WorldWideScience

Sample records for cell survival dna

  1. The influence of tumour cell DNA content on survival in colorectal cancer: a detailed analysis.

    OpenAIRE

    Armitage, N C; Ballantyne, K. C.; Evans, D F; Clarke, P; Sheffield, J.; Hardcastle, J. D.

    1990-01-01

    We have investigated the influence of tumour cell DNA content (ploidy) on survival of 416 patients undergoing excisional surgery for colorectal cancer. Two hundred and eleven (51%) tumours had an abnormal DNA content (aneuploid or tetraploid). There was no correlation between ploidy status, sex, age and pathological stage, histological grade, tumour site, local tumour extension or assessment of curability. Patients with tumours with an abnormal DNA content had a poorer survival 68/211 (32%) t...

  2. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  3. Ceruloplasmin reduces DNA double strand breaks and improves cell survival in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Full text: Ionizing radiation through oxidative free radical production causes dose-dependent oxidative damage to biological macromolecules. To reduce the oxidative stress from ionizing radiation, use of antioxidants has been suggested as a prophylactic and early remedy of pathogenic therapy. Ceruloplasmin (Cp), a plasma protein produced by the liver, belongs to a class of multi copper ferroxidases known for their role in iron metabolism in vertebrates, including humans. Functions of Cp include copper transport, ferroxidase and aminooxidase activities. Serum Cp concentration fluctuates during inflammation, infection, trauma and irradiation. The role of Cp as an antioxidant after irradiation is not fully understood. Our aim was to investigate the radioprotective efficacy of Cp. We studied the effect of ceruloplasmin on the in-vitro radiosensitivity of lymphoblastoid cells lines after gamma-ray irradiation. We used radiosensitive cell lines LB0003, LB0004 and LB 0005, established from individuals who developed late radiation necrosis following curative radiotherapy and non-sensitive cell lines Masci and LB0001 as controls. The cell lines were irradiated with doses from 0 - 60 Gy. Genomic DNA was extracted at 0 - 24h after irradiation and subjected to PFGE to analyse the initial quantity of DNA DSBs and the quantity of unrepaired DSBs to evaluate the kinetics of DSB rejoining. Human Cp (0.05 or 0.5mg/ml) was added to cell cultures 30 min before or 5 min after irradiation. In the presence of Cp cell survival was increased and the level of DBSs reduced demonstrating its radioprotective effect and the potential mechanism of its protection against radiation effects. Its radioprotective efficacy on dose and time of administration of Cp. The radiosensitive cell lines differ from controls by kinetics of DSBs repair. Importantly, in presence of ceruloplasmin the level of DNA DSB was reduced and the kinetics of DNA DSB repair became comparable to that in controls

  4. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    OpenAIRE

    Razmik Mirzayans; Bonnie Andrais; Piyush Kumar; David Murray

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and t...

  5. Survival and DNA repair in ultraviolet-irradiated haploid and diploid cultured frog cells

    International Nuclear Information System (INIS)

    Survival and repair of DNA following ultraviolet (254-nm) radiation have been investigated in ICR 2A, a cultured cell line from haploid embryos of the grassfrog, Rana pipiens. Survival curves from cells recovering in the dark gave mean lethal dose value (D0) in the range 1.5-1.7 Jm-2 for both haploid and diploid cell stocks. The only significant difference observed between haploids and diploids was in the extent of the shoulder at low fluence (Dsub(q)), the value for exponentially multiplying diploid cells (3.0 Jm-2) being higher than that found for haploids (1.2 Jm-2). Irradiation of cultures reversibly blocked in the G1 phase of the cell cycle gave survival-curve coefficients indistinguishable between haploids and diploids. Post-irradiation exposure to visible light restored colony-forming capacity and removed chromatographically estimated pyrimidine dimers from DNA at the same rates. After fluences killing 90% of the cells, complete restoration of survival was obtained after 60-min exposure to 500 foot-candles, indicating that in this range lethality is entirely photoreversible and therefore attributable to pyrimidine dimers in DNA. Dimer removal required illumination following ultraviolet exposure, intact cells and physiological temperature, implying that the photoreversal involved DNA photolyase activity. Excision-repair capacity was slight, since no loss of dimers could be detected chromoatographically during up to 48 h incubation in the dark and since autoradiographically detected 'unscheduled DNA synthesis' was limited to a 2-fold increase saturated at 10 Jm-2. These properties make ICR 2A frog cells useful to explore how DNA-repair pathways influence mutant yield. (Auth.)

  6. DNA repair: the culprit for tumor-initiating cell survival?

    OpenAIRE

    Mathews, Lesley A.; Cabarcas, Stephanie M.; Farrar, William L.

    2011-01-01

    The existence of “tumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and the...

  7. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  8. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  9. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis. PMID:27187358

  10. Mitochondrial respiratory modifiers confer survival advantage by facilitating DNA repair in cancer cells

    International Nuclear Information System (INIS)

    High rate of aerobic glycolysis (Warburg effect), one of the primary hallmarks of cancer cells, acquired during the multistep development of tumors is also responsible for therapeutic resistance. Underlying this hallmark is the compromised respiratory metabolism that contributes to the acquisition of the glycolytic phenotype for sustained ATP production and cell proliferation. Nevertheless, the exact mechanisms underlying the glycolysis-linked radio-resistance in cancer cells remain elusive. In this study, we transiently elevated glycolysis by treating human cell lines (HEK293, BMG-1 and OCT-1) with mitochondrial respiratory modifiers (MRMs) viz. 2,4-dinitrophenol, Photosan-3, and Methylene blue to examine if transient stimulation of glycolysis before irradiation using MRMs is sufficient to confer radioresistance. Treatment with MRMs led to a significant (two-fold) increase in glucose consumption and lactate production together with a robust increase in the protein levels of two key regulators of glucose metabolism, i.e. GLUT-1 and HK-II. MRMs also enhanced the clonogenic survival and facilitated DNA repair by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. Inhibition of glucose uptake by inhibitors like 2-deoxy-D-glucose (2-DG), 3-bromo pyruvate (3-BP) and fasentin under conditions of stimulated glycolysis not only reversed the effect but also sensitized the cells to radiation more profoundly. The inhibition of glycolysis using 2-DG also reduced the levels of Ku 70 (NHEJ) and Rad-51 (HR) proteins. Thus, our results suggest that enhanced glycolysis in cancer cells may confer radio-resistance and offers survival advantage partly by enhancing the repair of DNA damage. (author)

  11. Radiation-induced DNA double strand breaks in Ehrlich ascites tumour cells and their possible effects on cell survival

    International Nuclear Information System (INIS)

    A method to prepare high-molecular, pure DNA with the aid of enzymes, detergents, and heat treatment is presented. A sedimentation technique with neutral density gradients has been introduced which permits mass separation and molecular mass analysis of high-molecular DNA (msub(r) 10). Using this method, the induction of DNA double strand breaks (DSB) in the dose range between 10 Gy <= D <= 100 Gy has been measured. Further, the induction of DSB in dependence of the radiation quality has been studied. A correlation between DSB induction and cell survival was not found for any type of radiation investigated. DNA repair was measured in a multitude of repair conditions. The repair kinetics shows that the ''apparent'' DNA fraction is negligible. A large number of DSB was found to be repaired. The effects of some repair inhibitors have been investigated. DSB repair after cell plating on agar was proved. This factor has been underestimated in all former estimates of DSB influence on cell survival. It has been shown that DSB in living cells cannot be tolerated. There was no indication of biologically irrelevant DSB. (orig./AJ)

  12. Measurement of DNA strand break repair and survival rate after X-irradiation of synchronized CHO cells

    International Nuclear Information System (INIS)

    The author investigated the induction and repair of DNA strand breaks and the survival rate of CHO cells after X-radiation at different stages of the cell cycle. His particular concern was the interdependence between cell inactivation and double strand break repair. (orig./AJ)

  13. Cisplatin-Induced DNA Damage Activates Replication Checkpoint Signaling Components that Differentially Affect Tumor Cell SurvivalS⃞

    OpenAIRE

    Wagner, Jill M.; Karnitz, Larry M.

    2009-01-01

    Cisplatin and other platinating agents are some of the most widely used chemotherapy agents. These drugs exert their antiproliferative effects by creating intrastrand and interstrand DNA cross-links, which block DNA replication. The cross-links mobilize signaling and repair pathways, including the Rad9-Hus1-Rad1-ATR-Chk1 pathway, a pathway that helps tumor cells survive the DNA damage inflicted by many chemotherapy agents. Here we show that Rad9 and ATR play critical r...

  14. Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells

    International Nuclear Information System (INIS)

    The aryl hydrocarbon receptor (AhR) mediates toxicity of a variety of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and dioxins. However, the underlying mechanisms and genetic programmes regulated by AhR to cause adverse effects but also to counteract poisoning are still poorly understood. Here we analysed the effects of two AhR ligands, benzo[a]pyrene (B[a]P), a DNA damaging tumour initiator and promotor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a pure tumour promoter, on cell survival and on nucleotide excision repair (NER) gene expression. NER deals with so called 'bulky' DNA adducts including those generated by enzymatically activated B[a]P. Therefore, the hypothesis that AhR may enhance NER gene expression to trigger DNA repair in the presence of genotoxic AhR ligands was tested. Furthermore, we investigated a potential cytoprotective effect of AhR activation by the non-genotoxic ligand TCDD against cell death induced by various genotoxins. Finally, the actions of genotoxins themselves on NER gene expression were studied. As a cell culture model we used mouse hepatoma cells (Hepa-c7) proficient for AhR and its partner protein ARNT as well as subclones deficient in AhR (Hepa-c12) or ARNT (Hepa-c4) to study involvement of AhR and ARNT in response to B[a]P and TCDD. Indeed, the mRNA levels of the two NER genes XP-C and DNA polymerase kappa were increased by B[a]P and TCDD, however, this was not accompanied by an increase in the amount of the respective proteins. Pretreatment of cells with TCDD did not reduce cytotoxicity induced by various genotoxins. Thus, in Hepa-c7 cells AhR has no major effects on the expression of these crucial NER proteins and does not prevent genotoxin-provoked cell death. As expected, the genotoxins B[a]P and cis-platin led to p53 accumulation and induction of its target p21. Interestingly, however, NER gene expression was not enhanced but rather decreased. As two NER genes, XP-C and DNA damage binding

  15. DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival.

    Science.gov (United States)

    Wingert, Susanne; Thalheimer, Frederic B; Haetscher, Nadine; Rehage, Maike; Schroeder, Timm; Rieger, Michael A

    2016-03-01

    Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system. Stem Cells 2016;34:699-710. PMID:26731607

  16. DNA synthesis and cell survival after X-irradiation of mammalian cells treated with caffeine or adenine

    International Nuclear Information System (INIS)

    The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation could be postponed by a post-irradiation treatment with 1.0 to 2.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibited depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis had no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiated X-ray-induced cell killing, this reduction in survival was due primarily to effects on cells not in S-phase. (author)

  17. The effects of WR-2721 on the cell survival and DNA sedimentation in human peripheral blood lymphocytes against gamma radiation

    International Nuclear Information System (INIS)

    The radioprotective agent, WR-2721, was studied for its cytotoxicity and radioprotection on human peripheral blood lymphocytes. The relative radiosensitivities of lymphocyte populations and enriched T and B - cell populations following in vitro γ-irradiation (at 0-8 Gy) were determined. Trypan blue dye exclusion method was used to determine cell survival and ethidium bromide-DNA complex sucrose density gradient centrifugation including spectrophotometry was used to measure DNA damage, respectively. There is no effect on cell membrane integrity up to drug concentrations below 1500 μg/ml for 2 hours treatment. In concentration of 5000 μg/ml, the resistance of cells to drug decreases to 60% in 2 hours treatment, but DNA damage has not been detected. The dose reduction factor (DRF), obtained from cell survival of drug treatment 30 minutes before irradiation, is correlated to drug concentration. The DRF values for 100 and 1500 μg/ml treatments are 1.33 and 1.19 respectively. In comparison with other results on DRF values of WR-2721 on NIH mice bone marrow chromosome aberration and V79 cell survival are 2.88 and 1.17 respectively, the results show that WR-2721 has more radioprotective effects in vivo than in vitro. On the other hand, WR-2721 shows only slight radioprotective effects on DNA sedimentation ratio

  18. Thymidine kinase 1 deficient cells show increased survival rate after UV-induced DNA damage

    DEFF Research Database (Denmark)

    Skovgaard, T; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    2010-01-01

    enzyme thymidine kinase 1 (TK1) are more resistant to UV-induced DNA damage than TK1 positive cells although they have thymidine triphosphate (dTTP) levels of only half the size of control cells. Our results suggest that higher thymidine levels in the TK- cells caused by defect thymidine salvage to dTTP...

  19. SV40 DNA amplification and reintegration in surviving hamster cells after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    SV40-transformed Chinese hamster embryo cells were exposed to 60Co γ-irradiation and the fate of the integrated SV40 sequences was pursued over a period of 20 days following radiation exposure. As shown by colony hybridization, integrated SV40 sequences were amplified in surviving and non-surviving cells. At later times, however, clonal sublines of surviving cells grown for 20-30 cell generations after irradiation had lost most of their amplified SV40 copies but showed altered restriction fragment patterns indicating reintegration of SV40 sequences at new sites of the hamster genome. This suggest that 60Co γ-irradiation can generate mutations by inducing over-replication of chromosome segments that are then substrates of enzymatic rearrangements. (author)

  20. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival

    International Nuclear Information System (INIS)

    A clustered DNA lesion, also known as a multiply damaged site, is defined as ≥2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.

  1. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Sage, Evelyne [Institut Curie, Bat. 110, Centre Universitaire, 91405 Orsay (France); CNRS UMR3348, Bat. 110, Centre Universitaire, 91405 Orsay (France); Harrison, Lynn, E-mail: lclary@lsuhsc.edu [Department of Molecular and Cellular Physiology, LSUHSC-S, 1501 Kings Highway, Shreveport, LA 71130 (United States)

    2011-06-03

    A clustered DNA lesion, also known as a multiply damaged site, is defined as {>=}2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.

  2. Radiobiological characterization of human P3 teratocarcinoma cells: survival and DNA damages

    International Nuclear Information System (INIS)

    An attempt has been made to characterize the lethal effects on P3 teratocarcinoma cells of 60Co gamma-rays, 50 kVp x-rays, and JANUS fission-spectrum neutrons and compared these data with those that were obtained with the extensively studied Chinese hamster lung fibroblast V79 line. For cell killing, the authors found no differences between x-ray and Y-ray response in either line, but P3 cells are about twice as sensitive as V79 cells to both of these radiations. For neutrons, P3 cells are 1.6 times as sensitive as V79 cells. Both types of cells are killed more efficiently by neutrons than by x-rays with relative biological effectiveness (RBEs) of about 6.3 for V79 cells and 3.6 for P3 cells. To investigate the molecular basis for the high lethality of JANUS neutrons in the P3 cells, they compared the yields of DNA breaks and DNA-to-protein crosslinks caused by JANUS fission-spectrum neutrons, with yields produced by x-rays, gamma-rays, and nonionizing radiation. With regard to breaks, the yields obtained after x-rays and gamma-rays were identical. The RBE for DNA breakage for JANUS neutrons was about 8 relative to x-rays, 70 breaks per genome per lethal event. This finding provides evidence that lesions other than those measured so far are important in the killing of cells by neutrons

  3. Differences in repair of radiation induced damage in two human tumor cell lines as measured by cell survival and alkaline DNA unwinding

    International Nuclear Information System (INIS)

    We studied the relationship between the repair of radiation induced DNA strand breaks and cellular repair kinetics in two human tumor cell lines, NB-100 (neuroblastoma) and HN-1 (squamous cell carcinoma). Damage was quantified using the fluorometric analysis of DNA unwiding (FADU) for DNA damage, and cell survival was assessed using a clonogenic assay. In plateau phase cells repair of sublethal damage was virtually absent in NB-100 after 4 Gy (recovery ratio 1.0), whereas HN-1 cells did show sublethal damage repair (recovery ratio 1.4). Repair of potentially lethal damage was more pronounced in NB-100 cells (recovery ratio 2.3) than in HN-1 cells (recovery ratio 1.7) after 4 Gy. Graded doses of X-rays induced comparable levels of DNA damage in both tumor cell lines. However, in HN-1 cells more DNA strand breaks were repaired after 4 Gy, leaving about 25% of the initial damage unrepaired, whereas in NB-100 about 50% was unrepaired. This higher fraction of unrepaired DNA damage correlated well with the degree of sublethal damage repair which was lower in NB-100 than in HN-1 cell, but it did not correlate with the repair of potentially lethal damage, which was higher in NB-100 than in HN-1. Since the level of damage remaining post-irradiation may be the critical variable for survival, the FADU technique can contribute in elucidating the relationship between radiosensitivity and DNA damage repair capacity. (orig.)

  4. DNA damage and repair in relation to mammalian cell survival implications for microdosimetry

    International Nuclear Information System (INIS)

    The number and dose dependence of DSBs, measured with greatly improved precision in mammalian cells, are in accord with the Chadwick-Leenhouts model and suggest that approximately one DSB per cell causes reproductive death. The rate and activation energy for SSB repair agree with those measured for the critical sublesion by studies of survival at low dose rate. The data indicate that SSBs may interact in the cell to yield a DSB at up to approximately 250 base pairs separation. These findings may provide a basis for bringing the theory of dual radiation action, the Chadwick-Leenhouts molecular model, and survival and stand break measurements into mutual agreement, a development which may greatly benefit the study of radiobiology, and particularly of microdosimetry

  5. Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival.

    Science.gov (United States)

    Hain, Karolina O; Colin, Didier J; Rastogi, Shubhra; Allan, Lindsey A; Clarke, Paul R

    2016-01-01

    A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis. PMID:27230693

  6. Survival-related DNA repair phenomena in cultured rat-kangaroo cells

    International Nuclear Information System (INIS)

    Cultured cells (line PtK-2) from the marsupial mammal rat-kangaroo, or potoroo (Potorous tridactylis), which photoreactivate (PR) both UV-induced dimers and lethality, excise few dimers, and are only slightly sensitized by post-UV exposure to caffeine, were subjected to caffeine and hydroxyurea (HU) treatments during the 30-min PR period. It was found that neither caffeine nor HU inhibited PR of lethality as measured by colony-forming ability. Further, the cells exhibited no photoprotective properties and 3 mM caffeine potentiated the same slight survival decrease in both photoreactivated and unphotoreactivated cells

  7. 2-DG induced modulation of chromosomal DNA profile, cell survival, mutagenesis and gene conversion in x-irradiated yeast

    International Nuclear Information System (INIS)

    Effect of post-irradiation modulation in presence of 2-deoxy-D-glucose and yeast extract, on chromosomal DNA profile, cell survival, reverse mutation (ILV+) and gene conversion (TRP+), were studied in x-irradiated stationary phase yeast cells (diploid strain D7 of Saccharomyces cerevisiae). The damage and repair in chromosomal DNA bands, resolved by using contour clamped homogeneous electric pulsed-field gel electrophoresis (PFGE) technique, was estimated by calculating intensity ratio, Ρn (Ρn=In/It; where In is the intensity of nth band in a lane and It is the sum of intensities of all bands and the well in the lane). The data indicate linear correlation between relative compactness (τ) of a chromosome [chromosome size (Kb)/length of synaptonemal complex (μm)[ and DNA damage and repair. The chromosome repair kinetics were biphasic, showing initial decrease followed by an increase in Ρn. Variations were observed among different chromosomes with respect to DNA damage, repair and post-irradiation repair modulation. 2-DG inhibited both components of chromosomal DNA repair and also repair of potentially lethal damage but enhanced frequencies of mutants. Relatively the effects on revertants were greater in cells irradiated with lower doses (50 Gy) of x-rays and post-irradiation incubation in presence of phosphate buffer having 2-DG (50 mM) and glucose (10 mM). Yeast extract increased frequencies of revertants and convertants thus promoting error-prone DNA repair. Yeast extract in combination with 2-DG showed complex effects on chromosomal DNA repair and enhanced mutagenesis further. (author). 35 refs., 8 figs., 1 tab

  8. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  9. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents.

    Directory of Open Access Journals (Sweden)

    Ryan W Benson

    Full Text Available DinB (DNA Pol IV is a translesion (TLS DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ, a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS. Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.

  10. Effects of daunomycin and radiation on cell-survival and repair of DNA single-strand breaks

    International Nuclear Information System (INIS)

    The combined action of Daunomycin and irradiation was investigated using mouse L-929 cells in culture. Survival of cells was measured with the colony assay. Sedimentation in alkaline sucrose gradients was used to study repair of DNA single-strand breaks (SSB) in the presence of various concentrations of Daunomycin. A small increase in radiosensitivity, as measured by decreasing D0, was obtained for doses of Daunomycin that are considerably toxic to the cells (0.1 μg/ml). However, the Dsub(q) values remained constant even at high concentrations indicating that Daunomycin does not interfere with recovery processes. The rate of rejoining of SSB remained constant up to 1.0 μg/ml, whereas concentrations of Daunomycin as high as 10 μg/ml reduced the velocity of repair by a factor of 13. The data show that concentrations of Daumomycin similar to those required for other DNA-binding drugs were required to inhibit SSB repair. For clinical purposes, no increase in tumour-killing efficiency may be expected from a combined treatment with Daumomycin and radiation. (author)

  11. Effect of 2-deoxy-D-glucose on DNA double strand break repair, cell survival and energy metabolism in euoxic Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Effects of 2-deoxy-D-glucose (2-DG) on DNA double strand break (dsb) repair, cell survival and on the energy metabolism were investigated in exponentially growing Ehrlich ascites tumour (EAT) cells. Cells in suspension were exposed to 40 Gy of X-rays and allowed to repair (up to 4h) with or without 2-DG at 37oC. DNA dsb rejoining was measured by means of clamped homogeneous electric field (CHEF), a pulsed field gel electrophoresis technique. The fraction of activity released (FAR) during electrophoresis (DNA associated 14C-thymidine) was used as a parameter to determine the number of dsb present in the DNA. Biphasic kinetics for dsb repair were observed. The presence of 2-DG significantly inhibited the slow component of dsb repair. The presence of 2-DG also enhanced radiation-induced cell killing. ATP content of cells was measured by a bioluminescence method. ATP content in exponentially growing cells was about 4 pg per cell. The level of ATP was reduced by 50% in presence of 2-DG (C2-DG/CG = 1.0). (author)

  12. Cell Survival in irradiation mouse intestine is increased by DNA-Binding radioprotectors

    International Nuclear Information System (INIS)

    Crypt survival in the mouse intestine has been used to examine effects of bisbenzimide radioprotectors. Intravenous delivery has been used for the present study in which the effects of methyl proamine (MP), a second generation Hoechst 33342 analogue have been examined. Recent results using the lung model suggest that MP is both more potent as a protector and less toxic than H 33342. The rapid nature of the crypt microcolony survival assay in mouse intestine provides an efficient way to examining factors which could impinge on the extent of radioprotection, for example, the interval between protector administration and radiation exposure. The data clearly show that for MP at 100 mg/kg, there is substantially increased crypt survival equivalent to a dose modification of about 1.33. The crypt scoring methods used indicate that protection is throughout the small intestine and preliminary data indicate that colon is also protected to a similar or slightly greater extent

  13. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    OpenAIRE

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence di...

  14. Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Hua Xiong; Da-Qing Yang

    2012-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias.The gene mutated in this disease,ATM (A-T,mutated),encodes a 370-kDa Ser/Thr protein kinase.ATM not only mediates cellular response to DNA damage but also acts as an activator of Akt in response to insulin.However,despite intensive studies,the mechanism underlying the neuronal degeneration symptoms of human A-T is still poorly understood.We found that the topoisomerase inhibitors etoposide and camptothecin readily induced apoptosis in undifferentiated proliferating SH-SY5Y cells but could not induce apoptosis in neuronally differentiated SH-SY5Y cells.In addition,etoposide induced p53 phosphorylation and H2AX foci formation in proliferating SH-SY5Y cells but failed to do so in differentiated SH-SY5Y cells.Moreover,while inhibition of ATM in undifferentiated SH-SY5Y cells partially protected them from etoposide-induced apoptosis,the same treatment had no effect on cell viability in differentiated SH-SY5Y cells.These results suggest that DNA damage or defective response to DNA damage is not the cause of neuronal cell death in human A-T.In contrast,we discovered that Akt phosphorylation was inhibited when ATM activity was suppressed in differentiated SH-SY5Y cells.Furthermore,inhibition of ATM induced apoptosis following serum starvation in neuronally differentiated SH-SY5Y cells but could not trigger apoptosis under the same conditions in undifferentiated proliferating SH-SY5Y cells.These results demonstrate that ATM mediates the Akt signaling and promotes cell survival in neuron-like human SH-SY5Y cells,suggesting that impaired activation of Akt is the reason for neuronal degeneration in human A-T.

  15. Relationship of enhanced survival during confluent holding recovery in ultraviolet-irradiated human and mouse cells to chromosome aberrations, sister chromatid exchanges, and DNA repair

    International Nuclear Information System (INIS)

    The relationship among cellular recovery from ultraviolet light (UVL) damage, cytogenetic changes, and DNA repair was studied in density-inhibited cultures of mouse 10T1/2 cells and human diploid fibroblasts. Both cell types showed similar UVL sensitivites to cell killing and a similar enhancement in survival when subculture to a low density was delayed for 24-48 hr after irradiation (potential lethal damage repair). However, excision repair as measured by the loss of endonuclease-sensitive sites was biphasic and much slower in the mouse cells: 30% were removed in the first 24 hr compared with 60% removed in the first 5 hr in the human cells. More than five times as many excision-induced DNA strand breaks as measured by alkaline elution were detected in the human as compared with the mouse cells. DNA-protein crosslinks were removed with a T 1/2 of 30 hr after 10 J/m2 UVL. UVL induced few chromosomal aberrations in the human cells as compared with mouse cells. The frequency of induced sister chromatid exchanges and the pattern of their decline during recovery were similar in both cell types; the kinetics of this decline was similar to that observed for the removal of DNA-protein crosslinks, and slowly removed endonuclease-sensitive sites. Chromosome aberrations, however, correlated with rapidly removed endo sites and DNA strand breaks and appeared to reflect the number of residual pyrimidine dimers in DNA at the time of its replication

  16. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  17. Application of rapid-lysis techniques in radiobiology. IV. The effect of glycerol and DMSO on Chinese hamster cell survival and DNA single-strand break production

    International Nuclear Information System (INIS)

    A rapid-lysis technique has been used to compare the initial yield of DNA single-strand breaks (ssb) measured 0.2 sec after irradiation and cell survival for Chinese hamster cells in vitro. Both DMSO and glycerol protected cells irradiated in air, and there was a simple relationship between relative radiosensitivity and the initial number of ssb. Under oxic conditions at high concentrations (2 M) of either agent the yield of ssb was reduced by a factor of 3 and the slope of the survival curve by a factor of 2. Under hypoxic conditions much less protection was noted, and even at high concentrations of either agent (2 M) there was only a small degree of protection against cell inactivation and ssb

  18. Survival and persistence of fecal host-specific Bacteroidales cells and their DNA assessed by PMA-qPCR

    Science.gov (United States)

    Bae, S.; Bombardelli, F.; Wuertz, S.

    2008-12-01

    Understanding and managing microbial pollutions in water is one of the foremost challenges of establishing effective managements and remediation strategies to impaired water bodies polluted by uncharacterized fecal sources. Quantitative microbial source tracking (MST) approaches using fecal Bacteroidales and quantitative PCR (qPCR) assays to measure gene copies of host-specific 16S rRNA genetic markers are promising because they can allow for identifying and quantifying fecal loadings from a particular animal host and understanding the fate and transport of host-specific Bacteroidales over a range of conditions in water bodies. Similar to the case of traditional fecal indicator bacteria, a relatively long persistence of target DNA may hamper applied MST studies, if genetic markers cannot be linked to recent fecal pollution in water. We report a successful approach to removing the qPCR signal derived from free DNA and dead host-specific Bacteroidales cells by selectively binding the DNA and consequently inhibiting PCR amplification using light- activated propidium monoazide (PMA). Optimal PMA-qPCR conditions were determined as 100 µM of PMA concentration and a 10-min light exposure time at different solids concentrations in order to mimic a range of water samples. Under these conditions, PMA-qPCR resulted in the selective exclusion of DNA from heat- treated cells of non-culturable Bacteroidales in human feces and wastewater influent and effluent samples. Also, the persistence of feces-derived host-specific Bacteroidales DNA and their cells (determined by universal, human-, cow- and dog-specific Bacteroidales qPCR assays) in seawater was investigated in microcosms at environmental conditions. The average T99 (two log reduction) value for host-specific viable Bacteroidales cells was 28 h, whereas that for total host-specific Bacteroidales DNA was 177 h. Natural sunlight did not have a strong influence on the fate of fecal Bacteroidales cells and their DNA, presumably

  19. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: The effects of ionizing radiation on growth, survival, and development

    Science.gov (United States)

    Nussenzweig, André; Sokol, Karen; Burgman, Paul; Li, Ligeng; Li, Gloria C.

    1997-01-01

    We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80−/− embryonic stem cells are more sensitive than controls to γ-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and γ-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80−/− mice display a hypersensitivity to γ-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80−/− mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80−/− mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair. PMID:9391070

  20. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development.

    Science.gov (United States)

    Nussenzweig, A; Sokol, K; Burgman, P; Li, L; Li, G C

    1997-12-01

    We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80(-/-) embryonic stem cells are more sensitive than controls to gamma-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and gamma-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80(-/-) mice display a hypersensitivity to gamma-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80(-/-) mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80(-/-) mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair. PMID:9391070

  1. A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival.

    OpenAIRE

    Anjum, S; Fourkala, E O; Zikan, M.; Wong, A.; Gentry-Maharaj, A.; Jones, A.; HARDY, R.; Cibula, D.; Kuh, D.; Jacobs, I. J.; Teschendorff, A.E.; Menon, U; Widschwendter, M

    2014-01-01

    Background BRCA1 mutation carriers have an 85% risk of developing breast cancer but the risk of developing non-hereditary breast cancer is difficult to assess. Our objective is to test whether a DNA methylation (DNAme) signature derived from BRCA1 mutation carriers is able to predict non-hereditary breast cancer. Methods In a case/control setting (72 BRCA1 mutation carriers and 72 BRCA1/2 wild type controls) blood cell DNA samples were profiled on the Illumina 27 k methylation array. Using th...

  2. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation.

    Science.gov (United States)

    Dittmann, K H; Rothmund, M C; Paasch, A; Mayer, C; Fehrenbacher, B; Schaller, M; Frauenstein, K; Fritsche, E; Haarmann-Stemmann, T; Braeuning, A; Rodemann, H P

    2016-01-01

    In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair. PMID:26520184

  3. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells

    International Nuclear Information System (INIS)

    Purpose: The effects of a carbon ion beam and X-rays on human pancreatic cancer stem-like cells were examined from the point of view of clonogenic survival and DNA repair. Materials and methods: Human pancreatic cancer stem-like cells were treated with and without carbon ion and X-ray irradiation, and then colony, spheroid and tumor formation assays as well as γH2AX foci formation assay were performed. Results: The relative biological effectiveness (RBE) values of a carbon ion beam relative to X-ray for the MIA PaCa-2 and BxPc-3 cells at the D10 values were 1.85–2.10. The ability for colony, spheroid formation, and tumorigenicity from cancer stem-like CD44+/CD24+ cells is significantly higher than that from non-cancer stem-like CD44−/CD24−cells. FACS data showed that CD44+/CD24+ cells were more highly enriched after X-rays compared to carbon ion irradiation at isoeffective doses. The RBE values for the carbon ion beam relative to X-ray at the D10 levels for CD44+/CD24+ cells were 2.0–2.19. The number of γH2AX foci in CD44−/CD24− cells was higher than that of CD44+/CD24+ cells after irradiation with either X-ray or carbon ion beam. The number of γH2AX foci in CD44+/CD24+ cells was almost the same in the early time, but it persists significantly longer in carbon ion beam irradiated cells compared to X-rays. Conclusions: Carbon ion beam has superior potential to kill pancreatic cancer stem cell-like cells, and prolonged induction of DNA damage might be one of the pivotal mechanisms of its high radiobiological effects compared to X-rays.

  4. Protective action of DNA preparations on the survival of cells and yield of 8-azaguanine resistant mutations in X-irradiated cell culture of chinese hamsters

    International Nuclear Information System (INIS)

    A DNA preparation (molecular weight 19.6-21.0x1O6 daltons) administered to cell culture of Chinese hamsters in concentrations of 100 to 122 μg/ml 60 minutes before and in the course of 3 days after X-irradiation (600 R) decreased the lethality of irradiated cells and reduced induction of 8-azaguanine resistant genic mutations. DNA preparations with the concentrations under study had no toxic action on cells and were not mutagenous

  5. Survival curves for irradiated cells

    International Nuclear Information System (INIS)

    The subject of the lecture is the probability of survival of biological cells which have been subjected to ionising radiation. The basic mathematical theories of cell survival as a function of radiation dose are developed. A brief comparison with observed survival curves is made. (author)

  6. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    International Nuclear Information System (INIS)

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea

  7. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    International Nuclear Information System (INIS)

    The steroid androst-5-ene-3β, 17β-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. (author)

  8. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    International Nuclear Information System (INIS)

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve (α = 1.76) than AA8 (α = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by γ-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5oC to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5oC, allowing them to repair at 37oC in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T1/2 values of 1.3 and 61.3 min) than did AA8 (T1/2 values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author)

  9. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  10. Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression

    International Nuclear Information System (INIS)

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or γ-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to 60Co γ rays or 254-nm UV radiation. Differential display of cDNAs and northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a crisis period was evident during which time cell growth in high serum was no longer optimal, and serum concentrations were reduced to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of γ-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following γ-ray exposure of the intermediate (passage 45) epithelial cells. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. The authors are conducted experiments to identify these genes

  11. The mitochondrial DNA Northeast Asia CZD haplogroup is associated with good disease-free survival among male oral squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Chih-Hsiung Lai

    Full Text Available Reprogramming of energy metabolism in cancer cells has been directly/indirectly linked to mitochondria and mitochondrial functional defects and these changes seem to contribute to the development and progression of cancer. Studies have indicated that mitochondrial DNA haplogroups are associated with risk in relation to various diseases including cancer. However, few studies have examined the effect of haplogroups on cancer prognosis outcome. In order to explore the role of haplogroups on oral squamous cell carcinoma (OSCC prognosis, the mitochondrial genomes of 300 male OSCC patients were comprehensively analyzed by direct sequencing. They were then haplotyped and grouped into four major geographic haplogroups, namely the East Asia AN, Southeast Asia RBF, East Asia MGE and Northeast Asia CZD groups. The Kaplan-Meier plot analysis indicated that individuals who were members of the CZD haplogroup showed a significant association with better disease-free survival (DFS than the other three haplogroups and this phenomenon still existed after adjusting for tumor stage, differentiation and age at diagnosis (hazard ratio=0.55; 95% CI=0.36-0.84. In addition, an interaction between membership of the RBF haplogroup and radiotherapy/chemo-radiotherapy in DFS was also identified. The results strongly support the hypothesis that an individual's haplogroup, by defining their genomic background, plays an important role in tumor behavior and mitochondrially-targeted anticancer drugs are promising future therapeutic approaches.

