WorldWideScience

Sample records for cell surface proteome

  1. The cell surface proteome of Entamoeba histolytica.

    Science.gov (United States)

    Biller, Laura; Matthiesen, Jenny; Kühne, Vera; Lotter, Hannelore; Handal, Ghassan; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Schümann, Michael; Roeder, Thomas; Tannich, Egbert; Krause, Eberhard; Bruchhaus, Iris

    2014-01-01

    Surface molecules are of major importance for host-parasite interactions. During Entamoeba histolytica infections, these interactions are predicted to be of prime importance for tissue invasion, induction of colitis and liver abscess formation. To date, however, little is known about the molecules involved in these processes, with only about 20 proteins or protein families found exposed on the E. histolytica surface. We have therefore analyzed the complete surface proteome of E. histolytica. Using cell surface biotinylation and mass spectrometry, 693 putative surface-associated proteins were identified. In silico analysis predicted that ∼26% of these proteins are membrane-associated, as they contain transmembrane domains and/or signal sequences, as well as sites of palmitoylation, myristoylation, or prenylation. An additional 25% of the identified proteins likely represent nonclassical secreted proteins. Surprisingly, no membrane-association sites could be predicted for the remaining 49% of the identified proteins. To verify surface localization, 23 proteins were randomly selected and analyzed by immunofluorescence microscopy. Of these 23 proteins, 20 (87%) showed definite surface localization. These findings indicate that a far greater number of E. histolytica proteins than previously supposed are surface-associated, a phenomenon that may be based on the high membrane turnover of E. histolytica.

  2. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  3. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  4. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface.

    NARCIS (Netherlands)

    Tjalsma, H.; Pluk, W.J.G.; Heuvel, L.P.W.J. van den; Peters, W.H.M.; Roelofs, R.H.W.M.; Swinkels, D.W.

    2006-01-01

    Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets

  5. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface.

    NARCIS (Netherlands)

    Tjalsma, H.; Pluk, W.J.G.; Heuvel, L.P.W.J. van den; Peters, W.H.M.; Roelofs, R.H.W.M.; Swinkels, D.W.

    2006-01-01

    Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets

  6. Isolation of cell surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Elschenbroich, Sarah; Kim, Yunee; Medin, Jeffrey A; Kislinger, Thomas

    2010-02-01

    Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.

  7. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Jimin Xiong

    2016-01-01

    Full Text Available The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  8. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium

    NARCIS (Netherlands)

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-01-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood

  9. Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Madsen, Søren M; Glenting, Jacob

    2009-01-01

    In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel...... of probiotics in the gastrointestinal tract. The results provide the basis for future studies on the molecular mechanisms of probiotics....

  10. Surface proteome analysis and characterization of surface cell antigen (Sca or autotransporter family of Rickettsia typhi.

    Directory of Open Access Journals (Sweden)

    Khandra T Sears

    Full Text Available Surface proteins of the obligate intracellular bacterium Rickettsia typhi, the agent of murine or endemic typhus fever, comprise an important interface for host-pathogen interactions including adherence, invasion and survival in the host cytoplasm. In this report, we present analyses of the surface exposed proteins of R. typhi based on a suite of predictive algorithms complemented by experimental surface-labeling with thiol-cleavable sulfo-NHS-SS-biotin and identification of labeled peptides by LC MS/MS. Further, we focus on proteins belonging to the surface cell antigen (Sca autotransporter (AT family which are known to be involved in rickettsial infection of mammalian cells. Each species of Rickettsia has a different complement of sca genes in various states; R. typhi, has genes sca1 thru sca5. In silico analyses indicate divergence of the Sca paralogs across the four Rickettsia groups and concur with previous evidence of positive selection. Transcripts for each sca were detected during infection of L929 cells and four of the five Sca proteins were detected in the surface proteome analysis. We observed that each R. typhi Sca protein is expressed during in vitro infections and selected Sca proteins were expressed during in vivo infections. Using biotin-affinity pull down assays, negative staining electron microscopy, and flow cytometry, we demonstrate that the Sca proteins in R. typhi are localized to the surface of the bacteria. All Scas were detected during infection of L929 cells by immunogold electron microscopy. Immunofluorescence assays demonstrate that Scas 1-3 and 5 are expressed in the spleens of infected Sprague-Dawley rats and Scas 3, 4 and 5 are expressed in cat fleas (Ctenocephalides felis. Sca proteins may be crucial in the recognition and invasion of different host cell types. In short, continuous expression of all Scas may ensure that rickettsiae are primed i to infect mammalian cells should the flea bite a host, ii to remain

  11. Scanning the cell surface proteome of cancer cells and identification of metastasis-associated proteins using a subtractive immunization strategy

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik J

    2009-01-01

    capabilities. Our results yielded a large panel of monoclonal antibodies (mAbs) that recognized cell surface markers preferentially or exclusively expressed on metastatic vs nonmetastatic cancer cells. Four mAbs and their corresponding antigens were further characterized. Importantly, analysis on an extended......Identification of the cell surface proteome and comparison of their expression between cells with different phenotypic characteristics is crucial to the discovery of novel cancer drug targets as well as elucidating the basic biologic processes of cancer. However, cell surface proteomics are complex...... characterization of the identified proteins. The strategy is based on subtractive immunization of mice, and we used the two isogenic cell lines, NM-2C5 and M-4A4, derived from the MDA-MB-435 cancer cell line, as a model system. Although the two cell lines are equally tumorigenic, only M-4A4 has metastatic...

  12. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  13. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    Directory of Open Access Journals (Sweden)

    Marius Ueffing

    2012-10-01

    Full Text Available The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS, and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP and retinal pigment epithelium-specific protein 65kDa (RPE65. Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  14. Bovine neonatal pancytopenia - Comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK

    Directory of Open Access Journals (Sweden)

    Euler Kerstin N

    2013-01-01

    Full Text Available Abstract Background Bovine neonatal pancytopenia (BNP is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney cells, the cell line used for production of the associated vaccine. Results By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. Conclusions The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.

  15. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium.

    Science.gov (United States)

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-11-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497).

  16. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  17. Cell Wall Proteome

    OpenAIRE

    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F

    2007-01-01

    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  18. Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation.

    Science.gov (United States)

    Crouzet, Marc; Claverol, Stéphane; Lomenech, Anne-Marie; Le Sénéchal, Caroline; Costaglioli, Patricia; Barthe, Christophe; Garbay, Bertrand; Bonneu, Marc; Vilain, Sébastien

    2017-01-01

    Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of

  19. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...

  20. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel

    2006-01-01

    Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that...

  1. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel;

    2006-01-01

    Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that...

  2. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control

    DEFF Research Database (Denmark)

    Solis, Nestor; Larsen, Martin Røssel; Cordwell, Stuart J

    2010-01-01

    Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface-exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins...... that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital-acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface "shaving" technique...... lysis and were removed from the trypsin-shaved data set. We identified 42 predicted S. aureus COL surface proteins from 260 surface-exposed peptides. Trypsin and proteinase-K digests were highly complementary with ten proteins identified by both, 16 specific to proteinase-K treatment, 13 specific...

  3. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N;

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...

  4. Use of colloidal silica-beads for the isolation of cell-surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Kim, Yunee; Elschenbroich, Sarah; Sharma, Parveen; Sepiashvili, Lusia; Gramolini, Anthony O; Kislinger, Thomas

    2011-01-01

    Chaney and Jacobson first introduced the colloidal silica-bead protocol for the coating of cellular plasma membranes in the early 1980s. Since then, this method has been successfully incorporated into a wide range of in vitro and in vivo applications for the isolation of cell-surface proteins. The principle is simple - cationic colloidal silica microbeads are introduced to a suspension or monolayer of cells in culture. Electrostatic interactions between the beads and the negatively charged plasma membrane, followed by cross-linking to the membrane with an anionic polymer, ensure attachment and maintain the native protein conformation. Cells are subsequently ruptured, and segregation of the resulting plasma membrane sheets from the remaining- cell constituents is achieved by ultracentrifugation through density gradients. The resulting membrane-bead pellet is treated with various detergents or chaotropic agents (i.e., urea) to elute bound proteins. If proteomic profiling by mass spectrometry is desired, proteins are denatured, carbamidomethylated, and digested into peptides prior to chromatography.

  5. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  6. Proteomic Analysis of Chinese Hamster Ovary Cells

    DEFF Research Database (Denmark)

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama;

    2012-01-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimens......To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis...

  7. Cell wall proteins: a new insight through proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  8. Proteomics Study of Cotton Fiber Cells

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-yuan

    2008-01-01

    @@ A comparative proteomic analysis was applied to explore the mechanism of fiber cell development in cotton.Initially,an efficient protein preparation method was established for proteomic analysis of developing cotton fibers by two-dimensional gel electrophoresis,and a microwave enhanced ink staining technique also was created for fast and sensitive protein quantification in proteomic studies.

  9. Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface.

    Science.gov (United States)

    Ye, Xiaoying; Chan, King C; Waters, Andrew M; Bess, Matthew; Harned, Adam; Wei, Bih-Rong; Loncarek, Jadranka; Luke, Brian T; Orsburn, Benjamin C; Hollinger, Bradley D; Stephens, Robert M; Bagni, Rachel; Martinko, Alex; Wells, James A; Nissley, Dwight V; McCormick, Frank; Whiteley, Gordon; Blonder, Josip

    2016-12-27

    Oncogenic Ras mutants play a major role in the etiology of most aggressive and deadly carcinomas in humans. In spite of continuous efforts, effective pharmacological treatments targeting oncogenic Ras isoforms have not been developed. Cell-surface proteins represent top therapeutic targets primarily due to their accessibility and susceptibility to different modes of cancer therapy. To expand the treatment options of cancers driven by oncogenic Ras, new targets need to be identified and characterized at the surface of cancer cells expressing oncogenic Ras mutants. Here, we describe a mass spectrometry-based method for molecular profiling of the cell surface using KRasG12V transfected MCF10A (MCF10A-KRasG12V) as a model cell line of constitutively activated KRas and native MCF10A cells transduced with an empty vector (EV) as control. An extensive molecular map of the KRas surface was achieved by applying, in parallel, targeted hydrazide-based cell-surface capturing technology and global shotgun membrane proteomics to identify the proteins on the KRasG12V surface. This method allowed for integrated proteomic analysis that identified more than 500 cell-surface proteins found unique or upregulated on the surface of MCF10A-KRasG12V cells. Multistep bioinformatic processing was employed to elucidate and prioritize targets for cross-validation. Scanning electron microscopy and phenotypic cancer cell assays revealed changes at the cell surface consistent with malignant epithelial-to-mesenchymal transformation secondary to KRasG12V activation. Taken together, this dataset significantly expands the map of the KRasG12V surface and uncovers potential targets involved primarily in cell motility, cellular protrusion formation, and metastasis.

