear rouleaux, branched aggregates and RBC networks. It is shown that the conductance of RBC suspensions measured during the aggregation and disaggregation processes follows the morphological transformations of the RBC aggregates. Thus, this method enables characterization of the morphology of RBC aggregates formed in whole blood and in suspensions with physiological hematocrits both under flow conditions and in stasis. These results in combination with previous ones suggest that this technique can be used for studies of dynamic RBC aggregation and probably for diagnostic use. PMID:14967887

  5. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  6. Cultivation of cottontail rabbit epidermal (Sf1Ep) cells on microcarrier beads and their use for suspension cultivation of Treponema pallidum subsp. pallidum.

    OpenAIRE

    Riley, B S; Cox, D. L.

    1988-01-01

    In vitro propagation of Treponema pallidum can be achieved by cocultivation with Sf1Ep cells. This study had two objectives: (i) to achieve suspension cultivation of Sf1Ep cells and (ii) to develop procedures for achieving the replication of T. pallidum in those cell cultures. Seven suspension cultures of Sf1Ep cells yielded an average of 7.2 x 10(8) T. pallidum (36-fold increase) after 12 days.

  7. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia

    DEFF Research Database (Denmark)

    Baron, F; Labopin, M; Niederwieser, D;

    2012-01-01

    This report investigated the impact of graft-versus-host disease (GVHD) on transplantation outcomes in 1859 acute myeloid leukemia patients given allogeneic peripheral blood stem cells after reduced-intensity conditioning (RIC allo-SCT). Grade I acute GVHD was associated with a lower risk of...

  8. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  9. CD103 deficiency prevents graft-versus-host disease but spares graft-versus-tumor effects mediated by alloreactive CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Kechang Liu

    Full Text Available BACKGROUND: Graft-versus-host disease (GVHD remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT. METHODOLOGY/PRINCIPAL FINDINGS: We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity. CONCLUSIONS/SIGNIFICANCE: These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis.

  10. Dynamic Expression of bFGF and TGFβ2 in Glomus Cell Grafts of Carotid Body in Rat Model of Parkinson Disease

    Institute of Scientific and Technical Information of China (English)

    曹学兵; 孙圣刚; 刘洪涛; 童萼塘; 夏穗生

    2003-01-01

    To investigate the changes in the expression of basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFβ2) in glomus cell grafts of carotid body in the rat model of 6-hydroxydopamine-induced Parkinson disease, immunohistochemical staining of bFGF and TGFβ2 in the sections of striate body was done on the 2nd, 4th and 12th week after transplantation. The results showed that on the 2nd week after transplantation, bFGF annd TGFβ2 were not detectable in the glumous cell grafts. On the 4th week after graft, bFGF and TGFβ2 immunoreactivity was increased within the grafts and at the graft-host interface but was restricted only to astrocytes. In the striatum surrounding the graft, bFGF was expressed persistently, while TGFβ2 showed transient expression. It was suggested that the transient expression of TGFβ2 was likely due more to the trauma imposed by the graft procedure than to an intrinsic. The deficiency in astrocytic bFGF early after graft may be responsible for the poor survival of grafted glomus cells of carotid body.

  11. Composite membranes based on a novel benzimidazole grafted PEEK and SPEEK for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Ma, Wenjia; Zhao, Chengji; Zhang, Yang; Han, Miaomiao; Zhu, Jing; Liu, Zhongguo; Wu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2010-10-15

    Poly(ether ether ketone) (PEEK) and sulfonated poly(ether ether ketone) (SPEEK, IEC = 2.07 mequiv.g{sup -1}) have been synthesized via nucleophilic aromatic substitution reaction. Bromomethylated poly(ether ether ketone) (PEEK-Br) is then prepared and reacted with 2-benzimidazolethiol to obtain the benzimidazole grafted poly(ether ether ketone) (PEEK-BI). The structures of PEEK-Br and PEEK-BI are characterized by {sup 1}H NMR spectra. Composite membranes based on SPEEK and PEEK-BI are prepared and their properties used for fuel cells are studied in detail. The results show that the composite membranes exhibit greatly improved mechanical properties as well as reduced water uptake and methanol permeability compared with the pristine SPEEK membrane. The increased oxidative stability and selectivity indicate that the composite membranes are promising to be used as proton exchange membranes. (author)

  12. Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol

    OpenAIRE

    Szechynska-Hebda, M.; Wedzony, M.; Dubas, E.; Kieft, H; Lammeren, van, ACAP Andre

    2006-01-01

    Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation, and blocking. The most critical aspects of successful preservation and visualization of cytoskeletal elements appeared to be: a two-step fixation with paraformaldehyde and glutaraldehyde before enzym...

  13. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Science.gov (United States)

    Ramani, Shilpa; Chelliah, Jayabaskaran

    2007-01-01

    Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc) and strictosidine synthase (Str). In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s), Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed. PMID:17988378

  14. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Chelliah Jayabaskaran

    2007-11-01

    Full Text Available Abstract Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc and strictosidine synthase (Str. In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s, Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed.

  15. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea interaction

    OpenAIRE

    Pietrowska, E.; Różalska, S.; Kaźmierczak, A.; Nawrocka, J.; Małolepsza, U.

    2014-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium br...

  16. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions.

    OpenAIRE

    Lohmeier-Vogel, E M; Hahn-Hägerdal, B.; Vogel, H J

    1995-01-01

    The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-met...

  17. Influence of radiation-induced grafting process on mechanical properties of ETFE-based membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youcef, H.; Alkan Guersel, S.; Buisson, A.; Gubler, L.; Wokaun, A.; Scherer, G.G. [Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-06-15

    The mechanical stability is, in addition to thermal and chemical stability, a primary requirement of polymer electrolyte membranes in fuel cells. In this study, the impact of grafting parameters and preparation steps on stress-strain properties of ETFE-based proton conducting membranes, prepared by radiation-induced grafting and subsequent sulphonation, was studied. No significant change in the mechanical properties of the ETFE base film was observed below an irradiation dose of 50 kGy. It was shown that the elongation at break decreases with increasing both the crosslinker concentration and graft level (GL). However, the tensile strength was positively affected by the crosslinker concentration. Yield strength and modulus of elasticity are almost unaffected by the introduction of crosslinker. Interestingly, yield strength and modulus of elasticity increase gradually with GL without noticeable change of the inherent crystallinity of grafted films. The most brittle membranes are obtained via the combination of high GL and crosslinker concentration. The optimised ETFE-based membrane (GL of {proportional_to}25%, 5% DVB v/v), shows mechanical properties superior to those of Nafion registered 112 membrane. The obtained results were correlated qualitatively to the other ex situ properties, including crystallinity, thermal properties and water uptake of the grafted membranes. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    Science.gov (United States)

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. PMID:25879277

  19. Effect of corticosteroid binding proteins on the steroidogenic activity of bovine adrenocortical cell suspensions.

    Science.gov (United States)

    Basset, M; Rostaing-Metz, B; Chambaz, E M

    1982-07-01

    The possible role of steroid binding proteins in the hormonal secretion process of a steroidogenic tissue was examined using bovine adrenocortical cell suspensions, either under basal conditions or in the presence of half-maximally active concentration (1 x 10(-9) M) of synthetic adrenocorticotropic hormone (ACTH). Three types of plasma cortisol binding proteins were used, namely bovine serum albumine (BSA), purified transcortin (CBG) and purified anticortisol immunoglobulins (IgG). When added to the incubation medium, CBG (at 1 x 10(-10) to 2 x 10(-9) M cortisol binding sites) and anticortisol IgG (at 4.8 x 10(-10) to 3 x 10(-9) M cortisol binding sites) did not influence either the basal nor the ACTH-stimulated net cortisol production of the cell preparations. Whereas crystallized and delipidated BSA showed also no effect, crude commercial BSA preparation (Cohn fraction V) exhibited an ACTH-like cofactor effect which resulted in a marked increase in the net cortisol production by stimulated cells. These observations might be explained by the presence in crude BSA of lipoprotein-cholesterol complexes, possibly acting as an extracellular source of cholesterol available for corticosteroidogenesis. It may be concluded that specific high affinity cortisol binding systems present outside adrenocortical steroidogenic cells do not influence their secretory activity under short term in vitro condition. In addition, it can be stressed that use of ill defined protein preparations (e.g. crude BSA) may lead to artifactual observations in the study of the differentiated functions of isolated steroidogenic cells. PMID:6287106

  20. CCR1/CCL5 (RANTES) receptor-ligand interactions modulate allogeneic T-cell responses and graft-versus-host disease following stem-cell transplantation

    OpenAIRE

    Choi, Sung W.; Hildebrandt, Gerhard C.; Olkiewicz, Krystyna M.; Hanauer, David A.; Chaudhary, Meghana N.; Silva, Ines A.; Rogers, Clare E.; Deurloo, Daphne T.; Fisher, Jacki M.; Liu, Chen; Adams, David; Chensue, Stephen W.; Cooke, Kenneth R.

    2007-01-01

    Acute graft-versus-host disease (GVHD) and leukemic relapse are serious complications of allogeneic stem-cell transplantation (SCT). Recruitment of activated T cells to host target tissues or sites of leukemic infiltration (graft-versus-leukemia [GVL]) is likely mediated by chemokine receptor–ligand interactions. We examined the contribution of donor cell CCR1 expression to the development of GVHD and GVL using a well-established murine SCT model (B6 → B6D2F1) and CCR1-deficient mice (CCR1−/−...

  1. MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation.

    Science.gov (United States)

    Tomuleasa, Ciprian; Fuji, Shigeo; Cucuianu, Andrei; Kapp, Markus; Pileczki, Valentina; Petrushev, Bobe; Selicean, Sonia; Tanase, Alina; Dima, Delia; Berindan-Neagoe, Ioana; Irimie, Alexandru; Einsele, Hermann

    2015-07-01

    Allogeneic hematopoietic stem cell transplantation (HCT) is a well-established treatment for many malignant and non-malignant hematological disorders. As frequent complication in up to 50 % of all patients, graft-versus-host disease (GVHD) is still the main cause for morbidity and non-relapse mortality. Diagnosis of GVHD is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally recognized consensus has yet been established. Here, microRNAs (miRs) represent an interesting tool since miRs have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we could assume that miRs play a key role in the pathogenesis of acute GVHD, and their detection might be an interesting possibility in the early diagnosis and monitoring of acute GVHD. Recent studies additionally demonstrated the implication of miRs in the pathogenesis of acute GVHD. In this review, we aim to summarize the previous reports of miRs, focusing on the pathogenesis of acute GVHD and possible implications in diagnostic approaches. PMID:25900787

  2. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    Science.gov (United States)

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting. PMID:27179434

  3. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing

    Directory of Open Access Journals (Sweden)

    Patrick Babczyk

    2014-01-01

    Full Text Available This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.

  4. Sulfonate groups grafted on Ti6Al4V favor MC3T3-E1 cell performance in serum free medium conditions.

    Science.gov (United States)

    Felgueiras, Helena; Migonney, Véronique

    2014-06-01

    Ten years ago, we synthesized "bioactive model polymers" bearing sulfonate groups and proposed a mechanism of their modulation effect at different steps of the cell response. Then, we set up the grafting of polymers bearing sulfonate on Ti6Al4V surfaces by a grafting "from" technique making sure of the creation of covalent bonds between the grafted polymer and the Ti6Al4V surface. We have checked and confirmed the positive effect of grafted sulfonate groups on the osteoblastic cell response in vivo and in vitro but we did not elucidate the mechanism. The aim of this basic work consists first in investigating the role of sulfonate groups in the presence and in the absence of proteins at early stages of the osteointegration process on poly(sodium styrene sulfonate) poly(NaSS) grafted and ungrafted Ti6Al4V surfaces, in vitro. To understand the role of poly(NaSS) grafted chains on osteoblast-like cell response and to confirm/elucidate the importance of fetal bovine serum (FBS) proteins in the culture medium, MC3T3-E1 cells were seeded onto poly(NaSS) grafted and non-grafted Ti6Al4V surfaces. Cultures were carried out in a complete (10% FBS) and in a non-complete medium (without FBS). Cell viability assay, cell attachment number and cell adhesion strength were followed up to 3days of culture. The presence of proteins enhanced cell growth and development whatever the surface and the presence of sulfonate groups enhanced the cell attachment even in the absence of proteins, which suggests and confirms that the sulfonate groups can modify the activity of cells such as the secretion of binding proteins. Statistical differences were found in the attachment strength tests on poly(NaSS) grafted and ungrafted surfaces and showed that the sulfonate groups play an important role in the cell resistance to shear stress. PMID:24863216

  5. Transient expression of Fc-fused human glycoprotein 130 in Expi293F suspension cells.

    Science.gov (United States)

    Zhao, Xiaozhi; Chen, Wei; Ge, Liyuan; Jiang, Wei; Tang, Bo; Zhang, Qing; Xu, Xiaoyu; Wang, Chong; Cao, Lin; Guo, Hongqian

    2016-08-01

    Human glycoprotein 130 (gp130) is a signal-transducing receptor for interleukin 6 (IL-6), whose signaling plays a critical role in chronic inflammation and cancer. The soluble form of gp130 specifically inhibits IL-6 trans-signaling. However, achieving high-level expression of a large glycoprotein such as gp130 is difficult. Here, we designed and constructed one Fc-gp130-pcDNA mammalian expression vector, with the mouse IgG2a Fc fragment added to the N-terminus of human gp130, which greatly increased the secretion of recombinant gp130 protein from Expi293F suspension cells. Recombinant fusion Fc-gp130 was easily and efficiently purified from the supernatant of transfected cells by one-step affinity chromatography. Moreover, Fc-gp130 could automatically form dimers by the disulfide bond. Fc-gp130 was confirmed as a more efficient IL-6 trans-signaling blocker by its higher biological activity against signal transducer and activator of transcription 3 (STAT3). This purified active Fc-gp130 could be used to develop valuable therapeutic agents against inflammatory diseases and cancers. PMID:27113713

  6. Physical modeling of animal cell damage by hydrodynamic forces in suspension cultures.

    Science.gov (United States)

    Lu, G Z; Gray, M R; Thompson, B G

    1992-12-01

    Physical damage of animal cells in suspension culture, due to stirring and sparging, is coupled with complex metabolic responses. Nylon microcapsules, therefore, were used as a physical model to study the mechanisms of damage in a stirred bioreactor and in a bubble column. Microcapsule breaskage folowed first-order kinetices in all experiments Entrainment of bubbles into the liquid phase in the stirred bioreactor gave more microcapsule breakage. In the bubble column, the bubble bursting zone at gas-liquid interface was primarily responsible for microcapsule breakage. The forces on the microcapsules were equivalent to an external pressure of approximately 4 x 10(4) N. m(-2), based on the critical microcapsule diameter for survival of 190 microm. A stable foam layer, however, was found to be effective in protecting microcapsules from damage. The microcapsule transport to the gas-liquid interface and entrainment into the foam phase was consistent with flotation by air bubbles. This result implies that additives and operation of bioreactors should be selected to minimize flotation of cells. PMID:18601080

  7. Radiotoxicity of plutonium in NTA-degrading Chelatobacter heintzii cell suspensions

    International Nuclear Information System (INIS)

    The radiotoxicity of plutonium in NTA-degrading Chelatobacter heintzii cell suspensions was investigated as part of a more general study to establish the key interactions between actinide-organic complexes and microorganisms in the subsurface. The radiation tolerance of C. heintzii, based on 60Co gamma irradiation experiments, was 165 ± 30 Gy. No bacteria survived irradiation doses greater than 500 Gy. In the presence of plutonium, where alpha particle decay was the primary source of ionizing radiation, the observed toxicity was predominantly radiolytic rather than chemical. This was evident by the greater effect of activity, rather than concentration, on the toxicity noted. Bioassociation of plutonium with C. heintzii was postulated to be an important and necessary step in the observed loss of cell viability since this was the best way to account for the observed death rate. The radiotoxicity of plutonium towards bacteria is a potentially important consideration in the bioremediation of sites contaminated with radionuclide-organic mixtures and the bioprocessing of nuclear waste

  8. Plant regeneration from cell suspension-derived protoplasts of Saintpaulia ionantha Wendl.

    Science.gov (United States)

    Hoshino, Y; Nakano, M; Mii, M

    1995-03-01

    Friable calli were induced on leaf segments of Saintpaulia ionantha Wendl. on B5 medium containing 1 mg l(-1) 2,4-D and 2 g l(-1) casein hydrolysate. Cell suspension cultures were readily established from these friable calli and protoplasts could be isolated from the cells with yields of 1-3×10(7)/g f. wt.. By culturing in 0.1 % gellan gum-solidified B5 medium supplemented with 1 mg l(-1) 2,4-D and 0.1 M each of sucrose and mannitol at a density of 1×10(5)/ml, the protoplasts divided within 6 days and formed macro-colonies after 2 months of culture. Shoot regeneration from protoplast-derived calli was obtained by sequential treatment of the calli with plant growth regulators: initially with 1 mg l(-1) each of NAA and BA for 2 months followed by 0.01 mg l(-1) NAA and 5 mg l(-1) BA for 4 months. Regenerated plants were established after rooting of the shoots on half-strength MS medium, and successfully transferred to the greenhouse. The regenerated plants grew into flowering stage and showed the same phenotype as the parent plant. PMID:24185329

  9. A high affinity binding site for cytokinin to a particulate fraction in carrot suspension cells

    International Nuclear Information System (INIS)

    Carrot suspension cells contain one class of high affinity binding sites for cytokinin in an 80,000 X g particulate fraction. Binding of [8-14C] - benzylaminopurine (BA) to this fraction assayed by a sedimentation method was found to be optimal at ph 6.0 and thermolabile. Specific binding was proved in competition experiments in which labelled BA was displaced by increasing concentrations of unlabelled BA. Scatchard plots of these results displayed a dissociation constant (Ksub(d)) of 33+- 6 n.M. The number of binding sites found was 1,100+-120 fmol g-1 fresh weight which is equivalent to a frequency of 23,000 binding sites per cell. The specificity of the binding sites to cytokinins and their analogues followed the sequence BA with highest affinity, kinetin, zeatin, iP and adenine. The cytokinin ribosides generally had a lower affinity than their cytokinin bases, and the affinity decreased in the order [9 R] BA, [9 R] iP, [i R]Z, [9 R] A. (author)

  10. Biostimulation effects of low-energy laser radiation on yeast cell suspensions

    Science.gov (United States)

    Anghel, Sorin; Stanescu, Constantin S.; Giosanu, Dana; Neagu, Ionica; Savulescu, Geta; Iorga-Siman, Ion

    2000-02-01

    This paper presents work to determine the effects produced by low energy laser radiation on the metabolism and growth of a yeast cell suspension. As experimental material, we used young yeast culture in liquid medium, then distributed on a solid medium, to obtain isolated colonies. As laser source, we used a He-Ne laser, and the irradiation was made with different exposure times. Form each irradiated material, a sample of white grape sterile must was sowed, that has fermented at 18 divided by 20 degrees C for 10 divided by 15 days, after that some properties was tested. Some microscopic studies were also made. The results prove some influence of low energy laser irradiation, which can induce mutations, with new properties of the irradiated material. These mutations can be obtained in a positive sense, with new and important perspectives in wine industry. Also, we observed an inhibitory effect of the laser radiation on the yeast cell growth, due, probably to the too high values of the exposure.

  11. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  12. IL4RA on lymphatic endothelial cells promotes T cell egress during sclerodermatous graft versus host disease

    Science.gov (United States)

    Urso, Katia; Alvarez, David; Cremasco, Viviana; Tsang, Kelly; Grauel, Angelo; Lafyatis, Robert; von Andrian, Ulrich H.; Ermann, Joerg; Aliprantis, Antonios O.

    2016-01-01

    Systemic sclerosis (SSc) is a potentially fatal autoimmune disorder with limited therapeutic options. Sclerodermatous graft versus host disease (sclGvHD), induced by transfer of B10.D2 splenocytes into BALB/c Rag2−/− mice, models an inflammatory subset of SSc characterized by a prominent IL13-induced gene expression signature in the skin. Host mice deficient in IL4RA, a subunit of the type II IL4/IL13 receptor, are protected from sclGvHD. While IL4RA has a well-established role in Th2 differentiation and alternative macrophage activation, we report here a previously unappreciated function for IL4RA in lymphatic endothelial cells (LECs): regulation of activated T cell egress. Seven days after splenocyte transfer, Il4ra−/− hosts had increased numbers of activated graft CD4+ T cells in skin draining lymph nodes (dLNs) but fewer T cells in efferent lymph, blood, and skin. Sphingosine-1 phosphate (S1P), master regulator of lymphocyte egress from LNs, was lower in dLNs of Il4ra−/− hosts with a corresponding decrease of S1P kinase 1 (Sphk1) expression in LECs. Bypassing the efferent lymphatics via i.v. injection of CD4+ T cells from dLNs of Il4ra−/− sclGvHD mice restored clinical GvHD in secondary Il4ra−/− recipients. These results identify a role for IL4RA and suggest that modulation of lymphocyte egress from LNs may be effective in SSc and GvHD.

  13. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Dipto

    2012-05-01

    Full Text Available Abstract Background Podophyllotoxin (PTOX, the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA elicitation. High-resolution two-dimensional gel electrophoresis (2-DE followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome. Result The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. Conclusions Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.

  14. Loss of T Follicular Helper Cells in the Peripheral Blood of Patients with Chronic Graft-versus-Host Disease.

    Science.gov (United States)

    Knorr, David A; Wang, Hongbo; Aurora, Mukta; MacMillan, Margaret L; Holtan, Shernan G; Bergerson, Rachel; Cao, Qing; Weisdorf, Daniel J; Cooley, Sarah; Brunstein, Claudio; Miller, Jeffery S; Wagner, John E; Blazar, Bruce R; Verneris, Michael R

    2016-05-01

    B cell antihost antibody production plays a central role in chronic graft-versus-host disease (cGVHD). T follicular helper (TFH) cells drive B cell responses and are implicated in this process. Given differences in cGVHD incidence between umbilical cord blood (UCB) and adult donor transplant recipients, we evaluated TFH cell reconstitution kinetics to define graft source differences and their potential pathogenic role in cGVHD. Although we observed significantly fewer TFH cells in the blood of UCB recipients (versus matched related donors [MRD]) early after transplantation, by 1 year the numbers of TFH cells were similar. Additionally, at both early (day 60) and late (1 year) time points, TFH cell phenotype was predominantly central memory cells in both cohorts. TFH cells were functional and able to produce multiple cytokines (INF-γ, TNF-α, IL-2, IL-17, and IL-21) after stimulation. In contrast to mouse models, where an enhanced frequency of splenic TFH cells contributes to cGVHD, patients with cGVHD showed significantly depleted circulating TFH cells after both UCB and MRD transplantation. Low numbers of TFH cells early after UCB transplantation could directly contribute to less cGVHD in this cohort. Additionally, systemic therapy (including steroids and calcineurin inhibitors) may contribute to decreases in TFH cells in patients with cGVHD. These data provide further evidence supporting the importance of TFH cells in cGVHD pathogenesis. PMID:26806586

  15. Dynamic Effects of Cerium on Syntheses of Soluble Protein and Taxol in Suspension Culture of Taxus Chinensis Var. Mairei Cells

    Institute of Scientific and Technical Information of China (English)

    李景川; 马忠海; 元英进; 孙安慈; 胡昌序

    2001-01-01

    The dynamic effects of Ce4+ on the syntheses of soluble protein and taxol in suspension cultures of Taxus chinensis var. mairei cells were studied. The phenomena of “partition” and “bifurcation” were observed in studying the dynamic effect of Ce4+ on soluble protein synthesis and cell activity. That is, Ce4+ of low concentration improves the soluble protein synthetic strength and cell activity, while Ce4+of high concentration is harmful to protein synthesis and cell activity. In addition, Ce4+ of appropriate concentration enhances taxol synthesis.

  16. T-cell chimerism is valuable in predicting early mortality in steroid-resistant acute graft-versus-host disease after myeloablative allogeneic cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Madsen, Hans O.; Sengeløv, Henrik

    2014-01-01

    The main aim of this study was to evaluate the impact of early T-cell chimerism status on the incidence and clinical course of acute graft-versus-host disease (aGVHD) in allogeneic transplant recipients after myeloablative conditioning. Of 62 patients, 38 (61%) had complete T-cell donor chimerism...