  12. TRAIL treatment provokes mutations in surviving cells

    OpenAIRE

    Lovric, M M; Hawkins, C J

    2010-01-01

    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling,...

  13. Comparative effect of the thiols dithiothreitol, cysteamine and WR-151326 on survival and on the induction of DNA damage in cultured Chinese hamster ovary cells exposed to γ-radiation

    International Nuclear Information System (INIS)

    The authors compared the ability of dithiothreitol (DTT) cysteamine and WR-151326 to protect aerated Chinese hamster ovary cells from lethal and DNA-damaging effects of γ-radiation. Results were compared with earlier measurements for WR-1065 and WR-255591. All three thiols protected against SS6 induction, though to a significantly lower extent than against cell killing measured under identical conditions. Each thiol also protected against dsb induction. After high radiation doses, protection factors for dsb were also less than protection factors for cell survival; however, the relative effect of each thiol on cell survival and on dsb induction appeared to be equivalent. The hierarchy of protection against both SS6 and dsb was similar to that for cell survival i.e. WR 151326 ≅ cysteamine < DDT. (UK)

  14. DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC treated with antiangiogenic therapies.

    Directory of Open Access Journals (Sweden)

    Inga Peters

    Full Text Available VEGF-targeted therapy increases both the progression-free (PFS and overall survival (OS of patients with metastasized renal cell cancer (mRCC. Identification of molecular phenotypes of RCC could improve risk-stratification and the prediction of the clinical disease course. We investigated whether gene-specific DNA hypermethylation can predict PFS and OS among patients undergoing anti-VEGF-based therapy. Primary tumor tissues from 18 patients receiving targeted therapy were examined retrospectively using quantitative methylation-specific PCR analysis of CST6, LAD1, hsa-miR-124-3, and hsa-miR-9-1 CpG islands. PFS and OS were analyzed for first-line and sequential antiangiogenic therapies using the log rank statistics. Sensitivity and specificity were determined for predicting first-line therapy failure. Hypermethylation of CST6 and LAD1 was associated with both a shortened PFS (log rank p = 0.009 and p = 0.004 and OS (p = 0.011 and p = 0.043. The median PFS observed for the high and low methylation groups of CST6 and LAD1 was 2.0 vs.11.4 months. LAD1 methylation had a specificity of 1.0 (95% CI 0.65-1.0 and a sensitivity of 0.73 (95% CI 0.43-0.90 for the prediction of first-line therapy. CST6 and LAD1 methylation are candidate epigenetic biomarkers showing unprecedented association with PFS and OS as well as specificity for the prediction of the response to therapy. DNA methylation markers should be considered for the prospective evaluation of larger patient cohorts in future studies.

  15. DNA photobinding of 7-methylpyrido[3,4-c]psoralen and 8-methoxypsoralen. Effects on macromolecular synthesis, repair and survival in cultured human cells

    International Nuclear Information System (INIS)

    The photobinding to DNA of tritiated 7-methylpyrido[3,4-c]psoralen (MPP), a recently synthesized monofunctional compound of therapeutical interest, and of 8-methoxypsoralen (8-MOP) was determined in cultured normal human fibroblasts. Employing compounds at 10-6 M, MPP photobinds approximately 11 times more efficiently than 8-MOP. For equivalent photobinding MPP ad 8-MOP induce similar inhibitions of DNA synthesis. However, the recovery of DNA synthesis during post-treatment incubation is lower after photoaddition of MPP than after that of 8-MOP. MPP also exerts a much higher lethal effect than 8-MOP. Alkaline elution experiments confirmed the monofunctional nature of MPP and indicated that in MPP-damaged cells DNA breaks accumulate with time of post-treatment incubation. In 8-MOP-treated cells, DNA cross-links appear to be partially repaired. In conclusion, MPP monoadducts turn out to constitute more cytotoxic lesions than 8-MOP mono- and bi-adducts. (Auth.)

  16. Decreased survival of mosquito cells after stable transfection with a Drosophila ecdysteroid response element: Possible involvement of a 40 kDa DNA binding protein

    Directory of Open Access Journals (Sweden)

    Gitanjali Jayachandran

    2002-11-01

    Full Text Available Homologous transfection systems provide a useful tool for characterizing promoters and other regulatory elements from cloned genes. We have used cultured Aedes albopictus C7-10 mosquito cells to evaluate expression of 20-hydroxyecdysone-inducible genes. Although this cell line has previously been shown to synthesize components of the ecdysteroid receptor and ecdysone-inducible proteins, the well-characterized ecdysteroid response element (EcRE from the Drosophila hsp27 promoter failed to confer a substantial 20-hydroxyecdysone mediated induction in transfected mosquito cells. Recovery of stably transformed clones was also reduced in a DNA dependent manner when the EcREs were in the sense orientation, relative to control plasmids lacking the EcREs or containing an antisense construct. Finally, when tandem EcREs were placed within the hsp70 promoter, CAT activity was detected only after prolonged enzyme incubation, suggesting that the DNA interfered with cellular metabolism. In these constructs, we noted that the promoter DNA contained several potential binding sites for the activator protein-1 (AP-1 transcription factor, one of which lay between the tandem EcREs. On southwestern blots, a 40 kDa nuclear protein from C7-10 cells bound to DNA containing AP-1 sites. A DNA affinity column was used to partially purify the 40 kDa protein, and western analysis showed that the mosquito protein cross-reacted with a heterologous antibody to JUN. Likewise, mRNA from C7-10 cells cross-hybridized with the jun cDNA from Drosophila. These results suggest that like estrogen, 20-hydroxyecdysone interfaces with AP-1 as a co-activator protein that modulates the overall hormone response.

  17. Small-molecule inhibitors identify the RAD52-ssDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells

    Science.gov (United States)

    Hengel, Sarah R; Malacaria, Eva; Folly da Silva Constantino, Laura; Bain, Fletcher E; Diaz, Andrea; Koch, Brandon G; Yu, Liping; Wu, Meng; Pichierri, Pietro; Spies, M Ashley; Spies, Maria

    2016-01-01

    The DNA repair protein RAD52 is an emerging therapeutic target of high importance for BRCA-deficient tumors. Depletion of RAD52 is synthetically lethal with defects in tumor suppressors BRCA1, BRCA2 and PALB2. RAD52 also participates in the recovery of the stalled replication forks. Anticipating that ssDNA binding activity underlies the RAD52 cellular functions, we carried out a high throughput screening campaign to identify compounds that disrupt the RAD52-ssDNA interaction. Lead compounds were confirmed as RAD52 inhibitors in biochemical assays. Computational analysis predicted that these inhibitors bind within the ssDNA-binding groove of the RAD52 oligomeric ring. The nature of the inhibitor-RAD52 complex was validated through an in silico screening campaign, culminating in the discovery of an additional RAD52 inhibitor. Cellular studies with our inhibitors showed that the RAD52-ssDNA interaction enables its function at stalled replication forks, and that the inhibition of RAD52-ssDNA binding acts additively with BRCA2 or MUS81 depletion in cell killing. DOI: http://dx.doi.org/10.7554/eLife.14740.001 PMID:27434671

  18. Mechanisms of DNA Repair in Mammalian Cells

    International Nuclear Information System (INIS)

    The authors examined DNA synthesis in cultured mammalian cells after irradiation with X-rays or ultraviolet light, using equilibrium density gradient and autoradiographic techniques. Unscheduled DNA synthesis (the synthesis of DNA by cells not in S phase of the cell cycle) occurs at doses of u.v. where survival is greater than 90% and at doses of X-rays where survival is of the order of 50%. At higher doses it was established that repair replication (insertion of precursors into parental strands of DNA ) occurs in these cells, and it is presumed that these two phenomena (unscheduled DNA synthesis and repair replication) are manifestations of the same repair process. During the time that these phenomena occur, very little degradation of DNA takes place, as measured by appearance of prelabelled components of DNA in the medium or in the acid soluble portion of the cell. This is in direct contrast to the situation in bacteria, in which extensive degradation of DNA occurs after irradiation, presumably as a result of enzymatic processes that remove many undamaged bases in addition to the ones injured by the irradiation. A small amount of radioactivity does appear in the acid soluble portion and in the media from prelabelled cells from both irradiated and control mammalian cell cultures. The amount in the medium from irradiated cultures is slightly, but significantly, greater than that from controls; thus there does appear to be a very low level of degradation of DNA in irradiated mammalian cells. These data indicate that the repair of DNA in mammalian cells does not involve the same steps as those that occur in bacteria. The results suggest instead that mammalian cells have a much more specific system for repair, which involves excision of only the damaged portion of the DNA. Possible mechanisms of repair of mammalian DNA are considered. (author)

  19. The Mitochondrial DNA Northeast Asia CZD Haplogroup Is Associated with Good Disease-Free Survival among Male Oral Squamous Cell Carcinoma Patients

    OpenAIRE

    Lai, Chih-Hsiung; Huang, Shiang-Fu; Chen, I-How; Liao, Chun-Ta; Wang, Hung-Ming; Hsieh, Ling-Ling

    2012-01-01

    Reprogramming of energy metabolism in cancer cells has been directly/indirectly linked to mitochondria and mitochondrial functional defects and these changes seem to contribute to the development and progression of cancer. Studies have indicated that mitochondrial DNA haplogroups are associated with risk in relation to various diseases including cancer. However, few studies have examined the effect of haplogroups on cancer prognosis outcome. In order to explore the role of haplogroups on oral...

  20. 电离辐射诱导DNA-PKcs缺失小鼠T细胞特异的V(D)J 重组恢复%Restoration of T Cell-specific V(D)J Recombination in DNA-PKcs-/-Mice by Ionizing Radiation: The Effects on Survival,Development, and Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    李小玲; 沈守荣; 王飒; 欧阳红海; LI Gloria C

    2002-01-01

    DNA-dependent protein kinase (DNA-PK) is a DNA-activated nuclear serine/threonine protein kinase. DNA-PK consists of a heterodimeric Ku subunit (composed of a 70 and 86 kD subunit) which binds DNA ends and targets the catalytic subunit DNA-PKcs to DNA strand breaks. DNA-PK plays a major role in the repair of double-strand breaks (DSB) induced in DNA after exposure to ionizing radiation. To better understand the nature of DNA repair defect associated with DNA-PKcs deficiency, we have established DNA-PKcs-/- mouse embryo fibroblast cell lines and DNA-PKcs-/- null mice, and investigated the response of these mutant cells and mice to DNA damage. DNA-PKcs-/- cells are hypersensitive to γ-irradiation, as evidenced by their low survival as assayed by colony formation efficiencies. Consistent with the radiation hypersensitive phenotype of the cell lines, DNA-PKcs-/- mice also display an extreme radiosensitivity, characterized by enhanced mortality after γ-irradiation. Treatment of newborn DNA-PKcs-/- mice with sublethal doses of ionizing radiation restores T cell receptor (TCR)β recombination and T cell maturation. However, radiation does not restore B cell development. All these mice eventually developed thymic lymphoma. These observations suggest an interrelationship between DSB repair, V(D)J recombination and lymphomagenesis, and provide an in vivo model to elucidate the critical pathways between the regulation of DNA DSB repair, V(D)J recombination, and the molecular mechanism of lymphoid neoplasia.%DNA依赖的蛋白激酶(DNA-PK)是一种DNA活化的核丝氨酸苏氨酸蛋白激酶. DNA-PK 由一种与DNA末端结合的调节亚单位异构二聚体Ku蛋白和DNA-PK催化亚单位(DNA-PKcs)组成. DNA-PK 在DNA暴露于电离辐射后诱导的双链损伤修复中起主要作用. 为了更好地了解与DNA-PKcs缺失相关的DNA修复缺陷的本质. 建立了DNA-PKcs-/-小鼠胚胎成纤维细胞株和裸鼠模型, 调查这些突变的细

  1. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E; Aiello, Katherine A; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq, PABPC5

  2. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Directory of Open Access Journals (Sweden)

    Preethi Sankaranarayanan

    Full Text Available The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD, which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs. We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival

  3. Computational Modeling of Cell Survival Using VHDL

    Directory of Open Access Journals (Sweden)

    Shruti Jain1,

    2010-01-01

    Full Text Available The model for cell survival has been implemented using VeryHigh Speed Integrated Circuit Hardware DescriptionLanguage (VHDL (Xilinx Tool taking three input signals:Tumor necrosis factor-α (TNF, Epidermal growth factor(EGF and Insulin. Cell survival has been regulated by theinteraction of five proteins viz P13K, TNFR1, EGFR, IRS andIKK in a network. In the absence of any one, in protein networkleads to cell death. For the EGF input signal the proteins likeMEK, ERK, AkT, Rac & JNK have been important forregulation of cell survival. Similarly for TNF and Insulin inputsignal proteins like NFκB, AkT, XIAP, JNK, MAP3K & MK2and MEK, ERK, AkT, Rac, mTOR & JNK respectively havebeen important for regulation of cell survival.

  4. A mathematical model describing survival of mammalian cells after irradiation

    International Nuclear Information System (INIS)

    The author presents a model for describing the dose/effect curve which also considers recent findings about molecular damage to DNA and its enzymatic repair by the cell. To understand this model better, the author describes a number of important molecular details of the effect of radiation. The SSR model (Survival with Saturable Repair) describes correctly most of the experimental results. The concept of 'saturable repair' is based on the basic assumption of enzymatic repair kinetics for DNA damage based on the Michaelis-Menten enzyme kinetics. The existence of potentially lethally damaged cells is postulated which may be turned into fully viable cells by successful DNA repair. In case of repair failure, the damaged cells will die. The model also includes the immediate production of lethal damage. (orig./MG)

  5. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    OpenAIRE

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2011-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We c...

  6. The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Following DNA damage cells initiate cell cycle checkpoints to allow time to repair sustained lesions. Rad9, Rad1, and Hus1 proteins form a toroidal complex, termed the 9-1-1 complex, that is involved in checkpoint signaling. 9-1-1 shares high structural similarity to the DNA replication protein proliferating cell nuclear antigen (PCNA) and 9-1-1 has been shown in vitro to stimulate steps of the repair process known as long patch base excision repair. Using a system that allows conditional repression of the Rad9 protein in human cell culture, we show that Rad9, and by extension, the 9-1-1 complex, enhances cell survival, is required for efficient exit from G2-phase arrest, and stimulates the repair of damaged DNA following ionizing radiation. These data provide in vivo evidence that the human 9-1-1 complex participates in DNA repair in addition to its previously described role in DNA damage sensing

  7. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  8. Cell survival studies for moving targets

    International Nuclear Information System (INIS)

    More than 330 patients with static tumors have been treated at GSI with a scanned C-12 beam. For targets that are subject to respiratory motion, treatment is not yet possible because target motion and scanning motion interfere. GSI is developing a motion compensation system to compensate target motion by adaptation of each individual Bragg peak position. Within this project, the GSI treatment planning software TRiP was extended to calculate physical dose distributions in the presence of motion. These motion extensions were experimentally validated. Recently we included the calculation of cell survival for moving targets. To validate the software, a program of experimental studies with biological samples has been started. In a first set of experiments, living cell cultures were placed on a periodically moving table and irradiated with and without motion compensation. Results are compared to reference cell cultures that were static during standard irradiations. Furthermore, measured cell survival distributions are compared to calculated distributions for all irradiation schemes

  9. Erythropoietin signaling promotes transplanted progenitor cell survival

    OpenAIRE

    Jia, Yi; Warin, Renaud; Yu, Xiaobing; Epstein, Reed; Noguchi, Constance Tom

    2009-01-01

    We examine the potential for erythropoietin signaling to promote donor cell survival in a model of myoblast transplantation. Expression of a truncated erythropoietin receptor in hematopoietic stem cells has been shown to promote selective engraftment in mice. We previously demonstrated expression of endogenous erythropoietin receptor on murine myoblasts, and erythropoietin treatment can stimulate myoblast proliferation and delay differentiation. Here, we report that enhanced erythropoietin re...

  10. Effect of gamma-irradiated DNA on DNA polymerase activity: a possible mechanism for cell killing

    International Nuclear Information System (INIS)

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. The mechanism for DNA polymerase inhibition was investigated. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme. The inhibition of DNA polymerase occurs prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation. As in vitro assay for DNA polymerase α and β in irradiated HeLa cells was developed. The activities of both polymerases decreased as the dose received by the cells increased. Both DNA polymerases were found to recover by 2 hr postirradiation. Since DNA repair capability is intimately connected with cell survival, the observed diminution in DNA polymerase activity, following low doses of radiation, could be highly significant

  11. Cell survival studies using ultrasoft x rays

    International Nuclear Information System (INIS)

    Cell survival was studied for V79 hamster, 10T1/2 mouse, and human skin fibroblast cell lines, using carbon K (0.28 keV), copper K (8.0 keV), and 250 kVp x rays. Because of the rapid attenuation of the carbon x rays, cellular dimensions at the time of exposure were measured using optical and electron microscopy, and frequency distributions of mean dose absorbed by the cell nucleus were obtained. The results indicate that the differences in cell killing between ultra-soft and hard x rays may depend on the nuclear thickness of the cells. Studies of the effects of hypoxia on V79 and 10T1/2 cells using carbon K, aluminum K (1.5 keV), and copper K x rays show decreasing OER values with decreasing x-ray energy and no difference between the two cell lines. Age response studies with V79 cells show similar cell-cycle variation of survival for carbon K and aluminum K x rays as for hard x rays

  12. Survival and mitochondrial function in septic patients according to mitochondrial DNA haplogroup

    OpenAIRE

    Lorente, Leonardo; Iceta, Ruth; Martín, María M.; López-Gallardo, Esther; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Jiménez, Alejandro; Montoya, Julio; Ruiz-Pesini, Eduardo

    2012-01-01

    Introduction We recently found that platelet cytochrome c oxidase (COX) activities and quantities in 6-month-survival septic patients are significantly higher than those of patients who died before 6 months. Other studies suggested that the mitochondrial DNA (mtDNA) genotype could play a major role in sepsis survival. Given that COX catalytic subunits are encoded by mtDNA, the objective of the present study was to explore whether mtDNA population genetic variation could affect COX activity an...

  13. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells.

    Science.gov (United States)

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C

    2016-01-01

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo. PMID:27271988

  14. AKT Inhibition Promotes Nonautonomous Cancer Cell Survival.

    Science.gov (United States)

    Salony; Solé, Xavier; Alves, Cleidson P; Dey-Guha, Ipsita; Ritsma, Laila; Boukhali, Myriam; Lee, Ju H; Chowdhury, Joeeta; Ross, Kenneth N; Haas, Wilhelm; Vasudevan, Shobha; Ramaswamy, Sridhar

    2016-01-01

    Small molecule inhibitors of AKT (v-akt murine thymoma viral oncogene homolog) signaling are being evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with subtherapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multiscale, molecular snapshot of this "AKT(low)" cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously upregulate a host of other proteins and metabolites posttranscriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication. PMID:26637368

  15. Pancreatic Cancer Patient Survival Correlates with DNA Methylation of Pancreas Development Genes

    OpenAIRE

    Thompson, Michael J.; Rubbi, Liudmilla; Dawson, David W.; Donahue, Timothy R; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.

  16. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott;

    2014-01-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial...... rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional...... DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly...

  17. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara;

    2011-01-01

    The purpose of this study was to explore the variation in DNA repair genes in adults with WHO grade II and III gliomas and their relationship to patient survival. We analysed a total of 1,458 tagging single-nucleotide polymorphisms (SNPs) that were selected to cover DNA repair genes, in 81 grade II...... different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0...

  18. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R;

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...

  19. NRAGE is involved in homologous recombination repair to resist the DNA-damaging chemotherapy and composes a ternary complex with RNF8-BARD1 to promote cell survival in squamous esophageal tumorigenesis.

    Science.gov (United States)

    Yang, Q; Pan, Q; Li, C; Xu, Y; Wen, C; Sun, F

    2016-08-01

    NRAGE, a neurotrophin receptor-interacting melanoma antigen-encoding gene homolog, is significantly increased in the nucleus of radioresistant esophageal tumor cell lines and is highly upregulated to promote cell proliferation in esophageal carcinomas (ECs). However, whether the overexpressed NRAGE promotes cell growth by participating in DNA-damage response (DDR) is still unclear. Here we show that NRAGE is required for efficient double-strand breaks (DSBs) repair via homologous recombination repair (HRR) and downregulation of NRAGE greatly sensitizes EC cells to DNA-damaging agents both in vitro and in vivo. Moreover, NRAGE not only regulates the stability of DDR factors, RNF8 and BARD1, in a ubiquitin-proteolytic pathway, but also chaperons the interaction between BARD1 and RNF8 via their RING domains to form a novel ternary complex. Additionally, the expression of NRAGE is closely correlated with RNF8 and BARD1 in esophageal tumor tissues. In summary, our findings reveal a novel function of NRAGE that will help to guide personalized esophageal cancer treatments by targeting NRAGE to increase cell sensitivity to DNA-damaging therapeutics in the long run. PMID:27035619

  20. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells

    International Nuclear Information System (INIS)

    When mammalian cells are lysed in 2% sodium dodecyl sulphate detergent followed by addition of an equal volume of 0.12 M potassium chloride, a precipitate forms that can be collected by low-speed centrifugation. This precipitate contains the cell protein and nucleic acid in close association with protein. In the absence of DNA damage, most of the DNA precipitates, but when DNA strand breaks are created by exposing cells to ionizing radiation or toxic chemicals, DNA is released from the protein and remains in the supernatant after centrifugation. The proportion of DNA remaining in the supernatant is thus a measure of the amount of DNA damage. This assay is characterized in terms of optimum cell number and pH and dose-response curves for DNA damage and cell survival following ionizing radiation, MNNG, BCNU, and VP-16 are shown. Sensitivity, simplicity, speed, and large sample handling capacity should allow wide application of this new assay to a variety of questions concerning DNA damage and repair

  1. Resistin is a survival factor for porcine ovarian follicular cells.

    Science.gov (United States)

    Rak, Agnieszka; Drwal, Eliza; Wróbel, Anna; Gregoraszczuk, Ewa Łucja

    2015-10-01

    Previously, we demonstrated the expression of resistin in the porcine ovary, the regulation of its expression and its direct effect on ovarian steroidogenesis. The objective of this study was to examine the effect of resistin on cell proliferation and apoptosis in a co-culture model of porcine granulosa and theca cells. First, we analysed the effect of resistin at 1 and 10  ng/ml alone or in combination with FSH- and IGF1 on ovarian cell proliferation with an alamarBlue assay and protein expression of cyclins A and B using western blot. Next, the mRNA and protein expression of selected pro-apoptotic and pro-survival regulators of cell apoptosis, caspase-9, -8 and -3 activity and DNA fragmentation using real time PCR, western blot, fluorescent assay and an ELISA kit, respectively, were analysed after resistin treatment. Furthermore, we determined the effect of resistin on the protein expression of ERK1/2, Stat and Akt kinase. Using specific inhibitors of these kinases, we also checked caspase-3 activity and protein expression. We found that resistin, at both doses, has no effect on cell proliferation. The results showed that resistin decreased pro-apoptotic genes, which was confirmed on protein expression of selected factors. We demonstrate an inhibitory effect of resistin on caspase activity and DNA fragmentation. Finally, resistin stimulated phosphorylation of the ERK1/2, Stat and Akt and kinases inhibitors reversed resistin action on caspase-3 activity and protein expression to control. All of these results showed that resistin has an inhibitory effect on porcine ovarian cell apoptosis by activation of the MAPK/ERK, JAK/Stat and Akt/PI3 kinase signalling pathways. PMID:26159832

  2. DNA-repair gene variants are associated with glioblastoma survival

    DEFF Research Database (Denmark)

    Wibom, Carl; Sjöström, Sara; Henriksson, Roger;

    2012-01-01

    Abstract Patient outcome from glioma may be influenced by germline variation. Considering the importance of DNA repair in cancer biology as well as in response to treatment, we studied the relationship between 1458 SNPs, which captured the majority of the common genetic variation in 136 DNA repair...

  3. The extracellular matrix as a cell survival factor.

    OpenAIRE

    Meredith, J E; Fazeli, B; Schwartz, M A

    1993-01-01

    Programmed cell death (PCD) or apoptosis is a naturally occurring cell suicide pathway induced in a variety of cell types. In many cases, PCD is induced by the withdrawal of specific hormones or growth factors that function as survival factors. In this study, we have investigated the potential role of the extracellular matrix (ECM) as a cell survival factor. Our results indicate that in the absence of any ECM interactions, human endothelial cells rapidly undergo PCD, as determined by cell mor...

  4. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  5. Mechanisms of DNA uptake by cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Three categories of cellular uptake of DNA can be distinguished. First, in the highly transformable bacteria, such as Diplococcus pneumoniae, Haemophilus influenzae and Bacillus subtilis, elaborate mechanisms of DNA transport have evolved, presumably for the purpose of genetic exchange. These mechanisms can introduce substantial amounts of DNA into the cell. Second, methods have been devised for the forced introduction of DNA by manipulation of bacterial cells under nonphysiological conditions. By such means small but significant amounts of DNA have been introduced into various bacteria, including Escherichia coli. Third, mammalian cells are able to take up biologically active DNA. This has been most clearly demonstrated with viral DNA, although the mechanism of uptake is not well understood. The intention, here, is to survey current understanding of the various mechanisms of DNA uptake. A review of experience with the bacterial systems may throw some light on the mammalian system and lead to suggestions for enhancing DNA uptake by mammalian cells.

  6. An unexpected caffeine-enhanced survival in x-ray-sensitive variant cells

    International Nuclear Information System (INIS)

    The sensitivity of normal Chinese hamster cell lines, V79 and CHO, mouse cell lines, L5178Y and L, and human HeLa cells to the killing effect of x-ray is enhanced with addition of caffeine following x-ray irradiation in a dose-dependent fashion. However, the survival rate of variant cell (V79-AL162/S-10) increased with addition of low concentration of caffeine (caffeine-enhanced survival phenomenon). Therefore, the effects of protein synthesis-inhibiting agents, such as cycloheximide and puromycin, on caffeine-enhanced survival phenomenon were examined. This phenomenon was completely abolished by the inhibitory agents, but not abolished by DNA synthesis-damaging agents, such as excess thymidine and aphidicolin. DNA-damaging physiochemical factors, such as neutrons, U.V., methyl methanesulfonate and mitomycin C, were examined in relation to variant cells' sensitivity and caffeine-enhanced survival phenomenon. V79-AL162/S-10 cells showed high sensitivity to the killing effect of mitomycin C, but their survival rate returned to the rate of normal V79-B310H cells with addition of caffeine. (Namekawa, K.)

  7. Properties of Lewis Lung Carcinoma Cells Surviving Curcumin Toxicity

    OpenAIRE

    Dejun Yan, Michael E. Geusz, Roudabeh J. Jamasbi

    2012-01-01

    The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC) cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establis...

  8. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    International Nuclear Information System (INIS)

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  9. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  10. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  11. Biased DNA Segregation during Stem Cell Division

    OpenAIRE

    Anversa, Piero; Leri, Annarosa; Kajstura, Jan

    2012-01-01

    Adult skeletal muscle stem cells are a heterogeneous cell population characterized by a small subset of undifferentiated cells that express at high level the paired/homeodomain gene Pax7. This category of satellite cells divides predominantly by asymmetric chromatid segregation generating a daughter cell that carries the mother DNA and retains stem cell property, and a daughter cell that inherits the newly-synthesized DNA and acquires the myocyte lineage.1

  12. Toxicity DNA damage and inhibition of DNA repair synthesis in human melanoma cells by concentrated sunlight

    International Nuclear Information System (INIS)

    A water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line, DNA strand breaks and DNA protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers and DNA interstrand crosslinking could not be detected. The solar fluence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D0 value and then declining; but semiconservative DNA synthesis remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis. (author)

  13. Impact of PARP-1 and DNA-PK expression on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Purpose: To analyze, whether higher tumor levels of DNA repair enzymes contribute to worse treatment results of glioblastoma multiforme (GBM) patients after postoperative radiotherapy. Materials and methods: Thirty four patients with GBM received postoperative radiotherapy. Tumor sections were examined for poly-ADP ribose polymerase-1 (PARP-1) and DNA protein kinase (DNA-PK) expression. Immunohistochemical staining intensities of PARP-1 and DNA-PK were determined (score 0–3) and expression levels were correlated with patients overall survival. Results: Median survival time of the whole study group was 10.0 months (95% CI 8.1–11.9). Median survival of patients with high and low (⩾median and < median) tumor PARP-1 levels were 10.0 months (95% CI 7.9–12.1) and 12.0 months (95% CI 8.3–15.7), respectively (p = 0.93). In contrast, median survival of patients with high and low tumor DNA-PK levels were 9.0 months (95% CI 7.2–10.8) and 13.0 months (95% CI 10.7–15.3), respectively (p = 0.02). In multivariate analysis, DNA-PK expression emerged as a significant independent predictor for overall survival (HR 3.9, 95% CI 1.5–10.7, p = 0.01). Conclusion: This hypothesis generating study showed that high tumor levels of DNA-PK correlate with poor survival of GBM patients. Further studies are needed to confirm these results and to clarify whether DNA-PK inhibitors might have a potential to radiosensitize GBM and improve the treatment outcome of this devastating disease.

  14. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  15. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    International Nuclear Information System (INIS)

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 105-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis

  16. Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival.

    Science.gov (United States)

    Visco, Carlo; Falisi, Erika; Young, Ken H; Pascarella, Michela; Perbellini, Omar; Carli, Giuseppe; Novella, Elisabetta; Rossi, Davide; Giaretta, Ilaria; Cavallini, Chiara; Scupoli, Maria Teresa; De Rossi, Anita; D'Amore, Emanuele Stefano Giovanni; Rassu, Mario; Gaidano, Gianluca; Pizzolo, Giovanni; Ambrosetti, Achille; Rodeghiero, Francesco

    2015-07-30

    The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an independent retrospective cohort of 112 patients with CLL. EBV DNA load was detectable in 59%, and high (≥2000 copies/µg DNA) in 19% of patients, but it was negative in plasma samples. EBV DNA load was significantly higher in CLL patients than in healthy subjects (P variables, except for 11q deletion (P = .004), CD38 expression (P = .003), and NOTCH1 mutations (P = .05). High EBV load led to a 3.14-fold increase in the hazard ratio of death and to a shorter overall survival (OS; P = .001). Poor OS was attributable, at least in part, to shorter time-to-first-treatment (P = .0008), with no higher risk of Richter's transformation or second cancer. Multivariate analysis selected high levels of EBV load as independent predictor of OS after controlling for confounding clinical and biological variables. EBV DNA load at presentation is an independent predictor of OS in patients with CLL. PMID:26087198

  17. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K+ channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K+ channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K+ channel and NFκB activities. This response to TNF-α is dependent on stimulating K+ channel activity because following suppression of K+ channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  18. MiR-24 promotes the survival of hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tan Nguyen

    Full Text Available The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.

  19. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Kim Se-Kwon

    2013-01-01

    Full Text Available Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow.

  20. Reactivation of UV-irradiated plasmid transforming DNA by cells of yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, M.L.; Kozhina, T.N.; Smolina, V.S. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1983-01-01

    Data revealing that cells of yeast Sccharomyces cerevisiae can reactivate transforming plasmid DNA after UV-radiation are given, this phenomenon at least partially depends on the system of exision reparation of master cells. Dependence of yeast survival rate and yield of yeast transformants on the UV-radiation dose of transforming DNA plasmid is disclosed.

  1. A track-event theory of cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Besserer, Juergen; Schneider, Uwe [Zuerich Univ. (Switzerland). Inst. of Physics; Radiotherapy Hirslanden, Zuerich (Switzerland)

    2015-09-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  2. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  3. DNA charge transport within the cell.

    Science.gov (United States)

    Grodick, Michael A; Muren, Natalie B; Barton, Jacqueline K

    2015-02-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  4. Visualization of DNA damage in individual cells

    International Nuclear Information System (INIS)

    A simple technique of micro-agarose gel electrophoresis has been developed to permit an evaluation of DNA damage in individual cells. Cells are embeded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time. In damaged cells, DNA migrated from the nuclei toward the anode, displaying 'comets' visualized by staining with a DNA-specific fluorochrome, acridine orange. The technique was applicable to quantifying DNA damage in individual cells exposed to Gy level of reactor radiation. (author)

  5. Epithelial cell invasion and survival of Bordetella bronchiseptica.

    OpenAIRE

    SCHIPPER, H; Krohne, G F; R. Gross

    1994-01-01

    Wild-type Bordetella bronchiseptica and a bvg mutant strain were used for invasion and survival experiments in human Caco-2 and A549 epithelial cells. Both bacterial strains were able to enter and persist within the host cells for at least a week. A significant proportion of the bacteria from both B. bronchiseptica strains but not from Bordetella pertussis were found free in the cytoplasm, suggesting different invasion and survival strategies of the two species in epithelial cells.

  6. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector

    Directory of Open Access Journals (Sweden)

    Ivana eDokic

    2015-12-01

    Full Text Available Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for assessment of cellular sensitivity to ionizing radiation. Towards further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation- induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the FNTD as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated to radiation induced foci as surrogates for DNA double strand breakages (DSB, the hallmark of radiation ‐induced cell lethality. Long‐term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  7. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  8. HSP70 mediates survival in apoptotic cells – Boolean network prediction and experimental validation

    Directory of Open Access Journals (Sweden)

    Suhas Vasaikar

    2015-08-01

    Full Text Available Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signalling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF were considered as inputs in the absence and presence of heat shock proteins known to shift the balance towards survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA expression level of caspase-3, caspase-8 and BAX in neuronal Neuro2a (N2a cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more towards rescuing cells from apoptosis in comparison to HSP27, HSP40 and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-fold, 1.26-fold and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks.

  9. Mitochondrial Variations in Non-Small Cell Lung Cancer (NSCLC) Survival

    OpenAIRE

    Zhaoxi Wang; Sojung Choi; Jinseon Lee; Yen-Tsung Huang; Feng Chen; Yang Zhao; Xihong Lin; Donna Neuberg; Jhingook Kim; Christiani, David C.

    2015-01-01

    Mutations in the mtDNA genome have long been suspected to play an important role in cancer. Although most cancer cells harbor mtDNA mutations, the question of whether such mutations are associated with clinical prognosis of lung cancer remains unclear. We resequenced the entire mitochondrial genomes of tumor tissue from a population of 250 Korean patients with non-small cell lung cancer (NSCLC). Our analysis revealed that the haplogroup (D/D4) was associated with worse overall survival (OS) o...

  10. A statistical model for red blood cell survival.

    Science.gov (United States)

    Korell, Julia; Coulter, Carolyn V; Duffull, Stephen B

    2011-01-01

    A statistical model for the survival time of red blood cells (RBCs) with a continuous distribution of cell lifespans is presented. The underlying distribution of RBC lifespans is derived from a probability density function with a bathtub-shaped hazard curve, and accounts for death of RBCs due to senescence (age-dependent increasing hazard rate) and random destruction (constant hazard), as well as for death due to initial or delayed failures and neocytolysis (equivalent to early red cell mortality). The model yields survival times similar to those of previously published studies of RBC survival and is easily amenable to inclusion of drug effects and haemolytic disorders. PMID:20950630

  11. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  12. Assessment of pancreatic islet cell function and survival

    OpenAIRE

    Köhler, Martin

    2015-01-01

    Function and survival of pancreatic islet insulin-producing beta-cells (β-cells) and glucagonproducing alpha-cells (α-cells) were studied, and methods for this purpose were developed or refined. Dynamic control of glucose metabolism is essential for β-cell stimulus-secretion coupling. ATP is an important metabolic parameter and therefore we set up a technique to monitor dynamic changes of ATP in insulin-producing cells using luciferase bioluminescence at the level of single...