  10. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-04-22

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  11. Proteomic Analysis of Chinese Hamster Ovary Cells

    Science.gov (United States)

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E.; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard O.; Zhang, Hui; Betenbaugh, Michael

    2013-01-01

    In order to complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multi-dimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most a 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using CHO genome exclusively which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. 504 of the detected proteins included N-acetylation modifications and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  12. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    Science.gov (United States)

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  13. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    Full Text Available The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19 proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  14. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Science.gov (United States)

    Li, Hsing-Hui; Huang, Zi-Yu; Ye, Shih-Png; Lu, Chi-Yu; Cheng, Pai-Chiao; Chen, Shu-Hwa; Chen, Chii-Shiarng

    2014-01-01

    The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs) may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19) proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  15. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jesús Mateos

    2014-02-01

    Full Text Available Mesenchymal stem cells (MSCs are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.

  16. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Mateos, Jesús; Fernández Pernas, Pablo; Fafián Labora, Juan; Blanco, Francisco; Arufe, María del Carmen

    2014-01-01

    Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.

  17. Recent advances in plant cell wall proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  18. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses

    Directory of Open Access Journals (Sweden)

    Pan CH

    2014-08-01

    Full Text Available Chih-Hong Pan,1,2,* Wen-Te Liu,3,4,* Mauo-Ying Bien,4,5 I-Chan Lin,6 Ta-Chih Hsiao,7 Chih-Ming Ma,8 Ching-Huang Lai,2 Mei-Chieh Chen,9 Kai-Jen Chuang,10,11 Hsiao-Chi Chuang3,4 On behalf of the Taiwan CardioPulmonary Research (T-CPR Group 1Institute of Labor, Occupational Safety and Health, Ministry of Labor, 2School of Public Health, National Defense Medical Center, 3Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, 4School of Respiratory Therapy, College of Medicine, 5Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, 6Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taipei, 7Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 8Department of Cosmetic Application and Management, St Mary’s Junior College of Medicine, Nursing and Management, Sanxing, 9Department of Microbiology and Immunology, College of Medicine, 10Department of Public Health, School of Medicine, College of Medicine, 11School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Although the health effects of zinc oxide nanoparticles (ZnONPs on the ­respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to Zn

  19. Proteomics

    DEFF Research Database (Denmark)

    Tølbøll, Trine Højgaard; Danscher, Anne Mette; Andersen, Pia Haubro;

    2012-01-01

    different proteins were identified, with 146 proteins available for identification in C, 279 proteins in D and 269 proteins in L. A functional annotation of the identified proteins was obtained using the on-line Blast2GO tool. Three hundred and sixteen of the identified proteins could be subsequently...... grouped manually to one or more of five major functional groups related to metabolism, cell structure, immunity, apoptosis and angiogenesis. These were chosen to represent basic cell functions and biological processes potentially involved in the pathogenesis of CHD. The LC–MS/MS-based proteomic analysis...

  20. Cell Shaving and False-Positive Control Strategies Coupled to Novel Statistical Tools to Profile Gram-Positive Bacterial Surface Proteomes.

    Science.gov (United States)

    Solis, Nestor; Cordwell, Stuart J

    2016-01-01

    A powerful start to the discovery and design of novel vaccines, and for better understanding of host-pathogen interactions, is to profile bacterial surfaces using the proteolytic digestion of surface-exposed proteins under mild conditions. This "cell shaving" approach has the benefit of both identifying surface proteins and their surface-exposed epitopes, which are those most likely to interact with host cells and/or the immune system, providing a comprehensive overview of bacterial cell topography. An essential requirement for successful cell shaving is to account for (or minimize) cellular lysis that can occur during the shaving procedure and thus generate data that is biased towards non-surface (e.g., cytoplasmic) proteins. This is further complicated by the presence of "moonlighting" proteins, which are proteins predicted to be intracellular but with validated surface or extracellular functions. Here, we describe an optimized cell shaving protocol for Gram-positive bacteria that uses proteolytic digestion and a "false-positive" control to reduce the number of intracellular contaminants in these datasets. Released surface-exposed peptides are analyzed by liquid chromatography (LC) coupled to high-resolution tandem mass spectrometry (MS/MS). Additionally, the probabilities of proteins being surface exposed can be further calculated by applying novel statistical tools.

  1. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  2. Metastasis-associated cell surface oncoproteomics

    Directory of Open Access Journals (Sweden)

    Piia-Riitta eKarhemo

    2012-11-01

    Full Text Available Oncoproteomics aims to the discovery of molecular markers, drug targets and pathways by studying cancer specific protein expression, localization, modification and interaction. Cell surface proteins play a central role in several pathological conditions, including cancer and its metastatic spread. However, cell surface proteins are underrepresented in proteomics analyses performed from the whole cell extracts due to their hydrophobicity and low abundance. Different methods have been developed to enrich and isolate the cell surface proteins to reduce sample complexity. Despite the method selected, the primary difficulty encountered is the solubilization of the hydrophobic transmembrane proteins from the lipid bilayer. This review focuses on proteomic analyses of metastasis-associated proteins identified using the cell surface biotinylation method. Interestingly, also certain intracellular proteins were identified from the cell surface samples. The function of these proteins at the cell surface might well differ from their function inside the cell.

  3. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    Science.gov (United States)

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  4. Mitotic spindle proteomics in Chinese hamster ovary cells

    National Research Council Canada - National Science Library

    Bonner, Mary Kate; Poole, Daniel S; Xu, Tao; Sarkeshik, Ali; Yates, 3rd, John R; Skop, Ahna R

    2011-01-01

    .... Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology...

  5. Core proteome of the minimal cell: comparative proteomics of three mollicute species.

    Directory of Open Access Journals (Sweden)

    Gleb Y Fisunov

    Full Text Available Mollicutes (mycoplasmas have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a 'minimal cell': a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions.

  6. Insulin stimulated MCF7 breast cancer cells: Proteome dataset.

    Science.gov (United States)

    Sarvaiya, Hetal A; Lazar, Iulia M

    2016-12-01

    The proteome data provided in this article were acquired from MCF7 breast cancer cells stimulated with insulin, and were generated by using a 2D-SCX (strong cation exchange)/RPLC (reversed phase liquid chromatography) separation protocol followed by tandem mass spectrometry (MS) detection. To facilitate data re-processing by more advanced search engines and the extraction of additional information from already existing files, both raw and processed data are provided. The sample preparation, data acquisition and processing protocols are described in detail. The raw data relate to work published in "Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation" (Sarvaiya et al., 2006) [1] and are made available through the PRIDE (PRoteomics IDEntifications)/ProteomeXchange public repository with identifier PRIDE: PXD004051 ("2016 update of the PRIDE database and tools" (Vizcaino et al., 2016) [2]).

  7. Insulin stimulated MCF7 breast cancer cells: Proteome dataset

    Directory of Open Access Journals (Sweden)

    Hetal A. Sarvaiya

    2016-12-01

    Full Text Available The proteome data provided in this article were acquired from MCF7 breast cancer cells stimulated with insulin, and were generated by using a 2D-SCX (strong cation exchange/RPLC (reversed phase liquid chromatography separation protocol followed by tandem mass spectrometry (MS detection. To facilitate data re-processing by more advanced search engines and the extraction of additional information from already existing files, both raw and processed data are provided. The sample preparation, data acquisition and processing protocols are described in detail. The raw data relate to work published in “Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation” (Sarvaiya et al., 2006 [1] and are made available through the PRIDE (PRoteomics IDEntifications/ProteomeXchange public repository with identifier PRIDE: PXD004051 (“2016 update of the PRIDE database and tools” (Vizcaino et al., 2016 [2].

  8. Exosome Proteome of U-87MG Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Sohyun Chun

    2016-12-01

    Full Text Available Exosomes are small membrane vesicles between 30 and 100 nm in diameter secreted by many cell types, and are associated with a wide range of physiological and/or pathological processes. Exosomes containing proteins, lipids, mRNA, and microRNA contribute to cell-to-cell communication and cell-to-environment regulation, however, their biological functions are not yet fully understood. In this report, exosomes in the glioblastoma cell line, U-87MG, were isolated and the proteome was investigated. In addition, exosome proteome changes in U-87MG cells exposed to a low temperature were investigated to elucidate whether the exosome proteome could respond to an external stimulus. Cell culture medium was collected, and exosomes were isolated by continuous centrifugation eliminating cell debris, nucleic acids, and other particles. The morphology of exosomes was observed by cryo-tunneling electron microscopy. According to 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, certain proteins including collagen type VI alpha 1, putative RNA-binding protein 15B chain A, substrate induced remodeling of the active site regulates HTRA1, coatomer protein complex-subunit beta 2, myosin-heavy chain 1, and keratin-type I cytoskeletal 9 showed differences between the control proteome and the low temperature-exposed proteome.

  9. Advancing cell biology through proteomics in space and time (PROSPECTS).

    Science.gov (United States)

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  10. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.