  17. Flow cytometric analysis of the graft-versus-Leukemia-effect after hematopoietic stem cell transplantation in mice.

    Science.gov (United States)

    Schmidt, Felix; Hilger, Nadja; Oelkrug, Christoper; Svanidze, Ellen; Ruschpler, Peter; Eichler, Wolfram; Boldt, Andreas; Emmrich, Frank; Fricke, Stephan

    2015-04-01

    Acute Graft-versus-Host-Disease (aGvHD) is one of the major complications following allogeneic hematopoietic stem cell transplantation (HSCT). Although rather helpful, the use of conventional immunosuppressive drugs leads to general immunosuppression and is toxic. The effects of CD4(+) T-cells, in respect to the development of aGvHD, can be altered by administration of antihuman CD4 monoclonal antibodies, here MAX.16H5 IgG1 . This approach must be tested for possible interference with the Graft-versus-Leukemia-Effect (GvL). Thus, in vitro experiments were conducted, exposing P815 leukemic cells to bone marrow and splenocytes from cd4(-/-) -C57Bl/6 mice transgenic for human CD4 and HLA-DR3 (triple transgenic mice, [TTG]) as well as previously irradiated splenocytes from Balb/c(wt) mice. Using flow cytometry, the vitality of the various malignant and graft cells was analyzed over the course of 4 days. The survival rate of P815 cells did not change significantly when exposed to MAX.16H5 IgG1 , neither did the viability of the graft cells. This provides evidence that MAX.16H5 IgG1 does not impair the GvL effect in vitro. Additionally, P815-Balb/c(wt) leukemic mice were transplanted with P815(GFP) cells, bone marrow, and splenocytes from TTG mice with and without MAX.16H5 IgG1 . Without transplantation, P815(GFP) leukemic cells could be detected by flow cytometry in the liver, the bone marrow, and the spleen of recipients. The antibodies prevented aGvHD while leaving the GvL effect intact. These findings indicate no negative effect of MAX.16H5 IgG1 on the GvL effect in vitro and in vivo after HSCT in a murine model. PMID:25717029

  18. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation.

    Science.gov (United States)

    Ball, Lynne M; Bernardo, Maria Ester; Roelofs, Helene; Lankester, Arjan; Cometa, Angela; Egeler, R Maarten; Locatelli, Franco; Fibbe, Willem E

    2007-10-01

    Haploidentical hematopoietic stem-cell transplantation (HSCT) is associated with an increased risk of graft failure. Adult bone marrow-derived mesenchymal stromal cells (MSCs) have been shown to support in vivo normal hematopoiesis and to display potent immune suppressive effects. We cotransplanted donor MSCs in 14 children undergoing transplantation of HLA-disparate CD34(+) cells from a relative. While we observed a graft failure rate of 15% in 47 historic controls, all patients given MSCs showed sustained hematopoietic engraftment without any adverse reaction. In particular, children given MSCs did not experience more infections compared with controls. These data suggest that MSCs, possibly thanks to their potent immunosuppressive effect on alloreactive host T lymphocytes escaping the preparative regimen, reduce the risk of graft failure in haploidentical HSC transplant recipients. PMID:17638847

  19. Serious graft-versus-host disease after hematopoietic cell transplantation following nonmyeloablative conditioning.

    Science.gov (United States)

    Flowers, M E D; Traina, F; Storer, B; Maris, M; Bethge, W A; Carpenter, P; Appelbaum, F; Storb, R; Sandmaier, B M; Martin, P J

    2005-02-01

    The efficacy of allogeneic hematopoietic cell transplantation (HCT) after nonmyeloablative conditioning depends on the balance between the desirable antineoplastic effects of donor cells weighed against the undesirable morbidity of graft-versus-host disease (GVHD). Development of serious acute or chronic GVHD was analyzed retrospectively in 171 consecutive patients, who had related or unrelated nonmyeloablative HCT for hematologic malignancies. GVHD was defined as serious when it resulted in (1) death, (2) disability, (3) three or more major infections in 1 year, (4) prolonged hospitalization or (5) suicide or hospitalization for suicidal ideation. According to this definition, 43 of 171 (25%) patients developed serious GVHD with a median follow-up of 30 (range, 12-65) months. The incidence of serious GVHD was similar after related and unrelated HCT. Among the 43 patients with serious GVHD, 20 had grade III-IV acute GVHD, and 30 had extensive chronic GVHD. Among the 171 patients, seven had grade III acute GVHD and 84 had extensive chronic GVHD that did not meet criteria for serious GVHD. Assessment of serious GVHD provides additional useful information to acute GVHD grades and classification of limited and extensive chronic GVHD in describing the overall risk and impact complications caused by donor cells. PMID:15558037

  20. Mesenchymal Stem Cell Therapy in the Treatment of Acute and Chronic Graft versus Host Disease

    Directory of Open Access Journals (Sweden)

    SimonRobinson

    2011-07-01

    Full Text Available Mesenchymal stem cells (MSC are a cellular component of the supportive microenvironment (stroma found in the bone marrow, umbilical cord, placenta and adipose tissues. In addition to providing cellular and extracellular cues to support the proliferation and differentiation of cells that comprise functional tissues, MSC also contribute to tissue repair and have immunomodulatory properties. Their ability to modulate immunologic reactions while themselves not provoking immunologic responses from alloreactive T-lymphocytes and/or other effector cells, make MSC a potentially ideal therapeutic agent with which to treat graft versus host disease (GvHD following hematopoietic transplantation. Despite in vitro experiments confirming that MSC suppress mixed lymphocyte reactions (MLR and in vivo evidence from mouse models that show evidence that MSC can ameliorate GvHD, clinical trials to date using MSC to treat GvHD have shown mixed results. Whether this is a consequence of suboptimal timing and dose of administered MSC remains to be clarified. It is clear that immunomodulatory potential of MSC as a cellular therapy for GvHD remains to be realized in the clinic.

  1. Treatment of graft-versus-host disease with naturally occurring T regulatory cells.

    Science.gov (United States)

    Trzonkowski, Piotr; Dukat-Mazurek, Anna; Bieniaszewska, Maria; Marek-Trzonkowska, Natalia; Dobyszuk, Anita; Juścińska, Jolanta; Dutka, Magdalena; Myśliwska, Jolanta; Hellmann, Andrzej

    2013-12-01

    A significant body of evidence suggests that treatment with naturally occurring CD4(+)CD25(+) T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of death after bone marrow transplantation. Tregs constitute a population responsible for dominant tolerance to self-tissues in the immune system. These cells prevent autoimmune and allergic reactions and decrease the risk of rejection of allotransplants. For these reasons, Tregs are considered as a cellular drug in GvHD. The results of the first clinical trials with these cells are already available. In this review we present important experimental facts which led to the clinical use of Tregs. We then critically evaluate specific requirements for Treg therapy in GvHD and therapies with Tregs currently under clinical investigation, including our experience and future perspectives on this kind of cellular treatment. PMID:23813436

  2. Electron-Beam Induced Grafting of Isopropylacrylamide to a Poly(Ethylene-Terephthalate) Membrane for Cell Sheet Detachment, and Fuel Cell Membrane

    International Nuclear Information System (INIS)

    Using high-energy irradiation initiation, isopropylacrylamide (IPAA) was grafted to a porous membrane dish composed of poly(ethylene terephthalate) (PET). IPPA demonstrates a transition from a hydrophobic to a hydrophilic structure with a simple change in temperature. The dishes were used for cell grow. Cells generally grow in an environment set at 37 deg. C, at which the IPAA polymer exhibits its hydrophobic structure. IPAA was attached uniformly to a cell culture surface, and cells were able to grow on top of the IPAA while it was in its hydrophobic state. Cells were easily removed from the surface of the dishes after changing the temperature below the LCST of IPAA. By changing the temperature polymer altered its structure to a hydrophilic state and no longer provided a suitable surface for the cells to adhere to. This caused the cells to lift off the culture surface without the use of a destructive enzyme such as trypsin or dispase. These cell sheets are useful to cell sheet engineering because the cells will retain both their extracellular matrix (ECM) and cell-to-cell junctions, which are normally lost in the harvest of cells. Poly(tetrafluoroethylene-co-hexefluoropropylene) (FEP) is a material under investigation as a polymer electrolyte membrane for fuel cells. In order to make it ionically conductive, styrene was grafted to it and then subsequently sulfonated. Grafting of styrene to FEP was performed by simultaneous irradiation of the monomer and substrate to initiate the reaction, followed by a heat treatment to allow the reaction to undergo propagation. The effects of dose rate and heat treatment time on the weight percent yield of grafting and uniformity as a function of depth in the substrate was investigated. A 38.5 wt% graft was obtained after a 50 kGy dose of electron irradiation at a dose rate of 2,8 Gy/pulse and post-irradiation heat treatment of 60 deg. C for three hours. FTIR analysis of 10 μm sections of material grafted under these conditions

  3. Effect of Cell Electroporation on the Conductivity of a Cell Suspension

    OpenAIRE

    Pavlin, Mojca; Kandušer, Maša; Reberšek, Matej; Pucihar, Gorazd; Hart, Francis X.; Magjarević, Ratko; Miklavčič, Damijan

    2005-01-01

    An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a ce...

  4. UV RADIATION INDUCED GRAFT COPOLYMERIZATION OF ALLYL ACETATE ONTO POLY(ETHYLENE TEREPHTHALATE) (PET) FILMS FOR FUEL CELL MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Mostak Ahmed; Mubarak A. Khan; Nazia Rahman; M. Anwar H. Khan

    2012-01-01

    Ultraviolet (UV)-induced graft copolymerization of allyl acetate (AA) monomer onto poly(ethylene terephthalate) (PET) films and the subsequent sulfonation on the monomer units in the grafting chain using chlorosulfonic acid (C1SO3H) were carried out to prepare proton exchange membranes (PEMs) for fuel cells.A maximum grafting value of 12.8% was found for 35 vol% allyl acetate after 3 h radiation time.Optimum concentration of ClSO3H was selected for the sulfonation reaction to be 0.05 mol/L based on the degree of sulfonation and the tensile strength studies of the membrane.The degree of sulfonation increased as the sulfonation reaction temperature and sulfonation time were increasing.The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as FTIR spectroscopy.The maximum ion exchange capacity (IEC) of 0.04125 mmol g-1 was found at 12.1% degree of sulfonation and the maximum proton conductivity was found to be 0.035 S cm-1 at 30℃ and a relative humidity of 60%.The various physical and chemical properties of the PEMs such as water uptake,mechanical strength,thermal durability and oxidative stability were also studied.To investigate the suitability of the prepared membrane for fuel cell applications,its properties were compared with those of Nation 117.

  5. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease.

    Science.gov (United States)

    Rockenstein, Edward; Desplats, Paula; Ubhi, Kiren; Mante, Michael; Florio, Jazmin; Adame, Anthony; Winter, Stefan; Brandstaetter, Hemma; Meier, Dieter; Masliah, Eliezer

    2015-07-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF) and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting. PMID:26209890

  6. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Edward Rockenstein

    2015-07-01

    Full Text Available Neural stem cells (NSCs have been considered as potential therapy in Alzheimer's disease (AD but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL, a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9 months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting.

  7. Enhancing the survival of grafted cardiac stem cells for long-term imaging

    Energy Technology Data Exchange (ETDEWEB)

    Le, Uyenchi N.; Tae, Seong Ho; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    Heat shock treatment is known to induce the protection for cells from various environmental insults. Akt (protein kinase B) - with anti-apoptotic activity - has presently been reemerged as a critical enzyme in several signal transduction pathways involved in cell proliferation and programmed cell death. We hypothesized that thermotic treatment and Akt activity in genetically modified cardiomyoblasts would improve their survival after transplantation. Embryonic rat H9c2 cardiomyoblasts were simultaneously transfected with adenovirus containing luciferase reporter gene (MOl 50) and another containing Akt gene [MOl (0 100) ]. 5x106 harvested cells were i.m. implanted into murine skeletal muscles. Bioluminescence imaging was acquired for everyday and luciferase assay was performed to validate the imaging data. For thermotic challenge, adenovirus-mediated flue expressing H9c2 cells were subjected to great heat of 42 .deg. C for 1 hr and re-cultured at 37 .deg. C for 18 hours. Expression of heat shock protein in cells was detected in vitro by Western-blotting. 5x106 normal and shocked cells were implanted into mouse thigh (n = 5) and the animals were imaged with bioluminescence imaging system. In vitro evidences showed a high level expression of Akt and HSP in transfected H9c2 cells. Animals carrying Akt expressed bioluminescence signals until day 34 of post-implantation. The Flue activity was significantly higher in the shocked H9c2 cell-implanted rats and detected over 10 days as compared with the control group. The graft cell death was reduced by 73% at day 2 (1.46+ 10-7 p/s/cm{sup 2}/sr), 51% at day 3 (1.02+10-7 p/s/cm{sup 2}/sr), and 8% at day 10 (1.62+ 10-6 p/s/cm{sup 2}/sr). We revealed here improvement of donor cell's survival induced by the anti-apoptotic means of Akt genetic therapy or heat shock. Utility of bioluminescence imaging resulted in a potential to noninvasively and repetitively monitor implanted cardiac myoblasts over time.

  8. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo

    OpenAIRE

    Nelson, G. N.; Roh, J. D.; Mirensky, T. L.; Y Wang; Yi, T.; Tellides, G.; Pober, J S; Shkarin, P.; Shapiro, E. M.; Saltzman, W M; Papademetris, X.; Fahmy, T. M.; Breuer, C.K.

    2008-01-01

    This pilot study examines noninvasive MR monitoring of tissue-engineered vascular grafts (TEVGs) in vivo using cells labeled with iron oxide nanoparticles. Human aortic smooth muscle cells (hASMCs) were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The labeled hASMCs, along with human aortic endothelial cells, were incorporated into eight TEVGs and were then surgically implanted as aortic interposition grafts in a C.B-17 SCID/bg mouse host. USPIO-labeled hASMCs p...

  9. The use of the CELLection kit in the isolation of carcinoma cells from mononuclear cell suspensions

    DEFF Research Database (Denmark)

    Werther, K; Normark, M; Hansen, B F;

    2000-01-01

    A study was performed to evaluate in vitro the sensitivity, specificity and variability of a new immunomagnetic microbead isolation technique which provides subsequent immunological staining of captured carcinoma cells. In a mixture of peripheral blood mononuclear cells (PBMCs) and human carcinoma...... average recovery of approximately 60% of a human colon carcinoma cell line HCC-2998 seeded in 5.10(6) PBMCs was obtained, and the recovered cells could subsequently be immunologically stained for the surface antigen CD87 (urokinase plasminogen activator receptor). No positive stained cells were found in...... cells the epithelial cancer cells were isolated with the Dynal((R)) RAM IgG1 CELLection Kit using Dynabeads M-280 coated with a rat monoclonal antibody (Mab) against mouse IgG1. The rat Mab was biotinylated and attached to Dynabeads via streptavidin and a DNA linker. The anti-epithelial monoclonal mouse...

  10. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture

    Directory of Open Access Journals (Sweden)

    Thu V. Vuong

    2014-06-01

    Full Text Available Bioprocesses capable of producing large scales of resveratrol at nutraceutical grade are in demand. This study herein investigated treatment strategies to induce the production of resveratrol in Vitis vinifera L. cell suspension cultures. Among seven investigated elicitors, jasmonic acid (JA, salicylic acid, β-glucan (GLU, and chitosan enhanced the production of intracellular resveratrol manyfold. The combined treatment of JA and GLU increased extracellular resveratrol production by up to tenfold. The application of Amberlite XAD-7 resin for in situ removal and artificial storage of secreted resveratrol further increased resveratrol production by up to four orders of magnitude. The level of resveratrol produced in response to the combined treatment with 200 g/L XAD-7, 10 μM JA and 1 mg/mL GLU was approximately 2400 mg/L, allowing the production of resveratrol at an industrial scale. The high yield of resveratrol is due to the involvement of a number of mechanisms working in concert.

  11. Lipoxygenase activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.).

    Science.gov (United States)

    Kollárová, R; Oblozinský, M; Kováciková, V; Holková, I; Balazová, A; Pekárová, M; Hoffman, P; Bezáková, L

    2014-08-01

    In this study we investigated the influence of biotic elicitor (phytopathogenic fungus Botrytis cinerea) and abiotic elicitors (methyljasmonate [MJ] and salicylic acid [SA]) on lipoxygenase (LOX) activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.). We have observed different time effects of elicitors (10, 24, 48 and 72 h) on LOX activity and production of sanguinarine in in vitro cultures. All elicitors used in the experiments evidently increased the LOX activity and sanguinarine production in contrast to control samples. The highest LOX activities were determined in samples elicitated by MJ after 48 h and 72 h and the lowest LOX activities (in contrast to control samples) were detected after biotic elicitation by Botrytis cinerea. These activities showed about 50% lower level against the activities after MJ elicitation. The maximal amount of sanguinarine was observed after 48 h in MJ treated cultures (429.91 mg/g DCW) in comparision with control samples. Although all elicitors affect the sanguinarine production, effect of SA and biotic elicitor on sanguinarine accumulation in in vitrocultures was not so significant than after MJ elicitation. PMID:25158577

  12. PATHOGEN IMPACT ON THE ACTIVITY DYNAMICS OF POTATO SUSPENSION CELLS EXTRA-CELLULAR PEROXIDASE

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2005-08-01

    Full Text Available Changes in the activity of extracellular peroxidases were measured in cell suspension cultures of potato infected by Clavibacter michiganensis subsp. sepedonicus (Spieck. et Kotth. Skapt et Burkh. The total extracellular peroxidases activity of the resistant potato variety was higher than that of the sensitive variety both before and after infection. The enzyme of the resistant variety had a рН optimum of 6.2, while that of the sensitive variety was 5.4. Extracellular peroxidases of the sensitive potato variety were activated 10 minutes after infection, and displayed highest activity 1.5-2 hours later. In the resistant variety, peroxidase activity rose sharply in the first minutes of infection, and second peak of activity occurred 1.5-2 hours later. The increase of extracellular peroxidases activity of the sensitive potato variety under pathogenesis is connected with the change of genome expression and synthesis of proteins. The increase of enzyme activity of resistant potato variety in the first moments of infection is not related to proteins synthesis and is apparently conditioned by the change of kinetic parameters.

  13. Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics

    OpenAIRE

    Mustafa, Natali Rianika; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2009-01-01

    The effect of salicylic acid (SA) on the metabolic profile of Catharanthus roseus suspension cells throughout a time course (0, 6, 12, 24, 48 and 72 h after treatment) was investigated using NMR spectroscopy and multivariate data analysis. When compared to control cell lines, SA-treated cells showed a high level of sugars (glucose and sucrose) up to 48 h after treatment, followed by a dynamic change in amino acids, phenylpropanoids, and tryptamine. Additionally, one compound—2,5-dihydroxybenz...

  14. Mechanisms of Cyclic Nucleotide Phosphodiesterases in Modulating T Cell Responses in Murine Graft-versus-Host Disease

    OpenAIRE

    Weber, Michael; Lupp, Corinna; Stein, Pamela; Kreft, Andreas; Bopp, Tobias; WEHLER, THOMAS C.; Schmitt, Edgar; Schild, Hansjörg; Radsak, Markus P.

    2013-01-01

    Graft-versus-host disease (GvHD) is a key contributor to the morbidity and mortality after allogeneic hematopoetic stem cell transplantation (HSCT). Regulatory Foxp3+ CD4+ T cells (Treg) suppress conventional T cell activation and can control GvHD. In our previous work, we demonstrate that a basic mechanism of Treg mediated suppression occurs by the transfer of cyclic adenosine monophosphate (cAMP) to responder cells. Whether this mechanism is relevant for Treg mediated suppression of GvHD is...

  15. Antioxidant activities of polyphenolic extracts from flowers, in vitro callus and cell suspension cultures of Crataegus monogyna.

    Science.gov (United States)

    Rakotoarison, D A; Gressier, B; Trotin, F; Brunet, C; Dine, T; Luyckx, M; Vasseur, J; Cazin, M; Cazin, J C; Pinkas, M

    1997-01-01

    Numerous plants synthesize among their secondary metabolites phenolic compounds which possess antioxidant effects. The aim of the present work was to assay the antioxidant activities of phenolics from Crataegus monogyna Jacq. flowers and in vitro tissue culture (calli and cell suspensions) extracts. In the case of tissue culture extracts, the phenolic production is studied at three different stages of one subculture period (initial growth period, increasing and maximal phenolic synthesis phases). Attention was paid to the main categories: flavonoids and proanthocyanidins, and to the principal individual components. Total phenolic amounts decrease in the order: fresh flowers > cell suspension cultures > callus cultures. The antioxidant activities of these different extracts against H2O2 and HOCl, have been determined in vitro. All the extracts are efficient and the scavenging capacity is clearly related to the total phenol content. The scavenging effects of the cell suspension extracts are similar to those of the flowers. Among individual compounds, the flavanol-type derivatives, specially the proanthocyanidin B2, are more efficient. Thus, in vitro plant tissues could be an interesting source of bioactive molecules. PMID:9035237

  16. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen

    Energy Technology Data Exchange (ETDEWEB)

    Al Meslmani, Bassam, E-mail: almeslmanib@yahoo.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mahmoud, Gihan, E-mail: mahmoudg@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, 11795 Cairo (Egypt); Strehlow, Boris, E-mail: strehlo4@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mohr, Eva, E-mail: mohr@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Leichtweiß, Thomas, E-mail: Thomas.leichtweiss@phys.chemie.uni-giessen.de [Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany); Bakowsky, Udo, E-mail: ubakowsky@aol.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany)

    2014-10-01

    Short-term patency of polyethylene terephthalate (PET) cardiovascular grafts is determined mainly by the inherent thrombogenicity and improper endothelialization following grafts implantation. The aim of the present study was to immobilize heparin to develop thrombus resistant grafts. Additionally, collagen was co-immobilized to enhance the host cell compatibility. The synthetic woven and knitted forms of crimped PET grafts were surface modified by Denier reduction to produce functional carboxyl groups. The produced groups were used as anchor sites for covalent immobilization of heparin or co-immobilization of heparin/collagen by the end-point method. The modified surface was characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biological activity of immobilized molecules was investigated in vitro using direct blood coagulation test, and “platelet deposition under flow condition. Furthermore, the biocompatibility of modified grafts with host cells was assessed using L929 cell as model. All modified grafts showed significant resistance against fibrin and clot formation. The number of deposited platelets on heparin-immobilized woven and knitted grafts obviously decreased by 3 fold and 2.8 fold per unit surface area respectively, while the heparin/collagen co-immobilized grafts showed only a decrease by 1.7 and 1.8 fold compared to unmodified PET. Heparin-immobilized grafts reported no significant effect on L929 cells adhesion and growth (P > 0.05), conversely, collagen co-immobilization considerably increased cell adhesion almost ∼ 1.3 fold and 2 fold per unit surface area for woven and knitted grafts respectively. Our results emphasize that immobilization of heparin minimized the inherent thrombogenicity of the PET grafts. The simultaneous co-immobilization of collagen supported host cell adhesion and growth required for the grafts biocompatibility. - Highlight: • Heparin and collagen were co-immobilized on

  17. Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils

    Science.gov (United States)

    Oremland, R.S.; Miller, L.G.; Culbertson, C.W.; Connell, T.L.; Jahnke, L.

    1994-01-01

    Cell suspensions of Methylococcus capsulatus mineralized methyl bromide (MeBr), as evidenced by its removal from the gas phase, the quantitative recovery of Br- in the spent medium, and the production of 14CO2 from [14C]MeBr. Methyl fluoride (MeF) inhibited oxidation of methane as well as that of [14C]MeBr. The rate of MeBr consumption by cells varied inversely with the supply of methane, which suggested a competitive relationship between these two substrates. However, MeBr did not support growth of the methanotroph. In soils exposed to high levels (10,000 ppm) of MeBr, methane oxidation was completely inhibited. At this concentration, MeBr removal rates were equivalent in killed and live controls, which indicated a chemical rather than biological removal reaction. At lower concentrations (1,000 ppm) of MeBr, methanotrophs were active and MeBr consumption rates were 10-fold higher in live controls than in killed controls. Soils exposed to trace levels (10 ppm) of MeBr demonstrated complete consumption within 5 h of incubation, while controls inhibited with MeF or incubated without O2 had 50% lower removal rates. Aerobic soils oxidized [14C]MeBr to 14CO2, and MeF inhibited oxidation by 72%. Field experiments demonstrated slightly lower MeBr removal rates in chambers containing MeF than in chambers lacking MeF. Collectively, these results show that soil methanotrophic bacteria, as well as other microbes, can degrade MeBr present in the environment.