  13. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested. (Auth.)

  14. Enhanced survival and decreased mutation frequency after photoreactivation of UV damage in rat kangaroo cells

    International Nuclear Information System (INIS)

    The effect of pyrimidine dimers on cytotoxicity, DNA repair and mutagenesis was studied in cells, derived from the rat kangaroo, which possess photoreactivating capabilities. A significant enhancement in colony-forming ability was achieved after UV irradiation in exponentially growing cells if photoreactivating light treatment followed the UV irradiation. If photoreactivation treatment was delayed 24h after UV irradiation, no significant increase in survival was observed. Assays of pyrimidine dimers, unscheduled DNA synthesis, and survival in contact-inhibited cells all confirmed a minor role of dark excision repair and a major role of photoreactivation. Photoreactivation decreased the frequency of mutations to 6-thioguanine resistance to a greater extent than the alteration seen in survival. Approximately 1.6 times the dose must be given to get equal killing in photoreactivated cells, whereas 4 times the dose must be given to obtain equal mutation frequencies in light-treated cells. This suggests that the removal of dimers is more effective in mutant reduction than enhancement of survival. (orig.)

  15. Enhanced survival and decreased mutation frequency after photoreactivation of UV damage in rat kangaroo cells

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.H.; Trosko, J.E. (Michigan State Univ., East Lansing (USA). Dept. of Pediatrics and Human Development)

    1983-08-01

    The effect of pyrimidine dimers on cytotoxicity, DNA repair and mutagenesis was studied in cells, derived from the rat kangaroo, which possess photoreactivating capabilities. A significant enhancement in colony-forming ability was achieved after UV irradiation in exponentially growing cells if photoreactivating light treatment followed the UV irradiation. If photoreactivation treatment was delayed 24h after UV irradiation, no significant increase in survival was observed. Assays of pyrimidine dimers, unscheduled DNA synthesis, and survival in contact-inhibited cells all confirmed a minor role of dark excision repair and a major role of photoreactivation. Photoreactivation decreased the frequency of mutations to 6-thioguanine resistance to a greater extent than the alteration seen in survival. Approximately 1.6 times the dose must be given to get equal killing in photoreactivated cells, whereas 4 times the dose must be given to obtain equal mutation frequencies in light-treated cells. This suggests that the removal of dimers is more effective in mutant reduction than enhancement of survival.

  16. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji, E-mail: kzsuzuki@nagasaki-u.ac.jp [Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Kodama, Seiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-machi, Sakai 599-8570 (Japan); Watanabe, Masami [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun, Osaka 590-0494 (Japan)

    2010-01-05

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  17. Properties of Lewis Lung Carcinoma Cells Surviving Curcumin Toxicity

    OpenAIRE

    Yan, Dejun; Geusz, Michael E; Jamasbi, Roudabeh J

    2011-01-01

    The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC) cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establish a new ce...

  18. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  19. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-12-01

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival. PMID:22081012

  20. DNA repair in a Fanconi's anemia fibroblast cell strain

    International Nuclear Information System (INIS)

    DNA repair and colony survival were measured in fibroblasts from a patient with Fanconi's anemia, HG 261, and from normal human donors after exposure to these cells to the cross-linking agent mitomycin C, X-rays or ultraviolet light. Survival was similar in HG 261 and normal cells after X-ray or ultraviolet radiation, but was reduced in the Fanconi's anemia cells after treatment with mitomycin C. The level of DNA cross-linking, as measured by the method of alkaline elution, was the same in both cell strains after exposure to various doses of mitomycin C. With incubation after drug treatment, a gradual decrease in the amount of cross-linking was observed, the rate of this apparent repair of cross-link damage was the same in both normal and HG 261 cells. The rejoining of DNA single strand breaks after X-irradiation and the production of excision breaks after ultraviolet radiation were also normal in HG 261 cells as determined by alkaline elution. (Auth.)

  1. The shape of radiation survival curves of mammalian cells cultured in vitro

    International Nuclear Information System (INIS)

    Various in vivo and in vitro techniques to study the survival of single mammalian cells are now well known. The potential applications of formal data obtained by these methods to problems of human exposure, radiotherapy, radiation protection and the like are extensive. Mammalian cell techniques, particularly in vitro, have also extended greatly the opportunity to study basic interactions between radiation and processes occurring in cells at the time of exposure. In survival curve analysis and interpretation and the dependence of survival upon different types of radiation, formerly confined chiefly to microorganisms, single mammalian cell studies open new avenues. These cells are large, sensitive to radiation, and cytologically relatively well known. Although it would be rash to suggest that more is known about them than some microorganisms, at least some details of structure, chromosome morphology, and the pattern and order of DNA synthesis are quite well established. The prospects of quantitatively relating changes in structure and behaviour to radiation exposure in the form of some coherent model therefore seem enhanced. This paper discusses survival data for mammalian cells cultured in vitro from three points of view: first, technical or experimental factors which can vary the shape of the survival curve; second, the effect of heterogeneity among individuals of the populations generally studied; third, mathematical expressions or models other than which may fit the observed data better

  2. 17β-Hydroxysteroid dehydrogenase type 10 predicts survival of patients with colorectal cancer and affects mitochondrial DNA content.

    Science.gov (United States)

    Amberger, Albert; Deutschmann, Andrea J; Traunfellner, Pia; Moser, Patrizia; Feichtinger, René G; Kofler, Barbara; Zschocke, Johannes

    2016-04-28

    Mitochondrial energy production is reduced in tumor cells, and altered mitochondrial respiration contributes to tumor progression. Synthesis of proteins coded by mitochondrial DNA (mtDNA) requires the correct processing of long polycistronic precursor RNA molecules. Mitochondrial RNase P, composed of three different proteins (MRPP1, HSD10, and MRPP3), is necessary for correct RNA processing. Here we analyzed the role of RNase P proteins in colorectal cancer. High HSD10 expression was found in 28%; high MRPP1 expression in 40% of colorectal cancers, respectively. Expression of both proteins was not significantly associated with clinicopathological parameters. Survival analysis revealed that loss of HSD10 expression is associated with poor prognosis. Cox regression demonstrated that patients with high HSD10 tumors are at lower risk. High HSD10 expression was significantly associated with high mtDNA content in tumor tissue. A causal effect of HSD10 overexpression or knock down with increased or reduced mtDNA levels, respectively, was confirmed in tumor cell lines. Our data suggest that HSD10 plays a role in alterations of energy metabolism by regulating mtDNA content in colorectal carcinomas, and HSD10 protein analysis may be of prognostic value. PMID:26884257

  3. Properties of Lewis Lung Carcinoma Cells Surviving Curcumin Toxicity

    Directory of Open Access Journals (Sweden)

    Dejun Yan, Michael E. Geusz, Roudabeh J. Jamasbi

    2012-01-01

    Full Text Available The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establish a new cell line. The resulting line had approximately 20% slower growth than the original LLC cell line and based on ELISA contained less of two markers, NF-κB and ALDH1A, used to identify more aggressive cancer cells. We also injected cells from the original and surviving lines subcutaneously into syngeneic C57BL/6 mice and monitored tumor development over three weeks and found that the curcumin surviving-line remained tumorigenic. Because curcumin has been reported to kill cancer cells more effectively when administered with light, we examined this as a possible way of enhancing the efficacy of curcumin against LLC cells. When LLC cells were exposed to curcumin and light from a fluorescent lamp source, cell loss caused by 20 μM curcumin was enhanced by about 50%, supporting a therapeutic use of curcumin in combination with white light. This study is the first to characterize a curcumin-surviving subpopulation among lung cancer cells. It shows that curcumin at a high concentration either selects for an intrinsically less aggressive cell subpopulation or generates these cells. The findings further support a role for curcumin as an adjunct to traditional chemical or radiation therapy of lung and other cancers.

  4. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  5. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Tanmay M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Green, Maja M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Department of Anatomy & Neuroscience, The University of Melbourne, Parkville 3010 (Australia); Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia)

    2015-07-15

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  6. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    Science.gov (United States)

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  7. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  8. Mutagenesis and DNA repair in mammalian cells

    International Nuclear Information System (INIS)

    Two aspects of DNA damage and repair in mammalian cells were investigated. Using a lambda phage shuttle vector, a system was developed to study mutations arising in the DNA of mammalian cells. This system was used to determine the spectrum of mutations induced in cellular DNA by ultraviolet light. Also, the repair of base pair mismatches in DNA was studied by the development of a method to detect a DNA mismatch repair activity in extracts made from cultured human cells. In order to study mutations arising in mammalian cells, stable mouse L cell lines were established with multiple copies of lambda phage vector which contains the supF gene of E. coli as a target for mutagenesis. Rescue of viable phage from high molecular weight mouse cell DNA using lambda in vitro packaging extracts was efficient and yielded a negligible background of phage with mutations in the supF gene. From mouse cells exposed to 12 J/m2 of 254 nm ultraviolet (UV) light, 78,510 phage were rescued of which eight were found to have mutant supF genes. DNA sequence analysis of the mutants suggests that the primary site of UV mutagenesis in mammalian cells is at pyrimidine-cytosine (Py-C) sequences, and that the most frequent mutation at this site is a C to T transition

  9. Role of solar conditioning in DNA repair response and survival of human epidermal keratinocytes following UV irradiation

    International Nuclear Information System (INIS)

    The authors have investigated the cumulative effects of sunlight exposure upon the excision-repair of UV radiation damage to DNA in epidermal keratinocytes from human donors of different ages as well as the possible effect on DNA repair of periodic conditioning of the cultured keratinocytes with sublethal UV radiation exposures. The authors have also compared the growth properties of UV-irradiated keratinocytes derived from habitually sun-exposed and nonexposed areas from the bodies of young and aged donors. DNA repair replication in keratinocytes from habitually sun-exposed facial skin and the less sun-exposed abdominal skin of middle-aged adults was found to be similar, with respect to both the UV dose response and the time course of repair after 20 J/m2, 254 nm. Growth and survival (after exposure up to 50 J/m2, 254 nm) were greater for keratinocytes from protected areas of the upper arm of young donors (under 18 years) than for cells from their own sun-exposed areas. Growth and survival were markedly reduced for all keratinocyte cultures from aged donors, especially those cultures developed from sun-exposed areas. Nevertheless, the DNA repair response to UV radiation was similar in all cases. The evident uncoupling of UV sensitivity from DNA repair capacity remains to be understood. These studies confirm that the cumulative effect of sunlight exposure indeed contributes to some skin aging processes. However, the authors have found no indication that an overall reduction in capacity for excision-repair of UV photoproducts in keratinocyte DNA accompanies senescence in human skin

  10. Suofu Qin’s work on studies of cell survival signaling in cancer and epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxi- dative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of agerelated diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways.Currently, Dr. Qin’s work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.

  11. Functional characterization of Trip10 in cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Yan Pearlly S

    2011-02-01

    Full Text Available Abstract Background The Cdc42-interacting protein-4, Trip10 (also known as CIP4, is a multi-domain adaptor protein involved in diverse cellular processes, which functions in a tissue-specific and cell lineage-specific manner. We previously found that Trip10 is highly expressed in estrogen receptor-expressing (ER+ breast cancer cells. Estrogen receptor depletion reduced Trip10 expression by progressively increasing DNA methylation. We hypothesized that Trip10 functions as a tumor suppressor and may be involved in the malignancy of ER-negative (ER- breast cancer. To test this hypothesis and evaluate whether Trip10 is epigenetically regulated by DNA methylation in other cancers, we evaluated DNA methylation of Trip10 in liver cancer, brain tumor, ovarian cancer, and breast cancer. Methods We applied methylation-specific polymerase chain reaction and bisulfite sequencing to determine the DNA methylation of Trip10 in various cancer cell lines and tumor specimens. We also overexpressed Trip10 to observe its effect on colony formation and in vivo tumorigenesis. Results We found that Trip10 is hypermethylated in brain tumor and breast cancer, but hypomethylated in liver cancer. Overexpressed Trip10 was associated with endogenous Cdc42 and huntingtin in IMR-32 brain tumor cells and CP70 ovarian cancer cells. However, overexpression of Trip10 promoted colony formation in IMR-32 cells and tumorigenesis in mice inoculated with IMR-32 cells, whereas overexpressed Trip10 substantially suppressed colony formation in CP70 cells and tumorigenesis in mice inoculated with CP70 cells. Conclusions Trip10 regulates cancer cell growth and death in a cancer type-specific manner. Differential DNA methylation of Trip10 can either promote cell survival or cell death in a cell type-dependent manner.

  12. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  13. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment

  14. Reactivation of DNA replication of the parvovirus MVM in UV preirradiated mouse cells

    International Nuclear Information System (INIS)

    The parvovirus Minute-Virus-of-Mice (MVM) was used to probe the DNA replication activities expressed by mouse fibroblasts. This system allowed us to study quantitatively the effect of UV-induced DNA lesions on the progression of DNA replication in vivo. MVM was UV-irradiated prior to infection. Pyrimidine dimers induced in the viral genome account for the reduced level of intracellular viral DNA synthesis, assuming that most of these lesions block viral DNA replication in unirradiated cells. The inhibition of damaged MVM DNA synthesis is less severe if the host cells themselves are irradiated prior to virus infection. This stimulation of viral DNA replication in pretreated cells might account for the UV-enhanced viral reactivation phenomenon, i.e. the increased survival of nuclear-replicating viruses propagated in cells preexposed to various genotoxic agents

  15. Resistance to DNA denaturation in irradiated Chinese hamster V79 fibroblasts is linked to cell shape

    International Nuclear Information System (INIS)

    Exponentially growing Chinese hamster V79-171b lung fibroblasts seeded at high density on plastic (approximately 7 x 10(3) cells/cm2) flatten, elongate, and produce significant amounts of extracellular fibronectin. When lysed in weak alkali/high salt, the rate of DNA denaturation following exposure to ionizing radiation is exponential. Conversely, cells plated at low density (approximately 7 x 10(2) cells/cm2) on plastic are more rounded 24 h later, produce little extracellular fibronectin, and display unusual DNA denaturation kinetics after X-irradiation. DNA in these cells resists denaturation, as though constraints to DNA unwinding have developed. Cell doubling time and distribution of cells in the growth cycle are identical for both high and low density cultures as is cell survival in response to radiation damage. The connection between DNA conformation and cell shape was examined further in low density cultures grown in conditioned medium. Under these conditions, cells at low density were able to elongate, and DNA denaturation of low density cultures was identical to that of high density cultures. Conversely, cytochalasin D, which interferes with actin polymerization causing cells to round up and release fibronectin, allowed development of constraints in high density cultures. These results suggest that DNA conformation is sensitive to changes in cell shape which result when cells are grown in different environments. However, these changes in DNA conformation detected by the DNA unwinding assay do not appear to play a direct role in radiation-induced cell killing

  16. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  17. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.

    Directory of Open Access Journals (Sweden)

    Elena Pereira

    Full Text Available High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools.Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival.Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential

  18. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers

    Science.gov (United States)

    Anand, Sanya; Sebra, Robert; Catalina Camacho, Sandra; Garnar-Wortzel, Leopold; Nair, Navya; Moshier, Erin; Wooten, Melissa; Uzilov, Andrew; Chen, Rong; Prasad-Hayes, Monica; Zakashansky, Konstantin; Beddoe, Ann Marie; Schadt, Eric; Dottino, Peter; Martignetti, John A.

    2015-01-01

    Background High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. Methods and Findings Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. Conclusions Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic

  19. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  20. Influence of acute hypoxia and radiation quality on cell survival

    International Nuclear Information System (INIS)

    The purpose of this study was to measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and R-3327-AT1 (RAT-1) rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100-160 keV/μm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/μm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions. (author)

  1. Nuclear translocation of p21WAF1/CIP1 protein prior to its cytosolic degradation by UV enhances DNA repair and survival

    International Nuclear Information System (INIS)

    We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis. These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time.

  2. Influence of chronic hypoxia and radiation quality on cell survival

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the influence of chronic hypoxia and anoxia on cell survival after low- and high-linear energy transfer (LET) radiation, Chinese hamster ovary K1 (CHO-K1) cells were kept for 24 h under chronic hypoxia (94.5% N2; 5% CO2; 0.5% O2) or chronic anoxia (95% N2; 5% CO2). Irradiation was performed using 250 kVp X-rays or carbon ions with a dose average LET of 100 keV/μm either directly under the chronic oxygenation states, or at different time points after reoxygenation. Moreover, the cell cycle distribution for cells irradiated under different chronic oxic states was measured over 24 h during reoxygenation. The measurements showed a fairly uniform cell cycle distribution under chronic hypoxia, similar to normoxic conditions. Chronic anoxia induced a block in G1 and a strong reduction of S-phase cells. A distribution similar to normoxic conditions was reached after 12 h of reoxygenation. CHO cells had a similar survival under both acute and chronic hypoxia. In contrast, survival after irradiation under chronic anoxia was slightly reduced compared to that under acute anoxia. We conclude that, in hamster cells, chronic anoxia is less effective than acute anoxia in inducing radioresistance for both X-rays and carbon ions, whereas in hypoxia, acute and chronic exposures have a similar impact on cell killing. (author)

  3. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Lisa Mutschelknaus

    Full Text Available Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better

  4. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  5. Survival rate of homster cells followed by X-radiation: analysis in terms of Chadwick-Leenhouts model

    International Nuclear Information System (INIS)

    The experimental data on the survival of well-synchronized hamster cells are compared with theoretical values, calculated according to the formula based on..the Chadwick-Leenhouts model. When introducing corrections for DNA replication the experimental data model well for cells at any stage of the cycle. The data on survival of asynchronous population obtained by synthesizing the data on cell survival at separate cycle stages are merely by chance well described by the same equation as the results of experimental determination. The data on the induction of DNA breaks and results of studying repair prove a direct-connection of these processes with survival supposed in the model. The use of the above equation to determine the shape of the survival curve in the initial portion is quite advisable. The analysis shows that the survival curve has a slope at the initial portion almost always. The exception is made by cells in mitosis or late interphase, the survival of which is approximated by a curve with a zero slope

  6. nfi-1 affects behavior and life-span in C. elegans but is not essential for DNA replication or survival

    Directory of Open Access Journals (Sweden)

    Hirono Keiko

    2005-10-01

    Full Text Available Abstract Background The Nuclear Factor I (one (NFI family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C

  7. Radiation effects on membranes - 1. Cellular permeability and cell survival

    International Nuclear Information System (INIS)

    The effect of various doses of γ radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of γ radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to γ radiation

  8. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  9. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    Science.gov (United States)

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  10. DNA double-strand break repair, DNA-PK, and DNA ligases in two human squamous carcinoma cell lines with different radiosensitivity

    International Nuclear Information System (INIS)

    Purpose: Variation in sensitivity to radiotherapy among tumors has been related to the capacity of cells to repair radiation-induced DNA double-strand breaks (DSBs). DNA-dependent protein kinase (DNA-PK) and DNA ligases may affect DNA dsb rejoining. This study was performed to compare rate of rejoining of radiation-induced DSBs, DNA-PK, and DNA ligase activities in two human squamous carcinoma cell lines with different sensitivity to ionizing radiation. Methods and Materials: Cell survival of two human squamous carcinoma cell lines, UM-SCC-1 and UM-SCC-14A, was determined by an in vitro clonogenic assay. DSB rejoining was studied using pulsed field gel electrophoresis (PFGE). DNA-PK activity was determined using BIOTRAK DNA-PK enzyme assay system (Amersham). DNA ligase activity in crude cell extracts was measured using [5'-33P] Poly (dA)·(oligo (dT) as a substrate. Proteolytic degradation of proteins was analyzed by means of Western blotting. Results: Applying the commonly used linear-quadratic equation to describe cell survival, S = e-αD-βD2, the two cell lines roughly have the same α value (∼0.40 Gy-1) whereas the β value was considerably higher in UM-SCC-14A (0.067 Gy-2 ± 0.007 Gy-2 [SEM]) as compared to UM-SCC-1 (0.013 Gy-2 ± 0.004 Gy-2 [SEM]). Furthermore, UM-SCC-1 was more proficient in rejoining of X-ray-induced DSBs as compared to UM-SCC-14A as quantified by PFGE. The constitutive level of DNA-PK activity was 1.6 times higher in UM-SCC-1 as compared to UM-SCC-14A (p < 0.05). The constitutive level of DNA ligase activity was similar in the two cell lines. Conclusions: The results suggest that the proficiency in rejoining of DSBs is associated with DNA-PK activity but not with total DNA ligase activity

  11. Characterization of ancient DNA supports long-term survival of Haloarchaea.

    Science.gov (United States)

    Sankaranarayanan, Krithivasan; Lowenstein, Tim K; Timofeeff, Michael N; Schubert, Brian A; Lum, J Koji

    2014-07-01

    Bacteria and archaea isolated from crystals of halite 10(4) to 10(8) years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification, cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured from subsurface halite, Death Valley, California, 22,000 to 34,000 years old. We recovered 16S ribosomal DNA sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum DV427, which were previously isolated from the same halite interval. These results provide the best independent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches are sensitive to small amounts of DNA and could allow investigation of even older halites, 10(6) to 10(8) years old, from which microbial cultures have been reported. Such studies of microbial life in ancient salt are particularly important as we search for microbial signatures in similar deposits on Mars and elsewhere in the Solar System. PMID:24977469

  12. Effects of Triclosan on Neural Stem Cell Viability and Survival

    Science.gov (United States)

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  13. Host cell cytotoxicity, cellular repopulation dynamics, and phase-specific cell survival in X-irradiated rat rhabdomyosarcoma tumors

    International Nuclear Information System (INIS)

    Postirradiation tumor volume response, cellular repopulation dynamics, cell-cycle perturbations, and phase-specific cell survival were characterized in rat rhabdomyosarcoma R-1 tumors (the R2C5 subline) following an in situ 10-Gy dose of 225-kVp X rays. This X-ray dose produced a 7.5-day delay in tumor growth to twice the volume measured at the time of irradiation, and reduced the initial surviving fraction of R2C5 cells to 0.17 as measured by the excision assay procedure. The surviving fraction of R2C5 cells returned to unity by the 16th day after tumor irradiation. On the basis of flow cytometry measurements of DNA content in tumor cells stained with a noncytotoxic concentration of Hoechst 33342, a transient G2 block was observed 1 day after irradiation. Flow cytometry measurements also demonstrated that the tetraploid R2C5 cells constituted only 30% of the total tumor cell population, with the remainder being diploid host cells comprised of macrophages, monocytes, lymphocytes, and granulocytes. Large numbers of host cells infiltrated the irradiated tumors, leading to an increase in the percentage of diploid cells by Day 2 and reaching a level of more than 80% of the total tumor cell population by 4 to 8 days after irradiation. The influx of host cells into irradiated tumors was correlated temporally with a significant 12-fold decrease in the surviving fraction of R2C5 cells that occurred between Days 2 and 4 postirradiation. When the diploid host cell population was removed by cell sorting procedures, the surviving fraction of R2C5 cells at Day 4 substantially greater than that in the presence of the host cells. Experiments involving the mixing of 4/1 and 12/1 ratios of diploid host cells and tetraploid tumor cells isolated from irradiated and unirradiated tumors demonstrated that the cytotoxic effect of the host cells was specific for the irradiated tumor cells

  14. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  15. Recommended method for radioisotope red-cell survival studies

    International Nuclear Information System (INIS)

    As an amendment to a tentative ICSH Standard published in 1971, three 51Cr (sodium chromate) selected methods are briefly discussed as methods for red-cell survival studies. The acid citrate dextrose (ACD) method is accepted as the reference method and the technique described in detail. (U.K.)

  16. Effect of alternative temozolomide schedules on glioblastoma O 6-methylguanine-DNA methyltransferase activity and survival

    OpenAIRE

    Robinson, C G; Palomo, J M; Rahmathulla, G; McGraw, M; Donze, J; L. Liu; Vogelbaum, M A

    2010-01-01

    Background: O 6-methylguanine-DNA methyltransferase (MGMT) expression in glioblastoma correlates with temozolomide resistance. Dose-intense temozolomide schedules deplete MGMT activity in peripheral blood mononuclear cells; however, no published data exist evaluating the effect of temozolomide schedules on intracranial tumour MGMT activity. Methods: Human glioblastoma cells (GBM43) with an unmethylated MGMT promoter were implanted intracranially in immunodeficient rodents. Three weeks later, ...

  17. DNA vaccination with all-trans retinoic acid treatment induces long-term survival and elicits specific immune responses requiring CD4+ and CD8+ T-cell activation in an acute promyelocytic leukemia mouse model

    Czech Academy of Sciences Publication Activity Database

    Furugaki, K.; Pokorná, Kateřina; le Pogam, C.; Aoki, M.; Reboul, M.; Bajzik, V.; Krief, P.; Janin, A.; Noguera, M.-E.; West, R.; Charron, D.; Chomienne, C.; Pla, M.; Moins-Teisserenc, H.; Padua, R.A.

    2010-01-01

    Roč. 115, č. 3 (2010), s. 653-656. ISSN 0006-4971 Grant ostatní: GA UK(CZ) 94308 Institutional research pla n: CEZ:AV0Z50520514 Keywords : all-trans retinoic acid * DNA vaccination * protective immunity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.558, year: 2010

  18. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    OpenAIRE

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout m...

  19. Influence of acute hypoxia and radiation quality on cell survival

    OpenAIRE

    Tinganelli, Walter; Ma, Ning-Yi; von Neubeck, Cläre; Maier, Andreas; Schicker, Corinna; Kraft-Weyrather, Wilma; Durante, Marco

    2013-01-01

    To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy ...

  20. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.

    Science.gov (United States)

    Raab, M; Gentili, M; de Belly, H; Thiam, H R; Vargas, P; Jimenez, A J; Lautenschlaeger, F; Voituriez, Raphaël; Lennon-Duménil, A M; Manel, N; Piel, M

    2016-04-15

    In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)-dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses. PMID:27013426

  1. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Science.gov (United States)

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival. PMID:24305165

  2. All colonies of CHO-K1 cells surviving γ-irradiation contain non-viable cells

    International Nuclear Information System (INIS)

    This paper addresses production of defective cells within clones arising from irradiated progenitor cells. It aims at answering the question whether lethal mutation result from a generalised effect which lowers the ability of all the progeny to divide successfully or whether it represents a late expressed but unique lethal defect induced by radiation which occurs in some cells only and which causes those cells only to cease dividing. Results obtained from autoradiographic analysis of cells within individual surviving colonies (i.e. containing more than 150 cells) suggests that some cells in all clones are not synthesizing DNA over a 9-h period and that the properties of non-synthesizing cells rises with increasing dose of radiation from less than 3% in controls to 80-85% after a progenitor dose of 12.5 Gy. because of the possibility that cells had longer division times post irradiation, these results were repeated using Ki67 antibody labelling, a technique that identifies cells which are in cycle. Results were similar. This suggests the non-labelled cells were not reproducing. Both techniques were also used to look at the % labelling of morphologically abnormal cells in colonies. Results suggested that up to 35% of these abnormal cells were actively cycling and about 20% were synthesizing DNA. Abnormal cells did not appear in subcultures of survivor progeny suggesting that they may have failed to replate successfully and may contribute to the lethally mutated population. The results are discussed in the context of their significance for survival curve analysis and for radiotherapy and radiation protection results. (author). 32 refs.; 6 figs.; 2 tabs

  3. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    OpenAIRE

    Aya Kurosawa; Shinta Saito; Sairei So; Mitsumasa Hashimoto; Kuniyoshi Iwabuchi; Haruka Watabe; Noritaka Adachi

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of ...

  4. Surviving protein quality control catastrophes--from cells to organisms.

    Science.gov (United States)

    Schneider, Kim; Bertolotti, Anne

    2015-11-01

    Organisms have evolved mechanisms to cope with and adapt to unexpected challenges and harsh conditions. Unfolded or misfolded proteins represent a threat for cells and organisms, and the deposition of misfolded proteins is a defining feature of many age-related human diseases, including the increasingly prevalent neurodegenerative diseases. These protein misfolding diseases are devastating and currently cannot be cured, but are hopefully not incurable. In fact, the aggregation-prone and potentially harmful proteins at the origins of protein misfolding diseases are expressed throughout life, whereas the diseases are late onset. This reveals that cells and organisms are normally resilient to disease-causing proteins and survive the threat of misfolded proteins up to a point. This Commentary will outline the limits of the cellular resilience to protein misfolding, and discuss the possibility of pushing these limits to help cells and organisms to survive the threat of misfolding proteins and to avoid protein quality control catastrophes. PMID:26483388

  5. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    International Nuclear Information System (INIS)

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy

  6. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  7. Severe Septic Patients with Mitochondrial DNA Haplogroup JT Show Higher Survival Rates: A Prospective, Multicenter, Observational Study

    OpenAIRE

    Lorente, Leonardo; Iceta, Ruth; Martín, María M.; López-Gallardo, Esther; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Borreguero-León, Juan María; Jiménez, Alejandro; Montoya, Julio; Ruiz-Pesini, Eduardo

    2013-01-01

    Objective In a previous cohort study (n=96), we found an association between mitochondrial (mt) DNA haplogroup JT and increased survival of severe septic patients, after controlling for age and serum lactic acid levels. The aim of this research was to increase the predictive accuracy and to control for more confounder variables in a larger cohort (n=196) of severe septic patients, to confirm whether mtDNA haplogroup JT influences short and medium-term survival in these patients. Methods We co...

  8. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  9. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  10. REDD1 Is Essential for Optimal T Cell Proliferation and Survival.

    Directory of Open Access Journals (Sweden)

    Emma L Reuschel

    Full Text Available REDD1 is a highly conserved stress response protein that is upregulated following many types of cellular stress, including hypoxia, DNA damage, energy stress, ER stress, and nutrient deprivation. Recently, REDD1 was shown to be involved in dexamethasone induced autophagy in murine thymocytes. However, we know little of REDD1's function in mature T cells. Here we show for the first time that REDD1 is upregulated following T cell stimulation with PHA or CD3/CD28 beads. REDD1 knockout T cells exhibit a defect in proliferation and cell survival, although markers of activation appear normal. These findings demonstrate a previously unappreciated role for REDD1 in T cell function.

  11. DNA fork displacement rates in human cells

    International Nuclear Information System (INIS)

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 μm/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions. (Auth.)

  12. Oxidative DNA Damage in Neurons: Implication of Ku in Neuronal Homeostasis and Survival

    Directory of Open Access Journals (Sweden)

    Daniela De Zio

    2012-01-01

    Full Text Available Oxidative DNA damage is produced by reactive oxygen species (ROS which are generated by exogenous and endogenous sources and continuously challenge the cell. One of the most severe DNA lesions is the double-strand break (DSB, which is mainly repaired by nonhomologous end joining (NHEJ pathway in mammals. NHEJ directly joins the broken ends, without using the homologous template. Ku70/86 heterodimer, also known as Ku, is the first component of NHEJ as it directly binds DNA and recruits other NHEJ factors to promote the repair of the broken ends. Neurons are particularly metabolically active, displaying high rates of transcription and translation, which are associated with high metabolic and mitochondrial activity as well as oxygen consumption. In such a way, excessive oxygen radicals can be generated and constantly attack DNA, thereby producing several lesions. This condition, together with defective DNA repair systems, can lead to a high accumulation of DNA damage resulting in neurodegenerative processes and defects in neurodevelopment. In light of recent findings, in this paper, we will discuss the possible implication of Ku in neurodevelopment and in mediating the DNA repair dysfunction observed in certain neurodegenerations.

  13. Effect of dihydroxyanthraquinone (DHAQ) and radiation on the survival of cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Dihydroxyanthraquinone (DHAQ) is currently being tested as a cancer chemotherapeutic agent because of its structural similarity to Adriamycin (ADR) and other DNA-intercalating antibiotics. The interaction of DHAQ and ionizing radiation on the induction of cell lethality was investigated in Chinese hamster ovary cells in culture. In asynchronous populations of cells, DHAQ produced a slight enhancement of radiation-induced cell lethality as evidenced by changes in both shoulder and slope of the radiation dose-survival curves. However, DHAQ had no effect on either the extent or time course of recovery from sublethal radiation damage. In synchronous populations of cells treated at various times before or after selection in mitosis, the combination of DHAQ and radiation produced greater cell killing than that predicted based on simple additivity of effect, with a decided enhancement for cells treated during S phase. These results indicate that DHAQ is similar to other DNA-intercalating antibiotics in regard to the interaction with ionizing radiation to produce cell lethality

  14. Severe septic patients with mitochondrial DNA haplogroup JT show higher survival rates: a prospective, multicenter, observational study.

    Directory of Open Access Journals (Sweden)

    Leonardo Lorente

    Full Text Available OBJECTIVE: In a previous cohort study (n=96, we found an association between mitochondrial (mt DNA haplogroup JT and increased survival of severe septic patients, after controlling for age and serum lactic acid levels. The aim of this research was to increase the predictive accuracy and to control for more confounder variables in a larger cohort (n=196 of severe septic patients, to confirm whether mtDNA haplogroup JT influences short and medium-term survival in these patients. METHODS: We conducted a prospective, multicenter, observational study in six Spanish Intensive Care Units. We determined 30-day and 6-month survival and mtDNA haplogroup in this second cohort of 196 patients and in the global cohort (first and second cohorts combined with 292 severe septic patients. Multiple logistic regression and Cox regression analyses were used to test for the association of mtDNA haplogroups JT with survival at 30-days and 6-months, controlling for age, sex, serum interleukin-6 levels and SOFA score. RESULTS: Logistic and Cox regression analyses showed no differences in 30-day and 6-month survival between patients with mtDNA haplogroup JT and other haplogroups in the first cohort (n=96. In the second cohort (n=196, these analyses showed a trend to higher 30-day and 6-month survival in those with haplogroup JT. In the global cohort (n=292, logistic and Cox regression analyses showed higher 30-day and 6-month survival for haplogroup JT. There were no significant differences between J and T sub-haplogroups in 30-day and 6-month survival. CONCLUSIONS: The global cohort study (first and second cohorts combined, the largest to date reporting on mtDNA haplogroups in septic patients, confirmed that haplogroup JT patients showed increased 30-day and 6-month survival. This finding may be due to single nucleotide polymorphism defining the whole haplogroup JT and not separately for J or T sub-haplogroups.

  15. Self DNA from lymphocytes that have undergone activation-induced cell death enhances murine B cell proliferation and antibody production.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available Systemic lupus erythematosus (SLE is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1 and the X-box binding protein 1 (XBP1. Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.