    Science.gov (United States)

    Pasini, Erica M; Lutz, Hans U; Mann, Matthias; Thomas, Alan W

    2010-01-03

    Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment. A full understanding of this critical cell component will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. Devoid of nucleus and organelles in mammalian species other than camelids, and constantly in motion in the blood stream, red blood cells (RBCs) are the sole mammalian oxygen transporter. The fact that mature mammalian RBCs have no internal membrane-bound organelles, somewhat simplifies proteomics analysis of the plasma membrane and the fact that it has no nucleus disqualifies microarray based methods. Proteomics has the potential to provide a better understanding of this critical interface, and thereby assist in identifying new approaches to diseases.

  11. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  12. Proteomic analysis of the shistosome tegument and its surface membranes

    Directory of Open Access Journals (Sweden)

    Simon Braschi

    2006-10-01

    Full Text Available The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS, and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.

  13. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    proteomics data. Two characteristics of legumes are the high seed protein level and the nitrogen fixing symbiosis. Thus, the majority of the proteomics studies in Lotus have been performed on seed/pod and nodule/root tissues in order to create proteome reference maps and to enable comparative analyses within...... Lotus tissues or toward similar tissues from other legume species. More recently, N-glycan structures and compositions have been determined from mature Lotus seeds using glycomics and glycoproteomics, and finally, phosphoproteomics has been employed...... and annotated Lotus japonicus (Lotus) genome has been essential for obtaining high-quality protein identifications from proteomics studies. Furthermore, additional genomics and transcriptomics studies from several Lotus species/ecotypes support putative gene structures and these can be further supported using...

  14. Proteomic Profiling of Ex Vivo Expanded CD34-Positive Haematopoetic Cells Derived from Umbilical Cord Blood

    Directory of Open Access Journals (Sweden)

    Heiner Falkenberg

    2013-01-01

    Full Text Available Ex vivo expansion of haematopoetic cells by application of specific cytokines is one approach to overcome boundaries in cord blood transplantation due to limited numbers of haematopoetic stem cells. While many protocols describe an effective increase of total cell numbers and the amount of CD34-positive cells, it still remains unclear if and how the procedure actually affects the cells’ properties. In the presented publications, CD34-positive cells were isolated from cord blood and expanded for up to 7 days in media supplemented with stem cell factor (SCF, thrombopoietin (THPO, interleukin 6 (IL-6, and fms-related tyrosine kinase 3 ligand (FLT3lg. At days 3 and 7, expanded cells were harvested and analyzed by flow cytometry and quantitative proteomics. 2970 proteins were identified, whereof proteomic analysis showed 440 proteins significantly changed in abundance during ex vivo expansion. Despite the fact that haematopoetic cells still expressed CD34 on the surface after 3 days, major changes in regard to the protein profile were observed, while further expansion showed less effect on the proteome level. Enrichment analysis of biological processes clearly showed a proteomic change toward a protein biosynthesis phenotype already within the first three days of expression.

  15. Trypsin-induced proteome alteration during cell subculture in mammalian cells

    Directory of Open Access Journals (Sweden)

    Lin Cheng-Wen

    2010-05-01

    Full Text Available Abstract Background It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions. Methods In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting. Results 36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization. Conclusions In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.

  16. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  17. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cécile eALBENNE

    2013-05-01

    Full Text Available Plant cell wall proteins (CWPs progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cells walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last ten years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii the main protein families identified and the still missing peptides; (iii the persistent issue of the non-canonical CWPs; (iv the present challenges to overcome technological bottlenecks; and (v the perspectives beyond cell wall proteomics to understand CWP functions.

  18. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  19. Proteomic profiling of the human T-cell nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology.

  20. Plant organelle proteomics: collaborating for optimal cell function.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  1. The time is right: proteome biology of stem cells.

    NARCIS (Netherlands)

    Whetton, A.D.; Williamson, A.J.K.; Krijgsveld, J.; Lee, B.H.; Lemischka, I.; Oh, S.; Pera, M.; Mummery, C.L.; Heck, A.J.R.

    2008-01-01

    In stem cell biology, there is a growing need for advanced technologies that may help to unravel the molecular mechanisms of self-renewal and differentiation. Proteomics, the comprehensive analysis of proteins, is such an emerging technique. To facilitate interactions between specialists in

  2. The time is right: proteome biology of stem cells.

    NARCIS (Netherlands)

    Whetton, A.D.; Williamson, A.J.K.; Krijgsveld, J.; Lee, B.H.; Lemischka, I.; Oh, S.; Pera, M.; Mummery, C.L.; Heck, A.J.R.

    2008-01-01

    In stem cell biology, there is a growing need for advanced technologies that may help to unravel the molecular mechanisms of self-renewal and differentiation. Proteomics, the comprehensive analysis of proteins, is such an emerging technique. To facilitate interactions between specialists in proteomi

  3. The proteome of neural stem cells from adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Fütterer Carsten D

    2003-06-01

    Full Text Available Abstract Background Hippocampal neural stem cells (HNSC play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. Results Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5 protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca2+ signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. Conclusions The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before.

  4. Analysis of the soluble cell wall proteome of gymnosperms.

    Science.gov (United States)

    Uzal, Esther Novo; Gómez-Ros, Laura V; Hernández, Jose A; Pedreño, María A; Cuello, Juan; Ros Barceló, Alfonso

    2009-05-15

    We analyzed the cell wall proteome of lignifying suspension cell cultures (SCCs) from four gymnosperms that differ in evolution degree. This analysis showed the presence of "peptide sequence tags" (PSTs) corresponding to glucan endo-1,3-beta-D-glucosidase, xyloglucan-endotrans-glucosylase/hydrolase, chitinases, thaumatin-like proteins and proteins involved in lignin/lignan biosynthesis, such as dirigent-like proteins and peroxidases. Surprisingly, and given the abundance of peroxidases in the cell wall proteome of these gymnosperms, PSTs corresponding to peroxidases were only detected in tryptic fragments of the cell wall proteome of Cycas revoluta. The current lack of knowledge regarding C. revoluta peroxidases led us to purify, characterize and partially sequence the peroxidases responsible for lignin biosynthesis in this species. This yielded three peroxidase-enriched fractions: CrPrx 1, CrPrx 2 and CrPrx 3. Analyses of tryptic peptides of CrPrx 2 (32kDa) and CrPrx 3 (26kDa) suggest that CrPrx 3 arises from CrPrx 2 by protein truncation, and that CrPrx 3 apparently constitutes a post-translational modification of CrPrx 2. That CrPrx 2 and CrPrx 3 are apparently the same enzyme was also deduced from the similarity between the k(cat) shown by both peroxidases for the three monolignols. These results emphasize the analogies between the cell wall proteome of gymnosperms and angiosperms, the complexity of the peroxidase proteome, and the difficulties involved in establishing fine structure-function relationships.

  5. Progress Towards the Tomato Fruit Cell Wall Proteome

    Directory of Open Access Journals (Sweden)

    Eliel eRuiz May

    2013-05-01

    Full Text Available The plant cell wall (CW compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional ‘secretome’ screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion.

  6. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions

    NARCIS (Netherlands)

    Sosinska, G.J.; de Groot, P.W.J.; Teixeira De Mattos, M.J.; Dekker, H.L.; de Koster, C.G.; Hellingwerf, K.J.; Klis, F.M.

    2008-01-01

    Proteins that are covalently linked to the skeletal polysaccharides of the cell wall of Candida albicans play a major role in the colonization of the vaginal mucosal surface, which may result in vaginitis. Here we report on the variability of the cell-wall proteome of C. albicans as a function of

  7. Proteomics research on muscle-invasive bladder transitional cell carcinoma

    Directory of Open Access Journals (Sweden)

    Cao Yan

    2011-06-01

    Full Text Available Abstract Background Aimed to facilitate candidate biomarkers selection and improve network-based multi-target therapy, we perform comparative proteomics research on muscle-invasive bladder transitional cell carcinoma. Laser capture microdissection was used to harvest purified muscle-invasive bladder cancer cells and normal urothelial cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results A total of 885/890 proteins commonly appeared in 4 paired samples. 295/337 of the 488/493 proteins that specific expressed in tumor/normal cells own gene ontology (GO cellular component annotation. Compared with the entire list of the international protein index (IPI, there are 42/45 GO terms exhibited as enriched and 9/5 exhibited as depleted, respectively. Several pathways exhibit significantly changes between cancer and normal cells, mainly including spliceosome, endocytosis, oxidative phosphorylation, etc. Finally, descriptive statistics show that the PI Distribution of candidate biomarkers have certain regularity. Conclusions The present study identified the proteome expression profile of muscle-invasive bladder cancer cells and normal urothelial cells, providing information for subcellular pattern research of cancer and offer candidate proteins for biomarker panel and network-based multi-target therapy.

  8. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Svensson, Birte

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS......-classically secreted proteins. Identification of exo- and surface proteomes contributes describing potential protein-mediated probiotic-host interactions....

  9. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  10. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2016-01-01

    Full Text Available We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy. Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4, Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.

  11. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative...

  12. A proteome map of primary cultured rat Schwann cells

    Directory of Open Access Journals (Sweden)

    Shen Mi

    2012-03-01

    Full Text Available Abstract Background Schwann cells (SCs are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs. Results Two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS was performed to identify the protein expressions in primary cultured SCs of rats. We identified a total of 1,232 proteins, which were categorized into 20 functional classes. We also used quantitative real time RT-PCR and Western blot analysis to validate some of proteomics-identified proteins. Conclusion We showed for the first time the proteome map of SCs. Our data could serve as a reference library to provide basic information for understanding SC biology.

  13. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    Science.gov (United States)

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  14. Proteomic analysis of HIV-T cell interaction: an update.