  18. One-Step Detection of Major Lipid Components in Submicroliter Volumes of Unpurified Liposome and Cell Suspensions.

    Science.gov (United States)

    Chen, Ssu-Ying; Wu, Ching-Yi; Chen, Yu-Chie; Urban, Pawel L

    2016-07-19

    Liposomes and cells have high lipid contents, which are the main components of the external and internal membranes. Mass spectrometry (MS) is widely used in the analysis of the lipids present in the biological matrixes. However, MS analysis of liposome and cell suspensions is challenging due to the presence of other high-abundance matrix components (e.g., salts, buffers, and growth media) that cause ion suppression. These interfering species would normally be removed by dialysis or centrifugation. Here we propose a simple and fast method to detect major lipid components in cells and cell suspensions by MS while circumventing dialysis and centrifugation. Capillary hydrodynamic chromatography (HDC) has been coupled online with the aid of an electrospray ionization (ESI) interface to an ion-trap mass spectrometer. Complex samples containing bioparticles and a large amount of potential interferences (buffer, inorganic salts, amino acids) were separated hydrodynamically, detected optically (by light absorption/scattering), and immediately transferred to the MS interface. Liposomes and animal cells are disintegrated during electrospray, and the constituent lipids are ionized. The signal-to-noise ratios are ∼10× higher in HDC-ESI-MS than in direct infusion ESI-MS experiments (with or without dilution). This method has been tested on liposomes (containing phosphatidylcholine and phosphatidylglycerol) and four types of animal/human cells, i.e., mouse macrophages (RAW 264.7), human breast cancer cells (T47D and Hs578T), and mouse preadipocyte cells (3T3-L1). We suggest that HDC-ESI-MS can be used in quality control analyses of bioparticle suspensions in the fields of biotechnology, molecular biology, drug discovery, and cosmetics. PMID:27337108

  19. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  20. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    Directory of Open Access Journals (Sweden)

    Peng YS

    2014-06-01

    Full Text Available Yu-Shiang Peng,1,* Po-Liang Lai,2,* Sydney Peng,1 His-Chin Wu,3 Siang Yu,1 Tsan-Yun Tseng,4 Li-Fang Wang,5 I-Ming Chu1 1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 3Department of Materials Engineering, Tatung University, Taipei, 4Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Chung-Li, 5Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan *Yu-Shiang Peng and Po-Liang Lai contributed equally to this work Abstract: Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810. This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the

  1. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    Science.gov (United States)

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc. PMID:26614913

  2. Plant regeneration from suspension cells induced from hypocotyls derived from interspecific cross Alstroemeria pelegrina × A. magenta and transformation with Agrobacterium tumefaciens

    OpenAIRE

    Hoshino, Yoichiro; Kashihara, Yukiko; Hirano, Tomonari; MURATA, Naho; Shinoda, Koichi

    2008-01-01

    Embryogenic cell suspension cultures were established using the ovule culture of an interspecific cross, Alstroemeria pelegrina var. rosea × A. magenta. Ovules harvested 14 d after pollination were cultured on Murashige and Skoog (MS) medium without plant growth regulators (PGRs); calli were produced on the hypocotyl surface in germinating zygotic embryos. Suspension cells were induced from the calli by using liquid MS media containing 2,4-dichlorophenoxyacetic acid or 4-amino-3,5,6-trichloro...

  3. Rapid preparation of rodent testicular cell suspensions and spermatogenic stages purification by flow cytometry using a novel blue-laser-excitable vital dye

    OpenAIRE

    Rosana Rodríguez-Casuriaga; Federico F. Santiñaque; Folle, Gustavo A.; Elisa Souza; Beatriz López-Carro; Adriana Geisinger

    2014-01-01

    Availability of purified or highly enriched fractions representing the various spermatogenic stages is a usual requirement to study mammalian spermatogenesis at the molecular level. Fast preparation of high quality testicular cell suspensions is crucial when flow cytometry (FCM) is chosen to accomplish the stage/s purification. Formerly, we reported a method to rapidly obtain good quality rodent testicular cell suspensions for FCM analysis and sorting. Using that method we could distinguish a...

  4. Peripheral blood stem cell graft compared to bone marrow after reduced intensity conditioning regimens for acute leukemia: a report from the ALWP of the EBMT

    Science.gov (United States)

    Savani, Bipin N.; Labopin, Myriam; Blaise, Didier; Niederwieser, Dietger; Ciceri, Fabio; Ganser, Arnold; Arnold, Renate; Afanasyev, Boris; Vigouroux, Stephane; Milpied, Noel; Hallek, Michael; Cornelissen, Jan J.; Schwerdtfeger, Rainer; Polge, Emmanuelle; Baron, Frédéric; Esteve, Jordi; Gorin, Norbert C.; Schmid, Christoph; Giebel, Sebastian; Mohty, Mohamad; Nagler, Arnon

    2016-01-01

    Increasing numbers of patients are receiving reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation. We hypothesized that the use of bone marrow graft might decrease the risk of graft-versus-host disease compared to peripheral blood after reduced intensity conditioning regimens without compromising graft-versus-leukemia effects. Patients who underwent reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation from 2000 to 2012 for acute leukemia, and who were reported to the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation were included in the study. Eight hundred and thirty-seven patients receiving bone marrow grafts were compared with 9011 peripheral blood transplant recipients after reduced intensity conditioning regimen. Median follow up of surviving patients was 27 months. Cumulative incidence of engraftment (neutrophil ≥0.5×109/L at day 60) was lower in bone marrow recipients: 88% versus 95% (P<0.0001). Grade II to IV acute graft-versus-host disease was lower in bone marrow recipients: 19% versus 24% for peripheral blood (P=0.005). In multivariate analysis, after adjusting for differences between both groups, overall survival [Hazard Ratio (HR) 0.90; P=0.05] and leukemia-free survival (HR 0.88; P=0.01) were higher in patients transplanted with peripheral blood compared to bone marrow grafts. Furthermore, peripheral blood graft was also associated with decreased risk of relapse (HR 0.78; P=0.0001). There was no significant difference in non-relapse mortality between recipients of bone marrow and peripheral blood grafts, and chronic graft-versus-host disease was significantly higher after peripheral blood grafts (HR 1.38; P<0.0001). Despite the limitation of a retrospective registry-based study, we found that peripheral blood grafts after reduced intensity conditioning regimens had better overall and leukemia-free survival than bone marrow grafts. However

  5. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension

    International Nuclear Information System (INIS)

    Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10–100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique. (paper)

  6. Scan-Free Absorbance Spectral Imaging A(x, y, λ) of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    Science.gov (United States)

    Isono, Takumi; Yamashita, Kyohei; Momose, Daisuke; Kobayashi, Hiroki; Kitamura, Masashi; Nishiyama, Yusuke; Hosoya, Takahiro; Kanda, Hiroaki; Kudo, Ayane; Okada, Norihide; Yagi, Takafumi; Nakata, Kazuaki; Mineki, Shigeru; Tokunaga, Eiji

    2015-01-01

    Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect. PMID:26061268

  7. Scan-Free Absorbance Spectral Imaging A(x, y, λ of Single Live Algal Cells for Quantifying Absorbance of Cell Suspensions.

    Directory of Open Access Journals (Sweden)

    Takumi Isono

    Full Text Available Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect.

  8. Impact of graft versus host disease on outcome of allogeneic peripherial blood stem cell transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    黎美章

    2014-01-01

    Objective To analyze the impact of the occurrence and severity of acute and chronic graft versus host disease(GVHD)on the long-term outcome of allogeneic peripheral blood stem cell transplantation(allo-PBSCT)for leukemia.Methods A total of 231 patients with leukemia,who underwent allo-HSCT in Changhai Hospital from Jan1st,2001 to Dec 31th,2011,were retrospectively analyzed.The overall survival(OS),disease-free survival

  9. Ocular Graft Versus Host Disease Following Allogeneic Stem Cell Transplantation: A Review of Current Knowledge and Recommendations

    OpenAIRE

    Nariman Nassiri; Medi Eslani; Nekoo Panahi; Shiva Mehravaran; Alireza Ziaei; Djalilian, Ali R.

    2013-01-01

    Graft versus host disease (GVHD) is a common complication of allogeneic stem cell transplantation (allo-SCT). Ocular GVHD develops in approximately 40-60% of patients following allo-SCT and its most common clinical manifestations include keratoconjunctivitis sicca and cicatricial conjunctivitis. Ocular GVHD may lead to severe ocular surface disease, which can significantly diminish quality of life and restrict daily activities. It is thus important to monitor the condition closely since with ...

  10. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device.

    Science.gov (United States)

    Tokuyama, Takahito; Fujii, Shin-Ichiro; Sato, Kiichi; Abo, Mitsuru; Okubo, Akira

    2005-05-15

    This article describes an antiallergic drug-screening system by the detection of histamine released from mast cells (suspension cells) on a multilayer microchip. In this study, the elastmeric material, poly(dimethylsiloxane) (PDMS), was employed to fabricate microchannels and microchambers. The microchip consists of two sections: a histamine-releasing one, which has a cell chamber, and a histamine-derivatizing one. Both were laminated to one microchip. Rat peritoneal mast cells were retained in the cell chamber (1.2 microL) with a filtering system using a cellulose nitrate membrane. This filtering system could easily retain suspension cells without cell damage. Mast cells were viable for a sufficient time to conduct the assay on the cell chamber. The cells were stimulated with a chemical release compound 48/80 (C48/80), and then histamine flowed into the lower layer, where it was derivatized to the fluorescent molecules with o-phthalaldehyde and its fluorescence was detected on the microchip. This flow system could detect the time course of the histamine release, and this microchip system required only 20 min for the assay. By this integrated system, 51 pmol of histamine released from 500 cells was detected, and the number of cells required for the assay was reduced to 1% compared with conventional bulk systems. By comparing the released histamine levels with and without drugs, their effect could be evaluated. The inhibition ratio of C48/80 induced-histamine release using an antiallergic drug, disodium cromoglicate (DSCG), was related to the concentration of DSCG. This flow system was applicable for antiallergy drug screening by rapid measurement of the inhibition of histamine release from a very small amount of mast cells. PMID:15889923

  11. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras

    OpenAIRE

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G.

    2009-01-01

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...

  12. Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation.

    Science.gov (United States)

    Adams, Kristina M; Holmberg, Leona A; Leisenring, Wendy; Fefer, Alexander; Guthrie, Katherine A; Tylee, Tracy S; McDonald, George B; Bensinger, William I; Nelson, J Lee

    2004-09-15

    Syngeneic graft-versus-host disease (sGVHD) has been described after hematopoietic cell transplantation (HCT) but remains poorly defined. We retrospectively reviewed adult syngeneic HCTs at our center (1980-2002) for sGVHD to investigate incidence, morbidity, and risk factors with a primary focus on parity. Among 119 transplantations, there were 21 cases of biopsy-proven sGVHD. The cumulative incidence was 18%, with multiorgan involvement in 6 cases and 1 death. sGVHD was more frequent when the donor was parous (32%) than nulliparous (9%) or male (13%; P =.03) and when the recipient was parous (31%) than nulliparous (7%) or male (13%; P =.02). Other univariable risk factors included older age (P <.01), busulfan/melphalan/thiotepa conditioning (P <.01), interleukin-2 (P =.02), HLA-A26 (P =.03), and more recent transplantation year (P <.01). Overall, risk factors were similar to those described in GVHD. Although an independent effect of parity could not be completely separated from other factors, donor and recipient pregnancy history merits further investigation. PMID:15117763

  13. Effects of mercury (II) species on cell suspension cultures of catharanthus roseus

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. (Hangzhou Univ. (China)); Cullen, W.R. (Univ. of British Columbia, Vancouver, British Columbia (Canada))

    1994-11-01

    Mercury has received considerable attention because of its high toxicity. Widespread contamination with mercury poses severe environmental problems despite our extensive knowledge of its toxicity in living systems. It is generally accepted that the toxicity of mercury is related to its oxidation states and species, the organic forms being more toxic than the inorganic forms. In the aquatic environment, the toxicity of mercury depends on the aqueous speciation of the mercuric ion (Hg[sup 2+]). Because of the complex coordination chemistry of mercury in aqueous systems, the nature of the Hg[sup 2+] species present in aquatic environments is influenced greatly by water chemistry (e. g, pH, inorganic ion composition, and dissolved organics). Consequently, the influence of environmental factors on the aqueous speciation of mercury has been the focus of much attention. However, there is very little information available regarding the effects of the species and speciation on Hg (II) toxicity in plant-tissue cultures. Catharanthus roseus (C. roseus), commonly called the Madagascar Periwinkle, is a member of the alkaloid rich family Apocynaceae. The present investigation was concerned with the toxicity of mercury on the growth of C. roseus cell suspension cultures as influenced by mercury (II) species and speciation. The specific objectives of the study were to (a) study the effects of mercury species on the growth of C. roseus cultures from the point of view of environmental biology and toxicology; (b) evaluate the effects of selenate, selenite and selected ligands such as chloride, 1-cysteine in the media on the acute toxicity of mercuric oxide; (c) determine the impact of the initial pH of the culture media on the toxicities of mercuric compounds; (d) discuss the dependence of the toxicity on the chemical species and speciation of Hg (II). 11 refs., 7 figs., 2 tabs.

  14. Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures

    Directory of Open Access Journals (Sweden)

    Raemy David O

    2012-08-01

    Full Text Available Abstract Background Predominantly, studies of nanoparticle (NPs toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1 as well as the release of the (pro-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their

  15. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  16. Effect of Plant Growth Regulators on Callus, Cell Suspension and Cell Line Selection for Flavonoid Production from Pegaga (centella asiatica L. urban)

    OpenAIRE

    Suat H. Tan; Radzali Musa; Arbakariya Ariff; Mahmood Maziah

    2010-01-01

    Problem statement: Considering pegaga medicinal properties and over-exploitation, the requirement for a tissue culture technique as an alternative production system was crucial. Approach: Investigation of cell suspension culture response to different plant growth regulators (PRGs) for flavonoid production from elite cell line was carried out. Callus cultures were initiated from the leaf explants of Centella asiatica on Murashige and Skoog (MS) medium containing B5 vitamins and 30 g L−1 ...

  17. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  18. In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium).

    Science.gov (United States)

    Darvishi, E; Kahrizi, D; Bahraminejad, S; Mansouri, M

    2016-01-01

    Medicinal plants are known as important sources of secondary metabolites. Because of the economic value of pennyroyal [Mentha pulegium L. (Lamiaceae)] in food industries, propagation of this valuable plant has special importance. Plant cell suspension culture can increase some produced components. The aim of this research was performing cell culture for induction of some secondary metabolites of M. pulegium and compares it with native one. The MS medium was used for suspension culture. To investigate quantitative materials, 4 levels of yeast extract elicitor (20, 40, 60 and 80 mg/L) and salicylic acid in 4 levels (2, 4, 6 and 8 mg/L) were used. Obtained extracts were analyzed by GC-MS. Statistical analysis showed that the amount of limonene, menthone, menthol and α-pinene were more than mentioned compounds in natural plant as control. The maximum amount of this metabolites were obtained as limonene (in 60 mg/l yeast extract), menthone (in 40 mg/l yeast extract and 2 mg/l salicylic acid), menthol (in 6 mg/l salicylic acid) and α-pinene (in 4 mg/l salicylic acid) in the M. pulegium cell culture. The Pulegone was fond more in natural plants than cell culture mass. The most important secondary metabolites were increased by cell culture containing of salicylic acid and yeast extract elicitors in M. pulegume. PMID:27064866

  19. Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: Its application as flocculant for wastewater treatment.

    Science.gov (United States)

    Bharti, Srijita; Mishra, Sumit; Sen, Gautam

    2013-04-01

    Polyacrylamide grafted oatmeal (OAT-g-PAM) was synthesized by conventional method. The grafting of the PAM chains on the biomaterial backbone was confirmed through intrinsic viscosity study, FTIR spectroscopy, elemental analysis (C, H, N, S and O), SEM morphology and TGA study. The intrinsic viscosity of oatmeal appreciably improved on grafting of PAM chains, thus resulting grafted product with potential application as superior viscosifier. Further, flocculation efficacy of the graft copolymer was studied in coal fine suspension, kaolin suspension, iron-ore suspension and then in municipal wastewater through 'jar test' procedure. PMID:23499093

  20. Effective Viscosity of Microswimmer Suspensions

    Science.gov (United States)

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-01

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  1. Effects of exogenous growth regulators on cell suspension culture of yin-hong grape (vitis vinifera l.) and establishment of the optimum medium

    International Nuclear Information System (INIS)

    Callus induced by stem of Yin-hong grape (Vitis vinifera L.) was used as materials and B5 medium as basic medium. The major growth parameters of cell suspension cultures with various levels of 1-Naphthaleneacetic acid (NAA) and 6-Benzyl aminopurine (6-BA) were investigated to provide a basis for the optimum medium of suspension cell cultures of Yin-hong grape regarding cell number, packed cell volume (PCV), dry cell weight (DCW), cell viability, and morphology. All data were analysed by of two-way analysis of variance (ANOVA). Results showed that the treatment of 6-BA and NAA would effect the cell growth dynamics, probably causing logarithmic phase in advance at higher levels of 6-BA. Different concentration of 6-BA and NAA had significant effects on cells number, PCV, DCW and viability (p<0.05), while no-significant effect was observed on the cells morphology. The optimum medium for suspension cell cultures of Yin-hong grape was identified as B5+1.5 mg/L6-BA+1.5 mg/LNAA+ 250 mg/L casein hydrolysate + 30 g/L sucrose. With the optimum medium, the maximum number of suspension cells after the logarithmic growth phase was 34.78 * 108 / mL, the highest cell viability reached 86.45%.; DCW reached 3.84 g/L and PCV reached 0.092 mL/mL after eight days cultivating. (author)

  2. A resonant structure designed for probing the elastic properties of suspension and adherent cells in liquid environments

    International Nuclear Information System (INIS)

    This paper presents a novel force sensitive structure exploiting a dynamic mode for probing the elastic properties of living cells. A key feature of this structure is the possibility of conducting measurements in liquid environments while keeping high dynamic performances. The structure indeed provides a steady area that can be adapted so that suspension or adherent cells can be placed in a culture medium. The steady area is also connected to two adjacent beam resonators. Because these resonators never need to be immersed into the culture medium during measurements, forces applied to cells can be estimated with a high sensitivity via frequency shifts. In this paper, we conduct an extensive theoretical analysis to investigate the nonlinear effects of large static pre-deflections on the dynamic behavior of the structure. As a proof of concept, we also report the fabrication, characterization and calibration of the first prototype intended to deal with suspension cells with a diameter ranging from 100 to 500 μm. This prototype currently offers a quality factor of 700 and a force sensitivity of ∼2.6 Hz mN−1. We also demonstrate that the prototype is capable of measuring the elastic modulus of biological samples in a rapid and sufficiently accurate manner without the need of a descriptive model. (paper)

  3. Enhanced Production of Bioactive Isoprenoid Compounds from Cell Suspension Cultures of Artemisia annua L. Using β-Cyclodextrins

    Directory of Open Access Journals (Sweden)

    Francesca Rizzello

    2014-10-01

    Full Text Available Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold, Q9 (3-fold and Q10 (2.5-fold. Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules.

  4. Enhanced production of bioactive isoprenoid compounds from cell suspension cultures of Artemisia annua L. using β-cyclodextrins.

    Science.gov (United States)

    Rizzello, Francesca; De Paolis, Angelo; Durante, Miriana; Blando, Federica; Mita, Giovanni; Caretto, Sofia

    2014-01-01

    Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules. PMID:25338048

  5. Enhanced Production of Bioactive Isoprenoid Compounds from Cell Suspension Cultures of Artemisia annua L. Using β-Cyclodextrins

    Science.gov (United States)

    Rizzello, Francesca; De Paolis, Angelo; Durante, Miriana; Blando, Federica; Mita, Giovanni; Caretto, Sofia

    2014-01-01

    Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules. PMID:25338048

  6. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue.

    Science.gov (United States)

    Praet, Jelle; Santermans, Eva; Reekmans, Kristien; de Vocht, Nathalie; Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Hens, Niel; Van der Linden, Annemie; Ponsaerts, Peter

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue. Second, we describe flow cytometric procedures to determine cell viability, eGFP transgene expression, and the expression of different stem cell lineage markers. Third, we explain how to induce reproducible demyelination in the CNS of mice by means of cuprizone administration, a validated mouse model for human multiple sclerosis. Fourth, the technical procedures for cell grafting in the CNS are explained in detail. Finally, an optimized and validated workflow for the quantitative histological analysis of cell graft survival and endogenous astroglial and microglial responses is provided. PMID:25173390

  7. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture.

    Science.gov (United States)

    Broussau, Sophie; Jabbour, Nadine; Lachapelle, Guillaume; Durocher, Yves; Tom, Rosanne; Transfiguracion, Julia; Gilbert, Rénald; Massie, Bernard

    2008-03-01

    We have developed new packaging cell lines (293SF-PacLV) that can produce lentiviral vectors (LVs) in serum-free suspension cultures. A cell line derived from 293SF cells, expressing the repressor (CymR) of the cumate switch and the reverse transactivator (rtTA2(S)-M2) of the tetracycline (Tet) switch, was established first. We next generated clones stably expressing the Gag/Pol and Rev genes of human immunodeficiency virus-1, and the glycoprotein of vesicular stomatitis virus (VSV-G). Expression of Rev and VSV-G was tightly regulated by the cumate and Tet switches. Our best packaging cells produced up to 2.6 x 10(7) transducing units (TU)/ml after transfection with the transfer vector. Up to 3.4 x 10(7) TU/ml were obtained using stable producers generated by transducing the packaging cells with conditional-SIN-LV. The 293SF-PacLV was stable, as shown by the fact that some producers maintained high-level LV production for 18 weeks without selective pressure. The utility of the 293SF-PacLV for scaling up production in serum-free medium was demonstrated in suspension cultures and in a 3.5-L bioreactor. In shake flasks, the best packaging cells produced between 3.0 and 8.0 x 10(6) TU/ml/day for 3 days, and the best producer cells, between 1.0 and 3.4 x 10(7) TU/ml/day for 5 days. In the bioreactor, 2.8 liters containing 2.0 x 10(6) TU/ml was obtained after 3 days of batch culture following the transfection of packaging cells. In summary, the 293SF-PacLV possesses all the attributes necessary to become a valuable tool for scaling up LV production for preclinical and clinical applications. PMID:18180776

  8. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model.

    Science.gov (United States)

    Koobatian, Maxwell T; Row, Sindhu; Smith, Randall J; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D

    2016-01-01

    The large number of coronary artery bypass procedures necessitates development of off-the-shelf vascular grafts that do not require cell or tissue harvest from patients. However, immediate thrombus formation after implantation due to the absence of a healthy endothelium is very likely. Here we present the successful development of an acellular tissue engineered vessel (A-TEV) based on small intestinal submucosa that was functionalized sequentially with heparin and VEGF. A-TEVs were implanted into the carotid artery of an ovine model demonstrating high patency rates and significant host cell infiltration as early as one week post-implantation. At one month, a confluent and functional endothelium was present and the vascular wall showed significant infiltration of host smooth muscle cells exhibiting vascular contractility in response to vaso-agonists. After three months, the endothelium aligned in the direction of flow and the medial layer comprised of circumferentially aligned smooth muscle cells. A-TEVs demonstrated high elastin and collagen content as well as impressive mechanical properties and vascular contractility comparable to native arteries. This is the first demonstration of successful endothelialization, remodeling, and development of vascular function of a cell-free vascular graft that was implanted in the arterial circulation of a pre-clinical animal model. PMID:26561932

  9. Obtaining cherry and apple tree radiomutants by irradiation of grafts in gamma cell

    International Nuclear Information System (INIS)

    The aim of the study was to obtain dwarf mutants of cherry and apple trees. Two methods of irradiation were used: a) winter grafts were irradiated with 60Co (4-5 kR) and grafted in the crowns of adult trees or of two-year-old rootstocks; b) summer buds on mature annual shots were irradiated with 2-3 kR and grafted on two-year-old rootstocks. Thus the clones of dwarf cherry trees (cv. Napoleon's and Techlovicka) were obtained which were further tested for fruit-bearing in experimental plantations. Colour mutants of apple tree (cv. Champion) with yellow and red fruits were also obtained as well as dwarf types of trees. (author)

  10. Dynamics of Graft Function Measured by DNA-Technology in a Patient with Severe Aplastic Anemia and Repeated Stem Cell Transplantation

    OpenAIRE

    Anna Karastaneva; Christian Urban; Herwig Lackner; Wolfgang Schwinger

    2014-01-01

    Although bone marrow transplantation (BMT) from an HLA identical sibling is considered as treatment of choice in pediatric patients with severe aplastic anemia (SAA), a significant number of them experience graft failure (GF) after BMT. We report a case of an 8-year-old male patient with SAA who presented with a complicated posttransplant course due to parvovirus B19 infection and GF. A subsequent attempt to support the graft by antithymocyte globulin (ATG) and a peripheral stem cell boost re...