  16. Expression of Delayed Cell Death and DNA Repair in Human Epithelial Cell Lines Following Exposure to Ultraviolet Radiation

    International Nuclear Information System (INIS)

    The long term effects of UVA and UVB have been investigated using two human epithelial cell lines, HTori-3 (a human thyroid epithelial cell line) and 340 RPE-T53 (a human retinal pigment epithelial cell line). There was a marked difference in clonogenic survival following exposure between the two cell lines. DNA repair studies were undertaken using ara-C treatment. Ara-C administered immediately after UVB exposure, reduced survival in both cell lines indicating that DNA repair was inhibited. The plating efficiency, as an index of delayed cell death of both cell lines measured up to 20 population doublings following exposure to UV was reduced in a dose dependent manner after exposure to UVB but not to UVA. (author)

  17. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response

    Directory of Open Access Journals (Sweden)

    Børresen-Dale Anne-Lise

    2010-03-01

    Full Text Available Abstract Background Breast cancer is the most frequent cancer in women and consists of a heterogeneous collection of diseases with distinct histopathological, genetic and epigenetic characteristics. In this study, we aimed to identify DNA methylation based biomarkers to distinguish patients with locally advanced breast cancer who may benefit from neoadjuvant doxorubicin treatment. Results We investigated quantitatively the methylation patterns in the promoter regions of 14 genes (ABCB1, ATM, BRCA1, CDH3, CDKN2A, CXCR4, ESR1, FBXW7, FOXC1, GSTP1, IGF2, HMLH1, PPP2R2B, and PTEN in 75 well-described pre-treatment samples from locally advanced breast cancer and correlated the results to the available clinical and molecular parameters. Six normal breast tissues were used as controls and 163 unselected breast cancer cases were used to validate associations with histopathological and clinical parameters. Aberrant methylation was detected in 9 out of the 14 genes including the discovery of methylation at the FOXC1 promoter. Absence of methylation at the ABCB1 promoter correlated with progressive disease during doxorubicin treatment. Most importantly, the DNA methylation status at the promoters of GSTP1, FOXC1 and ABCB1 correlated with survival, whereby the combination of methylated genes improved the subdivision with respect to the survival of the patients. In multivariate analysis GSTP1 and FOXC1 methylation status proved to be independent prognostic markers associated with survival. Conclusions Quantitative DNA methylation profiling is a powerful tool to identify molecular changes associated with specific phenotypes. Methylation at the ABCB1 or GSTP1 promoter improved overall survival probably due to prolonged availability and activity of the drug in the cell while FOXC1 methylation might be a protective factor against tumour invasiveness. FOXC1 proved to be general prognostic factor, while ABCB1 and GSTP1 might be predictive factors for the response

  18. Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer

    Science.gov (United States)

    Ye, Xin; Bai, Hua; Wang, Zhijie; Sun, Yun; Zhao, Jun; An, Tongtong; Duan, Jianchun; Wu, Meina; Wang, Jie

    2016-01-01

    Purpose We aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) from advanced lung adenocarcinoma (ADC) patients. Results Detection limit of EGFR mutation in ctDNA by ddPCR was 0.04%. Taking the EGFR mutation in tumor tissue as the golden standard, the concordance of EGFR mutations detected in ctDNA was 74% (54/73). Patients with EGFR mutation in ctDNA (n = 54) superior progression-free survival (PFS, median, 12.6 vs. 6.7 months, P 5.15%) showed better PFS compared to those with low EGFR mutated abundance (≤ 5.15%) (PFS, median, 15.4 vs. 11.1 months, P = 0.021). NGS results showed that 66.6% (8/12) total mutational copy number were elevated and 76.5% (26/34) mutual mutation frequency increased after disease progression. Methods Seventy-three advanced ADC patients with tumor tissues carrying EGFR mutations and their matched pre- and post-EGFR-TKIs plasma samples were enrolled in this study. Absolute quantities of plasma EGFR mutant and wild-type alleles were measured by ddPCR. Multi-genes testing was performed using NGS in 12 patients. Conclusions Dynamic and quantitative analysis of EGFR mutation in ctDNA could guide personalized therapy for advanced ADC. NGS shows good performance in multiple genes testing especially novel and uncommon genes. PMID:26989078

  19. Novel genes underlying beta cell survival in metabolic stress

    OpenAIRE

    Singh, Himadri; Farouk, Mohammed; Bose, Barish Baran; Singh, Prabhakar

    2013-01-01

    Relative insulin deficiency, in response to increased metabolic demand (obesity, genetic insulin resistance, pregnancy and aging) lead to Type2 diabetes. Susceptibility of the type 2 diabetes has a genetic basis, as a subset of people with risk factors (obesity, Insulin Resistance, pregnancy), develop Type2 Diabetes. We aimed to identify ‘cluster’ of overexpressed genes, underlying increased beta cell survival in diabetes resistant C57BL/6J ob/ob mice (compared to diabetes susceptible BTBR ob...

  20. B-cell survival factors in autoimmune rheumatic disorders

    Science.gov (United States)

    Morais, Sandra A.; Vilas-Boas, Andreia

    2015-01-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren’s syndrome and myositis. PMID:26288664

  1. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Science.gov (United States)

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960

  2. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  3. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    James CK Lai

    2010-09-01

    Full Text Available James CK Lai1, Gayathri Ananthakrishnan1,2, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Mugdha Gokhale1, Christopher K Daniels1, Solomon W Leung31Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy and Biomedical Research Institute, 2Department of Health and Nutrition Sciences, Kasiska College of Health Professions, 3Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: Recent evidence suggests silicon dioxide micro- and nanoparticles induce cytotoxic effects on lung cells. Thus, there is an increasing concern regarding their potential health hazard. Nevertheless, the putative toxicity of nanoparticles in mammalian cells has not yet been systematically investigated. We previously noted that several metallic oxide nanoparticles exert differential cytotoxic effects on human neural and nonneural cells. Therefore, we hypothesized that silicon dioxide nanoparticles induce cytotoxicity in U87 cells by lowering their survival by decreasing cell survival signaling and disturbing mitochondrial function. To investigate this hypothesis, we determined the activities of the key mitochondrial enzymes, citrate synthase and malate dehydrogenase, in astrocytoma U87 cells treated with silicon dioxide nanoparticles. In addition, we studied the expression of the mitochondrial DNA-encoded proteins, cytochrome C oxidase II and nicotinamide adenine dinucleotide (NADPH dehydrogenase subunit 6, and cell signaling pathway protein extracellular signal-regulated kinase (ERK and phosphorylated ERK in treated U87 cells. The activated form of ERK controls cell growth, differentiation, and proliferation. In parallel, we determined survival of U87 cells after treating them with various concentrations of silicon dioxide nanoparticles. Our results indicated that treatment with silicon dioxide nanoparticles induced decreases in U87 cell survival

  4. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    International Nuclear Information System (INIS)

    Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of

  5. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    Directory of Open Access Journals (Sweden)

    Paquet Éric R

    2011-07-01

    Full Text Available Abstract Background Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Methods Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Results Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT

  6. Dynamic observation of micronuclei and cell survival in human liver cancer cells irradiated by heavy ion

    International Nuclear Information System (INIS)

    The author reported dynamic changes of micronuclei and cell survival in human liver cancer cells SMMC-7721 irradiated by 25 MeV/u 40Ar14+. The results show: (1) Change rules of frequency of micronuclei induced by single irradiation and fractionation irradiation with culture time have not clear difference. (2) Irradiated (single, fractionation) liver cancer cells grow much slower than control and their survival number with culture time shows decay tendency. (3) Dynamic changes of the relationship between micronucleus frequency and cell survival number presents negative correlation. (4) For cells irradiated by dose of 0.68 Gy, 6.8 Gy and 68 Gy, frequency of micronuclei following culture 24 hours is lower than that following culture 96 hours. (5) Negative dependences of survival number of liver cancer cells for culture 24 hours and 48 hours on dose are demonstrated

  7. Human papillomavirus DNA and p16 expression in Japanese patients with oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Human papillomavirus (HPV) is a major etiologic factor for oropharyngeal squamous cell carcinoma (OPSCC). However, little is known about HPV-related OPSCC in Japan. During the study, formalin-fixed, paraffin-embedded OPSCC specimens from Japanese patients were analyzed for HPV DNA by the polymerase chain reaction (PCR) and for the surrogate marker p16 by immuno-histochemistry. For HPV DNA-positive, p16-negative specimens, the methylation status of the p16 gene promoter was examined by methylation-specific PCR. Overall survival was calculated in relation to HPV DNA and p16 status and was subjected to multivariate analysis. OPSCC cell lines were examined for sensitivity to radiation or cisplatin in vitro. The study results showed that tumor specimens from 40 (38%) of the 104 study patients contained HPV DNA, with such positivity being associated with tumors of the tonsils, lymph node metastasis, and nonsmoking. Overall survival was better for OPSCC patients with HPV DNA than for those without it (hazard ratio, 0.214; 95% confidence interval, 0.074–0.614; P = 0.002). Multivariate analysis revealed HPV DNA to be an independent prognostic factor for overall survival (P = 0.015). Expression of p16 was associated with HPV DNA positivity. However, 20% of HPV DNA-positive tumors were negative for p16, with most of these tumors manifesting DNA methylation at the p16 gene promoter. Radiation or cisplatin sensitivity did not differ between OPSCC cell lines positive or negative for HPV DNA. Thus, positivity for HPV DNA identifies a distinct clinical subset of OPSCC with a more favorable outcome in Japanese

  8. Cell survival and iso-effect contours in irradiated tissues

    International Nuclear Information System (INIS)

    Cell population kinetic parameters derived from radiobiological experiments and analysis of clinical data can be used to compute cellular surviving fractions in irradiated tumours and normal tissues. A three-component model of cellular radiation lethality, capable of simulating irreparable lethal events, reversible or sublethal effects and tissue repopulation processes, has proved adequate for clinical purposes. On this basis, computer programs have been developed for generating iso-effect (iso-survival) functions for various fractionation intervals in several tissues and tumours; for determining surviving fractions, equivalent single doses, and probabilities of response with specified fractionation schemes; and for optimizing treatment by identifying the procedure giving the highest probability of uncomplicated cure for a given tumour type growing in a specified location. If the relevant parameters for each of the tissues traversed by the beam, the physical dose absorbed at each point of interest, and the size, number and sequence of fractional doses reaching that point are known, then a series of computations of cellular surviving fractions can be made and used to draw iso-effect contours as a supplement to the physical isodose distribution in the same region. Procedures for both physical and biological optimization of the whole treatment plan are suggested. (author)

  9. Cell survival in spheroids irradiated with heavy-ion beams

    International Nuclear Information System (INIS)

    Biological investigations with accelerated heavy ions have been carried out regularly at the Lawrence Berkeley Laboratory Bevalac for the past four years. Most of the cellular investigations have been conducted on cell monolayer and suspension culture systems. The studies to date suggest that heavy charged particle beams may offer some radiotherapeutic advantages over conventional radiotherapy sources. The advantages are thought to lie primarily in an increased relative biological effectiveness (RBE), a decrease in the oxygen enhancement ratio (OER), and better tissue distribution dose. Experiments reported here were conducted with 400 MeV/amu carbon ions and 425 MeV/amu neon ions, using a rat brain gliosarcoma cell line grown as multicellular spheroids. Studies have been carried out with x-rays and high-energy carbon and neon ion beams. These studies evaluate high-LET (linear energy transfer) cell survival in terms of RBE and the possible contributions of intercellular communication. Comparisons were made of the post-irradiation survival characteristics for cells irradiated as multicellular spheroids (approximately 100 μm and 300 μm diameters) and for cells irradiated in suspension. These comparisons were made between 225-kVp x-rays, 400 MeV/amu carbon ions, and 425 MeV/amu neon ions

  10. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  11. DNA-PKcs subunits in radiosensitization by hyperthermia on hepatocellular carcinoma hepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Zhao-Chong Zeng; Guo-Liang Jiang; Guo-Min Wang; Zhao-You Tang; Walter J. Curran; George Iliakis

    2002-01-01

    AIM: To investigate the role of DNA-PKcs subunits inradiosensitization by hyperthermia on hepatocellularcarcinoma HepG2 cell lines.METHODS: Hep G2 cells were exposed to hyperthermiaand irradiation. Hyperthermia was given at 45.5 ℃Cellsurvival was determined by an in vitro clonogenic assay forthe cells treated with or without hyperthermia at varioustime points. DNA DSB rejoining was measured usingasymmetric field inversion gel electrophoresis (AFIGE). TheDNA-PKcs activities were measured using DNA-PKcs enzymeassay system.RESULTS: Hyperthermia can significantly enhanceirradiation-killing cells. Thermal enhancement ratio ascalculated at 10 % survival was 2.02. The difference inradiosensitivity between two treatment modes manifestedas a difference in the α components and the almost sameβ components, which α value was considerably higher inthe cells of combined radiation and hyperthermia ascompared with irradiating cells (1.07 Gy-1 versus 0.44 Gy1). Survival fraction showed 1 logarithm increase after an8-hour interval between heat and irradiation, whereas DNA-PKcs activity did not show any recovery. The cells wereexposed to heat 5 minutes only, DNA-PKcs activity wasinhibited at the nadir, even though the exposure time waslengthened. Whereas the ability of DNA DSB rejoining wasinhibited with the increase of the length of hyperthermictime. The repair kinetics of DNA DSB rejoining aftertreatment with Wortmannin is different from thehyperthermic group due to the striking high slow rejoiningcomponent.CONCLUSION: Determination with the cell extracts andthe peptide phosphorylation assay, DNA-PKcs activity wasinactivated by heat treatment at 45.5 C, and could notrestore. Cell survival is not associated with the DNA-PKcsinactivity after heat. DNA-PKcs is not a unique factor affectingthe DNA DSB repair. This suggests that DNA-PKcs do notplay a crucial role in the enhancement of cellularradiosensitivity by hyperthermia.

  12. Cell-free DNA: Preanalytical variables.

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Aucamp, Janine; Pretorius, Piet J

    2015-10-23

    Since the discovery of cell-free DNA (cfDNA) in human blood, most studies have focused on diagnostic and prognostic uses of these markers for solid tumors. Except for some prenatal tests and BEAMing, cfDNA analysis has not yet been translated to clinical practice and routine application appears distant. This can be attributed to overlapping factors: (i) a lack of knowledge regarding the origin and function of cfDNA, (ii) insufficient molecular characterization, and (iii) the absence of an analytical consensus. In this review, we address the latter determinant and focus specifically on quantitative analysis of cfDNA. While the literature reports limited value for a single quantitative assessment, cfDNA kinetic assessment will be an essential component to qualitative characterization. In order to establish quantitative analysis for accurate kinetic assessments, process optimization and standardization are crucial. This report elucidates the most confounding variables of each preanalytic step that must be considered for optimal analysis. PMID:26341895

  13. DNA analysis of epithelial cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; Johnson, N.F.; Holland, L.M.

    1985-01-01

    Cell suspensions of skin were obtained by animals exposed by skin painting of several crude oils. DNA analysis of these cell suspensions labeled with mithramycin provide determination of percentages of cells in the G/sub 1/, S and G/sub 2/M phases of the cell cycle. Data acquired showed differences from control animals occurring as early as 7 days after treatment and persisting through 21 days afterwards. There was histological evidence of erythema and hyperplasia in shale oil-exposed skins. Flow cytometric analysis of DNA content in shale-oil-exposed skin cells showed an increased percentage of cycling cells plus evidence of aneuploidy. Similar data from simply abraded skin showed increased percentages of cycling cells, but no aneuploidy. The shale-oil-exposed group, when compared to a standard petroleum-exposed group, had significantly increased percentages of cycling cells. This early indication of differing response to different complex mixtures was also seen in long-term skin exposures to these compounds. Similar analytical techniques were applied to tracheal cell suspensions from ozone-exposed rats. 12 refs., 4 figs., 4 tabs. (DT)

  14. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  15. Red cell survival and sequestration in acute intermittent porphyria

    International Nuclear Information System (INIS)

    Life span and sequestration of red cells have been studied in twenty one proved cases of acute intermittent porphyria of different age and sex group from Bikaner District, Rajasthan State (India). Chromium-51 labelled red cells were used in the study and the excess count method of Bughe Jones and Szur was used to calculate the index of sequestration. The mean apparent half survival time of erythrocytes in the control subjects was 25.9 +- 2.9 (S.D.) days and the same in the prophyria patients was 27.0 +- 3.8 days. This shows that the life span of red cells is normal in both the patient and the control. Excess destruction of red blood cells was found to take place in either spleen or liver in the disease and no excess accumulation of erythrocytes occurred over spleen as compared to liver. (M.G.B.)

  16. Cell-Free Fetal DNA and Cell-Free Total DNA Levels in Spontaneous Abortion with Fetal Chromosomal Aneuploidy

    OpenAIRE

    Ji Hyae Lim; Min Hyoung Kim; You Jung Han; Da Eun Lee; So Yeon Park; Jung Yeol Han; Moon Young Kim; Hyun Mee Ryu

    2013-01-01

    BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA) with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy....

  17. Aiolos collaborates with Blimp-1 to regulate the survival of multiple myeloma cells.

    Science.gov (United States)

    Hung, K-H; Su, S-T; Chen, C-Y; Hsu, P-H; Huang, S-Y; Wu, W-J; Chen, M-J M; Chen, H-Y; Wu, P-C; Lin, F-R; Tsai, M-D; Lin, K-I

    2016-07-01

    The transcriptional repressor B lymphocyte-induced maturation protein-1 (Blimp-1) has crucial roles in the control of plasma cell differentiation and in maintaining survival of plasma cells. However, how Blimp-1 ensures the survival of plasma cell malignancy, multiple myeloma (MM), has remained elusive. Here we identified Aiolos, an anti-apoptotic transcription factor of MM cells, as a Blimp-1-interacting protein by mass spectrometry. ChIP coupled with DNA microarray was used to profile the global binding of Aiolos and Blimp-1 to endogenous targets in MM cells, which revealed their co-binding to a large number of genes, including apoptosis-related genes. Accordingly, Blimp-1 and Aiolos regulate similar transcriptomes in MM cells. Analysis of the binding motifs for Blimp-1 and Aiolos uncovered a partial motif that was similar across sites for both proteins. Aiolos promotes the binding of Blimp-1 to target genes and thereby enhances Blimp-1-dependent transcriptional repression. Furthermore, treatment with an anti-MM agent, lenalidomide, caused ubiquitination and proteasomal degradation of Blimp-1, leading to the de-repression of a new Blimp-1 direct target, CULLIN 4A (CUL4A), and reduced Aiolos levels. Accordingly, lenalidomide-induced cell death was partially rescued by reintroduction of Blimp-1 or knockdown of CUL4A. Thus, we demonstrated the functional impacts and underlying mechanisms of the interaction between Aiolos and Blimp-1 in maintaining MM cell survival. We also showed that interruption of Blimp-1/Aiolos regulatory pathways contributes to lenalidomide-mediated anti-MM activity. PMID:26823144

  18. PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development.

    Science.gov (United States)

    Bu, Yiwen; Diehl, J Alan

    2016-10-01

    Unfolded protein responses (UPR), consisting of three major transducers PERK, IRE1, and ATF6, occur in the midst of a variety of intracellular and extracellular challenges that perturb protein folding in the endoplasmic reticulum (ER). ER stress occurs and is thought to be a contributing factor to a number of human diseases, including cancer, neurodegenerative disorders, and various metabolic syndromes. In the context of neoplastic growth, oncogenic stress resulting from dysregulation of oncogenes such as c-Myc, Braf(V600E) , and HRAS(G12V) trigger the UPR as an adaptive strategy for cancer cell survival. PERK is an ER resident type I protein kinase harboring both pro-apoptotic and pro-survival capabilities. PERK, as a coordinator through its downstream substrates, reprograms cancer gene expression to facilitate survival in response to oncogenes and microenvironmental challenges, such as hypoxia, angiogenesis, and metastasis. Herein, we discuss how PERK kinase engages in tumor initiation, transformation, adaption microenvironmental stress, chemoresistance and potential opportunities, and potential opportunities for PERK targeted therapy. J. Cell. Physiol. 231: 2088-2096, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864318

  19. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  20. Oral squamous cell carcinoma: survival, recurrence and death

    Directory of Open Access Journals (Sweden)

    Antônio Camilo Souza Cruz

    2014-10-01

    Full Text Available This paper was based in data survey from macro and microscopic oral lesions characteristics, personal data and medical history of patients diagnosed with oral squamous cell carcinoma in the Lab of Pathological Anatomy from the Federal University of Alfenas from January 2000 to December 2010, establishing comparative parameters among clinical data, type of treatment, recurrence, survival and anatomic pathological characteristics of the lesions. Were analyzed the histopathological reports, dental and hospital records. The highest incidence was in white men, age between 50 and 60 years, married, with low education and socioeconomic levels. The beginning of treatment occurred in average 67 days after the histopathological diagnosis. The estimated survival of patients at five years was 42%. The consumption of alcohol and tobacco and the occurrence of metastasis were statistically significant for the increase of recurrence and lethality.

  1. CXCR4 engagement promotes dendritic cell survival and maturation

    International Nuclear Information System (INIS)

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response

  2. The Prognostic Value of Circulating Cell-Free DNA in Colorectal Cancer: A Meta-Analysis

    Science.gov (United States)

    Basnet, Shiva; Zhang, Zhen-yu; Liao, Wen-qiang; Li, Shu-heng; Li, Ping-shu; Ge, Hai-yan

    2016-01-01

    Background: Circulating cell-free DNA (cfDNA) is a promising candidate biomarker for detection, monitoring and survival prediction of colorectal cancer (CRC). However, its prognostic significance for patients with CRC remains controversial. To derive a precise estimation of the prognostic significance of cfDNA, a meta-analysis was performed. Methods: We made a systematic search in data base of the Science Citation Index Embase and Pubmed for studies reporting prognostic data of cfDNA in CRC patients. The data of cfDNA on recurrences-free survival (RFS) and overall survival (OS) were extracted and measured in hazard rates (HRs) and 95% confident intervals (CIs). Subgroup analyses were carried out as well. Finally, the meta-analysis is accompanied with nine studies including 19 subunits. Results: The pooled HRs with 95% CIs revealed strong associations between cfDNA and RFS (HR [95%CI]=2.78[2.08-3.72], I2=32.23%, n=7) along with OS (HR [95%CI]=3.03[2.51-3.66], I2=29.24%, n=12) in patients with CRC. Entire subgroup analyses indicated strong prognostic value of cfDNA irrespective tumor stage, study size, tumor markers, detection methods and marker origin. Conclusions: All the results exhibits that appearance of cfDNA in blood is an indicator for adverse RFS and OS in CRC patients. PMID:27326254

  3. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D0 or SF2). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  4. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria, formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK, NF-B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti- and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3, essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins, block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as ``weak links” between various ``hubs” in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins, can act as ``hubs” in

  5. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  6. Engineered cell-cell communication via DNA messaging

    Directory of Open Access Journals (Sweden)

    Ortiz Monica E

    2012-09-01

    Full Text Available Abstract Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.

  7. An unusual symmetric recombinant between adenovirus type 12 DNA and human cell DNA

    OpenAIRE

    Deuring, Renate; Klotz, Günther; Doerfler, Walter

    1981-01-01

    On purification of human adenovirus type 12 (Ad12) by equilibrium sedimentation in CsCl density gradients, two bands of particles, Ad12-3 and Ad12-3a, are observed. The particles from band Ad12-3a contain a recombinant of human host cell DNA and of Ad12 DNA. The human cell DNA sequences contain repetitive DNA recurring 200 to 500 times in cellular DNA. Ad12 DNA and the recombinant genomes exhibit the same or similar lengths. This finding suggests that a constant amount of DNA is packaged into...

  8. DNA typing of epithelial cells after strangulation.

    Science.gov (United States)

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  9. Mitochondrial DNA mutations in single human blood cells.

    Science.gov (United States)

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. PMID:26149767

  10. Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells.

    Science.gov (United States)

    Karoubi, Golnaz; Ormiston, Mark L; Stewart, Duncan J; Courtman, David W

    2009-10-01

    Inadequate extracellular matrix cues and subsequent apoptotic cell death are among crucial factors currently limiting cell viability and organ retention in cell-based therapeutic strategies for vascular regeneration. Here we describe the use of a single-cell hydrogel capsule to provide enhanced cell survival of adherent cells in transient suspension culture. Human marrow stromal cells (hMSCs) were singularly encapsulated in agarose capsules containing the immobilized matrix molecules, fibronectin and fibrinogen to ameliorate cell-matrix survival signals. MSCs in the enriched capsules demonstrated increased viability, greater metabolic activity and enhanced cell-cytoskeletal patterning. Increased cell viability resulted from the re-induction of cell-matrix interactions likely via integrin clustering and subsequent activation of the extracellular signal regulated MAPK (ERK)/mitogen activated protein kinase (MAPK) signaling cascade. Proof of principle in-vivo studies, investigating autologous MSC delivery into Fisher 344 rat hindlimb, depicted a significant increase in the number of engrafted cells using the single-cell encapsulation system. Incorporation of immobilized adhesion molecules compensates, at least in part, for the missing cell-matrix cues, thereby attenuating the initial anoikis stimuli and providing protection from subsequent apoptosis. Thus, this single-cell encapsulation strategy may markedly enhance therapeutic cell survival in targeted tissues. PMID:19595454

  11. Regulation of cell survival and death during Flavivirus infections

    Institute of Scientific and Technical Information of China (English)

    Sounak; Ghosh; Roy; Beata; Sadigh; Emmanuel; Datan; Richard; A; Lockshin; Zahra; Zakeri

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic(Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause.

  12. Usefulness of DNA repair genes in prediction and potentiation of radiosensitivity in tumor cells

    International Nuclear Information System (INIS)

    Radiotherapy is one of the common treatment modalities for cancer. However, owing to the differences in intrinsic radiosensitivity of the different tumor types, a significant variation in therapeutic response is observed during radiotherapy leading to ineffective killing of tumor cells or occasional adverse effects in normal tissues. Hence, an optimization of radiation dose in clinical practice based on the radiosensitivity of individual patients and tumor types is of paramount importance. From this perspective, prediction of radiosensitivity of tumor tissues and understanding about molecular determinants of radiosensitivity can help in improving the efficacy of radiation therapy. Therefore, in the present study, expression of genes which are involved in DNA damage response and cytoprotective pathways were studied to evaluate their use in predicting the radiosensitivity of tumor cells using six different tumor cells (HT1080, DU145, MCF7, A549, PC3 and HT29). Initially the radiosensitivity profile of these tumor cells has been studied using clonogenic survival assay. Then the expression profile of genes, which are involved in crucial radiation response pathways like, DNA damage, repair, apoptosis and redox regulation were analyzed by real time q-PCR (either 2 Gy or 6 Gy). The fold change in expression was calculated for different genes and was correlated with clonogenic survival. Out of 15 genes analyzed, three genes (HSP70, KU80 and RAD51) showed change in gene expression in accordance with their radiosensitivity. The expression of these three genes also showed a significant positive correlation with survival fraction. The 'r' values observed were 0.97, 0.99, and 0.97 for HSP70, KU80 and RAD51, respectively. Since these genes are involved in DNA repair pathways, we have investigated the effect of inhibition of DNA-PK (a protein involved in the non-homologous end joining and consists of Ku70/KU80 complex and DNA-PKcs), in potentiating the radiation induced damage in

  13. Protective effect of deoxynucleotide triphosphates on DNA damage in different mammalian cells exposed to -radiation

    Directory of Open Access Journals (Sweden)

    Elmaghraby, T

    2002-09-01

    Full Text Available DNA is generally considered to be the most critical cellular target when considering the lethal, carcinogenic and mutagenic effects of drugs, radiation and environmental chemicals. So the study aim to the determination the damaging effect of -radiation on DNA and the protective effect of deoxynucleotide triphosphates (dNTPs. The study includes three cell types, lymphocytes, kidney cells of African gree monkey (Vero and hepatocellular carcinoma of human (HePG2 exposed to 1-5 Gy of -radiation and by using fluorometric analysis of DNA unwinding (FADU method, DNA damage was measured after radiation. The cells were divided into two groups: The first received 5x10-5 dNTPs from 0-30 minutes after radiation, while the second group was not supplemented with deoxynucleotides. Clonogenic survival for vero and HePG2 cell lines was measured. The results revealed that the increase of irradiation dose precipitates an increase of DNA strand breaks. The slope curve of initial DNA damage and mean inactivation dose (D differ between vero and HepG2 cell line by a factor of up 3.5 and 2, respectively. dNTPs have clear ameliorating effect on DNA damage. FADU method can play an important role in the choice of a suitable treatment (radiation or drugs and its dosage according to measurement of DNA damages in selective malignant tissues. Moreover, using dNTPs mixture can reduce the side effect of these treatment especially after experimentally on live mammals (mice .

  14. Tumour-stromal interactions: Integrins and cell adhesions as modulators of mammary cell survival and transformation

    International Nuclear Information System (INIS)

    Stromal–epithelial interactions modulate mammary epithelial cell (MEC) growth and apoptosis by influencing cell adhesion and tissue organization. Perturbations in the mammary stroma and cell adhesion characterize breast tumors and underlie the altered tissue organization, disrupted tissue homeostasis and enhanced survival phenotype of the disease. Apoptosis resistance likely arises during malignant transformation via genetic and epigenetic modification of cell adhesion pathways induced by a changing tissue microenvironment. Acquisition of adhesion-linked survival networks that enhance MEC viability in the absence of basement membrane interactions probably promote malignant transformation, and may render breast tumors sufficiently resistant to exogenous apoptotic stimuli to generate multidrug resistance

  15. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect on the...

  16. Dose-rate effect for DNA damage induced by ionizing radiation in human tumor cells

    International Nuclear Information System (INIS)

    The effect of dose rate on clonogenic cell survival and DNA double-strand breaks (DSBs) has been examined in a human bladder carcinoma cell line, RT112, treated with ionizing radiation. Cell survival changed markedly over the range of dose rates used (0.01-1.28 Gy/min) with the curves becoming shallower and straighter as the dose rate was lowered. Similarly, the number of DSBs measured by pulsed-field gel electrophoresis (PFGE) immediately after irradiation varied with dose rate. Fewer DSBs were detectable after low-dose-rate irradiation. However, when a 4-h repair period was allowed after irradiation, cells treated at all dose rates exhibited approximately the same amount of damage. The final level of unrejoined DSBs, as detected by PFGE, therefore does not correlate with cell survival at different dose rates. 16 refs., 2 figs

  17. Tyrosine 601 of Bacillus subtilis DnaK undergoes phosphorylation and is crucial for chaperone activity and heat shock survival

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2016-04-01

    Full Text Available In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple SILAC-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ strain, compared to the wild type, were considered as potential substrates of PtkA/PtpZ. One of those sites was the residue tyrosine 601 of the molecular chaperone DnaK. We confirmed that DnaK is a substrate of PtkA and PtpZ by in vitro phosphorylation and dephosphorylation assays. In vitro, DnaK Y601F mutant exhibited impaired interaction with its co-chaperones DnaJ and GrpE, along with diminished capacity to hydrolyze ATP and assist the re-folding of denatured proteins. In vivo, loss of DnaK phosphorylation in the mutant strain dnaK Y601F, or in the strain overexpressing the phosphatase PtpZ, led to diminished survival upon heat shock, consistent with the in vitro results. The decreased survival of the mutant dnaK Y601F at an elevated temperature could be rescued by complementing with the wild type dnaK allele expressed ectopically. We concluded that the residue tyrosine 601 of DnaK can be phosphorylated and dephosphorylated by PtkA and PtpZ, respectively. Furthermore, Y601 is important for DnaK chaperone activity and heat shock survival of B. subtilis.

  18. Evaluation of motion tracking by cell survival measurements

    International Nuclear Information System (INIS)

    At GSI patients with stationary tumors are treated with a rasterscanned carbon ion beam. For moving targets interplay possibly deteriorates the dose distribution because target motion and scanner motion interfere. Several motion mitigation techniques are proposed to solve this problem. We use a fully integrated 3D online motion compensation system to track target motion of phantoms which includes adaptation of the Bragg peak position. To validate motion tracking with biological systems we conducted a series of repetitive experiments with hamster cells grown in wellplates. The wellplates were placed on a sliding table to induce lateral as well as longitudinal motion. Irradiations were performed with stationary wellplates and by tracking moving wellplates. Multiple samples were irradiated to gain statistics. As a result, we observed no significant difference in cell survival between the motion compensated measurements in comparison to a stationary reference irradiation. We conclude that our motion compensation system allows correct delivery of the biologically effective dose to moving phantoms

  19. Clinical characteristics and survival of children with Langerhans cell hystiocytosis

    Directory of Open Access Journals (Sweden)

    Krstovski Nada

    2008-01-01

    Full Text Available INTRODUCTION Langerhans cell histiocytosis is a rare disease in children, initial presentation is variable, clinical course, prognosis and survival are mostly unpredictable. OBJECTIVE To summarise clinical characteristics and treatment results in children with Langerhans cell histiocytosis. METHOD Retrospectively there were analyzed patients with LCH diagnosed and treated at Hematology Department of University Children's Hospital in Belgrade from 1990 to 2006. Clinical presentation, therapy and survival according to Kaplan-Meier's statistical test was analysed. RESULTS 30 patients were treated, aged from 4 months to 14 years, mean 3.9 years, median 2.3 years, 18 (60% males, 12 (40% females. A single system disease was diagnosed in 16 (53% patients, of whom 6 patients with multifocal bone disease. All patients were in complete remission averagely following162 and 82 months respectively. Multisystem disease was found in 14 (47% patients. The lymph nodes and skin were more frequently involved organs than the central nervous system (diabetes insipidus, lung, liver and spleen. The number of involved organs ranged from 2 to 8, mean 4.2. Four patients died due to disease progression 3, 16, 36 and 66 months after diagnosis. Nine patents with multisystem disease were in remission with 117 months of follow-up. One patient was lost on follow-up. CONCLUSION The clinical course of patients with a single system disease is usually benign while a multisystem disease has to be aggressively treated with precise initial evaluation and staging before therapy.

  20. Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: mechanisms and implications for chemoresistance.

    OpenAIRE

    Radomski, Marek; MEDINA MARTIN, CARLOS; O'Driscoll, Lorraine

    2012-01-01

    PUBLISHED BACKGROUND AND PURPOSE: Cancer cells grow without the restraints of feedback control mechanisms, leading to increased cancer cell survival. The treatment of cancer is often complicated by the lack of response to chemotherapy leading to chemoresistance and persistent survival of tumour cells. In this work we studied the role of platelets in chemotherapy-induced cancer cell death and survival. EXPERIMENTAL APPROACH: Human adenocarcinoma cells, colonic (Caco-2) and ovaria...

  1. Radiation-induced DNA double-strand break frequencies in human squamous cell carcinoma cell lines of different radiation sensitivities

    International Nuclear Information System (INIS)

    DNA neutral (pH 9-6) filter elution was used to measure radiation-induced DNA double-strand break (dsb) frequencies in eight human squamous cell carcinoma cell lines with radiosensitivities (D0) ranging from 1.07 to 2.66 Gy and D-bar values ranging from 1.46 to 4.08 Gy. Elution profiles of unirradiated samples from more radiosensitive cell lines were all steeper in slope than profiles from resistant cells. The shapes of the dsb induction curves were curvilinear and there was some variability from cell line to cell line in the dose-response for the induction of DNA dsb after exposures to 5-100 Gy 60Co γ-rays. There was no relation between shapes of survival curves and shapes of the dose-responses for the induction of DNA dsb. At low doses (5-25 Gy), three out of four of the more sensitive cell lines (D-bar3.0 Gy). Although the low-dose (5-25 Gy) elution results were variable, they suggest that DNA neutral elution will detect differences between sensitive and resistant tumour cells in initial DNA dsb frequencies. (author)

  2. Detection of G-quadruplex DNA in mammalian cells

    NARCIS (Netherlands)

    Henderson, Alexander; Wu, Yuliang; Huang, Yu Chuan; Chavez, Elizabeth A.; Platt, Jesse; Johnson, F. Brad; Brosh, Robert M.; Sen, Dipankar; Lansdorp, Peter M.