    Directory of Open Access Journals (Sweden)

    Dave eSpeijer

    2012-07-01

    Full Text Available This mini-review summarizes techniques applied in, and results obtained with, proteomic studies of HIV-1 T cell interaction. Our group previously reported on the use of two-dimensional differential gel electrophoresis (2D-DIGE coupled to MALDI-TOF peptide mass fingerprint analysis, to study T cell responses upon HIV-1 infection. Only one in three differentially expressed proteins could be identified using this experimental setup. Here we report on our latest efforts to test models generated by this data set and extend its analysis by using novel bioinformatic algorithms. The 2D-DIGE results are compared with other studies including a pilot study using one-dimensional peptide separation coupled to MSE, a novel mass spectrometric approach. It can be concluded that although the latter method detects fewer proteins, it is much faster and less labor intensive. Last but not least, recent developments and remaining challenges in the field of proteomic studies of HIV-1 infection and proteomics in general are discussed.

  15. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  16. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... related to immune defence mechanisms, centering around the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before...... they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors towards myeloid commitment is accompanied by a profound change in processing of cellular resources, adding novel insights into the molecular mechanisms at the interface between multipotency and lineage...

  17. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    Science.gov (United States)

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proteomic Analysis Identifies Outcome-Predictive Clusters in Patients with Peripheral T-Cell Lymphoma, Not otherwise specified

    DEFF Research Database (Denmark)

    Ludvigsen, Maja; Pedersen, Martin Bjerregård; Poulsen, T.S.

    2014-01-01

    Proteomic Analysis Identifies Outcome-Predictive Clusters in Patients with Peripheral T-Cell Lymphoma, Not otherwise specified......Proteomic Analysis Identifies Outcome-Predictive Clusters in Patients with Peripheral T-Cell Lymphoma, Not otherwise specified...

  19. Proteomic analysis of proton beam irradiated human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Kedracka-Krok

    Full Text Available Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH, (ii cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70, (iii cell metabolism (TIM, GAPDH, VCP, and (iv cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B. A substantial decrease (2.3 x was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.

  20. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  1. Proteome of human colon cancer stem cells: A comparative analysis

    Institute of Scientific and Technical Information of China (English)

    Jian Zou; Xiao-Feng Yu; Zhi-Jun Bao; Jie Dong

    2011-01-01

    AIM: To isolate and identify the biological characteristics of human colon cancer stem cells (SW1116 cells) and further study their proteome. METHODS: SW1116 cells were isolated and cultured with a serum-free medium (SFM). Sphere formation was assayed to observe the formation of colon cancer stem cell spheres. SW1116 cells were inoculated into a serum-containing medium for observing their differentiation characteristics. Proliferation curve and cross-resistance of SW1116 cells to different drugs were detected by MTT. Percentage of SP cells in SW1116 cells was detected with Hoechst33342 staining. Telomerase activity in SW1116cells was checked by polymerase chain reaction (PCR)-enzyme linked immunosorbent assay. Expressions of stem cell relevant genes and proteins were detected by reverse transcription-PCR and Western blot, respectively. Total protein was isolated from SW1116 cells by two-dimensional gel electrophoresis (2-DE) and differentially expressed proteins were identified by tandem mass spectrometry (MALDI-TOF/TOF). RESULTS: The isolated SW1116 cells presented as spheroid and suspension growths in SFM with a strong self-renewal, proliferation, differentiation and drug-resistance ability. The percentage of SP cells in SW1116 cells was 38.9%. The SW1116 cells co-expressed the CD133 and CD29 proteins. The telomerase activity in SW1116 cells was increased. The expressions of different stem cell relevant genes and proteins were detected. The proteomic analysis showed that the 26 protein spots were differently expressed in SW1116 cells and 10 protein spots were identified as ubiquitin fusiondegradation 1-like protein, nuclear chloride channel protein, tubulin b, Raichu404X, stratifin, F-actin capping protein a-1 subunit, eukaryotic translation elongation factor 1 delta isoform 2, hypothetical protein, glyceraldehyde-3-phosphate dehydrogenase and guanine nucleotide binding protein b polypeptide 2-like 1, respectively. CONCLUSION: SW1116 cells are biologically

  2. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    Science.gov (United States)

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-04

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  3. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  4. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2013-01-01

    Full Text Available Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions.

  5. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Iozzo Renato V

    2008-02-01

    Full Text Available Abstract Background Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. Results Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60 were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test. Conclusion The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.

  6. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T;

    2009-01-01

    : Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell......-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human...

  7. Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.

    Directory of Open Access Journals (Sweden)

    Kristian E Swearingen

    2017-07-01

    Full Text Available Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary

  8. Composition of the Surface Proteome of Anaplasma marginale and Its Role in Protective Immunity Induced by Outer Membrane Immunization

    Science.gov (United States)

    Surface proteins of tick-borne, intracellular bacterial pathogens mediate functions essential for invasion and colonization. Consequently, the surface proteome of these organisms is specifically relevant from two biological perspectives, induction of protective immunity in the mammalian host and un...

  9. Proteomic assessment of a cell model of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Lee Kelvin H

    2011-03-01

    Full Text Available Abstract Background Deletion or mutation(s of the survival motor neuron 1 (SMN1 gene causes spinal muscular atrophy (SMA, a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease. Results When ES cells were primed with Noggin/fibroblast growth factors (bFGF and FGF-8 in a more robust neural differentiation medium for 2 days before differentiation induction, the efficiency of in vitro motor neuron differentiation was improved from ~25% to ~50%. The differentiated ES cells expressed a pan-neuronal marker (neurofilament and motor neuron markers (Hb9, Islet-1, and ChAT. Even though SMN-deficient ES cells had marked reduced levels of SMN (~20% of that in control ES cells, the morphology and differentiation efficiency for these cells are comparable to those for control samples. However, proteomics in conjunction with western blot analyses revealed 6 down-regulated and 14 up-regulated proteins with most of them involved in energy metabolism, cell stress-response, protein degradation, and cytoskeleton stability. Some of these activated cellular pathways showed specificity for either undifferentiated or differentiated cells. Increased p21 protein expression indicated that SMA ES cells were responding to cellular stress. Up-regulation of p21 was confirmed in spinal cord tissues from the same SMA mouse model from which the ES cells were derived. Conclusion SMN

  10. Cell-specific proteomic analysis in Caenorhabditis elegans.

    Science.gov (United States)

    Yuet, Kai P; Doma, Meenakshi K; Ngo, John T; Sweredoski, Michael J; Graham, Robert L J; Moradian, Annie; Hess, Sonja; Schuman, Erin M; Sternberg, Paul W; Tirrell, David A

    2015-03-03

    Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-L-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells.

  11. Role of Proteome Physical Chemistry in Cell Behavior.

    Science.gov (United States)

    Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A

    2016-09-15

    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.

  12. Environmental proteomics – what proteins from soil and surface water can tell us: a perspective

    Directory of Open Access Journals (Sweden)

    W. Schulze

    2004-07-01

    Full Text Available Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the DOC pool, and (2 identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  13. Environmental proteomics what proteins from soil and surface water can tell us: a perspective

    Science.gov (United States)

    Schulze, W.

    2004-07-01

    Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOC pool, and (2) identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  14. Red blood cell (RBC) membrane proteomics--Part II: Comparative proteomics and RBC patho-physiology.

    Science.gov (United States)

    Pasini, Erica M; Lutz, Hans U; Mann, Matthias; Thomas, Alan W

    2010-01-03

    Membrane proteomics offers unprecedented possibilities to compare protein expression in health and disease leading potentially to the identification of markers, of targets for therapeutics and to a better understanding of disease mechanisms. From transfusion medicine to infectious diseases, from cardiovascular affections to diabetes, comparative proteomics has made a contribution to the identification of proteins unique to RBCs of patients with specific illnesses shedding light on possible RBC markers for systemic diseases. In this review we will provide a short overview of some of the main achievements obtained by comparative proteomics in the field of RBC-related local and systemic diseases and suggest some additional areas of RBCs research to which comparative proteomics approaches could be fruitfully applied or extended in combination with biochemical techniques.

  15. Effect of Turkish propolis extracts on proteome of prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Barlak Yaşam

    2011-12-01

    Full Text Available Abstract Background Propolis is a natural, resinous hive product that has several pharmacological activities. Its composition varies depending on the vegetation, climate, season and environmental conditions of the area from where it was collected. Surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS is a proteomic approach which has been used in cancer proteomics studies. Prostate cancer is one of the most commonly diagnosed cancers in men. It has shown that nutritional supplements rich in polyphenolic compounds such as propolis play a significant role in prostate cancer chemoprevention. The aim of this study is to evaluate if protein expression profile in PC-3 prostate cancer cell lines could be differentiated when incubated with dimethyl sulfoxide and water extracts of Turkish propolis. Results The antioxidant potentials of dimethyl sulfoxide and water extracts of propolis were found in correlation with the amount of total phenolic compounds of them. Dimethyl sulfoxide and water extracts of propolis of 20 μg/mL reduced the cell viability to 24.5% and 17.7%, respectively. Statistically significant discriminatory peaks between control PC-3 cells and dimethyl sulfoxide extract of propolis-treated PC-3 cells were found to be the proteomic features at m/z 5143, 8703, 12661, 20184 and 32794, detected by CM10 ProteinChip, and the peak at m/z 3772, detected by Q10 ProteinChip. Between control PC-3 cells and water extract of propolis-treated PC-3 cells, statistically significant discriminatory peaks were found to be the proteomic features at m/z 15846, 16052 and 24658, detected by CM10 ProteinChip and the peaks at m/z 10348, 10899 and 11603, detected by Q10 ProteinChip. Conclusions It was concluded that dimethyl sulfoxide and water extracts of Turkish propolis may have anti-proliferative activity through differentiating protein expression profile in PC-3 prostate cancer cell lines along with their antioxidant

  16. Proteomic Studies of Cholangiocarcinoma and Hepatocellular Carcinoma Cell Secretomes

    Directory of Open Access Journals (Sweden)

    Chantragan Srisomsap

    2010-01-01

    Full Text Available Cholangiocarcinoma (CCA and hepatocellular carcinoma (HCC occur with relatively high incidence in Thailand. The secretome, proteins secreted from cancer cells, are potentially useful as biomarkers of the diseases. Proteomic analysis was performed on the secreted proteins of cholangiocarcinoma (HuCCA-1 and hepatocellular carcinoma (HCC-S102, HepG2, SK-Hep-1, and Alexander cell lines. The secretomes of the five cancer cell lines were analyzed by SDS-PAGE combined with LC/MS/MS. Sixty-eight proteins were found to be expressed only in HuCCA-1. Examples include neutrophil gelatinase-associated lipocalin (lipocalin 2, laminin 5 beta 3, cathepsin D precursor, desmoplakin, annexin IV variant, and annexin A5. Immunoblotting was used to confirm the presence of lipocalin 2 in conditioned media and cell lysate of 5 cell lines. The results showed that lipocalin 2 was a secreted protein which is expressed only in the conditioned media of the cholangiocarcinoma cell line. Study of lipocalin 2 expression in different types of cancer and normal tissues from cholangiocarcinoma patients showed that lipocalin 2 was expressed only in the cancer tissues. We suggest that lipocalin 2 may be a potential biomarker for cholangiocarcinoma.