  11. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    Science.gov (United States)

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  12. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    International Nuclear Information System (INIS)

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O2•−/HO2•, HO•, and H2O2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1O2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of 1O2 upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  13. Effect of heavy metal treatments on metallothionein expression profiles in white poplar (Populus alba L. cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Anca MACOVEI

    2010-11-01

    Full Text Available Populus species and hybrids are intensively cultivated as sources of woody biomass and are good candidates for phytoremediation because of their rapid growth rate, extensive root system and ease of propagation and transformation. To date, the molecular mechanisms that regulate heavy metal tolerance have not been fully investigated. In the present work, white poplar (Populus alba L. cell suspension cultures were used as model system to investigate the response to heavy metal treatments. The VFMT2 cDNA, encoding a type 2 metallothionein from P. alba, was isolated by RT-PCR approach. The expression profiles of the VFMT2 gene were then investigated by Quantitative Real Time Polymerase Chain Reaction (QRT-PCR under oxidative stress conditions. The latter were induced by exposing the cell suspension cultures to different doses of cadmium (75 and 150 μM CdSO4, copper (50 and 100 μM CuCl2 and zinc (1 and 2 mM ZnSO4. Cell death was evidenced by Evans blue staining. The VFMT2 gene was up-regulated in response to heavy metal treatments and the highest mRNA level (up to 5-fold was observed 4 h following exposure to 100 μM CuCl2.

  14. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells

    Science.gov (United States)

    Ponalagusamy, R.

    2016-06-01

    The present article describes the blood flow in a catheterized artery with radially symmetric and axially asymmetric stenosis. To understand the effects of red cell concentration, plasma layer thickness and catheter size simultaneously, blood is considered by a two-layered model comprising a core region of suspension of all the erythrocytes (particles) supposed to be a particle-fluid mixture and a peripheral zone of cell-free plasma. The analytical expressions for flow features, such as fluid phase and particle phase velocities, flow rate, wall shear stress and resistive force are obtained. It is witnessed that the presence of the catheter causes a substantial increase in the frictional forces on the walls of arterial stenosis and catheter, shear stress and flow resistance, in addition to that, have occurred due to the presence of red cells concentration (volume fraction density of the particles) and the absence of peripheral plasma layer near the wall of the stenosed artery. The introduction of an axially asymmetric nature of stenosis and plasma layer thickness causes significant reduction in flow resistance. One can notice that the two-phase fluid (suspension model) is more profound to the thickness of peripheral plasma layer and catheter than the single-phase fluid.

  15. Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease.

    Science.gov (United States)

    Morelli, Adrian E; Larregina, Adriana T

    2016-05-01

    The main limitations to the success of transplantation are the antigraft response developed by the recipient immune system, and the adverse side effects of chronic immunosuppression. Graft-versus-host disease (GVHD) triggered by donor-derived T lymphocytes against the recipient tissues is another serious obstacle in the field of hematopoietic stem cell transplantation. Several laboratories have tested the possibility of promoting antigen (Ag)-specific tolerance for therapy of graft rejection, GVHD, and autoimmune disorders, by developing methodologies that mimic the mechanisms by which the immune system maintains peripheral tolerance in the steady state. It has been long recognized that the silent clearance of cells undergoing apoptosis exerts potent immune-regulatory effects and provides apoptotic cell-derived Ags to those Ag-presenting cells (APCs) that internalize them, in particular macrophages and dendritic cells. Therefore, in situ-targeting of recipient APCs by systemic administration of leukocytes in early apoptosis and bearing donor Ags represents a relatively simple approach to control the antidonor response against allografts. Here, we review the mechanisms by which apoptotic cells are silently cleared by phagocytes, and how such phenomenon leads to down-regulation of the innate and adaptive immunity. We discuss the evolution of apoptotic cell-based therapies from murine models of organ/tissue transplantation and GVHD, to clinical trials. We make emphasis on potential limitations and areas of concern of apoptotic cell-based therapies, and on how other immune-suppressive therapies used in the clinics or tested experimentally likely also function through the silent clearance of apoptotic cells by the immune system. Stem Cells 2016;34:1142-1150. PMID:26865545

  16. Electron beam induced grafting of N-isopropylacrylamide to a poly(ethylene-terephthalate) membrane for rapid cell sheet detachment

    International Nuclear Information System (INIS)

    Intact sheets of human prostate epithelium cells were successfully detached from a poly(N-isopropylacrylamide) (pNIPAM) membrane radiolytically grafted to poly(ethlylene-terephthalate (PET) culture dishes. The detachment process took less than 20 min without damaging the sheet structure. The grafting was performed using a high-energy electron beam to covalently bond NIPAM to the surface of PET culture dishes. This work demonstrates that the optimal conditions for uniform grafting can be achieved by adding argon-saturated solutions of NIPAM monomer onto pre-irradiated, surface-activated PET membranes. The solutions and the membranes were then irradiated under anaerobic conditions to a total absorbed dose of 25 kGy. This grafting method involves producing carbon-centered free radicals NIPAM· and PET· from both NIPAM and PET, respectively. An investigation of the kinetics of the early stages of polymerization of NIPAM was performed through electron beam pulse radiolysis with optical detection. The pulse radiolysis experiments of anaerobic NIPAM methanol solutions show that the esol·- reacts very rapidly with NIPAM producing NIPAM·- anions with a reaction rate constant of 1.4x109±10% L mol-1 s-1. The NIPAM·- anions then undergo a protonation reaction producing the initiation free radical (NIPAM·) with a reaction rate constant of 9x102 L mol-1 s-1. Along with pulse radiolysis, electron paramagnetic resonance (EPR) measurements show that the radiolytically produced carbon-centered free radicals of the PET, PET·, decay following an overall observed pseudo-first-order reaction with rate constants of k=2.0x10-4 and 7.0x10-4 s-1 produced in argon and in air, respectively. The overall observed decay reaction involve PET·+PET· cross-linking, PET·+O2, PET+HO2·, and PET+H-atoms, since these EPR measurements were conducted under aerobic conditions.

  17. Features of T cells causing H-2-restricted lethal graft-vs.-host disease across minor histocompatibility barriers

    International Nuclear Information System (INIS)

    Evidence is presented that T cells that produce lethal graft-vs.-host disease (GVHD) to minor histocompatibility antigens (minor HA) comprise discrete subgroups of H-2K- and H-2D-restricted T cells; double negative selection of T cells in irradiated H-2 recombinant mice was used to separate these two subgroups. No evidence could be found that I-restricted T cells contributed to GVHD, either as effector cells or helper cells. The (unprimed) precursor cells for GVHD expressed the Thy-1+, Lyt-1+/-2, Ia- phenotype. Studies in which H-2-semiallogeneic bone marrow chimeras were used as hosts for negative selection suggested that presentation of minor HA to T cells during the induction phase is controlled by marrow-derived cells; indirect evidence was obtained that these latter cells can ''process'' minor HA presented on H-2 different cells and thereby render the antigens immunogenic. Studies in which minor HA-different, H-2-compatible chimeras were re-irradiated and then injected with donor-vs.-host T cells suggested that the effector phase of lethal GVHD involves contact of antigen on non-marrow-derived cells

  18. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  19. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    International Nuclear Information System (INIS)

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  20. IFN-γ promotes graft-versus-leukemia effects without directly interacting with leukemia cells in mice after allogeneic hematopoietic cell transplantation

    OpenAIRE

    Yang, Yanping; Wang, Hui; Yu, Hui; Yeap, Beow Yong; Liang, Tingting; Wang, Guanjun; Cheng, Tao; Yang, Yong-Guang

    2011-01-01

    The ability of IFN-γ to enhance graft-versus-leukemia (GVL) activity without direct interaction with leukemia cells was examined by comparing GVL effects against IFN-γ receptor-deficient (GRKO) leukemia between wild-type (WT) and IFN-γ–deficient (GKO) allogeneic hematopoietic cell transplantation (allo-HCT). We established a primary IFN-γ–unresponsive T-cell leukemia model using virally-transduced GRKO B6 mouse bone marrow cells overexpressing Notch1. We first assessed GVL effects in lethally...

  1. Chimerism analysis in clinical practice and its relevance for the detection of graft rejection and malignant relapse in pediatric hematopoietic stem cell transplant patients.

    Science.gov (United States)

    Mellgren, Karin; Arvidson, Johan; Toporski, Jacek; Winiarski, Jacek

    2015-11-01

    Chimerism and clinical outcome data from 244 hematopoietic stem cell transplants in 218 children were retrospectively analyzed to assess their relevance for the detection of graft rejection and malignant relapse. Patients transplanted for a non-malignant disease had significantly higher proportions of residual recipient T cells in peripheral blood at one, three, and six months compared with patients transplanted for malignant disease. Recipient T-cell levels were below 50% at one month after transplantation in most patients (129 of 152 transplants). Graft rejection occurred more frequently in the group of patients with high levels of recipient cells at one month (10 graft rejections in the 23 patients with recipient T cells >50% at one month as compared to seven graft rejections occurred in 129 patients with recipient T cells <50% (p < 0.001). Multilineage chimerism data in 87 children with leukemia at one, three, and six months after transplantation were not correlated with subsequent relapse of malignant disease. In conclusion, early analysis of lineage-specific chimerism in peripheral blood can be used to identify patients who are at high risk of graft rejection. However, the efficacy of early chimerism analysis for predicting leukemia relapse was limited. PMID:26290161

  2. Possible implication of bacterial infection in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Shigeo eFuji

    2014-04-01

    Full Text Available Graft-versus-host disease (GVHD is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT. In the pathogenesis of acute GVHD, it has been established that donor-derived T cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT.

  3. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    Science.gov (United States)

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587

  4. Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures

    OpenAIRE

    Vandewoestyne, Mado; Van Hoofstat, David; Van Nieuwerburgh, Filip; Deforce, Dieter

    2009-01-01

    Laser microdissection is a valuable tool for isolating specific cells from mixtures, such as male cells in a mixture with female cells, e.g., in cases of sexual assault. These cells can be stained with Y-chromosome-specific probes. We developed an automatic screening method to detect male cells after fluorescence in situ hybridization in suspension (S-FISH). To simulate forensic casework, the method was tested on female saliva after cataglottis (a kiss involving tongue-to-tongue contact) and ...

  5. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    International Nuclear Information System (INIS)

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1+-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1+-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1+-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in

  6. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and

  7. Skin Graft

    OpenAIRE

    Ruka Shimizu; Kazuo Kishi

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  8. Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation.

    Science.gov (United States)

    Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Choi, Eun Young; Min, Chang-Ki

    2015-11-01

    Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2(b)) → B6D2F1 (H-2(b/d)), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2(d)) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT. PMID:26552489

  9. 5. Accelerated Fracture Healing Targeting Periosteal Cells: Possibility of Combined Therapy of Low-Intensity Pulsed Ultrasound (LIPUS), Bone Graft, and Growth Factor (bFGF).

    Science.gov (United States)

    Uchida, Kentaro; Urabe, Ken; Naruse, Koji; Mikuni-Takagaki, Yuko; Inoue, Gen; Takaso, Masashi

    2016-08-01

    We have studied the mechanism of fracture healing, and the effect of LIPUS, bone graft and growth factor on accelerating fracture healing. We present here the results of our research. To examine callus formation cells in fracture healing, we made marrow GFP chimera mice and a fracture model of marrow mesenchymal stem cell GFP chimera mice. It was demonstrated that periosteal cells were essential for callus formation. We focused on periosteal cells and examined the effect of LIPUS. In an in vitro experiment using a cultured part of the femur, LIPUS promoted ossification of the periosteal tissue. Further, LIPUS accelerated VEGF expression in the experiment using the femoral fracture model of mice. From these results, it was suggested that activation of periosteal cells might play a role in the fracture healing mechanism of LIPUS. Next, we discussed the possibility of combined therapy of LIPUS, bone graft and growth factor. Therapy involving the topical administration of bFGF using a controlled release system and bone graft could promote callus formation. In addition, LIPUS was able to promote membranaceous ossification after the bone graft. It was suggested that combined therapy of LIPUS, bone graft and bFGF could be a new option for treating fractures. PMID:27441766

  10. Dynamics of Graft Function Measured by DNA-Technology in a Patient with Severe Aplastic Anemia and Repeated Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Anna Karastaneva

    2014-01-01

    Full Text Available Although bone marrow transplantation (BMT from an HLA identical sibling is considered as treatment of choice in pediatric patients with severe aplastic anemia (SAA, a significant number of them experience graft failure (GF after BMT. We report a case of an 8-year-old male patient with SAA who presented with a complicated posttransplant course due to parvovirus B19 infection and GF. A subsequent attempt to support the graft by antithymocyte globulin (ATG and a peripheral stem cell boost resulted in transitory autologous recovery of hematopoiesis followed by mixed chimerism, supported by donor lymphocyte infusions (DLIs and finally graft rejection with relapse of SAA. Permanent complete chimerism was achieved by a second BMT. Dynamics of graft function, measured by a single nucleotide polymorphism (SNPs analysis, are discussed.

  11. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity.

    OpenAIRE

    Lapidot, T; Lubin, I; Terenzi, A; Faktorowich, Y; Erlich, P; Reisner, Y

    1990-01-01

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraft...

  12. Cell suspension method to improve green spot in in-vitro culture of jarak pagar (Jatropha curcas L ) mutant lines

    International Nuclear Information System (INIS)

    Jatropha curcas has a high potential as an alternative energy source, since it can produce natural oil which could be processed into fuel replacing fossil energy. Increasing demand of biodiesel has resulted in increasing demand for high quality of Jatropha germplasm. Cell suspension method is expected to assure the production of a homogeneous germplasm of Jatropha. A laboratory experiment was conducted to evaluate the effectiveness cell suspension method in of Jatropha curcas cotyledon. The explant used in this experiment was Jatropha curcas seed mutant line (JH-38) which has superiority in plant height, early maturity and unseasonable fruiting. Two kinds of in-vitro medium were used for callus induction, i.e. medium A (MS + 2,4-D 2.0 mg/l + BAP 0.5 mg/l + malt extract 0.1 g + agar 8.0 g/l) and medium B (MS + 2,4-D 3.0 mg/l + BAP 0,5 mg/l + malt extract 0,1 g + agar 8.0 g/l). The same medium composition without agar was used for cell generating, and medium ECS (MS + glutamine 0.5 g + casein hydrolysate 0.5 g + IAA 0.5 mg/l + BAP 3.0 mg/l + agar 8.0 g/l for cell growth. Results of the experiment showed that the optimum growth of calli was obtained by explant JH-38/3 in medium A. The growth level of embryonic cell ranged from 0 to 130 %. The optimum percentage green spot is shown by JH-38/1 explant in medium A. (author)

  13. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    Science.gov (United States)

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor

  14. Influence of Suspension Parameters on Water Absorbency of Starch-g-poly(sodium acrylate) Synthesized by Inverse Suspension Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI Ming-da; ZHOU Young-yuan

    2002-01-01

    Superabsorbents starch grafted sodium polyacrylate was prepared by inverse suspension polymerization, using toluene as the continuous phase, potassiun persulfate as the initiator. The effect of suspension parameters, such as volume ratio of continuous phase and dispersed phase,type and dosage of suspending agents, on water absorbency of the starch grafted polymer was studied.Different starch derivatives were also investigated.Superabsorbents made of cationic starch has higher water absorbency than that made of native corn starch.

  15. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction.

    Science.gov (United States)

    Pietrowska, E; Różalska, S; Kaźmierczak, A; Nawrocka, J; Małolepsza, U

    2015-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper. PMID:25064634

  16. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  17. Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise.

    Science.gov (United States)

    Döbrössy, Máté D; Dunnett, Stephen B

    2006-12-01

    Environmental enrichment (EE) and exercise have been implicated in influencing behaviour and altering neuronal processes associated with cellular morphology in both 'normal' and injured states of the CNS. Using a rodent model of Huntington's disease, we investigated whether prolonged EE or involuntary exercise can induce morphological and cellular changes within embryonic striatal transplants. Adult rats were trained on the Staircase test--requiring fine motor control to reach and collect reward pellets--prior to being lesioned unilaterally in the dorsal neostriatum with quinolinic acid. The lesioned animals received E15 whole ganglionic eminence cell suspension grafts followed by housing in EE or standard cages. Half of the animals in standard cages received daily forced exercise on a treadmill. The grafted animals showed significant functional recovery on both the Staircase test and in drug-induced rotation. Neither the housing conditions nor the training had an impact on the behaviour, with the exception of the treadmill reducing the ipsilateral drug-induced rotation observed amongst the lesioned animals. However, the animals housed in the EE had significantly increased striatal brain-derived neurotrophic factor (BDNF) levels, and graft neurons in these animals exhibited both greater spine densities and larger cell volumes. Animals on forced exercise regime had reduced BDNF levels and grafted cells with sparser spines. The study suggests that the context of the animal can affect the plasticity of transplanted cells. Appropriately exploiting the underlying, and yet unknown, mechanisms could lead the way to improved anatomical and potentially functional integration of the graft. PMID:17156383

  18. Induction of Apoptosis in Purified Nuclei from Tobacco-Suspension Cells by Cytochrome b6/f Complex

    Institute of Scientific and Technical Information of China (English)

    张贵友; 李萍; 朱瑞宇; 田瑞华; 戴尧仁

    2004-01-01

    An apoptotic cell-free system containing cytosol and nuclei from normally cultured tobacco suspension cells was used to show that a spinach chloroplast preparation can induce apoptosis in nuclei,evidenced by DNA electrophoresis and fluorescence microscopy observations.Further study showed that the chloroplast preparation or its pellet (thylakoid membrane) after hypoosmotic or supersonic treatment still exhibited the apoptosis-inducing activity,but the supernatant had no effect,which indicates that the apoptosis-inducing effector in the chloroplast preparation is water-insoluble.The induction of apoptosis by chloroplast preparation could be attenuated by Ac-DEVD-CHO,the specific inhibitor of Caspase-3,implying involvement of a Caspase-3-like protease during the process.Furthermore,extensive apoptosis in nuclei was induced by cytochrome b6/f on the thylakoid membrane,indicating that this important cytochrome complex may have an important role in the chloroplast-related apoptotic pathway.

  19. A two-stage process with temperature-shift for enhanced anthocyanin production in strawberry cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    张卫; Shintaro; Furusaki; Chris; Franco

    1999-01-01

    A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30℃ (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthoeyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was deereased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influeneed by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg(?)g-fresh cell-1 was obtained on day 9 by a temperature-

  20. Bortezomib for the prevention and treatment of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Al-Homsi, Ahmad Samer; Feng, Yuxin; Duffner, Ulrich; Al Malki, Monzr M; Goodyke, Austin; Cole, Kelli; Muilenburg, Marlee; Abdel-Mageed, Aly

    2016-09-01

    Allogeneic hematopoietic stem cell transplantation is the standard treatment for a variety of benign and malignant conditions. However, graft-versus-host disease (GvHD) continues to present a major barrier to the success and wide applicability of this procedure. Although current GvHD prevention and treatment regimens exclusively target T cells, bortezomib, a reversible proteasome inhibitor, possesses unique immune regulatory activities that span a wide variety of cellular processes of T and dendritic cells essential for the development of GvHD. Herein, we review the current understanding of the effects of bortezomib in vitro and in animal models and summarize the clinical data relevant to its use in the prevention and treatment of GvHD. We conclude with an outline of the remaining challenges and opportunities to optimize bortezomib's potential role in this setting. PMID:27224851

  1. Endothelial-cell injury in cutaneous acute graft-versus-host disease.

    OpenAIRE

    Dumler, J S; Beschorner, W. E.; Farmer, E R; Di Gennaro, K. A.; Saral, R; Santos, G. W.

    1989-01-01

    The presence of an erythematous skin rash and hemorrhagic complications in acute graft-versus-host disease (GVHD) suggest that the vasculature may be involved in the immunopathologic process. We reviewed endothelial and vascular histopathologic changes on light microscopy and on immunoperoxidase stained sections of skin biopsies obtained from 41 HLA-identical allogeneic marrow transplant recipients with at least grade 2 GVHD. Biopsies taken from 14 allogeneic HLA-identical bone marrow transpl...

  2. Heparanase Promotes Engraftment and Prevents Graft versus Host Disease in Stem Cell Transplantation

    OpenAIRE

    Menachem Bitan; Lola Weiss; Michael Zeira; Eyal Zcharia; Shimon Slavin; Arnon Nagler; Israel Vlodavsky

    2010-01-01

    BACKGROUND: Heparanase, endoglycosidase that cleaves heparan sulfate side chains of heparan sulfate proteoglycans, plays important roles in cancer metastasis, angiogenesis and inflammation. DESIGN AND METHODS: Applying a mouse model of bone marrow transplantation and transgenic mice over-expressing heparanase, we evaluated the effect of heparanase on the engraftment process and the development of graft-versus-host disease. RESULTS: Analysis of F1 mice undergoing allogeneic bone marrow transpl...

  3. Islets of Langerhans Are Protected from Inflammatory Cell Recruitment during Reperfusion of Rat Pancreas Grafts

    OpenAIRE

    Preissler, G.; Massberg, S; Eichhorn, M. E.; Waldner, H; Löhe, F; Winter, H; Messmer, K.

    2010-01-01

    Background: Ischemia/reperfusion (I/R) injury plays a pivotal role in the development of graft pancreatitis, with ischemia time representing one of its crucial factors. However, it is unclear, whether exocrine and endocrine tissue experience similar inflammatory responses during pancreas transplantation (PTx). This study evaluated inflammatory susceptibilities of islets of Langerhans (ILH) and exocrine tissue after different preservation periods during early reperfusion. Methods: PTx was perf...

  4. β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures.

    Science.gov (United States)

    Durante, Miriana; Caretto, Sofia; Quarta, Angela; De Paolis, Angelo; Nisi, Rossella; Mita, Giovanni

    2011-06-01

    Artemisinin is a sesquiterpene antimalarial compound produced, though at low levels (0.1-1% dry weight), in Artemisia annua in which it accumulates in the glandular trichomes of the plant. Due to its antimalarial properties and short supply, efforts are being made to improve our understanding of artemisinin biosynthesis and its production. Native β-cyclodextrins, as well as the chemically modified heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) and 2-hydroxypropyl-β-cyclodextrins, were added to the culture medium of A. annua suspension cultures, and their effects on artemisinin production were analysed. The effects of a joint cyclodextrin and methyl jasmonate treatment were also investigated. Fifty millimolar DIMEB, as well as a combination of 50 mM DIMEB and 100 μM methyl jasmonate, was highly effective in increasing the artemisinin levels in the culture medium. The observed artemisinin level (27 μmol g(-1) dry weight) was about 300-fold higher than that observed in untreated suspensions. The influence of β-cyclodextrins and methyl jasmonate on the expression of artemisinin biosynthetic genes was also investigated. PMID:21468706

  5. Supplementation of fat grafts with adipose-derived regenerative cells in reconstructive surgery [Stammzellangereicherte Fetttransplantation in der rekonstruktiven Chirurgie

    Directory of Open Access Journals (Sweden)

    Herold, C.

    2012-09-01

    Full Text Available [english] Introduction: The fraction of regenerative cells in adipose tissue has been described to be even higher than in bone marrow. Adipose tissue itself is excessively available in most patients. Given that adipose tissue is abundant in majority of patients adipose derrived stem cells (ASCs have come under scrutiny for regenerative procedures in reconstructive surgery.Material and methods: ASCs were extracted by the Celution system for enrichment of fat grafts that were administered in patients with decreased wound healing, soft tissue or scar defects.Results: All patients were satisfied after reconstruction with ASCs augmented fat grafts and no side effects were observed. Discussion: The Celution system provides fast recovery of ASCs which can be immediately utilized for appropriate application. Since a high number of stem cells are harvested from fat tissue no expansion of cells is needed as described for bone marrow derived stem cells. Enrichment of fat graft with ASCs is of great interest due to their reported angiogenetic effect. The reported cases demonstrate the potential of ASCs in the field of regenerative medicine and encourage further application in reconstructive surgery.[german] Einleitung: Es konnte gezeigt werden, dass der Anteil regenerativer Zellen im Fettgewebe höher als im Knochenmark ist. Fettgewebe hingegen ist bei den meisten Patienten exzessiv vorhanden. Das legt den Einsatz von ASCs (adipose derived stem cells bei regenerativen Anwendungen in der rekonstruktiven Chirurgie nahe.Material und Methoden: Mit dem Celution System von Cytori Therapeutics Inc. prozessierte, ASC angereicherte Fetttransplantate werden an vier Patienten mit Weichteildefiziten und störenden Narben sowie Wundheilungsstörungen angewendet.Ergebnisse: Insbesondere bei Patienten mit Weichteildefiziten und Narben konnte eine suffiziente Volumenaugmentation und ansprechende Verbesserung der Narben erzielt werden. Es wurden keine Nebenwirkungen

  6. The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture

    Directory of Open Access Journals (Sweden)

    Maycock Christopher

    2010-10-01

    Full Text Available Abstract Background Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.