    2014-01-01

    It has been proposed that guanine-rich DNA forms four-stranded structures in vivo called G-quadruplexes or G4 DNA. G4 DNA has been implicated in several biological processes, but tools to study G4 DNA structures in cells are limited. Here we report the development of novel murine monoclonal antibodi

  3. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.

    Science.gov (United States)

    Jorritsma, J B; Burgman, P; Kampinga, H H; Konings, A W

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed. PMID:3754338

  4. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Jorritsma, J.B.; Burgman, P.; Kampinga, H.H.; Konings, A.W.

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed.

  5. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival.

    Science.gov (United States)

    Olivera, A; Kohama, T; Edsall, L; Nava, V; Cuvillier, O; Poulton, S; Spiegel, S

    1999-11-01

    Sphingosine-1-phosphate (SPP) is a bioactive lipid that has recently been identified as the ligand for the EDG family of G protein-coupled cell surface receptors. However, the mitogenic and survival effects of exogenous SPP may not correlate with binding to cell-surface receptors (Van Brocklyn, J.R., M.J. Lee, R. Menzeleev, A. Olivera, L. Edsall, O. Cuvillier, D.M. Thomas, P.J.P. Coopman, S. Thangada, T. Hla, and S. Spiegel. 1998. J. Cell Biol. 142:229-240). The recent cloning of sphingosine kinase, a unique lipid kinase responsible for the formation of SPP, has provided a new tool to investigate the role of intracellular SPP. Expression of sphingosine kinase markedly increased SPP levels in NIH 3T3 fibroblasts and HEK293 cells, but no detectable secretion of SPP into the medium was observed. The increased sphingosine kinase activity in NIH 3T3 fibroblasts was sufficient to promote growth in low- serum media, expedite the G(1)/S transition, and increase DNA synthesis and the proportion of cells in the S phase of the cell cycle with a concomitant increase in cell numbers. Transient or stable overexpression of sphingosine kinase in NIH 3T3 fibroblasts or HEK293 cells protected against apoptosis induced by serum deprivation or ceramide elevation. N,N-Dimethylsphingosine, a competitive inhibitor of sphingosine kinase, blocked the effects of sphingosine kinase overexpression on cell proliferation and suppression of apoptosis. In contrast, pertussis toxin did not abrogate these biological responses. In Jurkat T cells, overexpression of sphingosine kinase also suppressed serum deprivation- and ceramide-induced apoptosis and, to a lesser extent, Fas-induced apoptosis, which correlated with inhibition of DEVDase activity, as well as inhibition of the executionary caspase-3. Taken together with ample evidence showing that growth and survival factors activate sphingosine kinase, our results indicate that SPP functions as a second messenger important for growth and survival of

  6. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60Co γ-rays, or to KUR radiation in the presence or absence of 10B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10B(n,α)7Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  7. Importance of RpoS and Dps in Survival of Exposure of Both Exponential- and Stationary-Phase Escherichia coli Cells to the Electrophile N-Ethylmaleimide

    OpenAIRE

    Ferguson, G. P.; Creighton, R. I.; Nikolaev, Y; Booth, I R

    1998-01-01

    The mechanisms by which Escherichia coli cells survive exposure to the toxic electrophile N-ethylmaleimide (NEM) have been investigated. Stationary-phase E. coli cells were more resistant to NEM than exponential-phase cells. The KefB and KefC systems were found to play an important role in protecting both exponential- and stationary-phase cells against NEM. Additionally, RpoS and the DNA-binding protein Dps aided the survival of both exponential- and stationary-phase cells against NEM. Double...

  8. Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex

    OpenAIRE

    Mayanagi, Kouta; Kiyonari, Shinichi; Nishida, Hirokazu; Saito, Mihoko; Kohda, Daisuke; Ishino, Yoshizumi; Shirai, Tsuyoshi; Morikawa, Kosuke

    2011-01-01

    DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally ...

  9. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  10. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  11. Culture conditions affecting the survival response of Chinese hamster ovary cells treated by hyperthermia

    International Nuclear Information System (INIS)

    Using lethally irradiated feeder cells to control cell population densities, researchers investigated the survival of Chinese hamster ovary cells heated between 42.2 and 45.5 degrees C. Test cells were plated into T25 flasks with or without feeder cells, incubated 2 hours at 37 degrees C, and then given various heat treatments. Under all heating conditions, survival increased in those flasks containing feeder cells. Increased survival (by as much as a factor of 100 for cells heated at 42.4 degrees C for 6-10 hr) was most apparent when cells were heated to thermotolerance. By adjustment of test and feeder cell numbers, survival increased as density increased; however, maximum survival followed a transition period that occurred between the plating of 1 X 10(4) and 6 X 10(4) cells. Experimental artifacts due to improper control of cell density was demonstrated

  12. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  13. Survival and kinetics of Chinese hamster ovary cell subpopulations induced by Adriamycin and radiation

    International Nuclear Information System (INIS)

    Mitotic selection of Chinese hamster ovary (CHO) cells, at 10 min intervals after the initiation of Adriamycin and/or x-ray treatment was used to measure the kinetics and survival of cells which progressed without delay, the ''refractory'' cells, the cells that reached mitosis only after recovery from the treatment-induced delay, the ''recovered'' cells, and the survival of the cells remaining attached to the flask 5 h after treatment. The cell kinetics were determined from the rate at which cells entered mitosis, and the reproductive integrity from the survival of the selected refractory, recovered and remaining (unselected) cells

  14. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Erica S Martins-Duarte

    Full Text Available Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM. When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment. Light microscopy examination early (6 and 24h post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results

  15. Identification of Progenitor Cell Survival in Peripheral Blood

    International Nuclear Information System (INIS)

    The myeloid progenitors can not survive properly under the usual conditions of blood banking.The aim of work is to assay the survival of myeloid progenitors during varying periods of blood storage, under the usual condition of blood banking. It is an attempt to detect whether or not ,these circulating myeloid progenitors could be stored under the blood banking condition to be used in clinical transplantation protocols to treat a wide variety of refractory diseases.Individual blood samples from forty healthy adults were examined clinically, laboratory and ultrasonography. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque gradients . Serial dilutions of human placental conditioned medium were made, and tested for optimal activity by In vitro cultured technique.This study estimated that the mean levels of absolute number of myeloid progenitors per c.mm. at zero time was 137.7±68.3 (Range 54-297),at day 3 was 71.0±40.2 (Range 54-297), at day 7 was 94.8±45.7 (Range 30 -232) and at day 14 was 45.5±22.7). There was statistically significant decrease in the number of colonies from zero time to day 14. There was statistically significant decrease in the number of myeloid progenitors from zero time to day 14

  16. Increased UV resistance in xeroderma pigmentosum group A cells after transformation with a human genomic DNA clone

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP) is an autosomal recessive disease in which the major clinical manifestation is a 2,000-fold enhanced probability of developing sunlight-induced skin tumors, and the molecular basis for the disease is a defective DNA excision repair system. To clone the gene defective XP complementation group A (XP-A), cDNA clones were isolated by a competition hybridization strategy in which the corresponding mRNAs were more abundant in cells of the obligately heterozygous parents relative to cells to the homozygous proband affected with the disease. In this report, a human genomic DNA clone that contains this cDNA was transformed into two independent homozygous XP-A cell lines, and these transformants displayed partial restoration of resistance to the killing effects of UV irradiation. The abundance of mRNA corresponding to this cDNA appears to correlate well with the observed UV cell survival. The results of unscheduled DNA synthesis after UV exposure indicate that the transformed cells are repair proficient relative to that of the control XP-A cells. However, using this same genomic DNA, transformation of an XP-F cell line did not confer any enhancement of UV survival or promote unscheduled DNA synthesis after UV exposure

  17. Survival curves and cell restoration of gamma irradiated chlorella

    International Nuclear Information System (INIS)

    The characteristics of the living material used and the cultures developed are defined. The irradiation techniques and the dosimetry methods used are described. The clonal growth in a gelified nutrient solution was studied and the survival curves, which are very reproducible when anoxic conditions are eliminated, were established. It is shown that the radiosensitivity of Chlorella decreases with the age of the culture when the plateau of the growth curve is reached, and that for synchronous cells it varies slightly with the phase in the cycle at which the radiation is received. The restoration from sublethal damage occurs quickly and does not depend upon the continuation of the cell cycle when no multiplication occurs during the experiments and is not modified by anoxic conditions. The restoration rate is reduced at 0 deg. C. It explains the variations in the apparent radiosensitivity with the dose rate. In contrast with the results published for many cells, the restoration is incomplete. The problem of the elimination of sublethal damage during clonal development is posed. A model summarizing the experimental results and suggesting future work is given. (author)

  18. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

    Directory of Open Access Journals (Sweden)

    Damiano Conte

    Full Text Available Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU. Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.

  19. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the comet assay

    International Nuclear Information System (INIS)

    Stromal cell progenitors (fibroblastoid colony-forming unit; CFU-Fs) are representative of the progenitor cell population of the hemopoietic microenvironment in bone marrow (BM). Previous studies of the radiation dose-effect relationships for colony formation have shown that canine CFU-Fs are relatively radioresistant as characterized by a D0 value of about 2.4 Gy. In contrast, hemopoietic progenitors are particularly radiosensitive (D0 values = 0.12-0.60 Gy). In the present study, the alkaline single-cell gel electrophoresis technique for the in situ quantitation of DNA strand breaks and alkalilabile site was employed. Canine buffy coat cells from BM aspirates and cells harvested from CFU-F colonies or from mixed populations of adherent BM stromal cell (SC) layers were exposed to increasing doses of X-rays, embedded in agarose gel on slides, lysed with detergents, and placed in an electric field. DNA migrating from single cells in the gel was made visible as open-quotes cometsclose quotes by ethidium bromide staining. Immediate DNA damage was much less in cultured stromal cells than in hemopoietic cells in BM aspirates. These results suggest that the observed differences in clonogenic survival could be partly due to differences in the type of the initial DNA damage between stromal cells and hemopoietic cells. 37 refs., 2 figs., 1 tab

  20. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  1. Lesions in DNA of hypoxic mammalian cells irradiated in the presence of TAN

    International Nuclear Information System (INIS)

    TAN (triacetoneamine-N-oxyl) at a concentration of 10mM gives a dose modifying factor (DMF) of 1.45 for the surviving fraction of γ irradiated hypoxic mammalian cells. Under the same conditions, however TAN produces little or no enhancement of single strand breaks (SSB) in DNA (DMFapproximately equal to 1). In this study, enhancement of the type of DNA lesions exposed by an extract of M. luteus is reported. The DMF for this type of damage (MLS) is 1.5. TAN is known to affect the size of DNA synthesized after irradiation, presumably by causing interruptions in synthesis at TAN-DNA adduct sites. The absolute number of M. luteus extract sensitive sites detected in this work corresponds to approximately one half of the number of sites of interrupted synthesis. In its sensitizing effect on DNA, the free radical TAN is different from the electron affinic drug, misonidazole. (author)

  2. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy. METHODOLOGY/PRINCIPAL FINDINGS: A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both. The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001 than in SA women with normal karyotype (r = 0.465, P = 0.002 and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037. The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852-0.945 and 0.939 (95% CI, 0.903-0.975, respectively. CONCLUSIONS: Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA

  3. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Park, Sang Jun; Kim, Chun-Ho [Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  4. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.)

  5. DNA conformational behavior and compaction in biomimetic systems: Toward better understanding of DNA packaging in cell.

    Science.gov (United States)

    Zinchenko, Anatoly

    2016-06-01

    In a living cell, long genomic DNA is strongly compacted and exists in the environment characterized by a dense macromolecular crowding, high concentrations of mono- and divalent cations, and confinement of ca. 10μm size surrounded by a phospholipid membrane. Experimental modelling of such complex biological system is challenging but important to understand spatiotemporal dynamics and functions of the DNA in cell. The accumulated knowledge about DNA condensation/compaction in conditions resembling those in the real cell can be eventually used to design and construct partly functional "artificial cells" having potential applications in drug delivery systems, gene therapy, and production of synthetic cells. In this review, I would like to overview the past progress in our understanding of the DNA conformational behavior and, in particular, DNA condensation/compaction phenomenon and its relation to the DNA biological activity. This understanding was gained by designing relevant experimental models mimicking DNA behavior in the environment of living cell. Starting with a brief summary of classic experimental systems to study DNA condensation/compaction, in later parts, I highlight recent experimental methodologies to address the effects of macromolecular crowding and nanoscale and microscale confinements on DNA conformation dynamics. All the studies are discussed in the light of their relevance to DNA behavior in living cells, and future prospects of the field are outlined. PMID:26976700

  6. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo

    International Nuclear Information System (INIS)

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v1, a mutant defective in the endonuclease V gene, showed no ability to restore the uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation

  7. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  8. EphA2 Mutation in Lung Squamous Cell Carcinoma Promotes Increased Cell Survival, Cell Invasion, Focal Adhesions, and Mammalian Target of Rapamycin Activation*

    Science.gov (United States)

    Faoro, Leonardo; Singleton, Patrick A.; Cervantes, Gustavo M.; Lennon, Frances E.; Choong, Nicholas W.; Kanteti, Rajani; Ferguson, Benjamin D.; Husain, Aliya N.; Tretiakova, Maria S.; Ramnath, Nithya; Vokes, Everett E.; Salgia, Ravi

    2010-01-01

    Non-small cell lung cancer (NSCLC) has a poor prognosis and improved therapies are needed. Expression of EphA2 is increased in NSCLC metastases. In this study, we investigated EphA2 mutations in NSCLC and examined molecular pathways involved in NSCLC. Tumor and cell line DNA was sequenced. One EphA2 mutation was modeled by expression in BEAS2B cells, and functional and biochemical studies were conducted. A G391R mutation was detected in H2170 and 2/28 squamous cell carcinoma patient samples. EphA2 G391R caused constitutive activation of EphA2 with increased phosphorylation of Src, cortactin, and p130Cas. Wild-type (WT) and G391R cells had 20 and 40% increased invasiveness; this was attenuated with knockdown of Src, cortactin, or p130Cas. WT and G391R cells demonstrated a 70% increase in focal adhesion area. Mammalian target of rapamycin (mTOR) phosphorylation was increased in G391R cells with increased survival (55%) compared with WT (30%) and had increased sensitivity to rapamycin. A recurrent EphA2 mutation is present in lung squamous cell carcinoma and increases tumor invasion and survival through activation of focal adhesions and actin cytoskeletal regulatory proteins as well as mTOR. Further study of EphA2 as a therapeutic target is warranted. PMID:20360610

  9. EphA2 mutation in lung squamous cell carcinoma promotes increased cell survival, cell invasion, focal adhesions, and mammalian target of rapamycin activation.

    Science.gov (United States)

    Faoro, Leonardo; Singleton, Patrick A; Cervantes, Gustavo M; Lennon, Frances E; Choong, Nicholas W; Kanteti, Rajani; Ferguson, Benjamin D; Husain, Aliya N; Tretiakova, Maria S; Ramnath, Nithya; Vokes, Everett E; Salgia, Ravi

    2010-06-11

    Non-small cell lung cancer (NSCLC) has a poor prognosis and improved therapies are needed. Expression of EphA2 is increased in NSCLC metastases. In this study, we investigated EphA2 mutations in NSCLC and examined molecular pathways involved in NSCLC. Tumor and cell line DNA was sequenced. One EphA2 mutation was modeled by expression in BEAS2B cells, and functional and biochemical studies were conducted. A G391R mutation was detected in H2170 and 2/28 squamous cell carcinoma patient samples. EphA2 G391R caused constitutive activation of EphA2 with increased phosphorylation of Src, cortactin, and p130(Cas). Wild-type (WT) and G391R cells had 20 and 40% increased invasiveness; this was attenuated with knockdown of Src, cortactin, or p130(Cas). WT and G391R cells demonstrated a 70% increase in focal adhesion area. Mammalian target of rapamycin (mTOR) phosphorylation was increased in G391R cells with increased survival (55%) compared with WT (30%) and had increased sensitivity to rapamycin. A recurrent EphA2 mutation is present in lung squamous cell carcinoma and increases tumor invasion and survival through activation of focal adhesions and actin cytoskeletal regulatory proteins as well as mTOR. Further study of EphA2 as a therapeutic target is warranted. PMID:20360610

  10. DNA Charge Transport within the Cell

    OpenAIRE

    Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.

    2015-01-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor th...

  11. A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair

    International Nuclear Information System (INIS)

    Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

  12. DNA damage and repair in human cells exposed to sunlight

    International Nuclear Information System (INIS)

    Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (>320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful. (author)

  13. Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma

    NARCIS (Netherlands)

    Liang, Zheng

    2015-01-01

    Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma The nature of classical Hodgkin lymphoma (HL), a minority of tumor cells in a reactive background and loss of B cell phenotype, decides its dependence on the microenvironment for signals to contribute to survival and prol

  14. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    Science.gov (United States)

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  15. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  16. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S;

    2007-01-01

    The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... regulatory circuits. This review highlights some of the connections between opposite-acting pathways. Thus, we discuss the role of cyclins in the apoptotic process, and in the regulation of cell proliferation. CDKs and their inhibitors like the INK4-family (p16(Ink4a), p15(Ink4b), p18(Ink4c), p19(Ink4d...... highlighted both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the...

  17. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  18. Frequency of U.V. induced protein-DNA crosslinks in cell lines of different sensitivities

    International Nuclear Information System (INIS)

    U.V.-induced protein-DNA crosslinking has been measured in two cultured human cell lines of different sensitivities. Using a previously published method, involving SDS-protein precipitation, a biphasic response was obtained with an initial slope of 0.6 per cent DNA J-1 m2 up to 50 Jm-2 and a second-phase slope of 0.12 per cent DNA J-1 m2 with a background of 22 +- 13 per cent. Rigorous washing of SDS-protein precipitates reduced background binding to about 5 per cent with a linear U.V. effect up to 100 Jm-2 of 0.038 per cent DNA J-1 m2. Binding was judged to be covalent on the grounds of stability to boiling and represented 4.1 crosslinks pg DNA-1 J-1 m2 or 60 crosslinks cell-1 J-1 m2. Similar results were obtained for both cell lines. It was concluded that the differences in U.V. survival between cell lines is not related to the extent of protein-DNA crosslinking. It was impossible to detect repair of these lesions in either cell line. (author)

  19. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy. PMID:22645179

  20. Genetic ecotoxicology IV: survival and DNA strand breakage is dependent on genotype in radionuclide-exposed mosquitofish

    International Nuclear Information System (INIS)

    Western mosquitofish (Gambusia affinis) were caged in situ in a radioactively-contaminated pond in order to determine if survival and amount of DNA strand breakage were dependent on genotype. Genotypes of fish were determined using the randomly amplified polymorphic (RAPD) technique, and DNA strand breakage was determined using agarose gel electrophoresis. This study is a continuation of research undertaken at the Oak Ridge National Laboratory, which examined the effects of radionuclide contamination on the population genetic structure of mosquitofish. The previous research found 17 RAPD markers that were present at a higher frequency in contaminated than in reference populations ('contaminant-indicative bands'), and fish from contaminated sites which possessed these markers had higher fecundity and fewer strand breaks than fish which did not. One of the contaminated populations (Pond 3513) was colonized from one of the reference populations (Crystal Springs) in 1977. In the present study, fish were obtained from Crystal Springs and an additional reference site, and caged in Pond 3513. The percent survival and amount of DNA strand breakage were then determined for fish with and without the contaminant-indicative markers. When Crystal Springs fish were caged in Pond 3513, it was found that the genotypic distribution of the survivors was more similar to the native Pond 3513 population than to the Crystal Springs population. Furthermore, for nine of the contaminant-indicative markers, the percent survival was greater for fish which possessed these markers than for fish which did not. For five of these markers, fish which possessed them had higher DNA integrity (fewer strand breaks) than fish which did not. These data indicate that probability of survival and degree of DNA strand breakage in radionuclide-exposed mosquitofish are dependent on RAPD genotype, and are consistent with the hypothesis that the contaminant-indicative RAPD bands are markers of loci which impart

  1. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    International Nuclear Information System (INIS)

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  2. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    Science.gov (United States)

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. PMID:27079618

  3. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes.

    Directory of Open Access Journals (Sweden)

    Moritz Eißmann

    Full Text Available Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.

  4. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  5. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H2AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H2AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G2/M arrest and increased γ-H2AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H2AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G2/M

  6. DNA nanotechnology from the test tube to the cell

    Science.gov (United States)

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A.; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology -- applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems -- lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  7. Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival

    OpenAIRE

    Visco, Carlo; Falisi, Erika; Young, Ken H; Pascarella, Michela; Perbellini, Omar; Carli, Giuseppe; Novella, Elisabetta; Rossi, Davide; Giaretta, Ilaria; Cavallini, Chiara; Scupoli, Maria Teresa; De Rossi, Anita; D'Amore, Emanuele Stefano Giovanni; Rassu, Mario; Gaidano, Gianluca

    2015-01-01

    The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an indep...

  8. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  9. Measurement of DNA strand breakage and DNA repair induced with hydrogen peroxide using single cell gel electrophoresis, alkaline DNA unwinding and alkaline elution of DNA

    International Nuclear Information System (INIS)

    Three techniques single cell gel electrophoresis (SCGE), alkaline elution of DNA, and alkaline DNA unwinding (ADU) were chosen to compare the sensitivity among these methods in detection of DNA damage and repair in human diploid VH10 cell line after short-term exposure to hydrogen peroxide. Using SCGE technique a dose-dependent increase in DNA migration was found in cell exposed to hydrogen peroxide in concentration range from 10 μmol/l. Alkaline DNA unwinding method detected increased level of single strand breaks (ssb) in concentration range from 25 μmol/l of H2O2, and alkaline elution of DNA estimated increased DNA elution rate from concentration 50 μmol/l of H2O2. In a time course study to evaluate the kinetics of DNA repair, both SCGE and ADU techniques showed that the repair of DNA strand breaks is very rapid; the level of ssb in treated cells has returned to near the background level within two hours. After this time damage remaining in the DNA was in the form of oxidised bases as revealed the incubation of treated cells with specific DNA repair endonuclease, formamidopyridine-DNA glycosylase. (author)

  10. Cell-free DNA: Comparison of Technologies.

    Science.gov (United States)

    Dar, Pe'er; Shani, Hagit; Evans, Mark I

    2016-06-01

    Cell-free fetal DNA screening for Down syndrome has gained rapid acceptance over the past few years with increasing market penetration. Three main laboratory methodologies are currently used: a massive parallel shotgun sequencing (MPSS), a targeted massive parallel sequencing (t-MPS) and a single nucleotide polymorphism (SNP) based approach. Although each of these technologies has its own advantages and disadvantages, the performance of all was shown to be comparable and superior to that of traditional first-trimester screening for the detection of trisomy 21 in a routine prenatal population. Differences in performance were predominantly shown for chromosomal anomalies other than trisomy 21. Understanding the limitations and benefits of each technology is essential for proper counseling to patients. These technologies, as well as few investigational technologies described in this review, carry a great potential beyond screening for the common aneuploidies. PMID:27235906

  11. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines

    OpenAIRE

    Higuchi, M; Kudo, T; Suzuki, S.; Evans, TT; Sasaki, R.; Wada, Y; Shirakawa, T.; Sawyer, JR; Gotoh, A

    2006-01-01

    Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is verycommon in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstra...

  12. New, small circular DNA in transfected mammalian cells.

    OpenAIRE

    Wiberg, F C; Sunnerhagen, P; Bjursell, G

    1986-01-01

    Circular DNA isolated by the Hirt procedure from transfected mammalian cells was examined by electron microscopy. Typically, the number of small (1- to 5-kilobase) DNA circles increased about fivefold even though DNA of larger size classes (5 to 15 kilobases) has been transferred. In one case, where extensive rearrangement of the transferred DNA was observed, the rearrangement products were cloned and analyzed. In most cases, however, no rearrangement could be detected, but the amount of smal...

  13. Germ Cell Cancer and Multiple Relapses: Toxicity and Survival

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Kier, Maria G.G.; Mortensen, Mette S.;

    2015-01-01

    , compared with patients treated with only orchiectomy, had an increased risk for a second cancer (hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.5), major cardiovascular disease (HR, 1.9; 95% CI, 1.0 to 3.3), pulmonary disease (HR, 2.0; 95% CI, 1.0 to 3.8), GI disease (HR, 7.3; 95% CI, 3.6 to 14.8), renal...... disease have a highly increased risk of late toxicity and death as a result of causes other than GCC. Therefore, they should be candidates for life-long follow-up. The IPFSG classification was confirmed in this unselected population.......Purpose: A small number of patients with germ cell cancer (GCC) receive more than one line of treatment for disseminated disease. The purpose of this study was to evaluate late toxicity and survival in an unselected cohort of patients who experienced relapse after receiving first-line treatment...

  14. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    International Nuclear Information System (INIS)

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL

  15. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation.

    Science.gov (United States)

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M; Wang, Pei

    2015-11-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  16. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    Science.gov (United States)

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  17. DNA content analysis of insect cell lines by flow cytometry

    OpenAIRE

    Léry, Xavier; Charpentier, Guy; Belloncik, Serge

    1999-01-01

    The DNA content of insect cell lines (6 lepidoptera, 1 coleoptera and 1 diptera) was determined by flow cytometry. The DNA profiles of the 8 cell lines tested were different. They were characterized by the presence of several peaks (2 to 7) corresponding to different ploidy levels, by differences in the fluorescence intensity of each peak and by the proportion of cells in each peak. Two cell lines (Cf124 and BmN) were constituted of 2 distinct populations of cells. The DNA profiles of the cel...

  18. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation

    International Nuclear Information System (INIS)

    Recombinant rat stem cell factor (SCF) has been shown to decrease lethality in mice exposed to total-body irradiation (TBI) in the lower range of lethality through radioprotection of hematopoietic stem cells and acceleration of bone marrow repopulation. This study evaluates the effect of SCF on the survival of the intestinal mucosal stem cell after TBI. This non-hematopoietic cell is clinically relevant. Gastrointestinal toxicity is common during and after abdominal and pelvic radiation therapy and limits the radiation dose in these regions. As observed with bone marrow, the administration of SCF to mice prior to TBI enhanced the survival of mouse duodenal crypt stem cells. The maximum enhancement of survival was seen when 100 μ/kg of SCF was given intraperitoneally 8 h before irradiation. This regimen increased the survival of duodenal crypt stem cells after 12.0 Gy TBI from 22.5 ± 0.7 per duodenal cross section for controls to 30.0 ± 1.7 after treatment with SCF (P=0.03). The TBI dose producing 50% mortality of 6 days (LD50/6) was increased from 14.9 Gy for control mice to 19.0 Gy for mice treated with SCF (dose modification factor = 1.28). These findings demonstrate that SCF (dose modification factor = 1.28). These findings demonstrate that SCF has radioprotective effects on a non-hematopoietic stem cell population and suggest that SCF may be of clinical value in preventing radiation injury to the intestine. 29 refs., 4 figs

  19. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma

    OpenAIRE

    Philip Burnham; Min Seong Kim; Sean Agbor-Enoh; Helen Luikart; Hannah A. Valantine; Kiran K Khush; Iwijn De Vlaminck

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in...

  20. Mitochondrial DNA Mutations Regulate Metastasis of Human Breast Cancer Cells

    OpenAIRE

    Hirotake Imanishi; Keisuke Hattori; Reiko Wada; Kaori Ishikawa; Sayaka Fukuda; Keizo Takenaga; Kazuto Nakada; Jun-ichi Hayashi

    2011-01-01

    Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously e...

  1. High-efficiency transformation of mammalian cells by plasmid DNA.

    OpenAIRE

    Chen, C.; Okayama, H

    1987-01-01

    We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cell...

  2. Association of ultraviolet-induced retrovirus expression with anchorage-independent survival in rat embryo cells

    International Nuclear Information System (INIS)

    The authors have shown in the AI assay that the nontransforming retrovirus increases the differential in enhanced survival response in infected cultures. To more fully understand this aspect of the system, they examined the effect of UV irradiation on infected and uninfected FRE cells. In this communication the authors report that UV irradiation induces AI survival in infected and uninfected cells;in uninfected cells there is a concomitant induction of endogenous retrovirus expression. The AI survival of both cell lines was determined using a previously described procedure. Anchorage-dependent media control and solvent control cells, when suspended in medium above an agar base layer, showed a rapid decline in cell survival;however, cells that had been treated with carcinogen did not undergo the destructive process that took place in control cells, indicating specificity

  3. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    International Nuclear Information System (INIS)

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on IClswell

  4. Effect of DNA methylation on protein-DNA interaction of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    何忠效; 白坚石; 张昱

    1999-01-01

    HL-60 cells have been induced with differentiation index 16 % by S-adenosyl-L-rnethionine (SAM) as inducer in the presence of optimum conceptration of 10 μmol/L. The methylation level of genorne DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma I, Sal I, XhoI and Hind Ⅲ which are sensitive to 5-methylcytosine were used to cleave the genorne DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.

  5. Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma

    International Nuclear Information System (INIS)

    Excision repair cross-complementing group 1 (ERCC1) and group 2 (ERCC2), and X-ray repair cross-complementing group 1 (XRCC1) proteins play important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence treatment effect and survival of cancer patients. This study aimed to investigate the relationship between polymorphisms in ERCC2, ERCC1 and XRCC1 genes and survival of non-smoking female patients with lung adenocarcinoma. We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to evaluate SNPs in ERCC2, ERCC1 and XRCC1 genes among 257 patients. The overall median survival time (MST) was 13.07 months. Increasing numbers of either ERCC1 118 or XRCC1 399 variant alleles were associated with shorter survival of non-smoking female lung adenocarcinoma patients (Log-rank P < 0.001). The adjusted hazard ratios (HRs) for individuals with CT or TT genotype at ERCC1 Asn118Asn were 1.48 and 2.67 compared with those with CC genotype. For polymorphism of XRCC1 399, the HRs were 1.28 and 2.68 for GA and AA genotype. When variant alleles across both polymorphisms were combined to analysis, the increasing number of variant alleles was associated with decreasing overall survival. Using the stepwise Cox regression analysis, we found that the polymorphisms in ERCC1 and XRCC1, tumor stage and chemotherapy or radiotherapy status independently predicted overall survival of non-smoking female patients with lung adenocarcinoma. Genetic polymorphisms in ERCC1 and XRCC1 genes might be prognostic factors in non-smoking female patients with lung adenocarcinoma

  6. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    OpenAIRE

    Wu, Ping

    2013-01-01

    Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The curren...

  7. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    Science.gov (United States)

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  8. Atypical protein kinase C zeta: potential player in cell survival and cell migration of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kelly K Y Seto

    Full Text Available Ovarian cancer is one of the most aggressive gynaecological cancers, thus understanding the different biological pathways involved in ovarian cancer progression is important in identifying potential therapeutic targets for the disease. The aim of this study was to investigate the potential roles of Protein Kinase C Zeta (PRKCZ in ovarian cancer. The atypical protein kinase C isoform, PRKCZ, is involved in the control of various signalling processes including cell proliferation, cell survival, and cell motility, all of which are important for cancer development and progression. Herein, we observe a significant increase in cell survival upon PRKCZ over-expression in SKOV3 ovarian cancer cells; additionally, when the cells are treated with small interference RNA (siRNA targeting PRKCZ, the motility of SKOV3 cells decreased. Furthermore, we demonstrate that over-expression of PRKCZ results in gene and/or protein expression alterations of insulin-like growth factor 1 receptor (IGF1R and integrin beta 3 (ITGB3 in SKOV3 and OVCAR3 cells. Collectively, our study describes PRKCZ as a potential regulatory component of the IGF1R and ITGB3 pathways and suggests that it may play critical roles in ovarian tumourigenesis.

  9. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome.

    Science.gov (United States)

    Hou, Yan-Qiang; Liang, Dong-Yu; Lou, Xiao-Li; Zhang, Mei; Zhang, Zhen-huan; Zhang, Lu-rong

    2016-02-01

    Cell-free circulating DNA (cf-DNA) can be detected by various of laboratory techniques. We described a branched DNA-based Alu assay for measuring cf-DNA in septic patients. Compared to healthy controls and systemic inflammatory response syndrome (SIRS) patients, serum cf-DNA levels were significantly higher in septic patients (1426.54 ± 863.79 vs 692.02 ± 703.06 and 69.66 ± 24.66 ng/mL). The areas under the receiver operating characteristic curve of cf-DNA for normal vs sepsis and SIRS vs sepsis were 0.955 (0.884-1.025), and 0.856 (0.749-0.929), respectively. There was a positive correlation between cf-DNA and interleukin 6 or procalcitonin or Acute Physiology and Chronic Health Evaluation II. The cf-DNA concentration was higher in intensive care unit nonsurviving patients compared to surviving patients (2183.33 ± 615.26 vs 972.46 ± 648.36 ng/mL; P format. Cell-free circulating DNA might be a new marker in discrimination of sepsis and SIRS. PMID:26589770

  10. Relevance of DNA repair pathways on ascorbic acid effects on Echerichia Coli K-12 cells

    International Nuclear Information System (INIS)

    Inactivation kinetics were performed with repair proficient and deficient Escherichia coli K-12 cells treated with oxidized solutions of ascorbic acid. The repair pathways controlled by the recA and uvrA gene products are essential for cell survival to the treatment. However, SOS chromotest result indicates that the SOS functions are only induced at high and toxic concentrations of the drug. Moreover, single strand breaks in DNA from treated cells are detected, demonstrating genome damage promoted by oxidized solutions of ascorbate. (M.A.C.)

  11. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm2) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  12. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.

    Science.gov (United States)

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim; Venkatraman, Ganesh; Rayala, Suresh K

    2016-05-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRAper se(KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  13. Comparative study of the free radical and DNA break accumulation under gamma-irradiation of DNA solutions and cells

    International Nuclear Information System (INIS)

    The linear dependence between parameters of DNA radiation dmage is disclosed in the given paper in determining the concentration of free radicals and the number of DNA breaks in the same samples of irradiated frozen DNA solutions, cells and tissues

  14. A two-dimensional DNA lattice implanted polymer solar cell

    International Nuclear Information System (INIS)

    A double crossover tile based artificial two-dimensional (2D) DNA lattice was fabricated and the dry-wet method was introduced to recover an original DNA lattice structure in order to deposit DNA lattices safely on the organic layer without damaging the layer. The DNA lattice was then employed as an electron blocking layer in a polymer solar cell causing an increase of about 10% up to 160% in the power conversion efficiency. Consequently, the resulting solar cell which had an artificial 2D DNA blocking layer showed a significant enhancement in power conversion efficiency compared to conventional polymer solar cells. It should be clear that the artificial DNA nanostructure holds unique physical properties that are extremely attractive for various energy-related and photonic applications.