  17. Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells

    OpenAIRE

    Gho, Yong Song; Choi, Dong-Sic; Choi, Do-Young; Hong, Bok Sil; Jang, Su Chul; Kim, Dae-Kyum; Lee, Jaewook; Kim, Yoon-Keun; Kim, Kwang Pyo

    2012-01-01

    Cancer cells actively release extracellular vesicles (EVs), including exosomes and microvesicles, into surrounding tissues. These EVs play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteomic differences between primary and metastatic cancer cell-derived EVs remain unclear. Here, we conducted comparative proteomic analysis between EVs derived from human primary colorectal cancer cells (SW480) and their metastat...

  18. Proteomic profile of human monocytic cells infected with dengue virus

    Institute of Scientific and Technical Information of China (English)

    Viviana Martnez-Betancur; Marlen Martnez-Gutierrez

    2016-01-01

    Objective: To identify the changes in the proteome of U937 cells infected with dengue virus (DENV). Methods: In this study, differentiated U937 cultures were infected with two DENV-2 strains, one of which was associated with dengue (DENV-2/NG) and the other one with severe dengue (DENV-2/16681), with the aim of determining the cellular proteomic profiles under different infection conditions. Cellular proteins were extracted and sepa-rated by two-dimensional electrophoresis, and those proteins with differential expression profiles were identified by mass spectrometry. The obtained results were correlated with cellular viability, the number of infectious viral particles, and the viral DNA/protein quantity. Results: In comparison with non-infected cultures, in the cells infected with the DENV-2/NG strain, nine proteins were expressed differentially (five were upregulated and four were downregulated); in those cultures infected with the DENV-2/16681 strain, six proteins were differentially expressed (two were downregulated and four were upregu-lated). The downregulated proteins included fatty acid-binding protein, heterogeneous nuclear ribonucleoprotein 1, protein disulfide isomerase, enolase 1, heat shock 70 kDa protein 9, phosphotyrosyl phosphatase, and annexin IV. The upregulated proteins included heat shock 90 kDa protein AA1, tubulin beta, enolase 1, pyruvate kinase, transaldolase and phospholipase C-alpha. Conclusions: Because the monocyte/macrophage lineage is critical for disease patho-genicity, additional studies on these proteins could provide a better understanding of the cellular response to DENV infection and could help identify new therapeutic targets against infection.

  19. Quantitative Membrane Proteomics in a Human Mesenchymal Stem Cell Line Undergoing Osteogenic Differentiation

    DEFF Research Database (Denmark)

    Christiansen, Helle

    . Mesenchymal stem cells are generally isolated based on physical-chemical characteristics such as adherence to plastic, isolating the monocyte fraction. The resultant cultures are often heterogeneous and can contain other cell types, providing a currently poorly defined basis for future clinical use....... We have validated a subset of these markers by antibody-based flourescence-activated cell sorting (FACS), to confirm their presence at the cell surface. In this study, we have obtained a high-resolution profile of the membrane proteome of hMSCs. Furthermore, we have monitored the quantitative changes...

  20. Comparison of Cronobacter sakazakii from Agra region grown in biofilms, agar surface associated and planktonic mode by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2013-01-01

    Full Text Available Context: Cronobacter sakazakii is an emerging food borne pathogen that causes severe meningitis, meningoencephalitis, sepsis, and necrotizing enterocolitis in neonates and infants, with a high fatality rate. Aims: The present paper is for the rapid detection of C. sakazakii from milk and milk products of Agra region via PCR method and comparison of C. sakazakii in biofilm, on agar surface and planktonic cells by proteomic analysis. Materials and Methods: In the present study, 55 samples of milk and milk products of the Agra region were analyzed. 200 isolates were obtained of which 11 were biochemically detected as C. sakazakii. The PCR targeting the ompA gene was used to amplify a 496 bp DNA segment unique to C. sakazakii, in order to confirm C. sakazakii isolates. The proteome was investigated to study the differential protein pattern expressed by biofilm, agar surface-associated and planktonic bacteria employing SDS-PAGE. Statistical Analysis: UN-SCAN-6.1 gel analysis software. Results: The primer pair ESSF and ESSR was successfully used to amplify a 469 bp DNA unique to C. sakazakii. Whole cell protein profiles of planktonic, biofilm and agar surface associated were characteristic. Conclusion: The cultural procedure for detection of C. sakazakii is laborious, taking up to 7 days for completion, whereas PCR combined with enrichment culturing can detect C. sakazakii in about 12 hours and thus has the potential to be used as a rapid tool for detecting its presence. Differential protein pattern of C. sakazakii cultivated in biofilm versus agar-surface-associated and planktonic cells were observed. Further understanding the role of specific proteins during the biofilm development should permit a better understanding of the mechanisms sustaining the proliferation and the resistance of bacteria on biotic surfaces.

  1. Proteomics in Cell Culture: From Genomics to Combined ‘Omics for Cell Line Engineering and Bioprocess Development

    DEFF Research Database (Denmark)

    Heffner, Kelley; Kaas, Christian Schrøder; Kumar, Amit;

    2015-01-01

    The genetic sequencing of Chinese hamster ovary cells has initiated a systems biology era for biotechnology applications. In addition to genomics, critical omics data sets also include proteomics, transcriptomics and metabolomics. Recently, the use of proteomics in cell lines for recombinant...... in media development and cell line engineering to improve growth or productivity, delay the onset of apoptosis, or utilize nutrients efficiently. Mass-spectrometry based and other proteomics methods can provide for the detection of thousands of proteins from cell culture and bioinformatics analysis serves...

  2. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry.

    Science.gov (United States)

    Tiong, Hung King; Hartson, Steven; Muriana, Peter M

    2015-03-01

    Extracts of surface proteins, with minimal artifacts from contaminating cytosolic components, are highly desirable for investigating surface factors involved in the attachment and formation of biofilms by bacteria that are problematic in commercial food processing facilities. In this study, we compared the protein profiles of the food pathogen, Listeria monocytogenes, recovered after applying different surface protein extraction methods compiled from the literature: trypsin-enzymatic shaving with BICAM/sucrose or Tris/sucrose buffers (Tryp B+S, Tryp T+S), Tris-buffered urea (UB), lithium chloride (LiCl) and Tris-buffered urea applied with hypotonic-stressed cells (UB-Ghost), and subjected them to liquid chromatography tandem mass spectrometry and protein identification. The data indicate that the UB-Ghost extraction method provides a cleaner extract of surface proteins including the predicted (this study and the literature) or validated members (literature) from L. monocytogenes. This was determined by an accumulative lower unique peptide number exhibited by mass spectrometry for total cytoplasmic proteins among different surface extracts, with a majority of proteins demonstrating hydrophilic properties. The extracted proteins were from different functional categories and have associations with the cell surface, intermediary metabolism, information pathways, or functionally unknown proteins as suggested by in silico analyses performed by other groups (Leger and ListiList). The utilization of an optimized method for surface protein extraction should greatly facilitate identification by LC-MS/MS that could be useful to anyone working on molecular proteomics of bacterial surfaces.

  3. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    Science.gov (United States)

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  4. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    Science.gov (United States)

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  5. Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

    Science.gov (United States)

    Kim, Yikwon; Han, Dohyun; Min, Hophil; Jin, Jonghwa; Yi, Eugene C.; Kim, Youngsoo

    2014-01-01

    Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines. PMID:25518923

  6. Recovery of Chinese hamster ovary host cell proteins for proteomic analysis.

    Science.gov (United States)

    Valente, Kristin N; Schaefer, Amy K; Kempton, Hannah R; Lenhoff, Abraham M; Lee, Kelvin H

    2014-01-01

    Identification and characterization of Chinese hamster ovary (CHO) host cell protein (HCP) impurities by proteomic techniques can aid bioprocess design and lead to more efficient development and improved biopharmaceutical manufacturing operations. Recovery of extracellular CHO HCP for proteomic analysis is particularly challenging due to the relatively low protein concentration and complex composition of media. In this article, we report the development of optimized protocols that improve proteome capture for CHO HCP. Eleven precipitation protocols were screened for protein recovery and optimized for a subset of precipitants by a design of experiments (DOE) approach. Because total protein recovery does not fully replicate a proteomics experiment, or detect non-protein agents that may interfere with proteomic methods, a subset of precipitation conditions were compared by two-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry, with optimized recovery shown to differ between the two proteomic methods. This work demonstrates broadly applicable methods that can be applied as initial steps to optimize sample preparation of any sample type for proteomic analysis, and presents optimized precipitation protocols for extracellular CHO HCP recovery, which can vary appreciably between gel-based and shotgun proteomic methods.