  7. Acrylonitrile grafted to PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin; Eitouni, Hany Basam

    2015-03-31

    PVDF-g-PAN has been synthesized by grafting polyacrylonitrile onto polyvinylidene fluoride using an ATRP/AGET method. The novel polymer is ionically conducive and has much more flexibility than PVDF alone, making it especially useful either as a binder in battery cell electrodes or as a polymer electrolyte in a battery cell.

  8. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Science.gov (United States)

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  9. Following-up changes in red blood cell deformability and membrane stability in the presence of PTFE graft implanted into the femoral artery in a canine model

    Science.gov (United States)

    Toth, Csaba; Kiss, Ferenc; Klarik, Zoltan; Gergely, Eszter; Toth, Eniko; Peto, Katalin; Vanyolos, Erzsebet; Miko, Iren; Nemeth, Norbert

    2014-05-01

    It is known that a moderate mechanical stress can even improve the red blood cells' (RBC) micro-rheological characteristics, however, a more significant stress causes deterioration in the deformability. In this study, we aimed to investigate the effect of the presence of artificial graft on the RBC deformability and membrane stability in beagles. In the Control group only anesthesia was induced and in the postoperative (p.o.) period blood samplings were carried out. In the Grafted group under general anesthesia, the left femoral artery was isolated, from which a 3.5 cm segment was resected and a PTFE graft (O.D.: 3 mm) of equal in length was implanted into the gap. On the 1st, 3rd, 5th, 7th and 14th p.o. days blood was collected the cephalic veins and RBC deformability was determined ektacytometry (LoRRca MaxSis Osmoscan). Membrane stability test consisted of two deformability measurements before and after the cells were being exposed to mechanical stress (60 or 100 Pa for 300 seconds). Compared to the Control group and the baseline values the red blood cell deformability showed significant deterioration on the 3rd, 5th and mainly on the 7th postoperative day after the graft implantation. The membrane stability of erythrocyte revealed marked inter-group difference on the 3rd, 5th and 7th day: in the Grafted group the deformability decreased and during the membrane stability test smaller difference was observed between the states before and after shearing. We concluded that the presence of a PTFE graft in the femoral artery may cause changes in RBC deformability in the first p.o. week. RBC membrane stability investigation shows a lower elongation index profile for the grafted group and a narrowed alteration in the deformability curves due to mechanical stress.

  10. Experiment on graft of bone marrow-derived neural stem cells in peripheral nerve%骨髓源性神经干细胞周围神经移植的实验

    Institute of Scientific and Technical Information of China (English)

    李贵涛; 徐如祥; 姜晓丹; 杨志军; 代广辉; 陈镇洲; 黄涛

    2005-01-01

    on neural stem cells (NSCs) is almost focused on neuronal cells, for which, the study on repair of peripheral nerve may be based on some experiences in NSCs.OBJECTIVE: To observe the repair of peripheral nerve after graft of autologus bone marrow derived NSCs in the injured area. To observe whether the grafted NSCs were survived and migrated in spinal cord as differentiated neurons in the injured area of peripheral nerve or not.DESIGN: Observed controlled experiment was designed.SETTING: Institute of Neurological Medicine of Zhujiang Hospital affiliated to Southern Medical UniversityMATERIALS: Eight New Zealand big white rabbits were employed, of clean grade, mass weighted varied from 1.5 to 2.5 kg and of either sex.METHODS: The experiment was performed in Institute of Neurological Medicine of Zhujiang Hospital affiliated to Southern Medical University collected from New Zealand big white rabbits for culture and differentiation was prepared. Sciatic neural injured area of one side was randomized as graft side. Physiological saline, collagen matrix and cellular embedding solution were infused up to 0.01 mL (containing stem cells 1×1010L-1). Another side was taken as the control, in which, collagen matrix suspension 0.01 mL was infused. Peffusion and fixation were followed 3 months after graft and auto-graft was performed in the injured peripheral nerve. The materials were collected for observation from graft area, spinal cord area, injured area on the opposite side and normal neural area.MAIN OUTCOME MEASURES: Morphology of nerve fibers and neuronal cells in NSC graft area, spinal cord area and non-graft area on opposite injury side.RESULTS: The density and continuity of nerve fibers grown in graft area were higher remarkably than non-graft area on opposite side and more Schwann cells were seen under optic microscope. With amplified ×400 visual field, Ranvier's node of spinal nerve fiber was visible. In addition,mucous matrix and few fibroblasts were seen also in

  11. Toxicity to the normal hemocytes by ALA-PDT for the ex vivo purging of hematopoietic stem cell grafts

    Institute of Scientific and Technical Information of China (English)

    Zhang Baoqin; Zhang Zhenxi; Miao Lixia; Tan Lu; Xiao Mi; Xu Xia

    2008-01-01

    Objective To study the toxic effects of 5-amionlevulinic acid-based photodynamic therapy (ALA-PDT) on human peripheral blood mononuclear cells (PBMCs), cord blood mononuclear cells (CBMCs) and peripheral blood stem cells (PBSCs), and furthermore, to understand the possible causes of this response. Methods We used MTT assay to detect the survival rate of PBMCs, CBMCs and PBSCs after treated by ALA-PDT under the optimum experiment conditions with U937 as control;Annexin V-FITC/PI was used to detect the pattern of cell death induced by ALA-PDT. By using flow cytometry, we detected intracellular PpIX fluorescence intensity. Results After ALA-PDT treatment the survival rate of PBMCs had no significant change;however in PBSCs and CBMCs, the survival rate reduced to 70%, and the survival rate of leukemia cell U937 was the lowest, about 30%. After incubation with ALA,except for PBMCs, intraceUuiar PplX fluorescence intensity of the other two kinds of normal haemocytes and U937 increased obviously. These results combined with the flow cytometry suggested that the main pattern of cell death here was apoptosts. Conclusion Under the optimum experiment conditions, ALA-PDT has a slight effect on normal haemocytes but excellent depletions of leukemia cells. Therefore, it can effectively purify autologons bone marrow or stem cell grafts.

  12. "Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension".

    Science.gov (United States)

    Kümmritz, Sibylle; Louis, Marilena; Haas, Christiane; Oehmichen, Franz; Gantz, Stephanie; Delenk, Hubertus; Steudler, Susanne; Bley, Thomas; Steingroewer, Juliane

    2016-08-01

    Oleanolic (OA) and ursolic acid (UA) are plant secondary metabolites with diverse pharmacological properties. To reach reasonable productivities with plant cell suspension cultures, elicitation is a widely used strategy. Within the presented work, the effects of different elicitors on growth and production of OA and UA in a Salvia fruticosa cell suspension culture were examined. Beside commonly used elicitors like jasmonic acid (JA) and yeast extract, the influence of medium filtrates of the endophytic fungi Aspergillus niger and Trichoderma virens was investigated. The best eliciting effects were achieved with JA and fungal medium filtrates. Both increased the triterpene content by approximately 70 %. Since JA showed significant growth inhibition, the volumetric triterpene yield did not increase. But, adding fungal filtrates increased the volumetric triterpene yield by approximately 70 % to 32.6 mgOA l(-1) and 65.9 mgUA l(-1) for T. virens compared to the control with 19.4 mgOA l(-1) and 33.3 mgUA l(-1). An elicitation strategy combining fungal medium filtrate of T. virens with sucrose feeding significantly enhanced cell dry weight concentration to 22.2 g l(-1) as well as triterpene content by approximately 140 %. In total, this led to an approximately 500 % increase of volumetric triterpene yield referring to the control with final values of 112.9 mgOA l(-1) and 210.4 mgUA l(-1). Despite the doubled cultivation duration, productivities of 6.7 mgOA l(-1) day(-1) and 12.4 mgUA l(-1) day(-1) were reached. These results demonstrate methods by which increased productivities of triterpenes can be achieved to attain yields competing with intact plants. PMID:26971493

  13. Optimization of the basal medium for improving production and secretion of taxanes from suspension cell culture of Taxus baccata L

    Directory of Open Access Journals (Sweden)

    Abolghasem Abbasi Kajani

    2012-10-01

    Full Text Available Background and purpose of the study Taxol is one of the most effective anticancer drugs that isolated from Taxus sp. due to the slow growth of Taxus trees and low concentration of Taxol in the tissues, the biotechnological approaches especially plant cell culture have been considered to produce Taxol in commercial scale.MethodsWe investigated the effects of basal medium type used in culture media on production of Taxol and other taxane compounds from cell suspension culture of T. baccata L. Briefly, five commonly basal media including Gamborg, Murashige and Skoog, Woody Plant, Schenk and Hildebrandt, and Driver and Kuniyuki medium were used for preparing separate suspension culture media. The intra- and extra-cellular yields of taxanes were analyzed by using HPLC after 21 days period of culturing.ResultsThe yields of taxanes were significantly different for the cultures prepared by different basal media. Moreover, the effects of basal medium on the yield of products differed for varius taxane compounds. Maximum yields of Baccatin III (10.03 mgl-1 and 10-deacetyl baccatin III (4.2 mgl-1 were achieved from the DKW basal media, but the yield of Taxol was maximum (16.58 mgl-1 in the WPM basal media. Furthermore, the secretion of taxanes from the cells into medium was also considerably affected by the type of basal medium. The maximum extra-cellular yield of Taxol (7.81 mgl-1, Baccatin III (5.0 mgl-1, and 10-deacetyl baccatin III (1.45 mgl-1 were also obtained by using DKW basal medium that were significantly higher than those obtained from other culture media.

  14. Optimization of the basal medium for improving production and secretion of taxanes from suspension cell culture of Taxus baccata L

    Directory of Open Access Journals (Sweden)

    Kajani Abolghasem

    2012-10-01

    Full Text Available Abstract Background and purpose of the study Taxol is one of the most effective anticancer drugs that isolated from Taxus sp. due to the slow growth of Taxus trees and low concentration of Taxol in the tissues, the biotechnological approaches especially plant cell culture have been considered to produce Taxol in commercial scale. Methods We investigated the effects of basal medium type used in culture media on production of Taxol and other taxane compounds from cell suspension culture of T. baccata L. Briefly, five commonly basal media including Gamborg, Murashige and Skoog, Woody Plant, Schenk and Hildebrandt, and Driver and Kuniyuki medium were used for preparing separate suspension culture media. The intra- and extra-cellular yields of taxanes were analyzed by using HPLC after 21 days period of culturing. Results The yields of taxanes were significantly different for the cultures prepared by different basal media. Moreover, the effects of basal medium on the yield of products differed for varius taxane compounds. Maximum yields of Baccatin III (10.03 mgl-1 and 10-deacetyl baccatin III (4.2 mgl-1 were achieved from the DKW basal media, but the yield of Taxol was maximum (16.58 mgl-1 in the WPM basal media. Furthermore, the secretion of taxanes from the cells into medium was also considerably affected by the type of basal medium. The maximum extra-cellular yield of Taxol (7.81 mgl-1, Baccatin III (5.0 mgl-1, and 10-deacetyl baccatin III (1.45 mgl-1 were also obtained by using DKW basal medium that were significantly higher than those obtained from other culture media.

  15. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    Energy Technology Data Exchange (ETDEWEB)

    David Gara, Pedro M. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Garabano, Natalia I. [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina); Llansola Portoles, Manuel J. [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche (Argentina); Dodat, Diego; Casas, Oscar R. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Gonzalez, Monica C., E-mail: gonzalez@inifta.unlp.edu.ar [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Kotler, Monica L., E-mail: kotler@qb.fcen.uba.ar [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina)

    2012-03-15

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O{sub 2}{sup Bullet -}/HO{sub 2}{sup Bullet}, HO{sup Bullet}, and H{sub 2}O{sub 2} generated upon 4-MeV X-ray irradiation of 6.4 {mu}M silicon nanoparticle aqueous suspensions were on the order of 10 {mu}M per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic {sup 1}O{sub 2} was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO{sub 2} and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing {sup 1}O{sub 2} upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  16. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    Science.gov (United States)

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy. PMID:21556691

  17. Comparison of the Production of Recombinant Protein in Suspension Culture of CHO Cells in Spinner Flask and Shake Flask System

    Directory of Open Access Journals (Sweden)

    S.N.Z Zainul Abidin

    2011-12-01

    Full Text Available Chinese hamster ovary (CHO cells have been most widely used as the production host for the commercial production of biopharmaceuticals product. They have been extensively studied and developed, and today provide a stable platform for producing monoclonal antibodies and recombinant proteins. This study was focusing on comparison of suspension culture system by using spinner flask and shake flask for the growth and production of recombinant protein in CHO cell line. The CHO cells were transfected with an expression of DNA plasmid containing lac Z gene which codes for β-galactosidase. The recombinant genes in these CHO cells and the β-galactosidase expressing cells were adapted to suspension culture. The agitation speed for both spinner and shake flask were adjusted accordingly. The experiments were carried out in duplicate and samples were taken for cell count, determination of glucose consumption, lactate production and protein level by using biochemical assay. The result showed that, the cell growth in spinner flask is more favorable then in shake flask. The cell concentration in spinner flask is 58% higher than in shake flask. On the other hand, specific activity of β-galactosidase is 25% higher in spinner flask compared to shake flask, at the same agitation speed.ABSTRAK: Sel ovari hamster China (Chinese hamster ovary (CHO digunakan secara meluas dalam hos pembiakan untuk tujuan komersil produk biofarmaseutikal. Ia telah dikaji dan dibangunkan secara ekstensif, dan kini ia menyediakan landasan yang stabil untuk penghasilan antibodi monoklon dan protein rekombinan. Kajian ini memfokuskan tentang penghasilan protein rekombinan menggunakan kultur ampaian sel CHO di dalam kelalang putar dan kelalang goncang. Sel CHO dimasukkan dengan plasmid DNA yang mengandungi gen lac Z yang juga memberikan kod untuk β-galaktosidase. Sel CHO β-galaktosidase-terungkap dimasukkan ke dalam kultur ampaian. Kelajuan agitasi untuk kedua-dua kelalang putar

  18. B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality.

    Science.gov (United States)

    Veenstra, Rachelle G; Flynn, Ryan; Kreymborg, Katharina; McDonald-Hyman, Cameron; Saha, Asim; Taylor, Patricia A; Osborn, Mark J; Panoskaltsis-Mortari, Angela; Schmitt-Graeff, Annette; Lieberknect, Elisabeth; Murphy, William J; Serody, Jonathan S; Munn, David H; Freeman, Gordon J; Allison, James P; Mak, Tak W; van den Brink, Marcel; Zeiser, Robert; Blazar, Bruce R

    2015-05-21

    Members of the B7 family have been shown to be important for regulating immune responses by providing either positive or negative costimulatory signals. The function of B7-H3 has been controversial. We show that B7-H3 is upregulated in graft-versus-host disease (GVHD) target organs, including the colon, liver, and lung. Infusion of allogeneic donor T cells into B7-H3(-/-) vs wild-type (WT) recipients resulted in increased GVHD lethality associated with increased T-cell proliferation, colonic inflammatory cytokines, and destruction of epithelial barriers. Allogeneic B7-H3(-/-) vs WT donor T cells also had increased T-cell proliferation and GVHD lethality associated with increased proliferation and cytokine secretion in the spleen, intraepithelial lymphocyte inflammatory cytokines, and intestinal permeability. Both resting and activated regulatory T cells (Tregs) lack B7-H3 messenger RNA. Consistent with these data, GVHD was augmented in recipients of B7-H3(-/-) Treg-depleted grafts. In two delayed lymphocyte infusion (DLI) models, T cells lacking B7-H3 are capable of providing graft-versus-leukemia (GVL) effects. We conclude that B7-H3 is responsible for providing a negative costimulatory signal. Our studies provide support for developing and testing new therapies directed toward the B7-H3 pathway, including approaches to augment host B7-H3 early after bone marrow transplantation to prevent GVHD and to develop potent antagonistic antibodies later after transplant to facilitate DLI-mediated GVL without GVHD complications. PMID:25814530

  19. Immunologic testing of xeno-derived osteochondral grafts using peripheral blood mononuclear cells from healthy human donors

    Directory of Open Access Journals (Sweden)

    Targoni Oleg S

    2005-06-01

    Full Text Available Abstract Background One means of treating osteoarthritis is with autologous or allogeneic osteochondral grafts. The purpose of this study was to evaluate the innate immunological response in humans toward xeno-derived osteochondral grafts that have been partially or entirely treated by the photooxidation process. Methods The antigens tested included bovine, porcine, ovine and equine osteochondral samples that have been treated in successive steps of photooxidation. ELISPOT assays were used to evaluate the production of IL-1, IL-4, IL-6, IL-10, IL-12 and TNF-α by human monocytes in response to the antigens. Results Results indicated vigorous production of IL-1, IL-6, IL-10 and TNF-α in response to untreated bovine, porcine and equine specimens. This indicates that these samples are perceived as foreign, or stimulatory, by the human monocytes. There was no induction of IL-4 or IL-12, which is required for Th2 and Th1 immunity, respectively. In contrast, the processed bovine, porcine and equine samples did not induce significant activation of cells of the innate immune system. This occurred after the first step in processing (after cleaning in increasing strengths of ethanol. This suggests that the processing steps dramatically, if not completely, negated the immunostimulatory properties of the test sample. The results for the ovine samples indicate a reverse response. Conclusion The findings of the study suggest that photooxidized bovine, porcine or equine samples have the potential to be used as an osteochondral graft. Although the first step in processing reduced the immunological response, photooxidation is still necessary to retain the structure and mechanical integrity of the cartilage, which would allow for immediate joint resurfacing.

  20. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.

    Science.gov (United States)

    Bagher, Zohreh; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Mirzadeh, Hamid; Solouk, Atefeh; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2016-05-01

    Cell transplantation strategies have provided potential therapeutic approaches for treatment of neurodegenerative diseases. Mesenchymal stem cells from Wharton's jelly (WJMSCs) are abundant and available adult stem cells with low immunological incompatibility, which could be considered for cell replacement therapy in the future. However, MSC transplantation without any induction or support material causes poor control of cell viability and differentiation. In this study, we investigated the effect of the nanoscaffolds on WJMSCs differentiation into motor neuronal lineages in the presence of retinoic acid (RA) and sonic hedgehog (Shh). Surface properties of scaffolds have been shown to significantly influence cell behaviors such as adhesion, proliferation, and differentiation. Therefore, polycaprolactone (PCL) nanofibers were constructed via electrospinning, surface modified by plasma treatment, and grafted by collagen. Characterization of the scaffolds by means of ATR-FTIR, contact angel, and Bradford proved grafting of the collagen on the surface of the scaffolds. WJMSCs were seeded on nanofibrous and tissue culture plate (TCP) and viability of WJMSCs were measured by MTT assay and then induced to differentiate into motor neuron-like cells for 15 days. Differentiated cells were evaluated morphologically, and real-time PCR and immunocytochemistry methods were done to evaluate expression of motor neuron-like cell markers in mRNA and protein levels. Our results showed that obtained cells could express motor neuron biomarkers at both RNA and protein levels, but the survival and differentiation of WJMSCs into motor neuron-like cells on the PCL/collagen scaffold were higher than cultured cells in the TCP and PCL groups. Taken together, WJMSCs are an attractive stem cell source for inducing into motor neurons in vitro especially when grown on nanostructural scaffolds and PCL/collagen scaffolds can provide a suitable, three-dimensional situation for neuronal survival and

  1. Biotransformation of perfumery terpenoids, (−)-ambrox® by a fungal culture Macrophomina phaseolina and a plant cell suspension culture of Peganum harmala

    OpenAIRE

    Musharraf Syed Ghulam; Naz Sheeba; Najeeb Asma; Khan Saifullah; Choudhary M Iqbal

    2012-01-01

    Abstract Background Biotransformation offers chemo enzymatic system to modify the compounds into their novel analogues which are difficult to synthesize by chemical methods. This paper describes the biotransformational studies of ambrox, one of the most important components of natural Ambergris (wale sperm) with fungal and plant cell culture. Results Biotransformation of (−)-ambrox (1) with a fungal cell culture of Macrophomina phaseolina and a plant cell suspension cultures of Peganum harmal...

  2. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    Science.gov (United States)

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  3. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    Science.gov (United States)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  4. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  5. Grafted hydroxypropyl guargum: Development, characterization and application as flocculating agent

    Indian Academy of Sciences (India)

    B R Nayak; D R Biswal; N C Karmakar; R P Singh

    2002-11-01

    Synthesis of hydroxypropyl guargum--polyacrylamide was carried out by ceric ion induced redox polymerization technique at 28 ± 1°C. The graft copolymer was characterized by IR and thermal analysis. The flocculation performance of graft copolymer was tested in 1 wt% coal suspension.

  6. The Impact of HLA-E Polymorphisms in Graft-versus-Host Disease following HLA-E Matched Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ehteramolsadat Hosseini

    2012-03-01

    Full Text Available The  non-classical MHC  class-I mainly involves in the  regulation of  innate  immune responses where HLA-E  plays a significant role in the cell identification by natural killer cells. HLA-E is a main regulatory ligand for natural killer cells and given the importance of these effector cells in hematopoietic stem cell transplantation, we investigated the effect of HLA-E polymorphisms on post-hematopoietic stem cell transplantation outcomes.The study group included 56 donor-patient pairs with underlying malignant hematological disorders undergoing HLA-E  matched allogeneic hematopoietic stem cell transplantation. They were genotyped for HLA-E locus using a sequence specific primer-polymerase chain reaction. The  median follow-up was 20.6 months  (range 0.2-114.8 and  the  parameters assessed were acute and chronic graft-versus-host disease and overall survival.We showed a lower frequency of acute graft-versus-host disease (grade II or more; p=0.02and chronic graft-versus-host disease (extensive; p=0.04 in the patients with HLA- E*0103/0103 genotype compared to other genotypes of HLA-E. There was also an association between HLA-E*0103/0103 and improved overall survival (p=0.001.Conclusively, our  results  suggest a  protective  role  for  HLA-E*0103/0103  genotypeagainst acute graft-versus-host disease (grade II or more and chronic graft-versus-host disease (extensive as well as an association between this genotype and a better overall survival after HLA-E matched allogeneic hematopoietic stem cell transplantation.

  7. The role of programmed cell death ligand-1 (PD-L1/CD274 in the development of graft versus host disease.

    Directory of Open Access Journals (Sweden)

    Heevy Al-Chaqmaqchi

    Full Text Available Programmed cell death ligand-1 (PD-L1/CD274 is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues plays a protective role in skeletal muscle during acute graft-versus-host disease.

  8. Acrylique acid grafted polyolefines. Thermoadhesive applications

    International Nuclear Information System (INIS)

    Radiochemical grafting of polyolefines by peroxidation has been industrialized in France for about 10 years by irradiation of these polymers with an electron accelerator and then treated by acrylic acid. Products obtained show a high adhesivity on metallic surfaces above their melting point. The main application of acrylic acid grafted high density polyethylene is composite film with aluminum foil for thermosealing of plastic bottle caps of sterilized milk. Acrylic acid grafted polypropylene is used in suspension in a volatile liquid for aluminum foil coating satisfying food packaging regulations

  9. Bone Grafts

    Science.gov (United States)

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  10. Characterization of carrot cell lines resistant to 5-methyltryptophan obtained by irradiating suspension cultures with UV-light

    International Nuclear Information System (INIS)

    A mutagenic procedure of carrot cell suspension by means of UV-light has been established. The application of this procedure to the selection of cell lines resistant to 5-methyltryptophan (5MT) increased 11 times the spontaneous mutation rate. Eighteen colonies selected in the course of one experiment have been analyzed for quantitative resistance to the analogue. Four of the most 5MT-resistant lines selected (one spontaneous and three induced) were also tested for their resistance to azetidine-2-carboxylic acid (A2C) to which all of them proved to be resistant even though this was an unselected trait. The four lines were tested for the intracellular content of some free amino acids. Results of such determination showed that the content of tryptophan and proline was roughly proportional to the degree of resistance of the lines to the two analogues. The fact that all the lines resistant to 5MT over-produced proline suggests that the latter feature may be a direct consequence of the increased pool of free tryptophan. The four cell lines tested showed a rate of tryptophan uptake similar to that of the parental line. On the contrary the rate of proline and A2C by the 5MT-11 cell line was reduced to 23% and 10% of that of the parental line, respectively. (author)

  11. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway. PMID:27457992

  12. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    fluences on ADSC viability and proliferation. This paper reviews the development of MSCs as potential therapeutic interventions such as autologous grafts as well as the contribution of low intensity laser irradiation on the maintenance of these cells.