  15. Prevention of DNA re-replication in eukaryotic cells

    Institute of Scientific and Technical Information of China (English)

    Lan N. Truong; Xiaohua Wu

    2011-01-01

    DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.

  16. Radiobiology goes 3D: How ECM and cell morphology impact on cell survival after irradiation

    International Nuclear Information System (INIS)

    Translational research is essential to find new therapeutic approaches to improve cancer patient survival. Despite extensive efforts in preclinical studies, many novel therapies fail to turn out to be translational from bench to beside. Therefore, new models better reflecting the conditions in vivo are needed to generate results, which transfer reliably into the clinic. The use of three-dimensional (3D) cell culture models has provided new emerging insights into the understanding of cellular behavior upon cancer therapies. Interestingly, cells cultured in a 3D extracellular matrix are more radio- and chemoresistant than cells grown under conventional 2D conditions. In this review, we summarize and discuss underlying mechanisms of this phenomenon including integrin-mediated cell-matrix interactions, cell shape, nuclear organization and chromatin structure. Identifying the molecular differences between 2D and 3D cultured cells will offer the opportunity to improve our research and widen our therapeutic possibilities against cancer.

  17. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  18. Social isolation increases cell proliferation in male and cell survival in female California mice (Peromyscus californicus).

    Science.gov (United States)

    Ruscio, Michael G; Bradley King, S; Haun, Harold L

    2015-11-01

    Social environment has direct effects on an animal's behavior, physiology and neurobiology. In particular, adult neurogenesis is notably affected by a variety of social manipulations, including social isolation. We hypothesized that social isolation should have particularly acute effects on neurogenesis in a highly social (monogamous and bi-parental) species such as Peromyscus californicus, the California mouse. Adult male and female P. californicus mice were housed in isolation or in same-sex pairs for 4 or 24 days. At the end of each period, either cell proliferation or cell survival was quantified with BrdU label and neuronal markers (either TuJ1 or NeuN). After 4 days, isolated males had greater cellular proliferation in the dentate gyrus of the hippocampus (DG) than pair housed males. After 24 days, isolate females demonstrated greater cell survival in the DG than paired females. Males demonstrated a similar, but non-significant pattern. No differences in cellular proliferation or cell survival were found in the subventricular zone (SVZ), or medial amygdala (MeA). These results add to the evidence which demonstrates that neurogenic responses to environmental conditions are not identical across species. These data may be critical in understanding the functional significance of neurogenesis as it relates to the interactions between social systems, social environment and the display of social behaviors. PMID:26342752

  19. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  20. Quantitative analysis of cell-free DNA in ovarian cancer

    OpenAIRE

    Shao, Xuefeng; He, Yan; Ji, Min; Chen, Xiaofang; Qi, Jing; SHI, Wei; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ova...

  1. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    Science.gov (United States)

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  2. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    Science.gov (United States)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  3. Inflammatory cytokines regulate endothelial cell survival and tissue repair functions via NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kanaji N

    2011-09-01

    Full Text Available Nobuhiro Kanaji1, Tadashi Sato2, Amy Nelson3, Xingqi Wang3, YingJi Li4, Miok Kim5, Masanori Nakanishi6, Hesham Basma3, Joel Michalski3, Maha Farid3, Michael Chandler3, William Pease3, Amol Patil3, Stephen I Rennard3, Xiangde Liu31Division of Hematology, Rheumatology and Respiratory Medicine, Kagawa University, Kagawa, Japan; 2Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan; 3Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska; 4Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan; 5Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Wakayama, Japan; 6Department of Internal Medicine, Jeju Medical College, Jeju, Republic of KoreaAbstract: Inflammation contributes to the development of fibrotic and malignant diseases. We assessed the ability of inflammatory cytokines to modulate endothelial cell survival and functions related to tissue repair/remodeling. Treatment with interleukin (IL-1ß or tumor necrosis factor (TNF-α (2 ng/mL led to human pulmonary artery endothelial cells becoming spindle-shaped fibroblast-like cells. However, immunoblot and DNA microarray showed no change in most endothelial and mesenchymal markers. In the presence of IL-1ß or TNF-α, cells were resistant to apoptosis induced by deprivation of serum and growth factor, and were more migratory. In addition, cells treated with IL-1ß or TNF-α contracted collagen gels more robustly. In contrast, transforming growth factor-ß1 did not induce these responses. RNA interference targeting nuclear factor (NF- κB p65 blocked the effects of IL-1ß or TNF-α on cell morphologic change, survival, migration, and collagen gel contraction. These results suggest that endothelial cells may contribute to tissue repair/remodeling via the NF-κB signaling in a milieu of airway inflammation.Keywords: NF-κB, IL-1ß, TNF-α, apoptosis, tissue repair

  4. The importance of actual tumor growth rate on disease free survival and overall survival in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Background and purpose: Evaluation of the variation in tumor growth rate and the influence of tumor growth rate on disease free survival (DFS) and overall survival (OS) in laryngeal squamous cell carcinoma (LSCC). Material and methods: We delineated tumor volume on a diagnostic and planning CT scan in 131 patients with laryngeal squamous cell carcinoma and calculated the tumor growth rate. Primary endpoint was DFS. Follow up data were collected retrospectively. Results: A large variation in tumor growth rate was seen. When dichotomized with a cut-off point of −0.3 ln(cc/day), we found a significant association between high growth rate and worse DFS (p = 0.008) and OS (p = 0.013). After stepwise adjustment for potential confounders (age, differentiation and tumor volume) this significant association persisted. However, after adjustment of N-stage association disappeared. Exploratory analyses suggested a strong association between N-stage and tumor growth rate. Conclusions: In laryngeal squamous cell carcinoma, there is a large variation in tumor growth rate. This tumor growth rate seems to be an important factor in disease free survival and OS. This tumor growth rate is independent of age, differentiation and tumor volume associated with DFS, but N-stage seems to be a more important risk factor

  5. Detection of hepatitis B virus DNA in mononuclear blood cells.

    OpenAIRE

    Pontisso, P; Poon, M C; Tiollais, P.; Brechot, C

    1984-01-01

    The Southern transfer hybridisation technique was used to test mononuclear blood cells for hepatitis B virus DNA. Viral DNA sequences were detected in mononuclear cells of 10 out of 16 patients with hepatitis B virus infection and in none of 21 normal controls. Blood contamination was excluded by the absence of hepatitis B virus DNA in the corresponding serum samples in all cases. Free monomeric hepatitis B virus DNA was found in three patients positive for hepatitis Be antigen (HBeAg) and on...

  6. Measurement of cell mediated cytotoxicity by post-labeling surviving target cells

    International Nuclear Information System (INIS)

    The 51Cr release assay (CRA) is the commonly accepted technique for measurement of cell mediated cytotoxicity. This assay shows some disadvantages when mononucleated cells of human peripheral blood (MNC) are used as effector and target cells. The uptake of 51Cr by PHA stimulated lymphocytes is low compared to the spontaneous release. In an attempt to develop a cytotoxicity assay suitable for human lymphocytes we used 14C-TdR to label target cells surviving after contact with effector cells. Cytotoxic lymphocytes were generated by incubation of MNC with irradiated allogeneic MNC for 6 days. On day 6 the effector cells are irradiated and cocultured with PHA stimulated target cells. Twenty-four hours later 14C-TdR is added. After an additional 24 h the cultures are harvested and 14C-TdR taken up by target cells is measured. It is shown that the effector cells are still cytotoxic after irradiation. These cells do not take up 14C-TdR. Cell-free supernatants do not influence the uptake of 14C-TdR by target cells. The results obtained with this assay correlate very well those obtained by the CRA, if the spontaneous release does not exceed 30%. (author)

  7. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  8. Elevation of soluble guanylate cyclase suppresses proliferation and survival of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Chin Wen

    Full Text Available Nitric oxide (NO is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC, composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.

  9. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  10. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis

    OpenAIRE

    Shell, Scarlet S.; Prestwich, Erin G.; Seung-Hun Baek; Shah, Rupal R.; Sassetti, Christopher M.; Dedon, Peter C.; Fortune, Sarah M.

    2012-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N[superscript 6]-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss o...

  11. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis

    OpenAIRE

    Shell, Scarlet S.; Prestwich, Erin G.; Baek, Seung-Hun; Shah, Rupal R.; Sassetti, Christopher M.; Dedon, Peter C.; Fortune, Sarah M.

    2013-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N6-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces...

  12. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    Science.gov (United States)

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  13. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  14. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    International Nuclear Information System (INIS)

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation

  15. Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival.

    Science.gov (United States)

    Barnstable, Colin J; Reddy, Rajini; Li, Hong; Horvath, Tamas L

    2016-04-01

    In the brain, mitochondrial uncoupling protein 2 (UCP2) has emerged as a stress signal associated with neuronal survival. In the retina, UCP2 is expressed primarily by retinal ganglion cells. Here, we investigated the functional relevance of UCP2 in the mouse retina. Increased expression of UCP2 significantly reduced apoptosis during the critical developmental period resulting in elevated numbers of retinal ganglion cells in the adult. Elevated UCP2 levels also protected against excitotoxic cell death induced by intraocular injection of either NMDA or kainic acid. In monolayer cultures of retinal cells, elevated UCP2 levels increased cell survival and rendered the cells independent of the survival-promoting effects of the neurotrophic factors BDNF and CNTF. Taken together, these data implicate UCP2 as an important regulator of retinal neuron survival both during development and in adult animals. PMID:26846222

  16. Correlativity study between expression of DNA double-strand break repair protein and radiosensitivity of tumor cells

    Institute of Scientific and Technical Information of China (English)

    Liang ZHUANG; Shiying YU; Xiaoyuan HUANG; Yang CAO; Huihua XIONG

    2009-01-01

    DNA double-strand break (DSB) is generally regarded as the most lethal of all DNA lesions after radiation. KuS0, DNA-PK catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) proteins are major DSB repair proteins. In this study, survival fraction at 2Gy (SF2) values of eight human tumor cell lines (including four human cervical carcinoma cell lines HeLa, SiHa, C33A, Caski, three human breast carcinoma cell lines MCF-7, MDA-MB-231, MDA-MB-453, and one human lung carcinoma cell line A549) were acquired by clone formation assay, and western blot was applied to detect the expressions of Ku80, DNA-PKcs and ATM protein. The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis. We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference. The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2 (r=0.723, P =0.043), but Ku80 and ATM expression had no correlation with SF2 (P>0.05). These findings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.

  17. Modeling the role of p53 pulses in DNA damage- induced cell death decision

    Directory of Open Access Journals (Sweden)

    Cui Jun

    2009-06-01

    Full Text Available Abstract Background The tumor suppressor p53 plays pivotal roles in tumorigenesis suppression. Although oscillations of p53 have been extensively studied, the mechanism of p53 pulses and their physiological roles in DNA damage response remain unclear. Results To address these questions we presented an integrated model in which Ataxia-Telangiectasia Mutated (ATM activation and p53 oscillation were incorporated with downstream apoptotic events, particularly the interplays between Bcl-2 family proteins. We first reproduced digital oscillation of p53 as the response of normal cells to DNA damage. Subsequent modeling in mutant cells showed that high basal DNA damage is a plausible cause for sustained p53 pulses observed in tumor cells. Further computational analyses indicated that p53-dependent PUMA accumulation and the PUMA-controlled Bax activation switch might play pivotal roles to count p53 pulses and thus decide the cell fate. Conclusion The high levels of basal DNA damage are responsible for generating sustained pulses of p53 in the tumor cells. Meanwhile, the Bax activation switch can count p53 pulses through PUMA accumulation and transfer it into death signal. Our modeling provides a plausible mechanism about how cells generate and orchestrate p53 pulses to tip the balance between survival and death.

  18. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Aya Kurosawa

    Full Text Available Nonhomologous end-joining (NHEJ and homologous recombination (HR are two major pathways for repairing DNA double-strand breaks (DSBs; however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.

  19. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    OpenAIRE

    Kim Se-Kwon; Senthilkumar Kalimuthu

    2013-01-01

    Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhib...

  20. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Directory of Open Access Journals (Sweden)

    Mark R. Openshaw

    2016-02-01

    Full Text Available Gestational trophoblastic neoplasia (GTN represents a group of diseases characterized by production of human chorionic gonadotropin (hCG. Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA (from 9% to 53% of total cfDNA in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis.

  1. Controls to validate plasma samples for cell free DNA quantification

    DEFF Research Database (Denmark)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund;

    2015-01-01

    Recent research has focused on the utility of cell free DNA (cfDNA) in serum and plasma for clinical application, especially in oncology. The literature holds promise of cfDNA as a valuable tumour marker to be used for treatment selection, monitoring and follow-up. The results, however, are...... diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample...... preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values. In...

  2. Ancient DNA reveals late survival of mammoth and horse in interior Alaska

    DEFF Research Database (Denmark)

    Haile, James; Froese, Duane G; Macphee, Ross D E; Roberts, Richard G; Arnold, Lee J; Reyes, Alberto V; Rasmussen, Morten; Nielsen, Rasmus; Brook, Barry W; Robinson, Simon; Demuro, Martina; Gilbert, M Thomas P; Munch, Kasper; Austin, Jeremy J; Cooper, Alan; Barnes, Ian; Möller, Per; Willerslev, Eske

    2009-01-01

    perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than...

  3. Mitochondrial DNA sequence variation in single cells from leukemia patients

    OpenAIRE

    Yao, Yong-Gang; Ogasawara, Yoji; Kajigaya, Sachiko; Molldrem, Jeffrey J.; Falcão, Roberto P; Pintão, Maria-Carolina; McCoy, J. Philip; Rizzatti, Edgar Gil; Young, Neal S

    2007-01-01

    A high frequency of mtDNA somatic mutation has been observed in many tumors as well as in aging tissues. In this study, we analyzed the mtDNA control region sequence variation in 3534 single normal cells and individual blasts from 18 patients with leukemia and 10 healthy donors, to address the mutation process in leukemic cells. We found significant differences in mtDNA sequence, as represented by the number of haplotypes and the mean number of cells with each nonaggregate haplotype in a popu...

  4. DNA profiles generated from minute amounts of single cells

    OpenAIRE

    Wenäll, Lovisa

    2011-01-01

    The genetic code in our cells is built up by deoxyribonucleic acid (DNA) with a sequence that is individual and unique to each person. A cell’s origin can be decided by comparing an established DNA profile with a known profile. The most publicly known application is in the forensic field and its use for identification and for establishing a connection between perpetrators and victims or crime scenes. DNA profiling is also commonly used for kinship investigations. The information embedded in t...

  5. The polymorphism and haplotypes of XRCC1 and survival of non-small-cell lung cancer after radiotherapy

    International Nuclear Information System (INIS)

    Purpose: The X-ray repair cross-complementing Group 1 (XRCC1) protein is involved mainly in the base excision repair of the DNA repair process. This study examined the association of 3 polymorphisms (codon 194, 280, and 399) of XRCC1 and lung cancer in terms of whether or not these polymorphisms have an effect on the survival of lung cancer patients who have received radiotherapy. Methods and Materials: Between January 2000 and April 2004, 229 lung cancer patients with non-small-cell lung cancer in Stages I-III were enrolled. Genotyping was performed by single base primer extension assay using the SNP-IT Kit with genomic DNA samples from all patients. The haplotype of the XRCC1 polymorphisms was estimated by PHASE version 2.1. Results: The patients consisted of 191 (83.4%) males and 38 (16.6%) females with a median age of 62 (range, 26-88 years). Sixty percent of the patients were included in Stage I-IIIa. The median progression-free and overall survival was 13 months and 16 months, respectively. The XRCC1 codon 194, histology, and stage were shown to be significant predictors of the progression-free survival. The 6 haplotypes among the XRCC1 polymorphisms (194, 280, and 399) were estimated by PHASE v.2.1. The patients with haplotype pairs other than the homozygous TGG haplotype pairs survived significantly longer (p = 0.04). Conclusions: Polymorphisms of XRCC1 have an effect on the survival of lung cancer patients treated with radiotherapy, and this effect seems to be more significant after the haplotype pairs are considered

  6. Conditioned medium from activated spleen cells supports the survival of rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    A. Sholl-Franco

    1997-11-01

    Full Text Available Cytokines are a heterogeneous group of molecules that have been associated with several functions in the nervous system, such as survival and differentiation of neuronal and glial cells. In the present study, we demonstrated that conditioned medium from spleen cells activated with concanavalin A increased neuritogenesis and survival of retinal cells, as measured by biochemical and morphological criteria. Our data showed that conditioned medium induced a five-fold increase in the amount of protein after 120 h in vitro. This effect was not inhibited by the blockade of voltage-dependent L-type calcium channels with 5.0 µM nifedipine. However, the use of an intracellular calcium chelator (15.0 µM BAPTA-AM inhibited this effect. Our results support the idea that factors secreted by activated lymphocytes, such as cytokines, can modulate the maintenance and the differentiation of rat retinal cells in vitro, indicating a possible role of these molecules in the development of retinal cells, as well as in its protection against pathological conditions

  7. The role of autophagy in cell survival from heavy ion irradiation in the plateau region

    International Nuclear Information System (INIS)

    To study cytotoxic effect of heavy ion irradiation in the plateau region, and investigate whether autophagy induced by heavy ion irradiation is cytoprotective, HeLa cells were irradiated with 350 MeV/u carbon ions beams, and the clonogenic survival was analyzed. The results showed that cell survival decreased with increasing doses. It was also found that G2/M-phase cells increased, and the autophagy-related activity was significantly higher than the control. When autophagy was blocked by 3-methyladenine in carbon-ion irradiated cells, G2/M phase arrest and the percentage of apoptosis cells were further elevated, and cell survival decreased significantly, indicating the induction of cytoprotective autophagy by carbon-ion irradiation. Our results demonstrated that autophagy induced by carbon ion irradiation provided a self-protective mechanism in HeLa cells, short-time inhibition of autophagy before carbon-ion irradiation could enhance radiation cytotoxicity in HeLa cells. (authors)

  8. Role of mitochondrial DNA decrease in apoptosis of human bronchial epithelial cells induced by radon and its progeny

    International Nuclear Information System (INIS)

    Human bronchia epithelia with mtDNA decrease (ρ-HBE) cells generated by treatment of ethidium bromide (EB) were exposed to radon gas in a special inhalation chamber. Cell proliferation was determined by cell survival assay Cell apoptosis and membrane potential of mitochondria were analyzed by flow cytometry. The results showed that the survival fraction of ρ-HBE cells significantly increased compared with that of ρ+ HBE cells after irradiation with radon and its progeny. Although the apoptosis rate of p HBE cells was lower than that of the ρ+ HBE cells at early period, the total apoptosis rate was increased, along with the membrane potential decrease of mitochondria in ρ-HBE cells. The results indicate that the increased potential of ρ-HBE proliferation correlates with the total apoptotic rate and mitochondrial membrane potential. (authors)

  9. Elevated expression of KIF18A enhances cell proliferation and predicts poor survival in human clear cell renal carcinoma

    Science.gov (United States)

    CHEN, QI; CAO, BIN; NAN, NING; WANG, YU; ZHAI, XU; LI, YOUFANG; CHONG, TIE

    2016-01-01

    The function of kinesin family member 18A (KIF18A) in human renal cell carcinoma (RCC) is unclear. The purpose of the current study was to determine the expression and prognostic significance of KIF18A in RCC. Specimens from 273 RCC patients undergoing nephrectomies were studied. Expression of KIF18A mRNA was examined by reverse transcription-polymerase chain reaction (RT-PCR) or quantitative PCR, and the expression of KIF18A protein was examined by immunohistochemistry and western blotting. The expression of KIF18A in clear-cell RCC cell lines was decreased using small interfering RNA targeting KIF18A, and increased by transfection with KIF18A cDNA. The proliferative ability of RCC cells in vitro and in vivo was detected by WST-1 assay and an animal xenograft model with BALB/c nude mice, respectively. The association between KIF18A expression and overall survival was calculated using Kaplan-Meier analysis. The results showed that KIF18A expression was significantly increased in RCC tissues compared with normal kidney tissues. The level of KIF18A expression was significantly associated with tumor stage, histological grade, metastasis and tumor size. Moreover, KIF18A increased the proliferation of RCC cells in vitro and in vivo. KIF18A expression was upregulated in RCC and enhanced the proliferation of RCC cells. Therefore, it appears that KIF18A plays a key role in the carcinogenesis and progression of RCC, and is a novel candidate prognostic marker for RCC patients. Furthermore, silencing KIF18A expression may serve as a new therapeutic strategy against RCC.

  10. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and cell survival

    Science.gov (United States)

    Benotmane, Rafi

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. This study aimed at assessing the effect of these combined conditions on neuronal network density, cell morphology and survival, using well-connected mouse cortical neuron cultures. To this end, neurons were exposed to acute low and high doses of low LET (X-rays) radiation or to chronic low dose-rate of high LET neutron irradiation (Californium-252), under the simulated microgravity generated by the Random Positioning Machine (RPM, Dutch space). High content image analysis of cortical neurons positive for the neuronal marker βIII-tubulin unveiled a reduced neuronal network integrity and connectivity, and an altered cell morphology after exposure to acute/chronic radiation or to simulated microgravity. Additionally, in both conditions, a defect in DNA-repair efficiency was revealed by an increased number of γH2AX-positive foci, as well as an increased number of Annexin V-positive apoptotic neurons. Of interest, when combining both simulated space conditions, we noted a synergistic effect on neuronal network density, neuronal morphology, cell survival and DNA repair. Furthermore, these observations are in agreement with preliminary gene expression data, revealing modulations in cytoskeletal and apoptosis-related genes after exposure to simulated microgravity. In conclusion, the observed in vitro changes in neuronal network integrity and cell survival induced by space simulated conditions provide us with mechanistic understanding to evaluate health risks and the development of countermeasures to prevent neurological disorders in astronauts over long-term space travels. Acknowledgements: This work is supported partly by the EU-FP7 projects CEREBRAD (n° 295552)

  11. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  12. DNA Microgels as a Platform for Cell-Free Protein Expression and Display.

    Science.gov (United States)

    Kahn, Jason S; Ruiz, Roanna C H; Sureka, Swati; Peng, Songming; Derrien, Thomas L; An, Duo; Luo, Dan

    2016-06-13

    Protein expression and selection is an essential process in the modification of biological products. Expressed proteins are selected based on desired traits (phenotypes) from diverse gene libraries (genotypes), whose size may be limited due to the difficulties inherent in diverse cell preparation. In addition, not all genes can be expressed in cells, and linking genotype with phenotype further presents a great challenge in protein engineering. We present a DNA gel-based platform that demonstrates the versatility of two DNA microgel formats to address fundamental challenges of protein engineering, including high protein yield, isolation of gene sets, and protein display. We utilize microgels to show successful protein production and capture of a model protein, green fluorescent protein (GFP), which is further used to demonstrate a successful gene enrichment through fluorescence-activated cell sorting (FACS) of a mixed population of microgels containing the GFP gene. Through psoralen cross-linking of the hydrogels, we have synthesized DNA microgels capable of surviving denaturing conditions while still possessing the ability to produce protein. Lastly, we demonstrate a method of producing extremely high local gene concentrations of up to 32 000 gene repeats in hydrogels 1 to 2 μm in diameter. These DNA gels can serve as a novel cell-free platform for integrated protein expression and display, which can be applied toward more powerful, scalable protein engineering and cell-free synthetic biology with no physiological boundaries and limitations. PMID:27112709

  13. Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival.

    Science.gov (United States)

    Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok; Misra, Aditya; Blazar, Bruce R; Turka, Laurence A

    2016-08-01

    MyD88 signaling directly promotes T-cell survival and is required for optimal T-cell responses to pathogens. To examine the role of T-cell-intrinsic MyD88 signals in transplantation, we studied mice with targeted T-cell-specific MyD88 deletion. Contrary to expectations, we found that these mice were relatively resistant to prolongation of graft survival with anti-CD154 plus rapamycin in a class II-mismatched system. To specifically examine the role of MyD88 in Tregs, we created a Treg-specific MyD88-deficient mouse. Transplant studies in these animals replicated the findings observed with a global T-cell MyD88 knockout. Surprisingly, given the role of MyD88 in conventional T-cell survival, we found no defect in the survival of MyD88-deficient Tregs in vitro or in the transplant recipients and also observed intact cell homing and expression of Treg effector molecules. MyD88-deficient Tregs also fail to protect allogeneic bone marrow transplant recipients from chronic graft-versus-host disease, confirming the observations of defective regulation seen in a solid organ transplant system. Together, our data define MyD88 as having a divergent requirement for cell survival in non-Tregs and Tregs, and a yet-to-be defined survival-independent requirement for Treg function during the response to alloantigen. PMID:27112509

  14. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    Science.gov (United States)

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  15. Erythrokinetics, ferrokinetics and red cell survival in sickle cell anaemia under subtropical climatic conditions

    International Nuclear Information System (INIS)

    Ferrokinetic parameters were evaluated with 59Fe and red-cell survival with 51Cr by classical techniques in a total of 17 patients with sickle-cell disease. The mean plasma 59Fe half-disappearance time in these patients was 29.5 min as compared with a normal value of 92 min, and the t1/2 51Cr 8.0 days as compared with a normal value of 26.0 days. The mean red-cell iron turnover rate was elevated to 9 times normal. The increased destruction of red cells appeared to take place predominantly, though not entirely, in the spleen. Eight of the 17 patients studied were identified as having intercurrent complications, but these did not significantly affect the results of the investigations. A group of 5 boys in whom the red-cell iron turnover rate was elevated to a lesser degree than in the other patients were subjected to more detailed studies of plasma 59Fe clearance with particular reference to ineffective erythropoiesis. In these patients, the plasma 59Fe clearance curves showed precocious humps characteristic of ineffective erythropoiesis. Detailed analysis of the results indicated ineffective erythropoiesis corresponding to 3.6, 16.0, 22.6, 32.0 and 50.0 % of the iron initially taken up by the bone marrow. It is concluded that while the anaemia in most patients with sickle-cell disease is mainly due to shortened survival of the circulating red cells, with increased destruction of red cells in the spleen, ineffective erythropoiesis may none the less be an important factor determining the actual degree of this anaemia

  16. DNA damage induction and/or repair as mammalian cell biomarker for the prediction of cellular radiation response

    Science.gov (United States)

    Baumstark-Khan, C.

    DNA damage and its repair processes are key factors in cancer induction and also in the treatment of malignancies. Cancer prevention during extended space missions becomes a topic of great importance for space radiobiology. The knowledge of individual responsiveness would allow the protection strategy to be tailored optimally in each case. Radiobiological analysis of cultured cells derived from tissue explants from individuals has shown that measurement of the surviving fraction after 2 Gy (SF2) may be used to predict the individual responsiveness. However, clonogenic assays are timeconsuming, thus alternative assays for the determination of radiore-sponse are being sought. For that reason CHO cell strains having different repair capacities were used for examining whether DNA strand break repair is a suitable experimental design to allow predictive statements. Cellular survival (CFA assay) and DNA strand breaks (total DNA strand breaks: FADU technique; DSBs: non-denaturing elution) were determined in parallel immediately after irradiation as well as after a 24 hour recovery period according to dose. There were no correlations between the dose-response curves of the initial level of DNA strand breaks and parameters that describe clonogenic survival curves (SF2). A good correlation exists between intrinsic cellular radioresistance and the extent of residual DNA strand breaks.

  17. Wnt modulates MCL1 to control cell survival in triple negative breast cancer

    International Nuclear Information System (INIS)

    Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. WNT5B was elevated both in the tumor and the patients’ serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/β-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B and MCL1 are associated with

  18. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    International Nuclear Information System (INIS)

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines, the t1/2 of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs

  19. DNA Charge Transport: from Chemical Principles to the Cell.

    Science.gov (United States)

    Arnold, Anna R; Grodick, Michael A; Barton, Jacqueline K

    2016-01-21

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science, and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  20. Survival of the fittest?--survival of stored red blood cells after transfusion.

    NARCIS (Netherlands)

    Luten, M.; Roerdinkholder-Stoelwinder, B.; Bost, H.J.; Bosman, G.J.C.G.M.

    2004-01-01

    During the last 90 years many developments have taken place in the world of blood transfusion. Several anticoagulants and storage solutions have been developed. Also the blood processing has undergone many changes. At the moment, in The Netherlands, red blood cell (RBC) concentrates (prepared from a

  1. The levels of DNA polymerase alpha and beta during the cell cycle and their role in heat radiosensitization in CHO cells

    International Nuclear Information System (INIS)

    The levels of DNA polymerase alpha and beta were measured during the cell cycle using a whole cell assay technique. The results indicate a decrease in the levels of both enzymes during the G/sub 1/ phase and a gradual increase as cells enter the S phase. The recovery of the DNA polymerases was measured after heating for 10 minutes at 45.50C during G/sub 1/ phase or S phase. The activity of DNA polymerase beta recovers fully during 20-25 hours after heating for both G/sub 1/ phase or S phase cells. There is no recovery of the activity of the DNA polymerase alpha during this time. Survival was also measured when cells were irradiated (4 GY) at various times after hyperthermia (10 min at 45.50C), and for both G/sub 1/ and S phase the interaction between heat and x-ray disappeared fully after 20-25 hours following heating and was parallel to recovery of DNA polymerase beta. Furthermore, treatment with cyclohexamide inhibited protein synthesis and prevented recovery from heat damage assayed in terms of both cell survival and beta polymerase. These results, in addition to experiments with heat sensitization at low pH and heat protection with glycerol, indicate that beta polymerase is probably involved in repairing x-ray induced damage resulting in cell lethality

  2. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    International Nuclear Information System (INIS)

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival

  3. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  4. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hisao Imai

    2015-01-01

    Full Text Available Objectives: The effects of first-line chemotherapy on overall survival (OS might be confounded by subsequent therapies in patients with small cell lung cancer (SCLC. We examined whether progression-free survival (PFS, post-progression survival (PPS, and tumor response could be valid surrogate endpoints for OS after first-line chemotherapies for patients with extensive SCLC using individual-level data. Methods: Between September 2002 and November 2012, we analyzed 49 cases of patients with extensive SCLC who were treated with cisplatin and irinotecan as first-line chemotherapy. The relationships of PFS, PPS, and tumor response with OS were analyzed at the individual level. Results: Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.97, p < 0.05, R 2 = 0.94, PFS was moderately correlated with OS (r = 0.58, p < 0.05, R 2 = 0.24, and tumor shrinkage was weakly correlated with OS (r = 0.37, p < 0.05, R 2 = 0.13. The best response to second-line treatment, and the number of regimens employed after progression beyond first-line chemotherapy were both significantly associated with PPS ( p ≤ 0.05. Conclusion: PPS is a potential surrogate for OS in patients with extensive SCLC. Our findings also suggest that subsequent treatment after disease progression following first-line chemotherapy may greatly influence OS.

  5. Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis.

    Science.gov (United States)

    Bosch, Rosemary Viola; Alvarez-Flores, Miryam Paola; Maria, Durvanei Augusto; Chudzinski-Tavassi, Ana Marisa

    2016-08-01

    Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence

  6. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  7. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig.

    Science.gov (United States)

    Laumonier, Thomas; Yang, Sheng; Konig, Stephane; Chauveau, Christine; Anegon, Ignacio; Hoffmeyer, Pierre; Menetrey, Jacques

    2008-02-01

    Cell therapy for Duchenne muscular dystrophy and other muscle diseases is limited by a massive early cell death following injections. In this study, we explored the potential benefit of heme oxygenase-1 (HO-1) expression in the survival of porcine myogenic precursor cells (MPCs) transplanted in pig skeletal muscle. Increased HO-1 expression was assessed either by transient hyperthermia or by HO-1 lentiviral infection. One day after the thermic shock, we observed a fourfold and a threefold increase in HSP70/72 and HO-1 levels, respectively. This treatment protected 30% of cells from staurosporine-induced apoptosis in vitro. When porcine MPC were heat-shocked prior to grafting, we improved cell survival by threefold at 5 days after autologous transplantation (26.3 +/- 5.5% surviving cells). After HO-1 lentiviral transduction, almost 60% of cells expressed the transgene and kept their myogenic properties to proliferate and fuse in vitro. Apoptosis of HO-1 transduced cells was reduced by 50% in vitro after staurosporine induction. Finally, a fivefold enhancement in cell survival was observed after transplantation of HO-1-group (47.5 +/- 9.1% surviving cells) as compared to the nls-LacZ-group or control group. These results identify HO-1 as a protective gene against early MPC death post-transplantation. PMID:18026170

  8. DNA-mediated gene transfer into ataxia-telangiectasia cells

    International Nuclear Information System (INIS)

    The complete description of the genetic lesion(s) underlying the AT mutation might, therefore, highlight not only a DNA-repair pathwa, but also an important aspect of the physiology of lymphocytes. DNA-mediated gene transfer into eukaryotic cells has proved a powerful tool for the molecular cloning of certain mammalian genes. The possibility to clone a given gene using this technology depends, basically, on the availability of a selectable marker associated with the expression of the transfected gene in the recipient cell. Recently, a human DNA repair gene has been cloned in CHO mutant cells by taking advantage of the increased resistance to ultraviolet radiation of the transformants. As a preliminary step toward the molecular cloning of the AT gene(s), the authors have attempted to confer radioresistance to AT cells by transfection with normal human DNA

  9. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  10. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production.

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R; Singer, Bernhard B; Lang, Philipp A; Lang, Karl S

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  11. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  12. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  13. Decreased serum cell-free DNA levels in rheumatoid arthritis

    OpenAIRE

    Dunaeva, Marina; Buddingh’, Bastiaan C.; René E M Toes; Luime, Jolanda J.; Lubberts, Erik; Pruijn, Ger J. M.

    2015-01-01

    Purpose Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods cfDNA was extracted from sera of patients with early and established RA, relapsing-remitt...

  14. Herbicide mediated UV-resistance in cyanobacteria: on the role of photosynthetic electron transport system rather than replicative DNA as lethal target determining dark survival of Anacystis nidulans

    International Nuclear Information System (INIS)

    The role of the replicative state of DNA and of the photosynthetic electron transport system in determining UV-sensitivity of A. nidulans under conditions of non-photoreactivation has been investigated. Both the DNA synthesis data and the data on survival levels during cell cycle synchrony forced by light to dark and dark to light transitions showed that the differential UV-sensitivity was not correlated with the replicative state of the DNA. However, incubation in the light with the herbicides 2/3-4, dichlorophenyl/-1, 1-dimethyl urea (DCMU) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) which are known to inhibit electron transport by specifically binding to the high turnover B protein of photosynthetic electron transport system II (PSII), enhanced the UV-resistance with kinetics similar to those of a culture transferred from light to dark. We interpret this result as implicative of PSII as the second lethal target in the case of cyanobacteria. The inactivation of electron transport activity of PSII as measured by the fall in DCMU-sensitive fluorescence yield during post-UV dark incubation supports this hypothesis. (author)

  15. Dependence of Cell Survival on Iododeoxyuridine Concentration in 35-keV Photon-Activated Auger Electron Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To measure and compare Chinese hamster ovary cell survival curves using monochromatic 35-keV photons and 4-MV x-rays as a function of concentration of the radiosensitizer iododeoxyuridine (IUdR). Methods and Materials: IUdR was incorporated into Chinese hamster ovary cell DNA at 16.6 ± 1.9%, 12.0 ± 1.4%, and 9.2 ± 1.3% thymidine replacement. Cells were irradiated from 1 to 8 Gy with 35-keV synchrotron-generated photons and conventional radiotherapy 4-MV x-rays. The effects of the radiation were measured via clonogenic survival assays. Surviving fraction was plotted vs. dose and fit to a linear quadratic model. Sensitization enhancement ratios (SER10) were calculated as the ratio of doses required to achieve 10% surviving fraction for cells without and with DNA-incorporated IUdR. Results: At 4 MV, SER10 values were 2.6 ± 0.1, 2.2 ± 0.1, and 1.5 ± 0.1 for 16.6%, 12.0%, and 9.2% thymidine replacement, respectively. At 35 keV, SER10 values were 4.1 ± 0.2, 3.0 ± 0.1, and 2.0 ± 0.1, respectively, which yielded SER10 ratios (35 keV:4 MV) of 1.6 ± 0.1, 1.4 ± 0.1, and 1.3 ± 0.1, respectively. Conclusions: SER10 increases monotonically with percent thymidine replacement by IUdR for both modalities. As compared to 4-MV x-rays, 35-keV photons produce enhanced SER10 values whose ratios are linear with percent thymidine replacement and assumed to be due to Auger electrons contributing to enhanced dose to DNA. Although this Auger effectiveness factor is less than the radiosensitization factor of IUdR, both could be important for the clinical efficacy of IUdR radiotherapy.