  7. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  8. Proteomics in Cell Culture: From Genomics to Combined ‘Omics for Cell Line Engineering and Bioprocess Development

    DEFF Research Database (Denmark)

    Heffner, Kelley; Kaas, Christian Schrøder; Kumar, Amit

    2015-01-01

    in media development and cell line engineering to improve growth or productivity, delay the onset of apoptosis, or utilize nutrients efficiently. Mass-spectrometry based and other proteomics methods can provide for the detection of thousands of proteins from cell culture and bioinformatics analysis serves......The genetic sequencing of Chinese hamster ovary cells has initiated a systems biology era for biotechnology applications. In addition to genomics, critical omics data sets also include proteomics, transcriptomics and metabolomics. Recently, the use of proteomics in cell lines for recombinant...... protein production has increased significantly because proteomics can track changes in protein levels for different cell lines over time, which can be advantageous for bioprocess development and optimization. Specifically, the identification of proteins that affect cell culture processes can aid efforts...

  9. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, R.; Simabuco, F.M. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Yokoo, S.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sherman, N. [University of Virginia, Charlottesville, VA (United States)

    2012-07-01

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  10. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Stanton Peter G

    2011-05-01

    Full Text Available Abstract Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL 11 regulates human endometrial epithelial cells (hEEC adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2 and flotillin-1 (FLOT1, were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle. Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary h

  11. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell.

    Science.gov (United States)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris; Mortensen, Peter; Mann, Matthias; Thomas, Alan W

    2008-07-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.

  12. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  13. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  14. Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis

    Directory of Open Access Journals (Sweden)

    Jurate Savickiene

    2015-01-01

    Full Text Available Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.

  15. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  16. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor.

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-10-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.

  17. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae.

    Science.gov (United States)

    Olaya-Abril, Alfonso; Gómez-Gascón, Lidia; Jiménez-Munguía, Irene; Obando, Ignacio; Rodríguez-Ortega, Manuel J

    2012-06-27

    Bacterial surface proteins are of outmost importance as they play critical roles in the interaction between cells and their environment. In addition, they can be targets of either vaccines or antibodies. Proteomic analysis through "shaving" live cells with proteases has become a successful approach for a fast and reliable identification of surface proteins. However, this protocol has not been able to reach the goal of excluding cytoplasmic contamination, as cell lysis is an inherent process during culture and experimental manipulation. In this work, we carried out the optimization of the "shaving" strategy for the Gram-positive human pathogen Streptococcus pneumoniae, a bacterium highly susceptible to autolysis, and set up the conditions for maximizing the identification of surface proteins containing sorting or exporting signals, and for minimizing cytoplasmic contamination. We also demonstrate that cell lysis is an inherent process during culture and experimental manipulation, and that a low level of lysis is enough to contaminate a "surfome" preparation with peptides derived from cytoplasmic proteins. When the optimized conditions were applied to several clinical isolates, we found the majority of the proteins described to induce protection against pneumococcal infection. In addition, we found other proteins whose protection capacity has not been yet tested. In addition, we show the utility of this approach for providing antigens that can be used in serological tests for the diagnosis of pneumococcal disease.

  18. Proteomic analysis as a means to approach limbal stem cell biology in a search for stem cell markers.

    Science.gov (United States)

    Honoré, Bent; Vorum, Henrik

    2014-04-01

    The cornea consists of three main layers: an outer surface epithelium, the stroma, and the endothelium. A clear cornea is necessary for optimal vision and is maintained and repaired from limbal epithelial stem cells located in the limbus between the cornea and the sclera. Diseases and injury may result in deficiency of the stem cells impairing their ability to renew the corneal epithelium. Patients with limbal stem cell deficiency experience chronic pain and ultimately blindness. Attempts to treat the disease are based on replacement of the stem cells by transplantation or by culturing the stem cells. We here review the proteomic techniques that so far have been used to approach characterization of limbal stem cells and markers to identify them. It is apparent that the field is in a rather inchoate state due to the scarcity and relative inaccessibility of the stem cells. However, the importance of revealing limbal stem cell biology and identifying stem cell biomarkers calls for greater use of emerging methodology. Strategies for future studies are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  20. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity.

    Science.gov (United States)

    Mathew, Robin; Khor, Sinan; Hackett, Sean R; Rabinowitz, Joshua D; Perlman, David H; White, Eileen

    2014-09-18

    Ras-driven cancer cells upregulate basal autophagy that degrades and recycles intracellular proteins and organelles. Autophagy-mediated proteome degradation provides free amino acids to support metabolism and macromolecular synthesis, which confers a survival advantage in starvation and promotes tumorigenesis. While the degradation of isolated protein substrates by autophagy has been implicated in controlling cellular function, the extent and specificity by which autophagy remodels the cellular proteome and the underlying functional consequences were unknown. Here we compared the global proteome of autophagy-functional and -deficient Ras-driven cancer cells, finding that autophagy affects the majority of the proteome yet is highly selective. While levels of vesicle trafficking proteins important for autophagy are preserved during starvation-induced autophagy, deleterious inflammatory response pathway components are eliminated even under basal conditions, preventing cytokine-induced paracrine cell death. This reveals the global, functional impact of autophagy-mediated proteome remodeling on cell survival and identifies critical autophagy substrates that mediate this process.

  1. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Medulloblastoma (MB is an aggressive pediatric tumor of the Central Nervous System (CNS usually treated according to a refined risk stratification. The study of cancer stem cells (CSC in MB is a promising approach aimed at finding new treatment strategies. METHODOLOGY/PRINCIPAL FINDINGS: The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76 grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM. In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. CONCLUSIONS/SIGNIFICANCE: Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  2. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    DEFF Research Database (Denmark)

    Havelund, Jesper; Thelen, Jay J.; Møller, Ian Max

    2013-01-01

    functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification...

  3. Proteomic characterization of golgi membranes enriched from Arabidopsis suspension cell cultures

    DEFF Research Database (Denmark)

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has...... from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization...

  4. The Transcriptomics to Proteomics of Hair Cell Regeneration: Looking for a Hair Cell in a Haystack

    Directory of Open Access Journals (Sweden)

    Michael E. Smith

    2013-07-01

    Full Text Available Mature mammals exhibit very limited capacity for regeneration of auditory hair cells, while all non-mammalian vertebrates examined can regenerate them. In an effort to find therapeutic targets for deafness and balance disorders, scientists have examined gene expression patterns in auditory tissues under different developmental and experimental conditions. Microarray technology has allowed the large-scale study of gene expression profiles (transcriptomics at whole-genome levels, but since mRNA expression does not necessarily correlate with protein expression, other methods, such as microRNA analysis and proteomics, are needed to better understand the process of hair cell regeneration. These technologies and some of the results of them are discussed in this review. Although there is a considerable amount of variability found between studies owing to different species, tissues and treatments, there is some concordance between cellular pathways important for hair cell regeneration. Since gene expression and proteomics data is now commonly submitted to centralized online databases, meta-analyses of these data may provide a better picture of pathways that are common to the process of hair cell regeneration and lead to potential therapeutics. Indeed, some of the proteins found to be regulated in the inner ear of animal models (e.g., IGF-1 have now gone through human clinical trials.

  5. Tandem duplication of KIT exon 11 influences the proteome of canine mast cell tumours.

    Science.gov (United States)

    Schlieben, P; Meyer, A; Weise, C; Bondzio, A; Gruber, A D; Klopfleisch, R

    2013-05-01

    Mutations with permanent activation of the stem cell factor receptor KIT have been identified as one potential cause for canine cutaneous mast cell tumours (MCTs). The exact changes in global gene expression patterns associated with permanent activation of KIT in these tumours are unknown. The present study compares, by the use of two dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, the proteomes of canine MCTs, with and without KIT exon 11 tandem duplication. Fifteen differentially expressed proteins were identified in mutated MCTs. These are mainly involved in cytoskeleton structure and cell motility (ACTR2, ACTB and CAPPA1), cell signalling (ARHGDIA) and lipid metabolism (ALOX15 and ACSBG4), or are serum proteins. The results therefore support the notion that KIT mutation is associated with changes in the proteome of affected cells with a major effect on the composition of the cytoskeletal proteome and cell motility proteins. No overlaps were identified when the results were compared with a recent study on the proteomic differences between low- and high-grade tumours, suggesting that KIT-mutated tumours may be regarded as a separate entity of high-grade tumours with potential relevance to therapeutic strategies.

  6. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells.

    Directory of Open Access Journals (Sweden)

    Lucie Lorkova

    Full Text Available Mantle cell lymphoma (MCL is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino. We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine and to an inhibitor of Bruton tyrosine kinase (BTK ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib or remained unaffacted (cisplatin, bendamustine. The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib, but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.

  7. Proteomics of the Peroxisome

    OpenAIRE

    2006-01-01

    Genomes provide us with a blue print for the potential of a cell. However, the activity of a cell is expressed in its proteome. Full understanding of the complexity of cells demands a comprehensive view of the proteome; its interactions, activity states and organization. Comprehensive proteomic approaches applied to peroxisomes have yielded new insights into the organelle and its dynamic interplay with other cellular structures. As technologies and methodologies improve proteomics hold the pr...

  8. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    Science.gov (United States)

    2014-07-01

    four parental cell lines and eleven subclones derived (Figure 11). We have begun deep proteome analysis of the secretomes by performing off- gel ...1 Antihelminthic 33 7 7 Antiarrhythmic 24 0 1 Antibacterial 227 11 11 Antifungal 55 5 5 Antineoplastic 115 29 28 Antihyperlipidemic 12 3 4

  9. Proteomic profiling reveals dopaminergic regulation of progenitor cell functions of goldfish radial glial cells in vitro.