  13. THE CHANGE OF KINETIK PARAMETERS OF THE WEAK-ASSOCIATED WITH WALL CELL PEROXIDASE IN THE SUSPENSION CULTURE OF POTATO CELLS IN THE BEGINNING OF INFECTION

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2006-03-01

    Full Text Available The change in kinetic parameters of extracellular peroxidase of suspension cells of resistant potato variety (Lugovskoi and sensitive variety (Luk,ynovskii in the initial period of infection by 5369 Clavibacter michiganensis subsp. sepedonicus (Spieck. et Kotth. Skapt et Burkh. pathogen was examined. Extracellular peroxidases of resistant and sensitive potato variety without pathogens were shown to be concurrently inhibited. At the beginning of infection enzyme activity was extremely increased due to enhanced affinity to substrate as a result of reducing of competitive inhibiting. In increasing enzyme activity is sensitive potato variant evidently caused by other mechanism.

  14. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes

    Directory of Open Access Journals (Sweden)

    R d’Aquino

    2009-11-01

    Full Text Available In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs and a collagen sponge scaffold for oro-maxillo-facial (OMF bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.

  15. Synergism between T and non-T cells in the in vivo induction and in vitro expression of graft-vs.-host disease-induced natural suppressor cells

    International Nuclear Information System (INIS)

    The authors have been studying the mitogen hyporesponsiveness and immunosuppression induced in chronic murine graft-vs.-host disease (GVHD) induced across minor histocompatibility (MiHA) barriers. In this system, donor and recipient mice are major histocompatibility complex- and mls-identical, and are nonreactive in primary mixed leukocyte reactions. Spleen cells from B10.D2 (H-2d, mls b) mice were injected into irradiated (600 rad) BALB/c (H-2d, mls b) recipients. Recipient spleen cells are hyporesponsive to mitogens, and contain natural suppressor (NS) cells. The cellular requirements for both the in vivo induction and the in vitro expression of this GVH suppression were investigated. T cells are required in the graft, but they are not sufficient to induce suppression, and a non-T cell population is also required for maximum induction in vivo. T cells are also required for the maximum expression of NS cell suppressive ability in vitro. Early in the course of GVH, the suppressor cells are able to suppress the Con A and LPS response of all mouse strains tested (except for the relative difficulty in suppressing the B10.D2 LPS response). Later, they become almost completely unable to suppress the B10.D2 LPS response; while still being able to suppress the Con A and LPS response of all other strains tested (including the B10.D2 Con A response). This inability to suppress a B10.D2 LPS response can be brought back to almost complete suppression by the addition of concanavalin A supernatant (CAS). The authors present a hypothesis to explain what may be a common mechanism for GVH-induced suppression, total lymphoid irradiation-induced suppression, and neonatal tolerance. These situations all include rapidly proliferating lymphohematopoietic stem cell populations, and also have large numbers of NS cells

  16. Insulin Independence after Fetal Liver-Derived Cell Suspension Al¬lotransplantation in Patients with Type 1 Diabetes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Maryam GHODSI

    2015-10-01

    Full Text Available Background: Cell-based treatments are currently being actively received great attention among scientists and clinicians for a variety of diseases as well as diabetes .The aim of this study was to investigate the effect of allotransplantation of fetal liver-derived cell suspension in patients with type 1 diabetes.Methods: Patients with type 1 diabetes (n=16 aged 6-30 years-old were included in the study. Fetal liver-derived cell suspension was transplanted by the means of intravenous injection patient.Results: In most of patient, blood glucose levels gradually decreased within the first day of infusion. Insulin independence occurred in 3 patients out of the 16 (18.7% for 4 to 24 months. They showed increasing levels of serum c-peptide along with decreasing of levels of HbA1c level. In other patients, no significant changes in parameters of diabetes control were observed. Conclusion: Findings of this study indicated that transplantation of fetal stem cells could, although not permanently, be an effective therapeutic intervention in patients with type 1 diabetes. To demonstrate effectiveness of stem-cell therapy for treatment of diabetes, more clinical trials with stricter inclusion criteria, modified protocols, and larger number of patients and are necessary as well as long periods of follow up. Keywords: Stem cell, Type 1 diabetes, Allotransplantation, Fetal Liver-Derived Cell Suspension, Cell Therapy

  17. Comparing Outcomes with Bone Marrow or Peripheral Blood Stem Cells as Graft Source for Matched Sibling Transplants in Severe Aplastic Anemia across Different Economic Regions.

    Science.gov (United States)

    Kumar, Rajat; Kimura, Fumihiko; Ahn, Kwang Woo; Hu, Zhen-Huan; Kuwatsuka, Yachiyo; Klein, John P; Pasquini, Marcelo; Miyamura, Koichi; Kato, Koji; Yoshimi, Ayami; Inamoto, Yoshihiro; Ichinohe, Tatsuo; Wood, William Allen; Wirk, Baldeep; Seftel, Matthew; Rowlings, Philip; Marks, David I; Schultz, Kirk R; Gupta, Vikas; Dedeken, Laurence; George, Biju; Cahn, Jean-Yves; Szer, Jeff; Lee, Jong Wook; Ho, Aloysius Y L; Fasth, Anders; Hahn, Theresa; Khera, Nandita; Dalal, Jignesh; Bonfim, Carmem; Aljurf, Mahmoud; Atsuta, Yoshiko; Saber, Wael

    2016-05-01

    Bone marrow (BM) is the preferred graft source for hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) compared with mobilized peripheral blood stem cells (PBSCs). We hypothesized that this recommendation may not apply to those regions where patients present later in their disease course, with heavier transfusion load and with higher graft failure rates. Patients with SAA who received HSCT from an HLA-matched sibling donor from 1995 to 2009 and reported to the Center for International Blood and Marrow Transplant Research or the Japan Society for Hematopoietic Cell Transplantation were analyzed. The study population was categorized by gross national income per capita and region/countries into 4 groups. Groups analyzed were high-income countries (HIC), which were further divided into United States-Canada (n = 486) and other HIC (n = 1264); upper middle income (UMIC) (n = 482); and combined lower-middle, low-income countries (LM-LIC) (n = 142). In multivariate analysis, overall survival (OS) was highest with BM as graft source in HIC compared with PBSCs in all countries or BM in UMIC or LM-LIC (P < .001). There was no significant difference in OS between BM and PBSCs in UMIC (P = .32) or LM-LIC (P = .23). In LM-LIC the 28-day neutrophil engraftment was higher with PBSCs compared with BM (97% versus 77%, P = .002). Chronic graft-versus-host disease was significantly higher with PBSCs in all groups. Whereas BM should definitely be the preferred graft source for HLA-matched sibling HSCT in SAA, PBSCs may be an acceptable alternative in countries with limited resources when treating patients at high risk of graft failure and infective complications. PMID:26797402

  18. Reversal of tolerance induced by transplantation of skin expressing the immunodominant T cell epitope of rat type II collagen entitles development of collagen-induced arthritis but not graft rejection

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Firan, Mihail; Malmström, Vivianne; Issazadeh-Navikas, Shohreh; Ward, E Sally; Holmdahl, Rikard

    2002-01-01

    collagen (CI), e.g. in skin, are tolerized against rat CII and resistant to CIA. In this study we transplanted skin from TSC transgenic mice onto non-transgenic CIA-susceptible littermates to investigate whether introduction of this epitope to a naïve immune system would lead to T cell priming and graft...... rejection or instead to tolerance and arthritis protection. Interestingly, TSC grafts were accepted and not even immunization of recipient mice with CII in adjuvant induced graft rejection. Instead, TSC skin recipients displayed a reduced T and B cell response to CII and were also protected from arthritis....... However, additional priming could break arthritis protection and was accompanied by an increased T cell response to the grafted epitope. Strikingly, despite the regained T cell response, development of arthritis was not accompanied by graft rejection, showing that these immune-mediated inflammatory...

  19. STUDY ON REGULARITIES OF GRAFT COPOLYMERIZATION OF ACRYLIC ACID ONTO FUNGAL CELL WALL%米根霉细胞壁结构性多糖与丙烯酸接枝共聚反应研究

    Institute of Scientific and Technical Information of China (English)

    张诚; 孟琴; 吕德伟

    2001-01-01

    For the aim of getting macromolecular flocculant,we studied the copolymerization of acrylic acid onto Rhi.oryzae cell wall structural polysaccharide by the initiation of ceric ammonium nitrate.The effect of concentration of initiator and monomer,reaction temperature and reaction time on grafting percentage was investigated.To Rhi.oryzae cell wall structural polysaccharide the maximal grafting percentage of 135.5% was achieved at [Ce+4]=5mmol/L,[AA]=1mol/L,T=60℃,t=3h.Then choosing organic dyes as the flocculated substances,by comparing with the chitosan,polyacrylamide and Rhi.oryzae cell wall structural polysaccharide before grafting,we studied the flocculent capability of Rhi.oryzae cell wall structural polysaccharide after grafting acrylic acid.The grafting product had excellent flocculent effect on basic and neutral dyes.

  20. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method

    Directory of Open Access Journals (Sweden)

    Jifu Tan

    2016-02-01

    Full Text Available Nanodrug-carrier delivery in the blood stream is strongly influenced by nanoparticle (NP dispersion. This paper presents a numerical study on NP transport and dispersion in red blood cell (RBC suspensions under shear and channel flow conditions, utilizing an immersed boundary fluid-structure interaction model with a lattice Boltzmann fluid solver, an elastic cell membrane model and a particle motion model driven by both hydrodynamic loading and Brownian dynamics. The model can capture the multiphase features of the blood flow. Simulations were performed to obtain an empirical formula to predict NP dispersion rate for a range of shear rates and cell concentrations. NP dispersion rate predictions from the formula were then compared to observations from previous experimental and numerical studies. The proposed formula is shown to accurately predict the NP dispersion rate. The simulation results also confirm previous findings that the NP dispersion rate is strongly influenced by local disturbances in the flow due to RBC motion and deformation. The proposed formula provides an efficient method for estimating the NP dispersion rate in modeling NP transport in large-scale vascular networks without explicit RBC and NP models.

  1. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    Science.gov (United States)

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-01

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth. PMID:24773089

  2. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    OpenAIRE

    Fatemeh Seyedi; Alireza Farsinejad; Seyed Amirmahdi Nematollahi-Mahani; Touba Eslaminejad; Seyed Noureddin Nematollahi-Mahani

    2016-01-01

    Objective: Worldwide, diabetes mellitus (DM) is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC) that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs) into...

  3. A new exploration on the creation of grafted breast cancer model for MA891 cells in TA2 mice

    Institute of Scientific and Technical Information of China (English)

    GU Jun-chao; YU Wei-bo; ZHANG Zhong-tao; WANG Yu

    2005-01-01

    @@ Animal experimental systems are particularly useful for the study of human breast cancer.1,2 An ideal model should be easy to use, closely mimicking human physiopathology and has a stable tumor morbidity. The cell line MA891 was established from a spontaneous TA2 mouse mammary carcinoma by Cancer Institute of Chinese Academy of Medical Sciences.3 Some researches indicated that MA891 had a very low immunogenecity and maintained a high metastatic potential in vivo. So it has been used as a better grafted mouse tumor model for studying cancer physiopathology and metastasis in human for years. However, about the biological characteristic and the histopathologic feature of this model there has been a lack of investigations.

  4. Prevention of graft-versus-host disease by a novel immunosuppressant LLT, through expansion of regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    WeiTANG; RuZHOU; Pei-lanHE; Xiao-yuLI; Yi-fuYANG; Jian-pingZUO

    2005-01-01

    AIM To evaluate the validity of LLT in prevention and therapy of acute graft versus host disease and to clarify the underlying mechanisms. LLT is a new compound derived from triptolide, which is the major immunosuppressive fraction of Tripterygium wilfordii Hook. F (TWHF). Studies in vitro and in vivo demonstrated that LLT had potent immunosuppressive activities. Here we tested the immunosuppressive effects of LLT in murine allogeneic bone marrow transplantation (BMT) and investigated the mechanisms underlying its suppressive effects. METHODS LLT was administered to recipients in BALB/cA→C57BL/6 murine BMT model, in which donor and recipient differ at major and minor histocompatibility antigens.Survival and weight change were recorded in recipients after alloBMT. Spleen size, chimerism and splenic T cell subpopulation were analysed by using flow cytometry.

  5. Mechanisms of cyclic nucleotide phosphodiesterases in modulating T cell responses in murine graft-versus-host disease.

    Science.gov (United States)

    Weber, Michael; Lupp, Corinna; Stein, Pamela; Kreft, Andreas; Bopp, Tobias; Wehler, Thomas C; Schmitt, Edgar; Schild, Hansjörg; Radsak, Markus P

    2013-01-01

    Graft-versus-host disease (GvHD) is a key contributor to the morbidity and mortality after allogeneic hematopoetic stem cell transplantation (HSCT). Regulatory Foxp3(+) CD4(+) T cells (Treg) suppress conventional T cell activation and can control GvHD. In our previous work, we demonstrate that a basic mechanism of Treg mediated suppression occurs by the transfer of cyclic adenosine monophosphate (cAMP) to responder cells. Whether this mechanism is relevant for Treg mediated suppression of GvHD is currently unknown. To address this question, bone marrow and T cells from C57BL/6 mice were transferred into lethally irradiated BALB/c recipients, and the course of GvHD and survival were monitored. Transplanted recipients developed severe GvHD that was strongly ameliorated by the transfer of donor Treg cells. Towards the underlying mechanisms, in vitro studies revealed that Treg communicated with DCs via gap junctions, resulting in functional inactivation of DC by a metabolic pathway involving cAMP that is modulated by the phosphodiesterase (PDE) 4 inhibitor rolipram. PDE2 or PDE3 inhibitors as well as rolipram suppressed allogeneic T cell activation, indirectly by enhancing Treg mediated suppression of DC activation and directly by inhibiting responder T cell proliferation. In line with this, we observed a cooperative suppression of GvHD upon Treg transfer and additional rolipram treatment. In conclusion, we propose that an important pathway of Treg mediated control of GvHD is based on a cAMP dependent mechanism. These data provide the basis for future concepts to manipulate allogeneic T cell responses to prevent GvHD. PMID:23483980

  6. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid.

    Science.gov (United States)

    Sahraroo, Amir; Mirjalili, Mohammad Hossein; Corchete, Purificación; Babalar, Mesbah; Fattahi Moghadam, Mohammad Reza

    2016-08-01

    An in vitro approach to the production of rosmarinic acid (RA), a medicinally important caffeic acid ester, in a cell suspension culture (CSC) of Satureja khuzistanica Jamzad (Lamiaceae) has been investigated for the first time. The CSC was established from friable calli derived from shoot tip explants in Gamborg's B5 liquid medium supplemented with 30 g/L sucrose, 20 mg/L L-glutamine, 200 mg/L casein hydrolysate, 5 mg/L benzyladenine (BA) and 1 mg/L indole-3-butyric acid (IBA). The effect of nitrogen source (KNO3 and (NH4)2SO4) and their different concentrations on the fresh and dry weight (g/L), as well as RA content (mg/g dry weight) were measured. CSC growth measurements indicated a maximum specific cell growth rate of 1.5/day, a doubling time of 7.6 days and a high percentage of cell viability (96.4 %) throughout the growth cycle. Maximum cell fresh weight (353.5 g/L), dry weight (19.7 g/L) and RA production (180.0 mg/g) were attained at day 21 of culture. Cell growth and RA content were affected by nitrogen deficiency. Media containing 8.3 mM of total nitrogen (¼ of B5 standard medium) led to a minimum cell fresh weight (243.0 g/L), dry weight (17.4 g/L) and RA content (38.0 mg/g) after 21 days. The established CSC provided useful material for further optimization experiments aimed at a large-scale production of RA. PMID:26264595

  7. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  8. Graft-versus-Host Disease after HLA-Matched Sibling Bone Marrow or Peripheral Blood Stem Cell Transplantation: Comparison of North American Caucasian and Japanese Populations.

    Science.gov (United States)

    Kanda, Junya; Brazauskas, Ruta; Hu, Zhen-Huan; Kuwatsuka, Yachiyo; Nagafuji, Koji; Kanamori, Heiwa; Kanda, Yoshinobu; Miyamura, Koichi; Murata, Makoto; Fukuda, Takahiro; Sakamaki, Hisashi; Kimura, Fumihiko; Seo, Sachiko; Aljurf, Mahmoud; Yoshimi, Ayami; Milone, Giuseppe; Wood, William A; Ustun, Celalettin; Hashimi, Shahrukh; Pasquini, Marcelo; Bonfim, Carmem; Dalal, Jignesh; Hahn, Theresa; Atsuta, Yoshiko; Saber, Wael

    2016-04-01

    The risk of acute graft-versus-host disease (GVHD) after HLA-matched sibling bone marrow transplantation (BMT) is lower in Japanese than in Caucasian patients. However, race may have differential effect on GVHD dependent on the graft source. North American Caucasian and Japanese patients receiving their first allogeneic BMT or peripheral blood stem cell transplantation from an HLA-matched sibling for leukemia were eligible. BMT was performed in 13% of the Caucasian patients and in 53% of the Japanese patients. On multivariate analysis, the interaction term between race and graft source was not significant in any of the models, indicating that graft source does not affect the impact of race on outcomes. The risk of grade III or IV acute GVHD was significantly lower in the Japanese patients compared with the Caucasian patients (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.57 to 0.96), which resulted in lower risk of nonrelapse mortality in the Japanese patients (HR, 0.69; 95% CI, 0.54 to 0.89). The risk of relapse was also lower in this group. The lower risks of nonrelapse mortality and relapse resulted in lower overall mortality rates among the Japanese patients. In conclusion, our data indicate that irrespective of graft source, the risk of severe acute GVHD is lower in Japanese patients, resulting in a lower risk of nonrelapse mortality. PMID:26762681

  9. Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum chinense Jacq. cv. Naga King Chili.

    Science.gov (United States)

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2014-06-01

    Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g(-1) f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g(-1) f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g(-1) f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g(-1) f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g(-1) f.wt on day 20 and 1,315.3 ± 10 μg g(-1) f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells. PMID:24141419

  10. Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD

    Science.gov (United States)

    2016-07-08

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Graft Versus Host Disease; Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Anemia With Excess Blasts

  11. Cellular grafts in management of leucoderma

    Directory of Open Access Journals (Sweden)

    Mysore Venkataram

    2009-01-01

    Full Text Available Cellular grafting methods constitute important advances in the surgical management of leucoderma. Different methods such as noncultured epidermal suspensions, melanocyte cultures, and melanocyte-keratinocyte cultures have all been shown to be effective. This article reviews these methods.

  12. Reduction of fatal graft-versus-host disease by 3H--thymidine suicide of donor cells cultured with host cells

    International Nuclear Information System (INIS)

    The effect of the tritiated thymidine (3H-TdR) suicide technique on the ability of donor cells to induce fatal graft-versus-host disease (GVHD) was studied. C57BL/6 (H-2/sup b/) spleen cells were stimulated in vitro with irradiated BALB/c (H-2/sup d/) Moloney lymphoma cells in mixed culture and 3H-TdR of high-specific activity added to eliminate proliferating cells. The ability of such cells to induce fatal GVHD was assayed by injecting them i.v. into adult BALB/c mice immunosuppressed with cyclophosphamide (180 mg/kg). These cells induced fatal GVHD in fewer mice (52 percent) than did C57BL/6 cells cultured with BALB/c lymphoma cells but without 3H-TdR (87 percent) and C57BL/6 cells cultured with irradiated C57BL/6 cells with (95 percent) or without 3H-TdR (86 percent). Thus, the 3H-TdR suicide technique greatly diminished the ability of cells to induce lethal GVHD

  13. Effect of Plant Growth Regulators on Callus, Cell Suspension and Cell Line Selection for Flavonoid Production from Pegaga (centella asiatica L. urban

    Directory of Open Access Journals (Sweden)

    Suat H. Tan

    2010-01-01

    Full Text Available Problem statement: Considering pegaga medicinal properties and over-exploitation, the requirement for a tissue culture technique as an alternative production system was crucial. Approach: Investigation of cell suspension culture response to different plant growth regulators (PRGs for flavonoid production from elite cell line was carried out. Callus cultures were initiated from the leaf explants of Centella asiatica on Murashige and Skoog (MS medium containing B5 vitamins and 30 g L−1 sucrose supplemented with different concentrations (0.5-2.5 mg L−1 of 2,4-D, NAA, Dicamba, Picloram and IBA supplied singly and in combination with different concentrations (0.5-1.5 mg L−1 of kinetin, BAP and TDZ. Results: Callus induction was observed for all the PGRs tested. The highest callus induction frequency (86.67% was observed in MS medium containing 2.0 mg L−1 2,4-D while the combination of 2.0 mg L−1 2,4-D and 1 mg L−1 kinetin in MS medium gave the highest biomass yield (0.27 g dry weight culture−1. This combination was also found to be best for callus proliferation for all the accessions investigated. Among the four accessions tested, UPM03 was found to have the highest biomass yield (0.041 g DW culture−1 and hydrolysed flavonoid content (10.75 mg g−1 DW after the 12th day of culture. The flavonoids present in the four accessions were quercetin, kaempherol, luteolin and rutin based on high performance liquid chromatography (HPLC analysis. These results indicated that C. asiatica accession UPM03 was the potential elite cell line in mass production of flavonoid, especially luteolin. Coclusions/Recommendations: In the establishment of cell suspension culture, 2 mg L−1 2,4-D and 1 mg L−1 kinetin were the best PGRs in supporting the cell growth and flavonoid production. This is the first report on the use of PRGs on the establishment of cell suspension cultures in flavonoid production of C. asiatica.

  14. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: paul.genever@york.ac.uk [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)

    2011-04-15

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  15. Depression of Complement Regulatory Factors in Rat and Human Renal Grafts Is Associated with the Progress of Acute T-Cell Mediated Rejection.

    Directory of Open Access Journals (Sweden)

    Kazuaki Yamanaka

    Full Text Available The association of complement with the progression of acute T cell mediated rejection (ATCMR is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs in acute T-cell mediated rejection using rat and human renal allografts.We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP by immunohistochemical staining in human renal grafts and their clinical course.qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry, was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.

  16. INSECTICIDAL POTENTIALITY OF FLAVONOIDS FROM CELL SUSPENSION CULTURE OF MARCHANTIA LINEARIS LEHM. & LINDENB AGAINST SPODOPTERA LITURA F.

    Directory of Open Access Journals (Sweden)

    Remya Krishnan

    2015-05-01

    Full Text Available Bryophytes were diverse, primitive non vascular am phibious taxa distributed worldwide and form the second largest category of plants. Bryophytes synthesize an array of phytochemicals to combat against the unhospitable environmental conditions including predation, UV radiation, high temperature and pest and pathogens. The present investigation was undertaken to elucidate flavonoids from in vitro cell cultures of the liverwort Marchantia linearis Lehm. & Lindenb. its fractionation and analysis of insecticidal potentialities. Initially, callus culture was initiated from spores in MS/5 media containing gr owth regulators BAP and NAA at the concentration of 2 mg/L and 0.5 mg/L. Agitation of the friable callus at lowe r rpm bring about lower leve l of cell dispersion, on the contrary at higher rpm might have risk of cell collision that is why rpm was kept at moderate speed i.e., 110 rpm. Continuous sub culturing process substantially improves cell growth and biomass. In the second phase, the flavonoids were isolated from cell suspension cultures of M. linearis and were fractionated by TLC and HPLC PAD chromatogram, which revealed the presence of quer cetin, luteolin, apigenin , rutin and kaempferol. In vivo insecticidal analysis revealed significant antifeedan t, larvicidal and pupicidal activities at all the concentrations against 5 th instar larvae of Spodoptera litura . The extract also exhibited feeding deterrent activity with M. linearis. Similarly, the nutritional parameters were also affected i.e., reduced ECI (Efficiency of conversion of ingested food and ECD (Efficiency of conversion of digested food and increased AD (Approximate digestibility and metabolic cost for the larvae, when compared with the control. The consumption of the basal diet with the incorporation of flavonoids by S. litura larvae was not significantly different compared to the co nsumption of the control diet by the larvae. Faecal production reduced proportionally with

  17. GVHD (Graft-Versus-Host Disease): A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Disease): A guide for patients and families after stem cell transplant The immune system is the body's tool ... and attacking them. When you receive a donor's stem cells (the “graft”), the stem cells recreate the donor's ...