  16. Nonhomologous DNA End Joining in Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Sheetal Sharma

    2010-01-01

    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  17. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Directory of Open Access Journals (Sweden)

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  18. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  19. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    Science.gov (United States)

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  20. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    International Nuclear Information System (INIS)

    Highlights: ► JMJD2B is required for cell proliferation and in vivo tumorigenesis. ► JMJD2B depletion induces apoptosis and/or cell cycle arrest. ► JMJD2B depletion activates DNA damage response and enhances p53 stabilization. ► JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21CIP1 proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  1. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  2. Influence of a uvrD mutation on survival and repair of X-irradiated Escherichia coli K-12 cells

    International Nuclear Information System (INIS)

    The presence of a uvrD mutation increased the X-ray sensitivities of E.coli wild-type and polA strains, but had no effect on the sensitivities of recA and recB strains, and little effect on a lexA strain. Incubation of irradiated cells in medium containing 2,4-dinitrophenol or chloramphenicol decreased the survival of wild-type and uvrD cells, but had no effect on the survival of recA, recB and lexA strains. Alkaline sucrose gradient sedimentation studies indicated that the uvrD strain is deficient in the growth-medium-dependent (Type III) repair of DNA single-strand breaks. These results indicate that the uvrD mutation inhibits certain rec+lex+-dependent repair processes, including the growth-medium-dependent (Type III) repair of X-ray-induced DNA single-strand breaks, but does not inhibit other rec+lex+-dependent processes that are sensitive to 2,4-dinitrophenol and chloramphenicol. (author)

  3. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival.

    OpenAIRE

    Ligthart, Sjoerd T.; Frank A W Coumans; Gerhardt Attard; Amy Mulick Cassidy; de Bono, Johann S.; Terstappen, Leon W. M. M.

    2011-01-01

    Circulating tumour cells (CTC) in patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. Classification of CTC however remains subjective, as they are morphologically heterogeneous. We acquired digital images, using the CellSearch™ system, from blood of 185 castration resistant prostate cancer (CRPC) patients and 68 healthy subjects to define CTC by computer algorithms. Patient survival data was used as the training parameter for the computer t...

  4. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay - A comparative study

    OpenAIRE

    Buch Karl; Peters Tanja; Nawroth Thomas; Sänger Markus; Schmidberger Heinz; Langguth Peter

    2012-01-01

    Abstract For studying proliferation and determination of survival of cancer cells after irradiation, the multiple MTT assay, based on the reduction of a yellow water soluble tetrazolium salt to a purple water insoluble formazan dye by living cells was modified from a single-point towards a proliferation assay. This assay can be performed with a large number of samples in short time using multi-well-plates, assays can be performed semi-automatically with a microplate reader. Survival, the calc...

  5. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  6. Low-dose formaldehyde delays DNA damage recognition and DNA excision repair in human cells.

    Directory of Open Access Journals (Sweden)

    Andreas Luch

    Full Text Available OBJECTIVE: Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. METHODOLOGY/PRINCIPAL FINDINGS: The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding and XPC (xeroderma pigmentosum group C was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. CONCLUSIONS/SIGNIFICANCE: A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks.

  7. A novel in vitro survival assay of small intestinal stem cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The microcolony assay developed by Withers and Elkind has been a gold standard to assess the surviving fraction of small intestinal stem cells after exposure to high (≥8 Gy) doses of ionizing radiation (IR), but is not applicable in cases of exposure to lower doses. Here, we developed a novel in vitro assay that enables assessment of the surviving fraction of small intestinal stem cells after exposure to lower IR doses. The assay includes in vitro culture of small intestinal stem cells, which allows the stem cells to develop into epithelial organoids containing all four differentiated cell types of the small intestine. We used Lgr5-EGFP-IRES-CreERT2/ROSA26-tdTomato mice to identify Lgr5+ stem cells and their progeny. Enzymatically dissociated single crypt cells from the duodenum and jejunum of mice were irradiated with 7.25, 29, 101, 304, 1000, 2000 and 4000 mGy of X-rays immediately after plating, and the number of organoids was counted on Day 12. Organoid-forming efficiency of irradiated cells relative to that of unirradiated controls was defined as the surviving fraction of stem cells. We observed a significant decrease in the surviving fraction of stem cells at ≥1000 mGy. Moreover, fluorescence-activated cell sorting analyses and passage of the organoids revealed that proliferation of stem cells surviving IR is significantly potentiated. Together, the present study demonstrates that the in vitro assay is useful for quantitatively assessing the surviving fraction of small intestinal stem cells after exposure to lower doses of IR as compared with previous examinations using the microcolony assay. (author)

  8. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death.

    Science.gov (United States)

    Glasser, A L; Boudeau, J; Barnich, N; Perruchot, M H; Colombel, J F; Darfeuille-Michaud, A

    2001-09-01

    Escherichia coli strains recovered from Crohn's disease (CD) lesions are able to adhere to and invade cultured intestinal epithelial cells. We analyzed the behavior within macrophages of adherent invasive E. coli (AIEC) strains isolated from patients with CD. All the 15 AIEC strains tested were able to replicate extensively within J774-A1 cells: the numbers of intracellular bacteria increased 2.2- to 74.2-fold at 48 h over that at 1 h postinfection. By use of murine peritoneal macrophages and human monocyte-derived-macrophages, the reference AIEC strain LF82 was confirmed to be able to survive intracellularly. Transmission electron micrographs of AIEC LF82-infected macrophages showed that at 24 h postinfection, infected cells harbored large vacuoles containing numerous bacteria, as a result of the fusion of several vacuoles occurring after 8 h postinfection. No lactate dehydrogenase (LDH) release, no sign of DNA fragmentation or degradation, and no binding to fluorescein isothlocyanate-labeled annexin V were observed with LF82-infected J774-A1 cells, even after 24 h postinfection. LF82-infected J774-A1 cells secreted 2.7-fold more tumor necrosis factor alpha (TNF-alpha) than cells stimulated with 1 microg of lipopolysaccharide (LPS)/ml. No release of interleukin-1beta was observed with LPS-prestimulated J774-A1 cells infected with AIEC LF82. These findings showed that (i) AIEC strains are able to survive and to replicate within macrophages, (ii) AIEC LF82 replication does not induce any cell death of the infected cells, and (iii) LF82-infected J774-A1 cells release high levels of TNF-alpha. These properties could be related to some features of CD and particularly to granuloma formation, one of the hallmarks of CD lesions. PMID:11500426

  9. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    Science.gov (United States)

    Rice, L; Urano, M; Suit, H D

    1980-04-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  10. Relation of intracellular cyclic AMP to the shape of mammalian cell survival curves

    International Nuclear Information System (INIS)

    Results of experiments with V79 cells growing in tissue culture indicate that the reproductive survival of cells following irradiation is influenced by the level of intracellular 3', 5'-cyclic adenosine monophosphate (cyclic AMP) at the time of irradiation. Cells containing high levels of cyclic AMP induced by treatments with drugs show a characteristic survival curve in which the extent of the shoulder is increased so that the survival after low doses is enhanced. The exponential slope or D0, however, is decreased so that at high doses the survival of cells containing high levels of cyclic AMP may be less than that of controls. Naturally occurring changes in radiosensitivity such as those observed as cells pass through the division cycle, may also be related to parallel changes in cyclic AMP concentration occurring during the cycle. Injection of mice with compounds producing elevated cyclic AMP prior to whole-body irradiation increases survival at seven days post-irradiation. The shape of the survival curve for intestinal stem cells in these mice differs from that of the control in having an increased extrapolation number; no change in D0 is observed in this in vivo situation. (author)

  11. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-01

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity. PMID:26993806

  12. Ensemble of cell survival experiments after ion irradiation for validation of RBE models

    International Nuclear Information System (INIS)

    There is persistent interest in understanding the systematics of the relative biological effectiveness (RBE). Models such as the Local Effect Model (LEM) or the Microdosimetric Kinetic Model have the goal to predict the RBE. For the validation of these models a collection of many in-vitro cell survival experiments is most appropriate. The set-up of an ensemble of in-vitro cell survival data comprising about 850 survival experiments after both ion and photon irradiation is reported. The survival curves have been taken out from publications. The experiments encompass survival curves obtained in different labs, using different ion species from protons to uranium, varying irradiation modalities (shaped or monoenergetic beam), various energies and linear energy transfers, and a whole variety of cell types (human or rodent; normal, mutagenic or tumor; radioresistant or -sensitive). Each cell survival curve has been parameterized by the linear-quadratic model. The photon parameters have been added to the data base to allow to calculate the experimental RBE to any survival level. We report on experimental trends found within the data ensemble. The data will serve as a testing ground for RBE models such as the LEM. Finally, a roadmap for further validation and first model results using the data base in combination with the LEM are presented.

  13. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    International Nuclear Information System (INIS)

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion

  14. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dorota W. [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland); Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw (Poland); Carré, Thibault; Chouaib, Salem [Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex (France); Kaminska, Bozena, E-mail: bozenakk@nencki.gov.pl [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  15. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  16. Implementing Prenatal Diagnosis Based on Cell-Free Fetal DNA: Accurate Identification of Factors Affecting Fetal DNA Yield

    OpenAIRE

    Barrett, A. N.; Zimmermann, B. G.; Wang, D.; Holloway, A.; Chitty, L S

    2011-01-01

    Objective: Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing ce...

  17. Somatic cell genetics approach to dissecting mammalian DNA repair

    International Nuclear Information System (INIS)

    This review article examines the application of the methods and concepts of somatic cell genetics to the study of DNA repair. The first steps of this approach involve classical procedures of mutant isolation, complementation analysis, and mapping of genes using hybrid cells. Subsequent steps utilize the techniques of DNA-mediated gene transfer and methodologies of the recombinant DNA field. Several human repair genes have been cloned, but they have not been used to overproduce proteins thus far. This article highlights the more important developments and attempts to review in detail all of the isolated mutant cell lines that may be altered in the repair processes. Faster methods of gene cloning are greatly needed because the procedures for making secondary transformants from total genomic DNA are tedious

  18. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  19. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells.

    Science.gov (United States)

    Beristain, Alexander G; Narala, Swami R; Di Grappa, Marco A; Khokha, Rama

    2012-02-15

    RANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer. Here, we investigated the significance of RANK in tumor cells with a particular emphasis on homotypic signaling. We selected RANK-positive mouse osteosarcoma and RANK-negative preosteoblastic MC3T3-E1 cells and subjected them to loss- and gain-of-RANK function analyses. By examining a spectrum of tumorigenic properties, we demonstrate that RANK homotypic signaling has a negligible effect on cell proliferation, but promotes cell motility and anchorage-independent growth of osteosarcoma cells and preosteoblasts. By contrast, establishment of RANK signaling in non-tumorigenic mammary epithelial NMuMG cells promotes their proliferation and anchorage-independent growth, but not motility. Furthermore, RANK activation initiates multiple signaling pathways beyond its canonical target, NF-κB. Among these, biochemical inhibition reveals that Erk1/2 is dominant and crucial for the promotion of anchorage-independent survival and invasion of osteoblastic cells, as well as the proliferation of mammary epithelial cells. Thus, RANK signaling functionally contributes to key tumorigenic properties through a cell-autonomous homotypic mechanism. These data also identify the likely inherent differences between epithelial and mesenchymal cell responsiveness to RANK activation. PMID:22421365

  20. The role of DNA cluster damage and chromosome aberrations in radiation-induced cell killing: a theoretical approach

    International Nuclear Information System (INIS)

    The role played by DNA cluster damage and chromosome aberrations in radiation-induced cell killing was investigated, assuming that certain chromosome aberrations (dicentrics, rings and large deletions, or 'lethal aberrations') lead to clonogenic inactivation and that chromosome aberrations are due to micrometre-scale rejoining of chromosome fragments derived from DNA cluster lesions (CLs). The CL yield and the threshold distance governing fragment rejoining were left as model parameters. The model, implemented as a Monte Carlo code called BIANCA (Biophysical Analysis of Cell death and chromosome Aberrations), provided simulated survival curves that were compared with survival data on AG1522 and V79 cells exposed to different radiation types, including heavy ions. The agreement between simulation outcomes and experimental data suggests that lethal aberrations are likely to play an important role in cell killing not only for AG1522 cells exposed to X rays, as already reported by others, but also for other radiation types and other cells. Furthermore, the results are consistent with the hypothesis that the critical DNA lesions leading to cell death and chromosome aberrations are double-strand break clusters ( possibly involving the ∼1000- 10 000 bp scale) and that the effects of such clusters are modulated by micrometre-scale proximity effects during DNA damage processing. (authors)

  1. Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    phosphoprotein that is regulated in response to DNA damaging agents [5,6,7] and in response to estrogen-induced growth [8,9,10,11]. Germline mutations that cause breast and ovarian cancer predisposition frequently result in truncated and presumably inactive BRCA1 protein [12]. BG-1 cells were derived from a patient with stage III, poorly differentiated ovarian adenocarcinoma [13]. This cell line, which expresses wild-type BRCA1, is estrogen responsive and withdrawal of estrogen results in eventual cell death. Previous studies suggest that BRCA1 is stimulated as a result of estrogen treatment [8,9,10,11], and also that BRCA1 may be involved in the cell death process [14]. Therefore, we examined the effect of reduction of BRCA1 levels in BG-1 cells on the cellular response to hormone depletion as well as estrogen stimulation. The results suggest that reduced levels of BRCA1 correlates with a survival advantage when BG-1 cells are placed under growth-restrictive and hormone-depleted conditions. In optimum growth conditions, significantly reduced levels of BRCA1 correlates with enhanced growth both in vitro and in vivo. To test the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as in the inhibition of ovarian cell proliferation. The estrogen receptor-positive, BG-1 cell line [13], which contains an abundant amount of estrogen receptors (600 fmoles/100 μg DNA), was infected using a pLXSN retroviral vector (provided by AD Miller) containing an inverted partial human cDNA 900-base-pair sequence of BRCA1 (from nucleotide 121 in exon 1 to nucleotide 1025 in exon 11, accession #U14680). After 2 weeks of selection in 800 μg/ml of geneticin-G418 (Gibco/Life Technologies, Gaithersburg, MD, USA), BG-1 G418-resistant colonies were pooled, or individually isolated, and assayed for growth in the presence or absence of supplemented estrogen. Virally infected pooled populations of BG-1 cells were examined for BRCA1 message levels by ribonuclease

  2. Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Lukomska, Barbara; Janowski, Miroslaw

    2016-01-01

    Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies.

  3. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    OpenAIRE

    Sébastien Sart; Liqing Song; Yan Li

    2015-01-01

    Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture ...

  4. Evaluation of eukaryotic cultured cells as a model to study extracellular DNA / D.L. Peters

    OpenAIRE

    Peters, Dimetrie Leslie

    2011-01-01

    The diagnostic value of extracellular occurring DNA (eoDNA) is limited by our lack of understanding its biological function. eoDNA exists in a number of forms, namely vesicle bound DNA, histone/DNA complexes or nucleosomes and virtosomes. These forms of DNA can also be categorized under the terms circulating DNA, cell free DNA, free DNA and extracellular DNA. The DNA can be released by means of form–specific mechanisms and seem to be governed by cell cycle phases and apoptosis....

  5. Impact of CD133 positive stem cell proportion on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    The aim of the study was to assess the impact of CD133-positive (CD133+) cancer stem cell proportions on treatment results of glioblastoma multiforme (GBM) patients. Patients with GBM (n = 42) received postoperative radiotherapy (± chemotherapy). Surgically excised GBM tissue sections were immunohistochemically examined for CD133 expression. The proportions of CD133+ GBM cells were determined (%). The proportion of CD133+ GBM stem cells was established by 2 independent researchers whose results were in good accordance (R = 0.8, p < 0.01). Additionally, CD133 expression levels were correlated with patients overall survival. The proportion of CD133+ cells varied between patients, being from 0.5% to 82%. Mean and median proportions of CD133+ cells of the entire study group were 33% ± 24% (mean ± SD) and 28%, respectively. Clinical data do not support the association between higher proportion of stem cells and the aggressiveness of GBM. Median survival time of the study group was 10.0 months (95% CI 9.0–11.0). The survival time clearly depended on the proportion of CD133+ cells (log rank test, p = 0.02). Median survival times for patients with low (< median) and high (≥ median) proportion of CD133+ cells were 9.0 months (95% CI 7.6–10.5) and 12.0 months (95% CI 9.3–14.7), respectively. In multivariate analysis, the proportion of CD133+ cells emerged as a significant independent predictor for longer overall survival (HR 2.0, 95% CI 1.0–3.8, p = 0.04). In patients with higher stem cell proportion, significantly longer survival times after postoperative radiotherapy were achieved. Underlying reasons and possible higher sensitivity of GBM stem cells to fractionated radio-therapy should be clarified in further studies

  6. A novel cell permeable DNA replication and repair marker

    OpenAIRE

    Herce, Henry D.; Rajan, Malini; Lättig-Tünnemann, Gisela; Fillies, Marion; Cardoso, M. Cristina

    2014-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA bindin...

  7. Acetylation regulates DNA repair mechanisms in human cells.

    Science.gov (United States)

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  8. Roles of host cell factors in circularization of retroviral DNA

    International Nuclear Information System (INIS)

    Early during retroviral infection, a fraction of the linear reverse-transcribed viral DNA genomes become circularized by cellular enzymes, thereby inactivating the genomes for further replication. Prominent circular DNA forms include 2-long-terminal repeat (LTR) circles, made by DNA end joining, and 1-LTR circles, produced in part by homologous recombination. These reactions provide a convenient paradigm for analyzing the cellular machinery involved in DNA end joining in vertebrate cells. In previous studies, we found that inactivating components of the nonhomologous DNA end-joining (NHEJ) pathway--specifically Ku, ligase 4, or XRCC4--blocked formation of 2-LTR circles. Here we report that inactivating another NHEJ component, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), had at most modest effects on 2-LTR circle formation, providing informative parallels with other end-joining reactions. We also analyzed cells mutant in components of the RAD50/MRE11/NBS1 nuclease and found a decrease in the relative amount of 1-LTR circles, opposite to the effects of NHEJ mutants. In MRE11-mutant cells, a MRE11 gene mutant in the nuclease catalytic site failed to restore 1-LTR circle formation, supporting a model for the role of MRE11 in 1-LTR circle formation. None of the cellular mutations showed a strong effect on normal integration, consistent with the idea that the cellular pathways leading to circularization are not involved in productive integration

  9. Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium.

    Science.gov (United States)

    Park, Yong-Ho; Wilson, Kevin F; Ueda, Yoshihisa; Tung Wong, Hiu; Beyer, Lisa A; Swiderski, Donald L; Dolan, David F; Raphael, Yehoash

    2014-04-01

    The mammalian auditory epithelium (AE) cannot replace supporting cells and hair cells once they are lost. Therefore, sensorineural hearing loss associated with missing cells is permanent. This inability to regenerate critical cell types makes the AE a potential target for cell replacement therapies such as stem cell transplantation. Inserting stem cells into the AE of deaf ears is a complicated task due to the hostile, high potassium environment of the scala media in the cochlea, and the robust junctional complexes between cells in the AE that resist stem cell integration. Here, we evaluate whether temporarily reducing potassium levels in the scala media and disrupting the junctions in the AE make the cochlear environment more receptive and facilitate survival and integration of transplanted cells. We used sodium caprate to transiently disrupt the AE junctions, replaced endolymph with perilymph, and blocked stria vascularis pumps with furosemide. We determined that these three steps facilitated survival of HeLa cells in the scala media for at least 7 days and that some of the implanted cells formed a junctional contact with native AE cells. The data suggest that manipulation of the cochlear environment facilitates survival and integration of exogenously transplanted HeLa cells in the scala media. PMID:24394296

  10. Condensation by DNA looping facilitates transfer of large DNA molecules into mammalian cells

    OpenAIRE

    Montigny, William J.; Houchens, Christopher R.; Illenye, Sharon; Gilbert, Jonathan; Coonrod, Emily; Chang, Young-Chae; Nicholas H. Heintz

    2001-01-01

    Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 1...

  11. Adenovirus E4orf6 protein inhibits DNA repair and radiosensitizes human tumor cells

    International Nuclear Information System (INIS)

    Full text: Double strand break repair (DSBR), although vital to normal cell survival and genomic stability, limits tumor cell kill following treatment with ionizing radiation (IR). The primary mechanism for DSBR in mammalian cells, non-homologous end joining (NHEJ), requires multiple proteins, one of which is DNA-dependent protein kinase (DNA-PK). Cells deficient in DNA-PK, although phenotypically normal, are among the most radiosensitive cells available. It has previously been shown that the E4orf6 gene product of adenovirus type 5 interacts with and inhibits the activity of DNA-PK. Therefore, we hypothesized that E4orf6, by interacting with DNA-PK, would inhibit the DSBR capacity of tumor cells and thus increase tumor cell kill upon treatment with IR. Stable clones expressing either wild type E4orf6, an E4orf6 mutant (L245P) that is defective at E1B-55K localization to the nucleus, or a neomycin control vector were established in colorectal carcinoma (RKO) cells. Based on clonogenic assays, we report a 10-fold increase in radiosensitivity of the wild type E4orf6 expressing clones at 6Gy of IR compared to both the neomycin and L245P mutant clones. Furthermore, the increase in sensitivity correlates with inhibition in DSBR based on sub-lethal damage repair assay. Preliminary data suggests that the transfected E4orf6 interacts with the endogenous DNA-PK and this results in a 20% decrease in the kinase activity of the DNA-PK compared to neomycin expressing control cells. These results indicate that E4orf6 radiosensitizes tumor cells by inhibiting their DSBR activity. We have constructed an adenoviral vector expressing E4orf6 in a tetracycline-inducible manner, which provides temporal control for E4orf6 expression. We are currently investigating the radiosensitizing properties of this expression vector. Successful use of this vector in vitro and in mouse xenografts, will set the stage for its future use in conjunction with localized radiotherapy of radioresistant

  12. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein

    DEFF Research Database (Denmark)

    Prager, Gerald W; Mihaly, Judit; Brunner, Patrick M;

    2008-01-01

    factor kappaB (NF-kappaB) p52 activation. Indeed, blocking NF-kappaB activation by using specific NF-kappaB inhibitors abolished uPA-induced cell survival as it blocked uPA-induced XIAP up-regulation. Furthermore, down-regulating XIAP expression by small interfering RNA (siRNA) significantly reduced u......Urokinase-type plasminogen activator (uPA) additionally elicits a whole array of pro-angiogenic responses, such as differentiation, proliferation, and migration. In this study, we demonstrate that in endothelial cells uPA also protects against apoptosis by transcriptional up-regulation and......PA-dependent endothelial cell survival. This mechanism is also important for VEGF-induced antiapoptosis because VEGF-dependent up-regulation of XIAP was found defective in uPA(-/-) endothelial cells. This led us to conclude that uPA is part of a novel NF-kappaB-dependent cell survival pathway....

  13. Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea.

    Directory of Open Access Journals (Sweden)

    Fu-Quan Chen

    Full Text Available This study delineates the role of peroxiredoxin 3 (Prx3 in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age. In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.

  14. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  15. Characterization of Ancient DNA Supports Long-Term Survival of Haloarchaea

    OpenAIRE

    Sankaranarayanan, Krithivasan; Lowenstein, Tim K.; Timofeeff, Michael N.; Schubert, Brian A.; Lum, J. Koji

    2014-01-01

    Bacteria and archaea isolated from crystals of halite 104 to 108 years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent a...

  16. Fast clearance of lipid droplets through MAP1S-activated autophagy suppresses clear cell renal cell carcinomas and promotes patient survival

    Science.gov (United States)

    Liu, Xian-De; Yue, Fei; Li, Wenjiao; Li, Xun; He, Yongzhong; Jiang, Xianhan; Huang, Hai; Chen, Qi; Jonasch, Eric; Liu, Leyuan

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is composed of cells whose cytoplasm filled with lipid droplets, subcellular organelles coated with adipocyte differentiation-related protein (ADFP) for the storage of triacylglycerol converted from excess free fatty acids. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles such as lipid droplets. MAP1S (originally named C19ORF5) is an autophagy activator and promotes the biogenesis and degradation of autophagosomes. Previously, we reported that MAP1S suppresses hepatocellular carcinogenesis in a mouse model and promoted the survival of patients with prostate adenocarcinomas by increasing the degradation of aggregated proteins and dysfunctional mitochondria. Here we show that a suppression of MAP1S in renal cells causes an impairment of autophagic clearance of lipid droplets. In contrast, an overexpression of MAP1S causes an activation of autophagy flux and a reduction of lipid droplets so less DNA double strand breakage is induced. The levels of MAP1S in normal renal cells are dramatically higher than those in the ccRCC tissues and cell lines derived from renal cell carcinomas. High levels of MAP1S are associated with a reduced malignancy and metastasis of ccRCC and predict a better survival of ccRCC patients. Therefore, autophagy defects in the degradation of lipid droplets triggered by the MAP1S deficiency may enhance the initiation and development of ccRCC and reduce the survival of ccRCC patients. PMID:26701856

  17. Characterization of the cell-free DNA released by cultured cancer cells.

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Wentzel, Johannes F; Aucamp, Janine; van Dyk, Etresia; du Plessis, Lissinda; Pretorius, Piet J

    2016-01-01

    The most prominent factor that delays the translation of cell-free DNA (cfDNA) analyses to clinical practice is the lack of knowledge regarding its origin and composition. The elucidation of the former is complicated by the seemingly random fluctuation of quantitative and qualitative characteristics of cfDNA in the blood of healthy and diseased individuals. Besides methodological discrepancies, this could be ascribed to a web of cellular responses to various environmental cues and stressors. Since all cells release cfDNA, it follows that the cfDNA in the blood of cancer patients is not only representative of tumor derived DNA, but also of DNA released by healthy cells under different conditions. Additionally, cfDNA released by malignant cells is not necessarily just aberrant, but likely includes non-mutated chromosomal DNA fragments. This may cause false positive/negative results. Although many have acknowledged that this is a major problem, few have addressed it. We propose that many of the current stumbling blocks encountered in in vivo cfDNA studies can be partially circumvented by in vitro models. Accordingly, the purpose of this work was to evaluate the release of cfDNA from cultured cells and to gauge its potential use for elucidating the nature of cfDNA. Results suggest that the occurrence of cfDNA is not a consequence of apoptosis or necrosis, but primarily a result of actively secreted DNA, perhaps in association with a protein complex. This study demonstrates the potential of in vitro cell culture models to obtain useful information about the phenomenon of cfDNA. PMID:26529550

  18. Chromatin factors affecting DNA repair in mammalian cell nuclei

    International Nuclear Information System (INIS)

    We are investigating chromatin factors that participate in the incision step of DNA repair in eukaryotic cells. Localization of repair activity within nuclei, the stability and extractability of activity, the specificity for recognizing damage in chromatin or purified DNA as substrates are of interest in this investigation of human cells, CHO cells, and their radiation sensitive mutants. We have developed procedures that provide nuclei in which their DNA behaves as a collection of circular molecules. The integrity of the DNA in human nuclei can be maintained during incubation in appropriate buffers for as long as 60 minutes. When cells or nuclei are exposed to uv light prior to incubation, incisions presumably associated with DNA repair can be demonstrated. Incision activity is stable to prior extraction of nuclei with 0.6 M NaCl, which removes many nonhistone proteins. Our studies are consistent with an hypothesis that factors responsible for initiating DNA repair are localized in the nuclear matrix. 18 references, 3 figures

  19. Survival and signaling changes in antigen presenting cell subsets after radiation

    Science.gov (United States)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  20. Quantitative analysis of cell-free DNA in ovarian cancer

    Science.gov (United States)

    SHAO, XUEFENG; He, YAN; JI, MIN; CHEN, XIAOFANG; QI, JING; SHI, WEI; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer. PMID:26788153

  1. In vivo studies of the long-term 51Cr red cell survival of serologically incompatible red cell units

    International Nuclear Information System (INIS)

    The long-term survival of serologically incompatible red cell units was measured in five patients with antibodies to high-frequency antigens. Initially, the survival of 1 ml of 51Cr-labeled incompatible red cells was measured over 1 hour. After demonstrating that the 1-hour survival times were successful (greater than 70%), each patient then received 5 ml of the same 51Cr-labeled red cells followed by the transfusion of the remainder of the red cell unit. The long-term T 1/2Cr survival for each case was patient 1 (anti-McCa), 15 days; patient 2 (anti-JMH), 12 days; patient 3 (anti-Kna), 31 days; patient 4 (anti-McCa), 12 days; and patient 5 (anti-Hya), 14 days. Each antibody tested in an in vitro homologous macrophage assay showed less than 5 percent phagocytosis. Anti-JMH was the only antibody to react with IgG subclass antisera and was determined to be IgG4. The macrophage assay, IgG subclass testing, and short-term (1 hour, 1 ml) 51Cr survival studies all indicated that the short-term survival was good. However, only the measurement of long-term survival with transfused units of serologically incompatible red cells was able to determine the actual survival, and clinical significance of the alloantibodies. Determining the actual long-term survival by the method described here can be of importance for patients requiring chronic red cell transfusion

  2. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  3. 3'-Phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents.

    Science.gov (United States)

    Leung, Ada W Y; Dragowska, Wieslawa H; Ricaurte, Daniel; Kwok, Brian; Mathew, Veena; Roosendaal, Jeroen; Ahluwalia, Amith; Warburton, Corinna; Laskin, Janessa J; Stirling, Peter C; Qadir, Mohammed A; Bally, Marcel B

    2015-07-10

    Standard treatment for advanced non-small cell lung cancer (NSCLC) with no known driver mutation is platinum-based chemotherapy, which has a response rate of only 30-33%. Through an siRNA screen, 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 1 (PAPSS1), an enzyme that synthesizes the biologically active form of sulfate PAPS, was identified as a novel platinum-sensitizing target in NSCLC cells. PAPSS1 knockdown in combination with low-dose (IC10) cisplatin reduces clonogenicity of NSCLC cells by 98.7% (p < 0.001), increases DNA damage, and induces G1/S phase cell cycle arrest and apoptosis. PAPSS1 silencing also sensitized NSCLC cells to other DNA crosslinking agents, radiation, and topoisomerase I inhibitors, but not topoisomerase II inhibitors. Chemo-sensitization was not observed in normal epithelial cells. Knocking out the PAPSS1 homolog did not sensitize yeast to cisplatin, suggesting that sulfate bioavailability for amino acid synthesis is not the cause of sensitization to DNA damaging agents. Rather, sensitization may be due to sulfation reactions involved in blocking the action of DNA damaging agents, facilitating DNA repair, promoting cancer cell survival under therapeutic stress or reducing the bioavailability of DNA damaging agents. Our study demonstrates for the first time that PAPSS1 could be targeted to improve the activity of multiple anticancer agents used to treat NSCLC. PMID:26220590

  4. 3′-Phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents

    Science.gov (United States)

    Leung, Ada W. Y.; Dragowska, Wieslawa H.; Ricaurte, Daniel; Kwok, Brian; Mathew, Veena; Roosendaal, Jeroen; Ahluwalia, Amith; Warburton, Corinna; Laskin, Janessa J.; Stirling, Peter C.; Qadir, Mohammed A.; Bally, Marcel B.

    2015-01-01

    Standard treatment for advanced non-small cell lung cancer (NSCLC) with no known driver mutation is platinum-based chemotherapy, which has a response rate of only 30–33%. Through an siRNA screen, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase 1 (PAPSS1), an enzyme that synthesizes the biologically active form of sulfate PAPS, was identified as a novel platinum-sensitizing target in NSCLC cells. PAPSS1 knockdown in combination with low-dose (IC10) cisplatin reduces clonogenicity of NSCLC cells by 98.7% (p < 0.001), increases DNA damage, and induces G1/S phase cell cycle arrest and apoptosis. PAPSS1 silencing also sensitized NSCLC cells to other DNA crosslinking agents, radiation, and topoisomerase I inhibitors, but not topoisomerase II inhibitors. Chemo-sensitization was not observed in normal epithelial cells. Knocking out the PAPSS1 homolog did not sensitize yeast to cisplatin, suggesting that sulfate bioavailability for amino acid synthesis is not the cause of sensitization to DNA damaging agents. Rather, sensitization may be due to sulfation reactions involved in blocking the action of DNA damaging agents, facilitating DNA repair, promoting cancer cell survival under therapeutic stress or reducing the bioavailability of DNA damaging agents. Our study demonstrates for the first time that PAPSS1 could be targeted to improve the activity of multiple anticancer agents used to treat NSCLC. PMID:26220590

  5. Influence of pro-angiogenic cytokines on proliferative activity and survival of endothelial cells

    Directory of Open Access Journals (Sweden)

    Solyanik G. I.

    2010-04-01

    Full Text Available Aim. Tumor angiogenesis in contrast to physiological one is characterized by high level of malignant cell production of proangiogenic cytokines, which have different influence on functional activity of endothelial cells. The goal of the study – to carry out a comparative analysis of the influence of a vascular endothelial growth factor (VEGF and an epidermal growth factor (EGF on proliferative activity and survival of endothelial cells upon their confluent and exponential growth. Methods. The proliferative activity of endothelial cells was determined by MTT-test and their viability was detected by the trypane blue exclusion test. Results. It was shown that EGF (irrespectively of the level of serum factors in concentrations higher than 10 ng/ml activated the proliferative activity of confluent endotheliocytes in a concentration-dependent manner by 18–36 % (ð < 0.05 as compared to the control, while this cytokine didn’t affect the endothelial cells in the exponential growth phase. VEGF in wide concentration range didn’t display the mitogenic effect on endotheliocytes in both confluent and exponential growth phases. Furthermore, VEGF in concentrations higher than 100 ng/ml inhibited proliferative activity of confluent endothelial cells by 12 % (ð < 0.05. In case of deficiency of nutrients, EGF and VEGF promoted the survival of endothelial cells, considerably decreasing their death. Conclusions. EGF, in contrast to VEGF, stimulates proliferation and survival of the endothelial cells, whereas VEGF has significant influence only on the survival of the cells

  6. Inhibition of the epidermal growth factor receptor in bladder cancer cells treated with the DNA-damaging drug etoposide markedly increases apoptosis

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Nexo, Ebba;

    2007-01-01

    : These results suggest that activation of the EGFR induced a cell-survival function when bladder cancer cells were treated with the DNA-damaging drug VP16, and that combined treatment with VP16 and the EGFR inhibitor gefitinib might improve the efficacy of treatment. Udgivelsesdato: 2007-Jan...