    Science.gov (United States)

    Xing, Lei; Martyniuk, Christopher J; Esau, Crystal; Da Fonte, Dillon F; Trudeau, Vance L

    2016-07-20

    Radial glial cells (RGCs) are stem-like cells found in the developing and adult central nervous system. They function as both a scaffold to guide neuron migration and as progenitor cells that support neurogenesis. Our previous study revealed a close anatomical relationship between dopamine neurons and RGCs in the telencephalon of female goldfish. In this study, label-free proteomics was used to identify the proteins in a primary RGC culture and to determine the proteome response to the selective dopamine D1 receptor agonist SKF 38393 (10μM), in order to better understand dopaminergic regulation of RGCs. A total of 689 unique proteins were identified in the RGCs and these were classified into biological and pathological pathways. Proteins such as nucleolin (6.9-fold) and ependymin related protein 1 (4.9-fold) were increased in abundance while proteins triosephosphate isomerase (10-fold) and phosphoglycerate dehydrogenase (5-fold) were decreased in abundance. Pathway analysis revealed that proteins that consistently changed in abundance across biological replicates were related to small molecules such as ATP, lipids and steroids, hormones, glucose, cyclic AMP and Ca(2+). Sub-network enrichment analysis suggested that estrogen receptor signaling, among other transcription factors, is regulated by D1 receptor activation. This suggests that these signaling pathways are correlated to dopaminergic regulation of radial glial cell functions. Most proteins down-regulated by SKF 38393 were involved in cell cycle/proliferation, growth, death, and survival, which suggests that dopamine inhibits the progenitor-related processes of radial glial cells. Examples of differently expressed proteins including triosephosphate isomerase, nucleolin, phosphoglycerate dehydrogenase and capping protein (actin filament) muscle Z-line beta were validated by qPCR and western blot, which were consistent with MS/MS data in the direction of change. This is the first study to characterize the RGC

  10. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    Directory of Open Access Journals (Sweden)

    Philip Klepeisz

    Full Text Available Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs have concentrated on alterations induced in hepatocytes (HCs. A potential role of non-parenchymal liver cells (NPCs in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  11. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    Science.gov (United States)

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  12. Deciphering diatom biochemical pathways via whole-cell proteomics.

    Science.gov (United States)

    Nunn, Brook L; Aker, Jocelyn R; Shaffer, Scott A; Tsai, Shannon; Strzepek, Robert F; Boyd, Philip W; Freeman, Theodore Larson; Brittnacher, Mitchell; Malmström, Lars; Goodlett, David R

    2009-06-03

    Diatoms play a critical role in the oceans' carbon and silicon cycles; however, a mechanistic understanding of the biochemical processes that contribute to their ecological success remains elusive. Completion of the Thalassiosira pseudonana genome provided 'blueprints' for the potential biochemical machinery of diatoms, but offers only a limited insight into their biology under various environmental conditions. Using high-throughput shotgun proteomics, we identified a total of 1928 proteins expressed by T. pseudonana cultured under optimal growth conditions, enabling us to analyze this diatom's primary metabolic and biosynthetic pathways. Of the proteins identified, 70% are involved in cellular metabolism, while 11% are involved in the transport of molecules. We identified all of the enzymes involved in the urea cycle, thereby describing the complete pathway to convert ammonia to urea, along with urea transporters, and the urea-degrading enzyme urease. Although metabolic exchange between these pathways remains ambiguous, their constitutive presence suggests complex intracellular nitrogen recycling. In addition, all C(4) related enzymes for carbon fixation have been identified to be in abundance, with high protein sequence coverage. Quantification of mass spectra acquisitions demonstrated that the 20 most abundant proteins included an unexpectedly high expression of clathrin, which is the primary structural protein involved in endocytic transport. This result highlights a previously overlooked mechanism for the inter- and intra-cellular transport of nutrients and macromolecules in diatoms, potentially providing a missing link to organelle communication and metabolite exchange. Our results demonstrate the power of proteomics, and lay the groundwork for future comparative proteomic studies and directed analyses of specifically expressed proteins and biochemical pathways of oceanic diatoms.

  13. Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus.

    Science.gov (United States)

    Emmott, Edward; Smith, Catriona; Emmett, Stevan R; Dove, Brian K; Hiscox, Julian A

    2010-10-01

    The nucleolus is a dynamic subnuclear compartment involved in ribosome subunit biogenesis, regulation of cell stress and modulation of cellular growth and the cell cycle, among other functions. The nucleolus is composed of complex protein/protein and protein/RNA interactions. It is a target of virus infection with many viral proteins being shown to localize to the nucleolus during infection. Perturbations to the structure of the nucleolus and its proteome have been predicted to play a role in both cellular and infectious disease. Stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS with bioinformatic analysis using Ingenuity Pathway Analysis was used to investigate whether the nucleolar proteome altered in virus-infected cells. In this study, the avian nucleolar proteome was defined in the absence and presence of virus, in this case the positive strand RNA virus, avian coronavirus infectious bronchitis virus. Data sets, potential protein changes and the functional consequences of virus infection were validated using independent assays. These demonstrated that specific rather than generic changes occurred in the nucleolar proteome in infectious bronchitis virus-infected cells.

  14. Xanthomonas citri subsp. citri surface proteome by 2D-DIGE: Ferric enterobactin receptor and other outer membrane proteins potentially involved in citric host interaction.

    Science.gov (United States)

    Carnielli, Carolina Moretto; Artier, Juliana; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques

    2017-01-16

    Xanthomonas citri subsp. citri (XAC) is the causative agent of citrus canker, a disease of great economic impact around the world. Understanding the role of proteins on XAC cellular surface can provide new insights on pathogen-plant interaction. Surface proteome was performed in XAC grown in vivo (infectious) and in vitro (non-infectious) conditions, by labeling intact cells followed by cellular lysis and direct 2D-DIGE analysis. Seventy-nine differential spots were analyzed by mass spectrometry. Highest relative abundance for in vivo condition was observed for spots containing DnaK protein, 60kDa chaperonin, conserved hypothetical proteins, malate dehydrogenase, phosphomannose isomerase, and ferric enterobactin receptors. Elongation factor Tu, OmpA-related proteins, Oar proteins and some Ton-B dependent receptors were found in spots decreased in vivo. Some proteins identified on XAC's surface in infectious condition and predicted to be cytoplasmic, such as DnaK and 60KDa chaperonin, have also been previously found at cellular surface in other microorganisms. This is the first study on XAC surface proteome and results point to mediation of molecular chaperones in XAC-citrus interaction. The approach utilized here can be applied to other pathogen-host interaction systems and help to achieve new insights in bacterial pathogenicity toward promising targets of biotechnological interest.

  15. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection.

    Science.gov (United States)

    Carinhas, Nuno; Robitaille, Aaron Mark; Moes, Suzette; Carrondo, Manuel José Teixeira; Jenoe, Paul; Oliveira, Rui; Alves, Paula Marques

    2011-01-01

    Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC) to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.

  16. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  17. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.

    Science.gov (United States)

    Meganathan, Kesavan; Jagtap, Smita; Wagh, Vilas; Winkler, Johannes; Gaspar, John Antonydas; Hildebrand, Diana; Trusch, Maria; Lehmann, Karola; Hescheler, Jürgen; Schlüter, Hartmut; Sachinidis, Agapios

    2012-01-01

    Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.

  18. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kesavan Meganathan

    Full Text Available Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs. Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE coupled with Tandem Mass spectrometry to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s. Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3 after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2, that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.

  19. Suspension-cultured plant cells as a tool to analyze the extracellular proteome.

    Science.gov (United States)

    Sabater-Jara, Ana B; Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Esteso, María J; Youssef, Sabry M; Casado-Vela, Juan; Vera-Urbina, Juan C; Sellés-Marchart, Susana; Bru-Martínez, Roque; Pedreño, María A

    2014-01-01

    Suspension-cultured cells (SCC) are generally considered the most suitable cell systems to carry out scientific studies, including the extracellular proteome (secretome). SCC are initiated by transferring friable callus fragments into flasks containing liquid culture medium for cell biomass growth, and they are maintained in an orbital shaker to supply the sufficient oxygen that allows cell growth. SCC increase rapidly during the exponential phase and after 10-20 days (depending on the cell culture nature), the growth rate starts to decrease due to limitation of nutrients, and to maintain for decades these kinds of cell cultures is needed to transfer a portion of these SCC into a fresh culture medium. Despite the central role played by extracellular proteins in most processes that control growth and development, the secretome has been less well characterized than other subcellular compartments, meaning that our understanding of the cell wall physiology is still very limited. Useful proteomic tools have emerged in recent years to unravel metabolic network that occurs in cell walls. With the recent progress made in mass spectrometry technology, it has become feasible to identify proteins from a given organ, tissue, cells, or even a subcellular compartment. Compared with other methods used to isolate cell wall proteins, the spent medium of SCC provides a convenient, continuous, and reliable and unique source of extracellular proteins. Therefore, this biological system could be used as a large-scale cell culture from which these proteins can be secreted, easily separated from cells without cell disruption, and so, without any cytosolic contamination, easily recovered from the extracellular medium. This nondestructive cell wall proteome approach discloses a set of proteins that are specifically expressed in the remodelling of the cell wall architecture and stress defense.

  20. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  1. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  2. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  3. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    Science.gov (United States)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  4. Mapping the chromatographic behavior of a cell proteome utilizing orthogonal routines: the influence of feedstock pH

    Directory of Open Access Journals (Sweden)

    Rosa Cabrera

    2008-08-01

    Full Text Available Surface charge, molecular weight, and folding state are known to influence protein chromatographic behavior onto ion-exchangers. Experimentally, information related to such factors can be gathered via two-dimensional electrophoretic (2-DE methods. The separation behavior depicted by the insect cultured-cells proteome, which is an important host for recombinant protein production, was explored in this study. Experimental evidence showed a correlation between apparent isoelectric point distributions and the mobile phase conductivity. It was observed that the information contained in the isoelectric point (pI value(s obtained with a 2-DE routine showed a good correlation with the IEX chromatographic behavior, for a number of commercial adsorbents. This correlation was observed irrespective of the pH of the feedstock within the range 6 to 8. An initial prediction of protein ion-exchange chromatographic behavior could be possible utilizing an experimental approach based on the mentioned orthogonal methods. This technique is providing information that more closely resembles the separation behaviour observed with a complex biotechnological feedstock.Keywords: Insect cells, proteome, chromatography, ion-exchange, bioprocessingReceived: 3 August 2008 / Received in revised form: 15 August 2008, Accepted: 19 August 2008, Published online: 20 August 2008

  5. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  6. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Lim, Hui Jing; Yeow, Tee Cian; Movahed, Elaheh; Looi, Chung Yeng; Gupta, Rishein; Arulanandam, Bernard P; Abu Bakar, Sazaly; Sabet, Negar Shafiei; Chang, Li-Yen; Wong, Won Fen

    2016-05-01

    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.