  18. Comparison of the Th1, IFN-γ secreting cells and FoxP3 expression between patients with stable graft function and acute rejection post kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Banafsheh Nazari

    2013-09-01

    Full Text Available There are limited clinical investigations identifying the percentage of T helper 1 (Th1 and T regulatory (Treg cells in stable as well as rejected kidney allografts, a concept which needs to be more studied. The aim of our study was to compare the percentage of CD4+ IFN-γ+ cells, the number of IFN-γ secreting cells and the amount of FoxP3 expression in patients with or without stable graft function, to determine the roles of these immunological factors in stable and rejected renal allografts. In this prospective study, 3 months after transplantation 30 patients who received renal transplants from unrelated living donors were enrolled and divided into two groups, 20 patients with stable graft function and 10 patients with biopsy proven acute rejection. The percentage of Th1 CD4+ IFN-γ+ cells was determined on PBMC by flow cytometry and the number of IFN-γ secreting cells by ELISPOT method. Furthermore, FoxP3 expression of PBMCs was measured by Real Time PCR method. The results of these assessments in both groups were statistically analyzed by SPSS 14.0. Our results showed that the percentage of Th1 CD4+ IFN-γ+ cells and the number of IFN-γ secreting cells were significantly higher in the patients with acute rejection in comparison to the stable graft function group (p<0.001. In addition, the level of FoxP3 gene expression was higher in the group with stable graft compared to the acute rejection group. The higher percentage of CD4+ IFN-γ+Th1 subset and number of IFN-γ secreting cells and also the lower expression of Foxp3 could prone the patients to acute rejection episode post transplantation. By these preliminary data, it is suggested that monitoring of Th1 cells post transplantation, as an immunologic marker could predict the possibility of rejection episodes.

  19. Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions.

    Science.gov (United States)

    Law, R David; Suttle, Jeffrey C

    2005-06-01

    Changes in DNA cytosine methylation and core histone multi-acetylation were determined in cell suspension cultures of potato (Solanum tuberosum L. cv. Russet Burbank) during 15 days of in vitro culture. Cell subculture induced a transient 33% decrease in genome-wide 5-methylcytosine (5mC) content and a transient threefold increase in transcription rates that were most evident at 6 and 9 days after subculture, respectively. In contrast to the global reduction in 5mC content, subculture resulted in a transient twofold increase in 5mC levels within 5'-CCGG-3' sequences and no detectable change in 5'-CG-3' methylation. Multi-acetylation of histones H3.1, H3.2 and H4 rose 2-, 1.5- and 3-fold by 9, 9 and 12 days after subculture, respectively. All observed epigenetic changes were reset during aging of cell cultures. Inclusion of the histone deacetylase inhibitor trichostatin A (TSA) and/or the cytosine methylation inhibitor 5-azacytidine (5AC) in culture sequentially decreased genome-wide 5mC levels by approximately 25% at day 9, then decreased 5'-mCmCGG-3' by 30-50% and increased H3 and H4 multi-acetylation by 30-60% at day 15, compared to controls. Treatment with 5AC or TSA alone or in combination had no effect on RNA synthesis at day 9. At day 15, 5AC treatment remained ineffective, while de novo RNA synthesis was approximately twofold higher in cells grown in both inhibitors or in TSA alone. Collectively, these results demonstrate that in potato suspension cultures, rapid, reversible changes in 5mC levels precede regulatory post-translational acetylation of core histones, and suggest that interactions between these epigenetic processes appear to be necessary to power transcription and growth induction in potato cells. PMID:15922608

  20. Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor.

    Science.gov (United States)

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Shanker, Karuna; Mathur, Ajay K

    2015-01-01

    Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct () generated three stable TDC + STR over-expressing cell lines--PVG1, PVG2, and PVG3. The transgenes were confirmed by β-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1% dry wt.) and showed vincamine presence (0.003 ± 0.001% dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001% dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)]. PMID:25106473

  1. Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae

    Science.gov (United States)

    Chen, Xian; Dong, Yan; Yu, Chulang; Fang, XianPing; Deng, Zhiping; Yan, Chengqi; Chen, Jianping

    2016-01-01

    Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens. PMID:27196123

  2. Role of Changes in Cell Fatty Acids Composition in the Increasing of Frost Resistance of Winter Wheat Suspension Culture

    Directory of Open Access Journals (Sweden)

    I.V. Lyubushkina

    2013-11-01

    Full Text Available Influences of low temperatures (4 and 8 ° С on the frost tolerance and fatty acid compositions of cells in a winter wheat suspension culture have been studied. It has been found that treatment of the culture with 4 °C (7 days did not protect cells from subsequent freezing temperature action (-8 °С, 6 h and was not accompanied significant changes in the fatty acid composition. On the contrary, the treatment of the culture with the temperature 8 °C (7 days prevented the death caused by freezing temperature and the content of saturated fatty acids decreased: pentadecanoic acid (by 35,0%, palmitic acid (by 19,9% and stearic acid (by 65,4%, and the content of α-linolenic acid increased by 94%. That was the cause of the double bond index (DBI increase by 16%. The role of fatty acids composition changes in the process of increasing frost tolerance in plants are discussed.

  3. Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Chen, Xian; Dong, Yan; Yu, Chulang; Fang, XianPing; Deng, Zhiping; Yan, Chengqi; Chen, Jianping

    2016-01-01

    Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens. PMID:27196123

  4. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    Science.gov (United States)

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. PMID:26529079

  5. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L

    International Nuclear Information System (INIS)

    The major anthocyanins accumulated by an Afghan cultivar of Daucus carota L. are cyanidin 3-(xylosylglucosylgalactosides) acylated with sinapic or ferulic acid. The formation of the branched triglycoside present as a common structural element requires an ordered sequence of glycosylation events. Two of these enzymic glycosylation reactions have been detected in protein preparations from carrot cell-suspension cultures. The first step is a galactosyl transfer catalyzed by UDP-galactose: cyanidin galactosyltransferase (CGT) resulting in cyanidin 3-galactoside. The putative second step is the formation of cyanidin 3-(xylosylgalactoside) catalyzed by UDP-xylose: cyanidin 3-galactoside xylosyltransferase (CGXT). Both enzyme activities were characterized from crude protein preparations. The CGT was purified 526-fold from the cytosolic fraction of UV-irradiated cell cultures by ion-exchange chromatography on diethylaminoethyl (DEAE)-Sephacel, affinity chromatography on Blue Sepharose CL-6B, gel permeation chromatography on Sephadex G-75 and elution from the gel matrix after non-dissociating PAGE. Its molecular mass was estimated by SDS-PAGE and by calibrated gel permeation chromatography on Sephadex G-75. In both cases a molecular mass of 52 kDa was determined, indicating that the native protein is a monomer of 52 kDa. The galactosyl transfer and the xylosyl transfer are presumed to be catalyzed by separate enzymes. (author)

  6. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    Science.gov (United States)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  7. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity

    International Nuclear Information System (INIS)

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraftment of allogeneic T-cell-depleted bone marrow is T-cell dependent. To ensure engraftment, a large inoculum of nude bone marrow must be supplemented with a trace number of donor T cells, whereas a small bone marrow dose from nude donors requires a much larger number of T cells for engraftment. Marked enhancement of donor type chimerism was also found when F1 thymocytes were added to nude bone marrow cells, indicating that the enhancement of bone marrow engraftment by T cells is not only mediated by alloreactivity against residual host cells but may rather be generated by growth factors, the release of which may require specific interactions between T cells and stem cells or between T cells and bone marrow stroma cells

  8. Successful second transplantation from haploidentical donor for graft failure following unrelated cord blood cell transplantation or mismatched related transplantation: 2cases report

    Institute of Scientific and Technical Information of China (English)

    XU Lan-ping; HUANG Xiao-jun

    2006-01-01

    @@ Cord blood transplantation (CBT) from unrelated donors has increasingly been performed worldwide during the last decade. The immaturity of lymphocytes in cord blood permits HLA-mismatching between donors and recipients and reduces the severity of graft-versus-host disease (GVHD).However, the relatively small dose of the cord blood nucleated cells is associated with a high frequency of engraftment failure.1-5 But re-transplantation with stem cells from the original donor is impossible.

  9. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy

    OpenAIRE

    Yong, Agnes S.M.; Keyvanfar, Keyvan; Eniafe, Rhoda; Savani, Bipin N.; Rezvani, Katayoun; Sloand, Elaine M.; Goldman, John M.; Barrett, A. John

    2008-01-01

    The cure of chronic myeloid leukemia (CML) patients following allogeneic stem cell transplantation (SCT) is attributed to graft-versus-leukemia (GVL) effects targeting alloantigens and/or leukemia-associated antigens (LAA) on leukemia cells. To assess the potential of LAA-peptide vaccines in eliminating leukemia in CML patients, we measured WT1, PR3, ELA2 and PRAME expression in CD34+ progenitor subpopulations in CML patients and compared them with minor histocompatibility antigens (mHAgs) HA...

  10. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko;

    2013-01-01

    process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside of...... the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...

  11. Definition of the variables affecting efficacy of immunodepletion ex vivo of peripheral blood progenitor cell grafts by alemtuzumab (Campath in the bag).

    Science.gov (United States)

    Novitzky, Nicolas; Davison, Glenda; Abdulla, Rygana; Mowla, Shaheen

    2013-12-01

    The immunodepleting effects of alemtuzumab on peripheral blood progenitor cell (PBPC) grafts for stem cell transplantation need to be better defined. The optimal graft cell concentration, antibody dose, need for complement, and whether alemtuzumab is infused with the graft during transplantation remain unclear. PBPC from 6 normal allogeneic stem cell donors harvested by apheresis were first quantitated and the cellular content defined by flow cytometry. Mononuclear cells were then incubated with incremental concentrations of alemtuzumab (.00001, .0001, .001, and .01 mg/mL) for 30 minutes at 20°C or in cell dose responses with 1, 5, and 10 × 10(6) mononuclear cells/mL added to a fixed dose of .001 mg/mL of alemtuzumab with or without a source of complement. Cells were enumerated and analyzed by flow cytometry before and after exposure to alemtuzumab. To determine the presence of unbound anti-CD52, the supernatant of the cell dose responses were tested using the ELISA assay. Selected CD34+ lineage-negative cells were incubated with antibody at the same working concentrations and conditions and cultured in granulocyte-macrophage colony-forming unit assay. The colony numbers were compared with control cultures devoid of the antibody. Incremental concentrations of alemtuzumab led to a significant (2 log) reduction in CD3, CD4, and CD8 populations, which plateaued at .001 mg/mL. Addition of complement led to a further significant reduction in the CD4 and CD8 cells. The maximum CD4 (3 log) and CD8 (2 log) cell death was obtained at 10 × 10(6) cells/mL. Analysis of supernatants for soluble alemtuzumab by ELISA showed a significant reduction in the free antibody concentration when the cell number was increased from 1 to 10 × 10(6) cells/mL implying utilization/binding of the antibody by target cells. Incremental concentrations of alemtuzumab did not affect the number of granulocyte-macrophage colony-forming units. Alemtuzumab depletes all cells expressing the CD52

  12. Plant grafting: new mechanisms, evolutionary implications.

    Science.gov (United States)

    Goldschmidt, Eliezer E

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating

  13. Plant grafting: new mechanisms, evolutionary implications

    Directory of Open Access Journals (Sweden)

    Eliezer E Goldschmidt

    2014-12-01

    Full Text Available Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating that natural grafts may play a role in plant speciation. under certain circumstances.

  14. Studies of Frequency–Dependent Changes under Modulated Ultrasound Exposure on Cells in Suspension

    Directory of Open Access Journals (Sweden)

    Anna A. Oleshkevich

    2015-03-01

    Full Text Available Characteristics of the modulated ultrasound effect (range of modulation frequencies 10Hz–1000Hz intensity 0.2 W/cm2 on white blood cells (WBCs from different animals were studied. The quantitative ratio of WBCs was the most strongly altered by ultrasonic modulation frequency 1000 Hz. This frequency led to degenerative changes of cells. The presence of non-typeable or destroyed cells in smears was indicated. The results obtained demonstrated the possibility of directed impact on different WBC forms.

  15. The significance of non-T cell pathways in graft rejection--implications for transplant tolerance

    OpenAIRE

    Li, Xian Chang

    2010-01-01

    Both innate and adaptive immune cells are actively involved in the initiation and destruction of allotransplants, there is a true need now to look beyond T cells in the allograft response, examining various non-T cell types in transplant models and how such cell types interact with T cells in determining the fate of an allograft. Studies in this area may lead to further improvement in transplant outcomes.

  16. Effects of Chinese Jianpi herbs on cell apoptosis and related gene expression in human gastric cancer grafted onto nude mice

    Institute of Scientific and Technical Information of China (English)

    Ai-Guang Zhao; Hai-Lei Zhao; Xiao-Jie Jin; Jin-Kun Yang; Lai-Di Tang

    2002-01-01

    AIM: To explore the mechanism of the Sijunzi decoction and another Chinese herbal recipe (SRRS) based mainly on the Sijunzi decoction in treatment of gastric cancer.METHODS: A human gastric adenocarcinoma cell line SGC7901 grafted onto nude mouse was used as the animal model. The mice were divided into 3 groups, one control and the two representative experimental conditions. Ahimals in the two experimental groups received either Sijunzi decoction or SRRS over a 40-day period starting at 1st day after grafting. Control animals received saline on an identical schedule. Animals were killed 41 days after being grafted.The effect of therapy was assessed by two ways: (1)tumor size was periodically measured during the life of the animals; (2) tumor weight was determined by a electron balance immediately after the animals killed. For detection of apoptotic cells, apoptotic indices(AI) were examined by the terminal deoxynucleotidyl transferase-mediated deoxyuddine tdphosphate fluorescence nick end labeling (TUNEL) method.Morphological alterations were observed with electron microscopy. S-P immunohistochemical method was used to detect the expression of Ki-67 in xenografts. Expression of bcl-2 and p53 was semiquantitatively detected using a reverse transcriptase-polymerase chain reaction (RT-PCR)technique.RESULTS: When compared with controls, tumor growth (size and weight) was significantly inhibited by treatment with the Sijunzi decoction (P<0.05) or SRRS (P<0.01). The tumor inhibitory rate in the Sijunzi decoction group was 34.33 % and SRRS group 46.53 %. AI of human gastric cancer xenografts in nude mice was significantly increased to 16.24±3.21% using TUNEL method and 11.38±6.46 % by FACScan in the Sijunzi decoction group compared with the controls (TUNEL: 2.63±1.03 %, P<0.01; FACScan: 7.15± 1.32 %, P<0.05). SRRS group was also found a significantly increased AI by using TUNEL method and flow cytometry analysis compared with the controls (TUNEL: 13.18±3

  17. Cell Suspension Culture-Mediated Incorporation of the Rice Bel Gene into Transgenic Cotton

    OpenAIRE

    Liping Ke; RuiE Liu; Bijue Chu; Xiushuang Yu; Jie Sun; Brian Jones; Gang Pan; Xiaofei Cheng; Huizhong Wang; Shuijin Zhu; Yuqiang Sun

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liqu...

  18. Establishment of cell suspension culture in Marchantia linearis Lehm & Lindenb. for the optimum production of flavonoids

    OpenAIRE

    Krishnan, Remya; Anil Kumar, V. S.; K. Murugan

    2013-01-01

    Bryophytes are the second largest group in the plant kingdom, but studies conducted to better understand their chemical composition are limited and scattered. Axenically grown bryophytes expressed potential in biotechnological processes. The present study was designed to investigate the in vitro cell growth, culture parameters and their effect on flavonoid synthesis. Chlorophyll-containing callus cells of Marchantia linearis Lehm & Lindenb. is able to grow under low light in the presence of o...

  19. Ex vivo expansion of regulatory T cells for clinical applications against graft-versus-host disease in allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lan-fang; XIA Chang-qing

    2013-01-01

    Objective To review the characteristics of regulatory T cells (Tregs) and ex vivo expansion of Tregs for treatment of graftversus-host disease (GVHD).Data sources The data used in this review were retrieved from PubMed (1970-2013).The terms "ex vivo expansion","regulatory T cell",and "graft-versus-host disease" were used for literature search.Study selection The publications about the characteristics of Tregs,ex vivo expansion of Tregs and clinical applications of Tregs against GVHD were identified,retrieved and reviewed.Results Tregs can be classified as natural Tregs (nTregs) and induced Tregs (iTregs).Both subsets share most Treg features.Given their immunosuppressive property,Tregs have been tested for their capability of preventing GVHD.The bottleneck of Treg therapy is the limited numbers of naturally existing Tregs.To solve this problem,ex vivo expansion of nTregs or iTregs has been executed.The initial data indicate Treg therapy is effective in reducing GVHD without compromising graft-versus-leukemia (GVL).Conclusion Ex vivo expansion of Tregs is a reliable way to prepare sufficient number of Tregs for management of GVHD.

  20. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study.

    Science.gov (United States)

    Kanda, Junya; Hishizawa, Masakatsu; Utsunomiya, Atae; Taniguchi, Shuichi; Eto, Tetsuya; Moriuchi, Yukiyoshi; Tanosaki, Ryuji; Kawano, Fumio; Miyazaki, Yasushi; Masuda, Masato; Nagafuji, Koji; Hara, Masamichi; Takanashi, Minoko; Kai, Shunro; Atsuta, Yoshiko; Suzuki, Ritsuro; Kawase, Takakazu; Matsuo, Keitaro; Nagamura-Inoue, Tokiko; Kato, Shunichi; Sakamaki, Hisashi; Morishima, Yasuo; Okamura, Jun; Ichinohe, Tatsuo; Uchiyama, Takashi

    2012-03-01

    Allogeneic hematopoietic cell transplantation (HCT) is an effective treatment for adult T-cell leukemia (ATL), raising the question about the role of graft-versus-leukemia effect against ATL. In this study, we retrospectively analyzed the effects of acute and chronic graft-versus-host disease (GVHD) on overall survival, disease-associated mortality, and treatment-related mortality among 294 ATL patients who received allogeneic HCT and survived at least 30 days posttransplant with sustained engraftment. Multivariate analyses treating the occurrence of GVHD as a time-varying covariate demonstrated that the development of grade 1-2 acute GVHD was significantly associated with higher overall survival (hazard ratio [HR] for death, 0.65; P = .018) compared with the absence of acute GVHD. Occurrence of either grade 1-2 or grade 3-4 acute GVHD was associated with lower disease-associated mortality compared with the absence of acute GVHD, whereas grade 3-4 acute GVHD was associated with a higher risk for treatment-related mortality (HR, 3.50; P < .001). The development of extensive chronic GVHD was associated with higher treatment-related mortality (HR, 2.75; P = .006) compared with the absence of chronic GVHD. Collectively, these results indicate that the development of mild-to-moderate acute GVHD confers a lower risk of disease progression and a beneficial influence on survival of allografted patients with ATL. PMID:22234682

  1. Endothelial-cell injury in cutaneous acute graft-versus-host disease.

    Science.gov (United States)

    Dumler, J. S.; Beschorner, W. E.; Farmer, E. R.; Di Gennaro, K. A.; Saral, R.; Santos, G. W.

    1989-01-01

    The presence of an erythematous skin rash and hemorrhagic complications in acute graft-versus-host disease (GVHD) suggest that the vasculature may be involved in the immunopathologic process. We reviewed endothelial and vascular histopathologic changes on light microscopy and on immunoperoxidase stained sections of skin biopsies obtained from 41 HLA-identical allogeneic marrow transplant recipients with at least grade 2 GVHD. Biopsies taken from 14 allogeneic HLA-identical bone marrow transplant recipients who never developed GVHD were used as controls. Sections were evaluated for evidence of immunologic vascular injury using the rank file analysis of histologic features, expression of HLA-DR antigen, and the distribution of fibrin and factor VIII-related antigen (F VIII RAg). Patients with acute GVHD had significantly greater intimal lymphocytic infiltrates, perivascular nuclear dust deposition, perivascular F VIII Rag extravasation and deposition and vascular proliferation than controls. We find significantly greater endothelial injury in GVHD patients, which may represent primary immunologic injury to the vasculature. The clinical findings in acute GVHD probably result from cumulative endothelial as well as epithelial injury. Images Figure 1 Figure 2 Figure 3 PMID:2596572

  2. Methotrexate for the Treatment of Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Amr Nassar

    2014-01-01

    Full Text Available Glucocorticoids have been the primary treatment of graft-versus-host disease (GVHD over the past decade. Complete responses to steroid therapy are usually expected in almost one-third of aGVHD cases and partial response is anticipated in another one-third of patients. However, for those patients not responding to corticosteroid treatment, there is no standard second-line therapy for acute or chronic GVHD. Methotrexate (MTX for treatment of steroid refractory GVHD has been evaluated in a number of studies. Results from peer-reviewed original articles were identified and the pooled data analyzed. Despite several limitations in data collection and analysis, weekly administration of methotrexate at a median dose of 7.5 mg/m2 seems to be safe with minimal toxicities in the context of both aGVHD and cGVHD treatments. The observed overall response (OR in patients with aGVHD to MTX treatment in the published studies was 69.9%, with complete response (CR in 59.2% and PR in 10.6%. In cGVHD the OR was 77.6%, with CR reported in 49.6% and PR in 28% of patients. Predictors of better responses were lower grade GVHD, cutaneous involvement, and isolated organ involvement. MTX as a steroid sparing agent might reduce long-term complications and improve the quality of life of GVHD affected individuals.

  3. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey.

    Science.gov (United States)

    Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W G; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2016-08-01

    To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy "3(rd)-party" donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026

  4. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey

    Science.gov (United States)

    Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W.G.; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2016-01-01

    To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy “3rd-party” donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026

  5. Umbilical cord blood-derived mesenchymal stem cells ameliorate graft-versus-host disease following allogeneic hematopoietic stem cell transplantation through multiple immunoregulations.

    Science.gov (United States)

    Wu, Qiu-Ling; Liu, Xiao-Yun; Nie, Di-Min; Zhu, Xia-Xia; Fang, Jun; You, Yong; Zhong, Zhao-Dong; Xia, Ling-Hui; Hong, Mei

    2015-08-01

    Although mesenchymal stem cells (MSCs) are increasingly used to treat graft-versus-host disease (GVHD), their immune regulatory mechanism in the process is elusive. The present study aimed to investigate the curative effect of third-party umbilical cord blood-derived human MSCs (UCB-hMSCs) on GVHD patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their immune regulatory mechanism. Twenty-four refractory GVHD patients after allo-HSCT were treated with UCB-hMSCs. Immune cells including T lymphocyte subsets, NK cells, Treg cells and dendritic cells (DCs) and cytokines including interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were monitored before and after MSCs transfusion. The results showed that the symptoms of GVHD were alleviated significantly without increased relapse of primary disease and transplant-related complications after MSCs transfusion. The number of CD3(+), CD3(+)CD4(+) and CD3(+)CD8(+) cells decreased significantly, and that of NK cells remained unchanged, whereas the number of CD4(+) and CD8(+) Tregs increased and reached a peak at 4 weeks; the number of mature DCs, and the levels of TNF-α and IL-17 decreased and reached a trough at 2 weeks. It was concluded that MSCs ameliorate GVHD and spare GVL effect via immunoregulations. PMID:26223913

  6. Improving interpretation of geoelectrical signatures arising from biomineralization process in porous media: Low-frequency dielectric spectroscopy measurements on Desulfovibrio vulgaris cell suspensions

    Science.gov (United States)

    Zhang, C.; Prodan, C.; Slater, L. D.; Bot, C.; Ntarlagiannis, D.

    2009-12-01

    Previous geophysical studies have demonstrated the sensitivity of complex conductivity measurements to microbial growth, biofilm formation, and microbial-mineral alternations, indicating that complex conductivity has the potential to serve as non-invasive tool for bioremediation monitoring. However, the inherent dielectric properties of microbes and how they might directly contribute to the geophysical responses observed during microbial-mineral transformations are not well understood. As a first step towards improving the understanding of electrical signals from microbial-mineral transformations in porous media, we studied the low frequency dielectric properties of sulfate-reducing bacteria (Desulfovibrio vulgaris) cell suspensions, a common soil borne microorganism involved in remediation of toxic metals in solution. We utilized a two-electrode dielectric spectroscopy measurement, common in biophysics applications,to acquire high quality dielectric dispersion curves of Desulfovibrio vulgaris cell suspensions over the frequency range 0.1 Hz to 1M Hz. Desulfovibrio vulgaris cell suspensions were placed between two parallel steel electrodes that are enclosed in a cylindrical glass tube, and the complex impedance of sample was measured relative to a known resistor. The measured impedance includes an electrode polarization impedance arising at the interface between electrodes and ionic solutions at low frequencies. This electrode impedance has traditionally precluded the reliable interpretation of two electrode techniques at low frequencies (remove the polarization impedance. The feasibility of this polarization removal technique was tested on water saturated glass beads. We show that the broadband dielectric response of Desulfovibrio vulgaris can be reliably determined with this approach. The measurements are modeled based on a dilute suspension of polarizable spheres with the polarization attributed to the surface charge on the cell walls. Our results provide

  7. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    Science.gov (United States)

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  8. Stability of radicals in electron-irradiated fluoropolymer film for the preparation of graft copolymer fuel cell electrolyte membranes

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Qian, Huan;

    This presentation concerns the stability of radicals generated in poly(ethylene-alt-tetra­fluoro­ethylene) (ETFE) film by electron irradiation prior to grafting of styrene onto this base material. It has been demonstrated that the grafting yield decreases as the storage time of the irradiated film...