  7. Scintillometric determination of DNA repair in human cell lines

    International Nuclear Information System (INIS)

    The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with [3H]thymidine, the radioactivity incorporated into DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (Csub(HU), Tsub(HU)). The ratios Tsub(HU)/Csub(HU) and Tsub(HU)/T:Csub(HU)/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation. (orig./AJ)

  8. New Rapid Method of DNA Isolation from Milk Somatic Cells.

    Science.gov (United States)

    Pokorska, Joanna; Kułaj, Dominika; Dusza, Magdalena; Żychlińska-Buczek, Justyna; Makulska, Joanna

    2016-04-01

    Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses. PMID:26913552

  9. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Science.gov (United States)

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  10. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Directory of Open Access Journals (Sweden)

    Chen Ming-Teh

    2011-01-01

    Full Text Available Abstract Background 1-{4-[Bis(2-chloroethylamino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylaminophenyl]urea (BO-1051 is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3 following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells.

  11. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    International Nuclear Information System (INIS)

    1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5- (4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells

  12. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy

    OpenAIRE

    Turtle, Cameron J.; Swanson, Hillary M.; Fujii, Nobuharu; Estey, Elihu H.; Riddell, Stanley R.

    2009-01-01

    The mechanisms that maintain human T cell memory during normal and perturbed homeostasis are not fully understood. The repeated induction of profound lymphocytopenia in patients undergoing multiple cycles of cytotoxic chemotherapy infrequently results in severe infections with viruses controlled by memory T cells, suggesting that some memory T cells survive chemotherapy and restore immunity. Here we identify a distinct subpopulation of memory CD8+ T cells with the ability to rapidly efflux an...

  13. Dormancy of Cancer Cells with Suppression of AKT Activity Contributes to Survival in Chronic Hypoxia

    OpenAIRE

    Hiroko Endo; Hiroaki Okuyama; Masayuki Ohue; Masahiro Inoue

    2014-01-01

    A hypoxic microenvironment in tumors has been recognized as a cause of malignancy or resistance to various cancer therapies. In contrast to recent progress in understanding the acute response of cancer cells to hypoxia, the characteristics of tumor cells in chronic hypoxia remain elusive. We have identified a pancreatic cancer cell line, AsPC-1, that is exceptionally able to survive for weeks under 1% oxygen conditions while most tested cancer cell lines die after only some days under these c...

  14. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions.

    Science.gov (United States)

    Wang, X; Wang, G; Shi, Y; Sun, L; Gorczynski, R; Li, Y-J; Xu, Z; Spaner, D E

    2016-01-01

    Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer. PMID:27270614

  15. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  16. Absent/weak CD44 intensity and positive human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma indicates a very high survival

    International Nuclear Information System (INIS)

    Patients with human papillomavirus DNA positive (HPVDNA+) oropharyngeal squamous cell carcinoma (OSCC) have better clinical outcome than those with HPV DNA negative (HPVDNA−) OSCC upon intensive oncological treatment. All HPVDNA+ OSCC patients may not require intensive treatment, however, but before potentially deintensifying treatment, additional predictive markers are needed. Here, we examined HPV, p16INK4a, and CD44 in OSCC in correlation to clinical outcome. Pretreatment tumors from 290 OSCC patients, the majority not receiving chemotherapy, were analyzed for HPV DNA by Luminex and for p16INK4a and CD44 by immunohistochemistry. 225/290 (78%) tumors were HPVDNA+ and 211/290 (73%) overexpressed p16INK4a, which correlated to presence of HPV (P < 0.0001). Presence of HPV DNA, absent/weak CD44 intensity staining correlated to favorable 3-year disease-free survival (DFS) and overall survival (OS) by univariate and multivariate analysis, and likewise for p16INK4a by univariate analysis. Upon stratification for HPV, HPVDNA+ OSCC with absent/weak CD44 intensity presented the significantly best 3-year DFS and OS, with >95% 3-year DFS and OS. Furthermore, in HPVDNA+ OSCC, p16INK4a+ overexpression correlated to a favorable 3-year OS. In conclusion, patients with HPVDNA+ and absent/weak CD44 intensity OSCC presented the best survival and this marker combination could possibly be used for selecting patients for tailored deintensified treatment in prospective clinical trials. Absence of/weak CD44 or presence of human papillomavirus (HPV) DNA was shown as a favorable prognostic factors in tonsillar and tongue base cancer. Moreover, patients with the combination of absence of/weak CD44 and presence of HPV DNA presented a very favorable outcome. Therefore, we suggest that this marker combination could potentially be used to single out patients with a high survival that could benefit from a de-escalated oncological treatment

  17. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available PURPOSE: To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM. METHODS: The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC. RESULTS: The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001. CONCLUSIONS: Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  18. PREPARATION AND PURIFICATION OF DNA FROM BACTERIAL CELLS; CHARACTERIZATION OF PLASMID DNA

    Directory of Open Access Journals (Sweden)

    M Praveen, G Adarsh, T Ramesh, M Ramesh*

    2013-01-01

    Full Text Available The use of genetic material to deliver genes for therapeutic purposes has been practiced for many years. With the advancement in genetic engineering, foreign genes of industrial applications can be inserted into cloning vector for mass production in various host cells. Escherichia coli is an extremely important model organism in modern biological engineering, the suitable growth media is essential for the optimal expression of the genes in E. coli. The present study aims at isolation and purification of genomic DNA from E. coli, the characterization of pBR322 plasmid DNA. Bacterial culture conditions were optimized in shake – flask cultures based on optimal temperature, inoculum size and medium composition. Solutions and methods are disclosed for the effective, simple isolation of DNA from bacterial cells. High bioprocess recovery and product quality were primarily associated with the complete removal of total cellular RNA impurity. The process was demonstrated without the use of animal-derived RNase. High-molecular-weight (HMW RNA and other impurities were removed by selective precipitation using calcium chloride at an optimal concentration.The optimal conditions for the growth of Escherichia coli were shown maximum absorbance as 7.5 at 370C temperature, 1% inoculum size using TB medium composition. The purified genomic DNA had concentration as 73.5 µg/ml and purity 1.8. The 0.5M CaCl2 was optimal concentration for removal of RNA. The plasmid DNA pBR322 was confirmed by comparing the band to 4.36 Kb, purity of plasmid was 1.85 and it contains 96.8% of super coiled DNA. The contaminants like chromosomal DNA, RNA, host cell proteins and mycoplasma were absent in the plasmid DNA.

  19. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M. Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  20. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri;

    2009-01-01

    advantages and applicability of this technique. Our present data on assessment of low radiation doses, repair kinetics, spontaneous DNA damage in cancer cells, as well as constitutive and replication stress-induced HR events and their dependence on upstream factors within the DDR machinery document the......Maintenance of genome integrity is essential for homeostasis and survival as impaired DNA damage response (DDR) may predispose to grave pathologies such as neurodegenerative and immunodeficiency syndromes, cancer and premature aging. Therefore, accurate assessment of DNA damage caused by...... environmental or metabolic genotoxic insults is critical for contemporary biomedicine. The available physical, flow cytometry and sophisticated scanning approaches to DNA damage estimation each have some drawbacks such as insufficient sensitivity, limitation to analysis of cells in suspension, or high costs and...

  1. Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas

    Directory of Open Access Journals (Sweden)

    Roth Sanford I

    2007-10-01

    Full Text Available Abstract Background The potential pathogenetic significance of mitochondrial DNA (mtDNA mutations in tumorigenesis is controversial. We hypothesized that benign tumorigenesis of a slowly replicating tissue like the human parathyroid might constitute an especially fertile ground on which a selective advantage conferred by mtDNA mutation could be manifested and might contribute to the oxyphilic phenotype observed in a subset of parathyroid tumors. Methods We sought acquired mitochondrial DNA mutations by sequencing the entire 16.6 kb mitochondrial genome of each of thirty sporadic parathyroid adenomas (18 chief cell and 12 oxyphil cell, eight independent, polyclonal, parathyroid primary chief cell hyperplasias plus corresponding normal control samples, five normal parathyroid glands, and one normal thyroid gland. Results Twenty-seven somatic mutations were identified in 15 of 30 (9 of 12 oxyphil adenomas, 6 of 18 chief cell parathyroid adenomas studied. No somatic mutations were observed in the hyperplastic parathyroid glands. Conclusion Features of the somatic mutations suggest that they may confer a selective advantage and contribute to the molecular pathogenesis of parathyroid adenomas. Importantly, the statistically significant differences in mutation prevalence in oxyphil vs. chief cell adenomas also suggest that mtDNA mutations may contribute to the oxyphil phenotype.

  2. Study of DNA uptake locations in single E. coli cells

    Science.gov (United States)

    Xu, C. Shan; Meadow Anderson, L.; Yang, Haw

    2006-03-01

    Artificial gene transfer of bacteria, such as E. coli, has become the main stream technique in genetic engineering and molecular cell biology studies. In spite of the great improvements in transformation efficiency, some fundamental questions remained to be answered. For instance, what are the DNA uptake channels and how do they form and function under external stimuli? Furthermore, where are these channels located on the cell membrane? Here we report a study aimed at DNA uptake locations in the two widely used gene transformation techniques: electroporation and heat shock. A direct visualization of the settling location of single DNA molecules inside individual E. coli cells was obtained by fluorescence imaging and spectroscopy. Electroporation and heat shock exhibit two distinct characteristics of DNA uptake locations. A preferential distribution toward cell poles during electroporation is consistent with earlier experiments and previously proposed models. However, the result from heat shock is unanticipated in which the majority of DNA enters the cell near the center. Such observation suggests that uptake channels form preferentially where newly-synthesized membrane is located under cation and low temperature treatment

  3. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    OpenAIRE

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J; Baljeet Kaur; Naveed Sarwar; Michael J Seckl; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients wit...

  4. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  5. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  6. Controls to validate plasma samples for cell free DNA quantification.

    Science.gov (United States)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund; Brandslund, Ivan; Jakobsen, Anders

    2015-06-15

    Recent research has focused on the utility of cell free DNA (cfDNA) in serum and plasma for clinical application, especially in oncology. The literature holds promise of cfDNA as a valuable tumour marker to be used for treatment selection, monitoring and follow-up. The results, however, are diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values. In conclusion we suggest a new method to improve the accuracy of cfDNA measurements easily incorporated in the current technology. PMID:25896958

  7. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay - A comparative study

    International Nuclear Information System (INIS)

    For studying proliferation and determination of survival of cancer cells after irradiation, the multiple MTT assay, based on the reduction of a yellow water soluble tetrazolium salt to a purple water insoluble formazan dye by living cells was modified from a single-point towards a proliferation assay. This assay can be performed with a large number of samples in short time using multi-well-plates, assays can be performed semi-automatically with a microplate reader. Survival, the calculated parameter in this assay, is determined mathematically. Exponential growth in both control and irradiated groups was proven as the underlying basis of the applicability of the multiple MTT assay. The equivalence to a clonogenic survival assay with its disadvantages such as time consumption was proven in two setups including plating of cells before and after irradiation. Three cell lines (A 549, LN 229 and F 98) were included in the experiment to study its principal and general applicability

  8. Astrocytes Upregulate Survival Genes in Tumor Cells and Induce Protection from Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sun-Jin Kim

    2011-03-01

    Full Text Available In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.

  9. The control of CD4+CD25+Foxp3+ regulatory T cell survival

    Directory of Open Access Journals (Sweden)

    Lenardo Michael J

    2008-02-01

    Full Text Available Abstract CD4+CD25+Foxp3+ regulatory T (Treg cells are believed to play an important role in suppressing autoimmunity and maintaining peripheral tolerance. How their survival is regulated in the periphery is less clear. Here we show that Treg cells express receptors for gamma chain cytokines and are dependent on an exogenous supply of these cytokines to overcome cytokine withdrawal apoptosis in vitro. This result was validated in vivo by the accumulation of Treg cells in Bim-/- and Bcl-2 tg mice which have arrested cytokine deprivation apoptosis. We also found that CD25 and Foxp3 expression were down-regulated in the absence of these cytokines. CD25+ cells from Scurfy mice do not depend on cytokines for survival demonstrating that Foxp3 increases their dependence on cytokines by suppressing cytokine production in Treg cells. Our study reveals that the survival of Treg cells is strictly dependent on cytokines and cytokine producing cells because they do not produce cytokines. Our study thus, demonstrates that different gamma chain cytokines regulate Treg homeostasis in the periphery by differentially regulating survival and proliferation. These findings may shed light on ways to manipulate Treg cells that could be utilized for their therapeutic applications. Reviewers This article was reviewed by: Avinash Bhandoola, Fred Ramsdell (nominated by Juan Carlos Zuniga-Pflucker and Anne Cooke.

  10. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  11. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival

    OpenAIRE

    Mathiesen, Randi R.; Borgen, Elin; Renolen, Anne; Løkkevik, Erik; Nesland, Jahn M; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Kvalheim, Gunnar; Lønning, Per E.; Naume, Bjørn

    2012-01-01

    Introduction Presence of disseminated tumor cells (DTCs) in bone marrow (BM) and circulating tumor cells (CTC) in peripheral blood (PB) predicts reduced survival in early breast cancer. The aim of this study was to determine the presence of and alterations in DTC- and CTC-status in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NACT) and to evaluate their prognostic impact. Methods ...

  12. N-acetylcysteine and captopril protect DNA and cells against radiolysis by fast neutrons

    International Nuclear Information System (INIS)

    N-Acetylcysteine and captopril, respectively mucolytic and antihypertensive drugs, contain free sulfhydryl groups. Since in general thiols have well-established radioprotective abilities, we sought putative radioprotective effects of these drugs against therapeutic fast neutrons. We show that pBR322 plasmid DNA is indeed protected against radiolytic strand breakage by both drugs. The oxygen independent protection is consistent with a hydroxyl radical scavenging mechanism. A clonogenicity assay reveals an increase of the survival of SCL-1 cultured keratinocytes irradiated in the presence of the drugs compared with cells irradiated without drugs. Our results suggest possible interferences between treatment with drugs bearing-SH groups and radiotherapy. (orig.)

  13. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts

    DEFF Research Database (Denmark)

    Foote, Andrew D; Kaschner, Kristin; Schultze, Sebastian E;

    2013-01-01

    true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene-Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased...... rapidly, concurrent with a threefold increase in core suitable habitat. This study highlights that responses to climate change are likely to be species specific and difficult to predict. We estimate that the core suitable habitat of bowhead whales will be almost halved by the end of this century...

  14. Circulating HER2 DNA after trastuzumab treatment predicts survival and response in breast cancer

    DEFF Research Database (Denmark)

    Sorensen, Boe S; Mortensen, Lise S; Andersen, Jørn;

    2010-01-01

    BACKGROUND: Only a subset of breast cancer patients responds to the HER2 inhibitor trastuzumab, and methods to identify responders are needed. PATIENTS AND METHODS: We studied 28 patients with metastatic breast cancer that had amplified human epidermal growth factor receptor 2 (HER2) genes in their...... response (p=0.02), and overall survival (p=0.05). HER2 ECD kinetics did not correlate to clinical data. CONCLUSION: We suggest that a decrease in HER2 gene amplification in the plasma predicts a more favourable response to trastuzumab....

  15. Foreign DNA introduced by calcium phosphate is integrated into repetitive DNA elements of the mouse L cell genome.

    OpenAIRE

    S. Kato; Anderson, R. A; Camerini-Otero, R. D.

    1986-01-01

    We investigated the sites of integration of exogenous DNA fragments introduced by DNA-mediated gene transfer. Mouse Ltk- cells were transformed with the herpes simplex virus thymidine kinase gene and pBR322 DNA by the calcium phosphate precipitation method. Some of the integrated exogenous DNA sequences were recovered from the stable tk+ transformants in the form of plasmids that were capable of propagation in bacteria. Four plasmids derived from two cloned cell lines were analyzed in detail ...

  16. Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

    OpenAIRE

    Zhou, Zhiheng; Wang, Caixia; Liu, Haibai; Huang, Qinhai; Wang, Min; Lei, Yixiong

    2013-01-01

    Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells...

  17. Ubiquitin at the crossroad of cell death and survival

    Institute of Scientific and Technical Information of China (English)

    Yu-Shan Chen; Xiao-Bo Qiu

    2013-01-01

    Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. Although both are categorized as types of celldeath, autophagy is general y considered to have protective functions, including protecting cells from apoptosis under certain cellular stress conditions. This review highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination.

  18. Cancer stem cells and chemoresistance: The smartest survives the raid.

    Science.gov (United States)

    Zhao, Jihe

    2016-04-01

    Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients. PMID:26899500

  19. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  20. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  1. Single Cell Gel Electrophoresis in DNA Damage Detection (Comet Assay)

    OpenAIRE

    Aysen Durmaz; Nurten Dikmen; Cumhur Gunduz

    2010-01-01

    “Single cell gel electrophoresis (SCGE)”, also called “Comet Assay”, is a sensitive, reliable and rapid technique for quantifying and analyzing DNA damage in individual cells. The comet assay is widely used in living cells, researches and the applications on comet assay is becoming broader day by day. To date, the comet assay has been used for a variety of applications, including genotoxic and cytotoxic agent analyses, environmental toxicology, cancer research, and radiati...

  2. Multiple Defects of Cell Cycle Checkpoints in U937-ASPI3K, an U937 Cell Mutant Stably Expressing Anti-Sense ATM Gene cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    (Ataxia-telangiectasia mutated gene (ATM) functions in control of cell cycle checkpoints in responding to DNA damage and protects cells from undergoing apoptosis. Knock-out within tumor cells of endogenous ATM will achieve therapeutic benefits and nable a better understanding of the decisive mechanisms of cell death or survival in response to DNA damaging agents. ) In present paper, we sought to characterize the cell cycle checkpoint profiles in U937-ASPI3K, a U937 cell mutant that was previously established with endogenous ATM knock-out phenotype. Synchronized U937-ASPI3K was exposed to 137Cs irradiation, G1, S, G2/M cell cycle checkpoint profiles were evaluated by determining cell cycle kinetics, p53/p21 protein, cyclin dependent kinase 2 (CDK2) and p34CDC2 kinase activity in response to irradiation. U937-ASPI3K exhibited multiple defects in cell cycle checkpoints as defined by failing to arrest cells upon irradiation. The accumulation of cellular p53/p21 protein and inhibition of CDK kinase was also abolished in U937-ASPI3K. It was concluded that the stable expression of anti-sense PI3K cDNA fragment completely abolished multiple cell cycle checkpoints in U937-ASPI3K, and hence U937-ASPI3K with an AT-like phenotype could serves as a valuable model system for investigating the signal transduction pathway in responding to DNA damaging-based cancer therapy.

  3. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Three-year report, February 1, 1981-September 30, 1983

    International Nuclear Information System (INIS)

    Mutant strains were selected which are deficient in various DNA repair pathways and these were studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. Lightly mutagenized wild-type cells were infected with irradiated herpes simplex virus (HSV). Cells which repair HSV are lysed so the surviving population is enriched in repair-deficient cells. Six strains which survived two rounds of infection were characterized with respect to their radiosensitivity

  4. siRNA in silencing the expression of DNA-dependent protein kinase and its effect on radiosensitivity of lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Objective: To discuss the role of DNA-dependent protein kinase catalytic subunit (DNA-DPKCS) in human lung adenocarcinoma cell line (A549) by using small interfering RNA (siRNA) to specifically knockdown DNA-DPKCS expression and its effects on cell proliferation, cell cycle and radio-sensitivity. Methods: The DNA-DPKCS-siRNA expression vector was constructed and transfected into A549 cell line. The transformed clones were randomly selected and isolated. The cell cycle distribution and apoptosis were analyzed by flow cytometry analysis. Cell survival was detected by using clonogenic formation as-say. Results: With specific inhibition of DNA-DPKCS expression, stable transfected cell line 549pRNA-DNA-DPKCS was constructed by RNA interference technique. The 549pRNA-C and 549pSUPER cell lines were the control cell lines transfected with control and blank plasmids, respectively. Compared with A549 cells, the expression levels of DNA-DPKCS mRNA (0.110: 1. 000), protein (0. 870: 2.967) and activity of DNA-DPKCS (0.004: 0.266) in 549pRNA-DNA-DPKCS cells were significantly lower (F = 80.55 ,P 2(0.25:0.76), D0 (1.42:1.62) and Dq (0.06: 1. 00) showed significant difference between 549pRNA-DNA-DPKCS and A549 cells (F = 996.86, P 2 (10.7%: 11.0%) phases was significantly decreased (F = 4.83, P<0.05 and F=32.04, P <0.01, respectively). Conclusions: In A549 cells, inhibit of DNA-DPKCS gene expression can enhance the radiosensitivity and affect cell cycle distribution. (authors)

  5. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    OpenAIRE

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; DE GIORGI, VINCENZO; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the pres...

  6. Effect of Tc99m Labeling on The Survival Rate of Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Jabari F

    2014-02-01

    Full Text Available Background and Aim: Human dental pulp stem cells have substantial proliferative and differentiation potential. The isolated stem cells or progenitor cells of the pulp can differentiate into odontoblasts or /and osteoblast-like cells and aid in repair as well as reconstruction of tooth structure. Several ways have been introduced for isolation and tracing of these cells. The aim of this study was to isolate mesenchymal stem cells from deciduous dental pulps as well as labeling them with Technetium (Tc99m to investigate the effect of Tc labeling on the survival rate of stem cells. Materials and Methods: In this experimental study, exfoliated deciduous teeth of 6-11 year old children without any history of systemic disease were collected. Enzymatic and non-enzymatic methods were used to expedite cell isolation and isolated cells (10000 from dental pulp were mixed with 25 millicurie of Tc for tracing purposes. Individual cell activity as well as culture medium activation was evaluated separately afterwards. Data was analyzed using ANOVA statistical test. Results: Isolated dental pulp cells formed single cell derived colonies which showed fibroblast-like growth with solo cloning morphology. Specific staining of the cells indicated them to be stem cells and confirmed their differentiation into bone and fat. Moreover, Technetium significantly decreased the activity of cells. The survival rates of the cells in the period of 1,3,6,24,48 hours were reported to be 95.5%, 85.5%, 77.4%, 68.4%, and 57.3% respectively. Conclusion: The dental pulp stem cells have a significant capacity to differentiate into bone and fat. Tracing the cells with Tc M99 will reduce their survival rate over time.

  7. Ataxia-telangiectasia cell extracts confer radioresistant DNA synthesis on control cells

    International Nuclear Information System (INIS)

    We have investigated in greater detail the radioresistant DNA synthesis universally observed in cells from patients with ataxia-telangiectasia (A-T). The approach employed in this study was to permeabilize cells with lysolecithin after gamma-irradiation and thus facilitate the introduction of cell extract into these cells. This permeabilization can be reversed by diluting the cells in growth medium. Cells treated in this way show the characteristic inhibition (control cells) or lack of it (A-T cells) after exposure to ionizing radiation. Introduction of A-T cells extracts into control cells prevented the radiation-induced inhibition of DNA synthesis normally observed in these cells. A-T cell extracts did not change the level of radioresistant DNA synthesis in A-T cells. Control cell extracts on the other hand did not influence the pattern of inhibition of DNA synthesis in either cell type. It seems likely that the agent involved is a protein because of its heat lability and sensitivity to trypsin digestion. It has a molecular weight (MW) in the range 20-30 000 D. The development of this assay system for a factor conferring radioresistant DNA synthesis on control cells provides a means of purifying this factor, and ultimately an approach to identifying the gene responsible

  8. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    Directory of Open Access Journals (Sweden)

    Gao J

    2013-07-01

    Full Text Available Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The current study aims to determine whether needle insertion into intact rat spinal cords creates a hypoxic environment that is prone to lipid peroxidation damage upon reperfusion, and whether an antioxidant protects human neural stem cells (hNSCs both in vitro and post-transplantation into rat spinal cords. We show here that a single needle injection creates a hypoxic environment within the rat spinal cord that peaks at approximately 12 hours before reperfusion occurs. Lipid peroxidation damage at the transplantation site is evident by 48 hours post-needle insertion. In an in vitro model, hypoxia-reperfusion results in apoptotic death of hNSCs. Pretreatment with the antioxidant, α-lipoic acid, protects hNSCs against hypoxia-reperfusion injury and oxidative stress–mediated cell death. Increasing glutathione, but not Akt signaling, contributes to the protective effect of lipoic acid. Pretreating hNSCs with lipoic acid also increases the cell survival rate 1 month post-transplantation. Further investigation is warranted to develop improved techniques to maximize the survival of transplanted stem cells. Keywords: neural stem cell, transplantation, hypoxia-reperfusion, antioxidant, cell survival, lipoic acid

  9. DNA precursor compartmentation in mammalian cells: metabolic and antimetabolic studies of nuclear and mitochondrial DNA synthesis

    International Nuclear Information System (INIS)

    HeLa cells were used for the quantitation of cellular and mitochondrial deoxyribonucleoside triphosphate (dNTP) and ribonucleoside triphosphate (rNTP) pools and of changes in pools in response to treatment with the antimetabolites methotrexate (mtx) and 5-fluorodeoxyuridine (FUdR). Use of an enzymatic assay of dNTPs and of improved nucleotide extraction methods allowed quantitation of mitochondrial dNTP pools. All four mitochondrial dNTP pools expand following treatment with mtx or FUdR whereas cellular dTTP and dGTP pools are depleted. Mitochrondrial rNTP pools were also found to expand in response to these antimetabolites. Mouse L-cells were used to determine the relative contributions of an exogenously supplied precursor to nuclear and mitochrondrial DNA replication. Cells were labeled to near steady state specific activities with 32P-orthophosphate and subsequently labeled with [3H]uridine, a general pyrimidine precursor, in the continuing presence of 32P. Deoxyribonucleoside monophosphates derived from these DNAs were separated by HPLC and the 3H/32P ratio in each pyrimidine determined. The dCMP residues in mitochondrial DNA (mtDNA) were found to be derived exclusively from the exogenous supplied uridine. The dTMP residues from nuclear and mtDNA and the dCMP residues from nuclear DNA were seen to be synthesized partly from exogenous sources and partly from other sources, presumably de novo pyrimidine synthesis

  10. The DNA methylation profile of activated human natural killer cells.

    Science.gov (United States)

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  11. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1

    International Nuclear Information System (INIS)

    Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving γ-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation

  12. DNA mismatch repair efficiency and fidelity are elevated during DNA synthesis in human cells

    International Nuclear Information System (INIS)

    DNA mismatch repair (MMR) within human cells is hypothesized to occur primarily at the replication fork. However, experimental models measuring MMR activity at specific phases of the cell cycle and during genomic DNA synthesis are lacking. We have investigated MMR activity within the nuclear environment of HeLa cells after enriching for G1, S and G2/M phase of the cell cycle by centrifugal elutriation. This approach preserves physiologically normal MMR activity in cell populations subdivided into different phases of the cell cycle. Here we have shown that nuclear protein concentration of hMutSα and hMutLα increases as cells progress into S phase during routine cell culture. MMR activity, as measured by both in vitro and in vivo approaches, increases during S phase to the highest extent within normally growing cells. Both fidelity and activity of MMR are highest on actively replicating templates within intact cells during S phase. The MMR pathway however, is also active at lower levels at other phases of the cell cycle, and on nonreplicating templates

  13. Cellular aging of mitochondrial DNA-depleted cells

    International Nuclear Information System (INIS)

    We have reported that mitochondrial DNA-depleted ρ0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ0 cells. These results support the mitochondrial theory of aging, and suggest that ρ0 cells could serve as an in vitro model for aged cells

  14. SALL4 is a key regulator of survival and apoptosis in human leukemic cells

    OpenAIRE

    Yang, Jianchang; Chai, Li; Gao, Chong; Fowles, Taylor C.; Alipio, Zaida; Dang, Hien; Xu, Dan; Fink, Louis M.; Ward, David C.; Ma, Yupo

    2008-01-01

    Increasing studies suggest that SALL4 may play vital roles in leukemogenesis and stem cell phenotypes. We have mapped the global gene targets of SALL4 using chromatin immunoprecipitation followed by microarray hybridization and identified more than 2000 high-confidence, SALL4-binding genes in the human acute promyelocytic leukemic cell line, NB4. Analysis of SALL4-binding sites reveals that genes involved in cell death, cancer, DNA replication/repair, and cell cycle were highly enriched (P < ...

  15. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    2015-08-01

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.

  16. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    International Nuclear Information System (INIS)

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm

  17. Piezoelectric Drop-on-Demand Inkjet Printing of Rat Fibroblast Cells: Survivability Study and Pattern Printing

    CERN Document Server

    Li, Er Qiang; Thoroddsen, Sigurdur Tryggvi

    2013-01-01

    A novel piezoelectric, drop-on-demand (DOD) inkjet system has been developed and used to print L929 rat fibroblast cells. We investigate the survivability of the cells subjected to the large stresses during the printing process. These stresses are varied by changing the diameter of the orifice (36 to 119 microns) through which the cells are dispensed, as well as changing the electrical pulse used to drive the piezoelectric element. It is shown that for the smallest 36 microns diameter orifice, cell survival rates fall from 95% to approximately 76% when the ejection velocity is increased from 2 to 16 m/s. This decrease in survival rates is less significant when the larger orifice diameters of 81 microns and 119 microns are used. Analysis shows that there is a clear inverse relationship between cell survival rates and the mean shear rates during drop formation. By using the same printing set-up, fibroblast cells are printed onto alginate and collagen into patterns. Printed cells are cultured over a period of da...

  18. Identification of hypoxia-responsive genes in a dopaminergic cell line by subtractive cDNA libraries and microarray analysis.

    Science.gov (United States)

    Beitner-Johnson, D; Seta, K; Yuan, Y; Kim, H -W.; Rust, R T.; Conrad, P W.; Kobayashi, S; Millhorn, D E.

    2001-07-01

    Transplantation of dopamine-secreting cells harvested from fetal mesencephalon directly into the striatum has had limited success as a therapy for Parkinson's disease. A major problem is that the majority of the cells die during the first 3 weeks following transplantation. Hypoxia in the tissue surrounding the graft is a potential cause of the cell death. We have used subtractive cDNA libraries and microarray analysis to identify the gene expression profile that regulates tolerance to hypoxia. An improved understanding of the molecular basis of hypoxia-tolerance may allow investigators to engineer cells that can survive in the hypoxic environment of the brain parenchyma following transplantation. PMID:11331199

  19. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells

    Science.gov (United States)

    Zhou, Yang; Hu, Zhengqing

    2016-01-01

    The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination. PMID:27536218

  20. The use of recombinant DNA plasmids for the determination of DNA-repair and recombination in cultured mammalian cells.

    OpenAIRE

    Cox, R.; Masson, W. K.; Debenham, P G; Webb, M. B.

    1984-01-01

    Using the recombinant plasmid pSV2gpt and DNA transfer techniques, cell mediated DNA ligation and recombination of plasmid DNA have been demonstrated in four human cell lines. Data suggesting the involvement of a possible defect in the cellular equilibrium between ligation and exonuclease digestion of double strand DNA scissions in an ataxia-telangiectasia (A-T) cell line is discussed. The same A-T line was grossly proficient in DNA recombination but it will be necessary to distinguish betwee...

  1. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery.

    Science.gov (United States)

    Chang, Jui-Chih; Liu, Ko-Hung; Li, Yu-Chi; Kou, Shou-Jen; Wei, Yau-Huei; Chuang, Chieh-Sen; Hsieh, Mingli; Liu, Chin-San

    2013-01-01

    We explored the feasibility of mitochondrial therapy using the cell-penetrating peptide Pep-1 to transfer mitochondrial DNA (mtDNA) between cells and rescue a cybrid cell model of the mitochondrial disease myoclonic epilepsy with ragged-red fibres (MERRF) syndrome. Pep-1-conjugated wild-type mitochondria isolated from parent cybrid cells incorporating a mitochondria-specific tag were used as donors for mitochondrial delivery into MERRF cybrid cells (MitoB2) and mtDNA-depleted Rho-zero cells (Mitoρ°). Forty-eight hours later, translocation of Pep-1-labelled mitochondria into the mitochondrial regions of MitoB2 and Mitoρ° host cells was observed (delivery efficiencies of 77.48 and 82.96%, respectively). These internalized mitochondria were maintained for at least 15 days in both cell types and were accompanied by mitochondrial function recovery and cell survival by preventing mitochondria-dependent cell death. Mitochondrial homeostasis analyses showed that peptide-mediated mitochondrial delivery (PMD) also increased mitochondrial biogenesis in both cell types, but through distinct regulatory pathways involving mitochondrial dynamics. Dramatic decreases in mitofusin-2 (MFN2) and dynamin-related protein 1/fission 1 were observed in MitoB2 cells, while Mitoρ° cells showed a significant increase in optic atrophy 1 and MFN2. These findings suggest that PMD can be used as a potential therapeutic intervention for mitochondrial disorders. PMID:23006856

  2. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  3. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Directory of Open Access Journals (Sweden)

    Tormi Reinson

    Full Text Available Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  4. HOXC10 Expression Supports the Development of Chemotherapy Resistance by Fine Tuning DNA Repair in Breast Cancer Cells.

    Science.gov (United States)

    Sadik, Helen; Korangath, Preethi; Nguyen, Nguyen K; Gyorffy, Balazs; Kumar, Rakesh; Hedayati, Mohammad; Teo, Wei Wen; Park, Sunju; Panday, Hardik; Munoz, Teresa Gonzalez; Menyhart, Otilia; Shah, Nilay; Pandita, Raj K; Chang, Jenny C; DeWeese, Theodore; Chang, Howard Y; Pandita, Tej K; Sukumar, Saraswati

    2016-08-01

    Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR. PMID:27302171

  5. Evaluation of recommended methods for radioisotope red cell survival studies

    International Nuclear Information System (INIS)

    Mean red cell life-span in normal subjects and in patients with various hematological disorders was examined with 51Cr and diisopropylfluorophosphate (DF)32P. The results with 51Cr were corrected for 51Cr elution using correction factors. The results by the two methods agreed fairly well with each other. Elution rate in various hematological disorders was 2.3% per day or less except for the patients with extracorpuscular hemolytic agents such as autoimmune hemolytic anemia or congestive splenomegaly. It is concluded that estimates of mean red cell life-span by corrected 51Cr method are more useful and sufficient than uncorrected 51Cr or DF32P method in general hematological disorders. (auth.)

  6. Possible role of pineal allopregnanolone in Purkinje cell survival

    OpenAIRE

    Haraguchi, Shogo; Hara, Sakurako; Ubuka, Takayoshi; Mita, Masatoshi; Tsutsui, Kazuyoshi

    2012-01-01

    It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has fu...

  7. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects. PMID:26703663

  8. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  9. Does 'Immortal DNA strand' exist in 'immortal' stem cells?

    Institute of Scientific and Technical Information of China (English)

    Linheng Li

    2007-01-01

    @@ Stem cells function to generate differentiated cells,and,at the same time,are maintained as‘immortal'c