  9. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  10. Phosphatidate Kinase, A Novel Enzyme in Phospholipid Metabolism (Characterization of the Enzyme from Suspension-Cultured Catharanthus roseus Cells).

    Science.gov (United States)

    Wissing, J. B.; Kornak, B.; Funke, A.; Riedel, B.

    1994-01-01

    Phosphatidate kinase (adenosine 5[prime]-triphosphate:phosphatidic acid phosphotransferase), a novel enzyme of phospholipid metabolism, was detected recently in the plasma membranes of suspension-cultured Catharanthus roseus cells and purified (J.B. Wissing, H. Behrbohm [1993] Plant Physiol 102: 1243-1249). In the present work the properties of phosphatidate kinase are described. The enzyme showed a pH optimum of 6.1 and an isoelectric point of 4.8, and was rather stable in the presence of its substrates. Although the kinase accepted both ATP and GTP, with Km values of about 12 and 18 [mu]M, respectively, the only lipid substrate was phosphatidic acid; neither lysophosphatidic acid nor any other lipid tested was phosphorylated. With 32P- and 14C-labeled diacylglycerol pyrophosphate, the product of the enzyme, it was shown that the kinase catalyzes a reversible reaction. The activity of the extracted enzyme depended on the presence of surfactants such as Triton X-100 or [beta]-octylglucoside, whereas deoxycholate was strongly inhibitory. Kinetic analysis with Triton X-100/phosphatidate mixed micelles performed according to the "surface dilution" kinetic model showed saturation kinetics with respect to both bulk and surface concentration of phosphatidate. The interfacial Michaelis constant for phosphatidate was determined as 0.6 mol %. PMID:12232252

  11. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    Science.gov (United States)

    2014-05-28

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III

  12. Establishing in vitro Zinnia elegans cell suspension culture with high tracheary elements differentiation

    NARCIS (Netherlands)

    Twumasi, P.; Schel, J.H.N.; Ieperen, van W.; Woltering, E.J.; Emons, A.M.C.

    2009-01-01

    The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and f

  13. A combined travelling wave dielectrophoresis and impedance sensing device for sensing biological cell suspensions

    International Nuclear Information System (INIS)

    A suspended particle sensing technique called travelling wave dielectrophoresis impedance measurement (TWDIM) is presented which uses travelling wave dielectrophoresis to concentrate suspended particles in solution to a subset of electrodes through which impedance sensing is used to sense particle concentrations. A microfabricated TWDIM device and associated electronic systems are presented, as well as methods of operation and experimental results determining yeast cell concentrations

  14. Vascular grafting strategies in coronary intervention

    Science.gov (United States)

    Knight, Darryl; Gillies, Elizabeth; Mequanint, Kibret

    2014-06-01

    With the growing need for coronary revascularizations globally, several strategies to restore blood flow to the heart have been explored. Bypassing the atherosclerotic coronary arteries with autologous grafts, synthetic prostheses and tissue-engineered vascular grafts continue to be evaluated in search of a readily available vascular graft with clinically acceptable outcomes. The development of such a vascular graft including tissue engineering approaches both in situ and in vitro is herein reviewed, facilitating a detailed comparison on the role of seeded cells in vascular graft patency.

  15. Magnetic resonance enterography for assessment of intestinal graft-versus-host disease after allogeneic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Derlin, Thorsten [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Laqmani, Azien; Adam, Gerhard; Bannas, Peter [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Veldhoen, Simon [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Apostolova, Ivayla [Otto-von-Guericke University, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Ayuk, Francis; Kroeger, Nicolaus [University Medical Center Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg (Germany)

    2015-05-01

    To determine the diagnostic performance of MR enterography (MRE) for detection and grading of gastrointestinal graft-versus-host disease (GI GvHD) after hematopoietic stem cell transplantation (SCT). Forty-one patients with known GvHD or suspected GvHD underwent MRE and GI endoscopy with multi-level biopsies. MRE images were reviewed for presence of intestinal wall inflammation. Clinical grading of GI GvHD was performed. Histopathological evaluation (HPE) served as the reference standard. Overall, MRE demonstrated a per-patient sensitivity of 81.5 % for detection of GI GvHD. The most common findings were intestinal wall thickening (81.5 % of GvHD patients), luminal stenosis (81.5 %), mural contrast enhancement (70.4 %), and ascites (59.3 %). These findings were also observed in other conditions than GvHD. The most frequently involved intestinal segment was the sigmoid colon (63.0 %), followed by the ileum (59.3 %) and the jejeunum (51.9 %). The number of involved segments (r{sub s} =0.54, p =0.009) correlated significantly with clinical severity as determined by GvHD grading. After allogeneic stem cell transplantation, MRE may (1) contribute to detection and localization of GI GvHD, and (2) add information indicating the clinical severity of disease, but findings are unspecific. False negative results may be observed not only in low-grade GI GvHD. (orig.)

  16. Magnetic resonance enterography for assessment of intestinal graft-versus-host disease after allogeneic stem cell transplantation

    International Nuclear Information System (INIS)

    To determine the diagnostic performance of MR enterography (MRE) for detection and grading of gastrointestinal graft-versus-host disease (GI GvHD) after hematopoietic stem cell transplantation (SCT). Forty-one patients with known GvHD or suspected GvHD underwent MRE and GI endoscopy with multi-level biopsies. MRE images were reviewed for presence of intestinal wall inflammation. Clinical grading of GI GvHD was performed. Histopathological evaluation (HPE) served as the reference standard. Overall, MRE demonstrated a per-patient sensitivity of 81.5 % for detection of GI GvHD. The most common findings were intestinal wall thickening (81.5 % of GvHD patients), luminal stenosis (81.5 %), mural contrast enhancement (70.4 %), and ascites (59.3 %). These findings were also observed in other conditions than GvHD. The most frequently involved intestinal segment was the sigmoid colon (63.0 %), followed by the ileum (59.3 %) and the jejeunum (51.9 %). The number of involved segments (rs =0.54, p =0.009) correlated significantly with clinical severity as determined by GvHD grading. After allogeneic stem cell transplantation, MRE may (1) contribute to detection and localization of GI GvHD, and (2) add information indicating the clinical severity of disease, but findings are unspecific. False negative results may be observed not only in low-grade GI GvHD. (orig.)

  17. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins

    OpenAIRE

    Conn, Simon; Curtin, Chris; Bézier, Annie; Franco, Chris; Zhang, Wei

    2008-01-01

    The ligandin activity of specific glutathione S-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from Vitis vinifera L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with...

  18. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  19. Regioselective biotransformation of valencene in cell suspension cultures of Citrus sp.

    Science.gov (United States)

    Drawert, F; Berger, R G; Godelmann, R

    1984-02-01

    Three out of five cultivars of citrus species tested convert exogenous valencene via the 2-hydroxy-derivative (nootkatol) to nootkatone. The effect of various valencene concentrations and the time course of the biotransformation were examined. The transformation capability of the cells runs parallel with growth up to the middle of the logarithmic phase and remains constant until the carbon source is completely exhausted. PMID:24253336

  20. Relationship between Surface Modifications of Nanoparticle and Invasion into Suspension Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Y; Sakai, N; Yoneda, M [Graduate School of Engineering, Kyoto University, Katsura, Kyoto 6158540 (Japan); Tsuda, A, E-mail: ymatsui@risk.env.kyoto-u.ac.jp [Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (United States)

    2011-07-06

    Nanomaterials have a variety of properties for each material. There is little information available on which kinds of material properties have effects on toxicity and kinetics. This paper presents that a relationship between material properties and hazard data by undertaking a bibliographical survey at first. With respect to cytotoxicity, it probably depends mainly on the particle volume dose and to a certain degree on particle solubility. It can be concluded from these results that there is a relationship between material properties and hazard data. Many activities involving nano risk are occurring all over the world. Secondly, we assayed actually for cellular uptake of three kinds of Quantum dots (15 nm, 5.5x10{sup 12} particles/ml) to demonstrate our result of bibliographical survey. Three different surface modification quantum dots (non-modification, -COOH, -NH3) were mixed with floating Jurkat cells in each. After thirty minute, we washed these cells three times and detected fluorescence by flow cytometer. Almost all the carboxylate particles invaded a cell, about 60% aminated them also invaded and few non-modification particles were taken up. Nanomaterials are often very broadly categorized and named based upon their basic material composition or product shape. Our results confirm that we have to examine which physical-chemical properties affect some adverse effects for each nanomaterial.

  1. Neural Stem Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy

    OpenAIRE

    Hattiangady, Bharathi; Shetty, Ashok K.

    2011-01-01

    Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ~30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the effica...

  2. The graft-versus-host reaction and immune function. II. Recruitment of pre-T-cells in vivo by graft-versus-host-induced dysplastic thymuses following irradiation and bone marrow treatment

    International Nuclear Information System (INIS)

    The graft-versus-host (GVH) reaction induces thymic dysplasia and an arrest in T cell differentiation. Studies were performed to test the effect of irradiation and reconstitution with bone marrow on GVH-induced thymic dysplasia and T cell differentiation. GVH reactions were induced in CBAxAF1 adult mice by the injection of A strain lymphoid cells. All GVH-reactive mice were immunosuppressed by day 7 after GVH induction and thymic dysplasia was evident by day 24. Forty days after the induction of the GVH reaction the mice were irradiated (850 rads) and repopulated with 10-15 X 10(6) syngeneic or parental bone marrow cells. Thirty days after irradiation and bone marrow reconstitution, GVH-reactive mice were used for histological and functional studies. These mice displayed near-normal thymus morphology with scattered epithelial cells in the medulla, and normal numbers of Thy-1-positive cells. Donor cells had totally repopulated thymuses of irradiated bone marrow reconstituted mice by day 19 after irradiation. T helper cell function did not recover in the reconstituted mice. These results suggest that (1) the process responsible for GVH-induced thymic dysplasia is radiosensitive, and (2) the thymus has the potential to regenerate a normal structure, but fails to regain normal function

  3. Stent graft placement for dysfunctional arteriovenous grafts

    International Nuclear Information System (INIS)

    This study aimed to evaluate the usefulness and outcomes of stent graft use in dysfunctional arteriovenous grafts. Eleven patients who underwent stent graft placement for a dysfunctional hemodialysis graft were included in this retrospective study. Expanded polytetrafluoroethylene covered stent grafts were placed at the venous anastomosis site in case of pseudoaneurysm, venous laceration, elastic recoil or residual restenosis despite the repeated angioplasty. The patency of the arteriovenous graft was evaluated using Kaplan-Meier analysis. Primary and secondary mean patency was 363 days and 741 days. Primary patency at 3, 6, and 12 months was 82%, 73%, and 32%, respectively. Secondary patency at the 3, 6, 12, 24, and 36 months was improved to 91%, 82%, 82%, 50%, and 25%, respectively. Fractures of the stent graft were observed in 2 patients, but had no effect on the patency. Stent graft placement in dysfunctional arteriovenous graft is useful and effective in prolonging graft patency

  4. Stent graft placement for dysfunctional arteriovenous grafts

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam (Korea, Republic of); Shin, Byung Seok; Ohm, Joon Young; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2015-07-15

    This study aimed to evaluate the usefulness and outcomes of stent graft use in dysfunctional arteriovenous grafts. Eleven patients who underwent stent graft placement for a dysfunctional hemodialysis graft were included in this retrospective study. Expanded polytetrafluoroethylene covered stent grafts were placed at the venous anastomosis site in case of pseudoaneurysm, venous laceration, elastic recoil or residual restenosis despite the repeated angioplasty. The patency of the arteriovenous graft was evaluated using Kaplan-Meier analysis. Primary and secondary mean patency was 363 days and 741 days. Primary patency at 3, 6, and 12 months was 82%, 73%, and 32%, respectively. Secondary patency at the 3, 6, 12, 24, and 36 months was improved to 91%, 82%, 82%, 50%, and 25%, respectively. Fractures of the stent graft were observed in 2 patients, but had no effect on the patency. Stent graft placement in dysfunctional arteriovenous graft is useful and effective in prolonging graft patency.

  5. Influence of ischemia before vein grafting on early hyperplasia of the graft and the dynamic changes of the intima after grafting

    Directory of Open Access Journals (Sweden)

    Zou RongJiang

    2012-09-01

    Full Text Available Abstract Background To investigate both the influence of ischemia before grafting on early hyperplasia of the vein grafts, and the dynamic changes of the intima after grafting in a rabbit model of vein graft disease. Methods We performed paired vein graft experiments under different ischemic conditions (15 vs. 60 min; 15 vs. 90 min in the neck of the rabbits and compared the differences between the grafts. Clopidogrel, an anti-platelet agent, was administered before and after surgery. Twenty-eight days after the grafting procedure, the veins were evaluated microscopically. The dynamic changes of the intima after grafting were evaluated by scanning electron microscopy over time. Results The vein grafts subjected to 60- or 90-min ischemia exhibited no differences compared to those subjected to 15-min ischemia in terms of the mean thickness of the intimal, medial, and adventitial layers of the graft. Similarly, there was no difference in the Ki-67 labeling index (proliferation marker between the vein grafts. Vein grafts with 15-min ischemia lost endothelial cells (ECs but healed by 3 days post graft, whereas vein grafts with 90-min ischemia suffered serious EC loss, which was restored with new ECs during days 2 to 14 post graft. Conclusions Ninety-minute ischemia before vein grafting can cause serious EC loss, but does not increase early intimal hyperplasia when clopidogrel is administered. Protecting the vein from ischemia and reperfusion injury preserves ECs.

  6. TGF-β-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease by suppressing expansion and killing of effector CD8+ cells.

    Science.gov (United States)

    Gu, Jian; Lu, Ling; Chen, Maogen; Xu, Lili; Lan, Qin; Li, Qiang; Liu, Zhongmin; Chen, Guihua; Wang, Ping; Wang, Xuehao; Brand, David; Olsen, Nancy; Zheng, Song Guo

    2014-10-01

    The use of TGF-β-induced CD4(+)Foxp3(+) T cells (induced regulatory T cells [iTregs]) is an important prevention and treatment strategy in autoimmune diseases and other disorders. However, the potential use of iTregs as a treatment modality for acute graft-versus-host disease (aGVHD) has not been realized because they may be unstable and less suppressive in this disease. We restudied the ability of iTregs to prevent and treat aGVHD in two mouse models. Our results showed that, as long as an appropriate iTreg-generation protocol is used, these iTregs consistently displayed a potent ability to control aGVHD development and reduce mortality in the aGVHD animal models. iTreg infusion markedly suppressed the engraftment of donor CD8(+) cells and CD4(+) cells, the expression of granzyme A and B, the cytotoxic effect of donor CD8(+) cells, and the production of T cell cytokines in aGVHD. Therefore, we conclude that as long as the correct methods for generating iTregs are used, they can prevent and even treat aGVHD. PMID:25156367

  7. Recombinant IL-33 prolongs leflunomide-mediated graft survival by reducing IFN-γ and expanding CD4(+)Foxp3(+) T cells in concordant heart transplantation.

    Science.gov (United States)

    Dai, Chen; Lu, Fang-Na; Jin, Ning; Yang, Bo; Gao, Chang; Zhao, Bin; Fu, Jia-Zhao; Hong, Shi-Fu; Liang, Han-Ting; Chen, Li-Hong; Chen, Zhi-Shui; Chen, Jie; Qi, Zhong-Quan

    2016-08-01

    Interleukin (IL)-33 is a novel IL-1 family member, and its administration has been associated with promotion of T helper type-2 (Th2) cell activity and cytokines, particularly IL-4 and IL-5 in vivo. Recently, IL-33 was shown to increase CD4(+)Foxp3(+) regulatory T cells (Tregs) and to suppress levels of the Th1-type cytokine IFN-γ in allogeneic heart transplantation in mice. Therefore, we hypothesized that IL-33 and leflunomide (Lef) could prolong graft survival in the concordant mouse-to-rat heart transplantation model. In this model, xenografts undergo acute humoral xenograft rejection (AHXR) typically on day 3 or cell-mediated rejection approximately on day 7 if AHXR is inhibited by Lef treatment. Recipients were treated with Lef (n=6), IL-33 (n=6), IL-33 combined with Lef (n=6), or left untreated (n=6) for survival studies. Heart grafts were monitored until they stopped beating. Mouse heterotopic grafts were performed, and recipients were sacrificed on days 2 and 7 for histological and flow cytometric analyses. The combination of IL-33 and Lef significantly prolonged the grafts from 17.3±2.3 to 2.8±0.4 days, compared to untreated controls. IL-33 administration with Lef, while facilitating Th2-associated cytokines (IL-4 on day 2 but not day 7), also decreased IFN-γ on day 2 and day 7, compared with Lef treatment only. Furthermore, IL-33 with Lef administration caused an expansion of suppressive CD4(+)Foxp3(+) Tregs in rats. The IL-33 and Lef combination therapy resulted in significantly prolonged graft survival, associated with markedly decreased Th1 cells and increased IL-10 levels. In addition, the combination therapy significantly decreased the percentage of CD-45(+) B cells on days 2 and 7, compared with monotherapy. These findings reveal a new immunoregulatory property of IL-33. Specifically, it facilitates regulatory cells, particularly functional CD4(+)Foxp3(+) Tregs that underlie IL-33-mediated cardiac xenograft survival. Moreover, it can decrease Th

  8. Activation, Immune Polarization, and Graft-versus-Leukemia Activity of Donor T-cells are Regulated by Specific Subsets of Donor Bone Marrow Antigen-Presenting Cells in Allogeneic Hematopoietic Stem Cell Transplantation1

    OpenAIRE

    Li, Jian-Ming; Southerland, Lauren T.; Lu, Ying; Darlak, Kataryna A.; Giver, Cynthia R.; McMillin, Douglas W.; Harris, Wayne A.C.; Jaye, David L.; Waller, Edmund K.

    2009-01-01

    We investigated the roles of specific subsets of donor APCs purified from bone marrow in donor T cell activation and graft-vs-leukemia (GvL) activity in murine models of hemopoietic stem cell transplantation. Lineage−CD11c+ APC precursors were separated from donor bone marrow based on expression of CD11b. Transplanting lineage−CD11c+CD11b− APC (CD11b− APC) in combination with c-kit+Sca-1+lineage− hemopoietic stem cells (HSC) and congenic donor T cells led to increased donor CD4+ and CD8+ T ce...

  9. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Science.gov (United States)

    Ke, Liping; Liu, RuiE; Chu, Bijue; Yu, Xiushuang; Sun, Jie; Jones, Brian; Pan, Gang; Cheng, Xiaofei; Wang, Huizhong; Zhu, Shuijin; Sun, Yuqiang

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 µmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops. PMID:22768325

  10. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Directory of Open Access Journals (Sweden)

    Liping Ke

    Full Text Available Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel. In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L and bentazon (4.2 µmol. A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  11. Crosslinking and alkyl substitution in nano-structured grafted fluoropolymer for use as proton-exchange membranes in fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner;

    2009-01-01

    crosslinking agent divinylbenzene has been investigated and its amount optimized. Substitution of styrene by methylstyrene and t-butylstyrene has been performed with the purpose of improving the chemical stability of the membranes. Grafting with a fraction of divinylbenzene in the order of 1-2 vol-% of the...... total monomers has been found to be the best compromise between high grafting yield, good chemical stability, and high proton conductivity of the final membrane. The use of methylstyrene and t-butylstyrene as grafting monomers instead of styrene results in substantially increased chemical stability...

  12. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET

    OpenAIRE

    Ünal Nermin; Scheid Christof; Schmidt Matthias; Müller-Ehmsen Jochen; Tossios Paschalis; Moka Detlef; Schwinger Robert HG; Mehlhorn Uwe

    2006-01-01

    Abstract Background We tested the hypothesis, that intramyocardial injection of mononuclear bone marrow cells combined with coronary artery bypass grafting (CABG) surgery improves tissue viability or function in infarct regions with non-viable myocardium as assessed by nuclear imaging techniques. Methods Thus far, 7 patients (60 ± 10 [SD] years) undergoing elective CABG surgery after a myocardial infarction were included in this study. Prior to sternotomy, bone marrow was harvested by sternal...

  13. Voriconazole-Induced Phototoxicity Masquerading as Chronic Graft-versus-Host Disease of the Skin in Allogeneic Hematopoietic Cell Transplant Recipients

    OpenAIRE

    Patel, Asha R.; Turner, Maria L.; Baird, Kristin; Gea-Banacloche, Juan; Mitchell, Sandra; Pavletic, Steven Z.; Wise, Barbara; Cowen, Edward W.

    2009-01-01

    Systemic fungal infections pose a significant risk to patients following allogeneic hematopoietic cell transplantation (alloHCT). Voriconazole (Vfend®, Pfizer) is an oral second-generation triazole antifungal agent that offers broad spectrum of coverage against fungal species and is frequently utilized in the post-HCT setting. Herein, we describe five patients who were initially believed to be experiencing a flare of cutaneous chronic graft-versus-host disease (cGvHD), but who were actually e...

  14. Simultaneous removal of a tumour of the right atrium and inferior vena cava and coronary bypass-grafting in a patient with recurrent clear renal cell carcinoma

    Science.gov (United States)

    Pietrzyk, Edward; Głuszek, Stanisław; Michta, Kamil; Kot, Marta; Wożakowska-Kapłon, Beata

    2015-01-01

    Metastatic cardiac tumours are the most common malignant cardiac tumours. In the early stages they are usually asymptomatic, but their consequences can be very serious, and the prognosis is poor. We present a patient with recurrent renal cell carcinoma as a tumour of the right atrium and the vena cava inferior in whom cancerous masses were removed with simultaneously coronary artery bypass-grafting. PMID:26855653

  15. Short tandem repeat technology has diverse applications: Individual identification, phylogenetic reconstruction and chimerism based post haematopoietic stem cell transplantation graft monitoring

    OpenAIRE

    Agrawal Suraksha; Khan Faisal; Talwar Sudha; Nityanand Sonia

    2004-01-01

    BACKGROUND: Short Tandem Repeat (STR) loci are widely considered to be effective for variety of applications including forensic applications, phylogenetic reconstruction and chimerism based post Haematopoietic Stem Cell Transplantation (HSCT) graft monitoring. For each application, specific sets of STR loci are used. AIMS: In the present study, we have attempted to use same set of STR loci for varied purposes based on their efficacy and informativity. SETTINGS AND DESIGN: Population and patie...

  16. The lung function score and its components as predictors of overall survival and chronic graft-vs-host disease after allogeneic stem cell transplantation

    OpenAIRE

    Ditz, Diana; Rabanus, Robert; Schulz, Christian; Wolff, Daniel; Holler, Barbara; HOLLER, ERNST; Hildebrandt, Gerhard Carl

    2016-01-01

    Aim To retrospectively assess if the modified lung function score (LFS) and/or its components, forced expiratory volume within the first second (FEV1) and diffusion capacity for carbon monoxide corrected for hemoglobin level (cDLCO), predict overall survival (OS) and chronic graft-vs-host-disease (cGvHD). Methods We evaluated 241 patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) at the University of Regensburg Transplant Center between June 1998 and July 2005 i...

  17. Distinct graft-versus-leukemic stem cell effects of early or delayed donor leukocyte infusions in a mouse chronic myeloid leukemia model

    OpenAIRE

    Lu, Yi-Fen; Gavrilescu, L Cristina; Betancur, Monica; Lazarides, Katherine; Klingemann, Hans; Van Etten, Richard A.

    2012-01-01

    Among hematologic neoplasms, chronic myeloid leukemia (CML) is exquisitely sensitive to graft-versus-leukemia (GVL) because patients relapsing after allogeneic hematopoietic stem-cell transplantation (alloHSCT) can be cured by donor leukocyte infusion (DLI); however, the cellular mechanisms and strategies to separate GVL from GVHD are unclear. We used a BCR-ABL1 transduction/transplantation mouse model to study the mechanisms of DLI in MHC-matched, minor histocompatibility antigen–mismatched ...

  18. <