  7. Nicotine Alters the Proteome of Two Human Pancreatic Duct Cell Lines

    Science.gov (United States)

    Paulo, Joao A

    2015-01-01

    Context Cigarette smoking is a known risk factor of pancreatic disease. Nicotine - a major cigarette tobacco component - can traffic through the circulatory system and may induce fibrosis and metastasis, hallmarks of chronic pancreatitis and pancreatic adenocarcinoma, respectively. However, at the biomolecular level, particularly in pancreatic research, the effects of nicotine remain unresolved. Methods The effects of nicotine on the proteomes of two pancreatic duct cell lines–an immortalized normal cell line (HPNE) and a cancer cell line (PanC1)- were investigated using mass spectrometry-based proteomics. For each cell line, the global proteomesof cells exposed to nicotine for 24 hrswere compared with untreated cells in triplicate using 6-plex tandem mass tag-based isobaric labeling techniques. Results Over 5,000 proteins were detectedper cell line. Of these, over 900 proteins were differentially abundant with statistical significance (corrected p-value <0.01) upon nicotine treatment, 57 of which were so in both cell lines. Amyloid precursor protein, previously observed to increase expression in pancreatic stellate cells when exposed to nicotine, was also up-regulated in both cell lines.In general, the two cell lines varied in the classes of proteins altered by nicotine treatment, supporting published evidence that nicotine may play different roles in the initiation and progression of pancreatic disease. Conclusions Understanding the underlying mechanisms associating nicotine with pancreatic function is paramount to intervention aiming to retard, arrest, or ameliorate pancreatic disease. PMID:25262714

  8. Cell surface engineering of mesenchymal stem cells.

    Science.gov (United States)

    Sarkar, Debanjan; Zhao, Weian; Gupta, Ashish; Loh, Wei Li; Karnik, Rohit; Karp, Jeffrey M

    2011-01-01

    By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage

  9. Toluene Dose-Response and Preliminary Study of Proteomics for Neuronal Cell Lines

    Science.gov (United States)

    2015-07-01

    Index, 1989). It is widely used in commercial products for paints and paints thinner, nail polish, lacquers, and rust inhibitors. It is also a...fluorocarbon film bottom; this film is vapor permeable and allows toluene vapor to pass, thereby exposing the cells. For control exposures, the...use of vapor permeable Lumox® microplates as suitable culture vessels for toluene in the glass chamber. The quantitative proteomics identified

  10. Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells

    OpenAIRE

    Schenk, Laura K.; Bolger, Steven J.; Luginbuhl, Kelli; Gonzales, Patricia A.; Rinschen, Markus M.; Yu, Ming-Jiun; Hoffert, Jason D.; Pisitkun, Trairak; Knepper, Mark A.

    2012-01-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nucl...

  11. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the re...

  12. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    Science.gov (United States)

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  13. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Directory of Open Access Journals (Sweden)

    Reka A. Haraszti

    2016-11-01

    Full Text Available Extracellular vesicles (EVs, including exosomes and microvesicles (MVs, are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs. We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

  14. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Science.gov (United States)

    Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537

  15. Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    Science.gov (United States)

    Orr, Stephen J; Boutz, Daniel R; Wang, Rong; Chronis, Constantinos; Lea, Nicholas C; Thayaparan, Thivyan; Hamilton, Emma; Milewicz, Hanna; Blanc, Eric; Mufti, Ghulam J; Marcotte, Edward M; Thomas, N Shaun B

    2012-01-01

    Regulating the transition of cells such as T lymphocytes from quiescence (G0) into an activated, proliferating state involves initiation of cellular programs resulting in entry into the cell cycle (proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We show the first proteomic analysis of protein interaction networks activated during entry into the first cell cycle from G0. We also provide proof of principle that blastogenesis and proliferation programs are separable in primary human T cells. We employed a proteomic profiling method to identify large-scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes during the transition from G0 into the first cell cycle and mapped them to form functionally annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle without growing in size, or increase in size without entering the cell cycle. PMID:22415777

  16. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method.

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    Full Text Available The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia, KK47 (low grade nonmuscle invasive bladder cancer, NMIBC, and YTS1 (metastatic bladder cancer have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.

  17. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  18. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  19. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  20. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  1. Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells.

    Science.gov (United States)

    Troyer, Ryan M; Ruby, Carl E; Goodall, Cheri P; Yang, Liping; Maier, Claudia S; Albarqi, Hassan A; Brady, Jacqueline V; Bathke, Kallan; Taratula, Oleh; Mourich, Dan; Bracha, Shay

    2017-09-15

    Canine osteosarcoma (OSA) is the most common cancer of the appendicular skeleton and is associated with high metastatic rate to the lungs and poor prognosis. Recent studies have shown the impact of malignant-derived exosomes on immune cells and the facilitation of immune evasion. In the current study, we have characterized the proteomic profile of exosomes derived from healthy osteoblasts and osteosarcoma cell lines. We investigated the direct impact of these exosomes on healthy T cells. Proteomic cargo of the malignant exosomes was markedly different from osteoblastic exosomes and contained immunosuppressive proteins including TGF-β, α fetoprotein and heat shock proteins. OSA exosomes directly attenuated the rate of T cell proliferation, increased a regulatory (FoxP3+) CD4+ phenotype and diminished the expression of the activation marker CD25+ on CD8+ cells. Exosomes of osteoblasts also demonstrated a direct impact on T cells, but to a lesser degree. Osteosarcoma-derived exosomes compared to normal osteoblasts contain an immunomodulatory cargo, which reduced the rate of T cell proliferation and promoted T regulatory phenotype. Osteoblast-derived exosomes can also reduce T cell activity, but to lesser degree compared to OSA exosomes and without promoting a T regulatory phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A.

    Science.gov (United States)

    Cecconi, Daniela; Donadelli, Massimo; Rinalducci, Sara; Zolla, Lello; Scupoli, Maria Teresa; Scarpa, Aldo; Palmieri, Marta; Righetti, Pier Giorgio

    2007-05-01

    Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.

  3. Stepwise isolation of human peripheral erythrocytes, T lymphocytes, and monocytes for blood cell proteomics.

    Science.gov (United States)

    Brosseron, Frederic; May, Caroline; Schoenebeck, Bodo; Tippler, Bettina; Woitalla, Dirk; Kauth, Marion; Brockmann, Kathrin; Meyer, Helmut E; Berg, Daniela; Bufe, Albrecht; Marcus, Katrin

    2012-10-01

    Density gradient centrifugation and magnetic- or fluorescence-activated cell sorting are common and robust techniques for the isolation of different types of blood cells. In this article, we give detailed description of a stepwise application of these methods as one isolation strategy for enrichment of different cell types from one blood sample. The workflow targeted erythrocytes, monocytes, and T lymphocytes. Pancoll® density gradient centrifugation was used together with subsequent MACS™ isolation. Purity of monocytes and T lymphocytes was controlled by fluorescence-activated cell sorting analysis, and cells were used for carrier-ampholine-based 2D-PAGE to confirm compatibility of the procedure to standard proteomic applications. Gradient centrifugation resulted in an average of 125 μL of packed erythrocytes per milliliter blood. MACS™ sorting reached purities of 90 ± 2% (monocytes) and 93 ± 2% (T lymphocytes), with an average yield of 12 × 10(4) monocytes or T lymphocytes. 2D-PAGE of isolated cells showed well-separated spot patterns. A combined isolation holds substantial advantages especially in clinical studies, as it allows for the comparison of findings not only between individuals, but also between different cell types derived from one donor. Our approach ensured high reproducibility, yields, and purities of cells as required for reliable proteome analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200.

    Science.gov (United States)

    De Angelis, Maria; Siragusa, Sonya; Campanella, Daniela; Di Cagno, Raffaella; Gobbetti, Marco

    2015-07-01

    This study investigated the relative abundance of extracellular and cell wall associated proteins (exoproteome), cytoplasmic proteins (proteome), and related phenotypic traits of Lactobacillus plantarum grown under planktonic and biofilm conditions. Lactobacillus plantarum DB200 was preliminarily selected due to its ability to form biofilms and to adhere to Caco2 cells. As shown by fluorescence microscope analysis, biofilm cells became longer and autoaggregated at higher levels than planktonic cells. The molar ratio between glucose consumed and lactate synthesised was markedly decreased under biofilm compared to planktonic conditions. DIGE analysis showed a differential exoproteome (115 protein spots) and proteome (44) between planktonic and biofilm L. plantarum DB200 cells. Proteins up- or downregulated by at least twofold (p < 0.05) were found to belong mainly to the following functional categories: cell wall and catabolic process, cell cycle and adhesion, transport, glycolysis and carbohydrate metabolism, exopolysaccharide metabolism, amino acid and protein metabolisms, fatty acid and lipid biosynthesis, purine and nucleotide metabolism, stress response, oxidation/reduction process, and energy metabolism. Many of the above proteins showed moonlighting behavior. In accordance with the high expression levels of stress proteins (e.g., DnaK, GroEL, ClpP, GroES, and catalase), biofilm cells demonstrated enhanced survival under conditions of environmental stress.

  5. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  6. Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis

    Directory of Open Access Journals (Sweden)

    Moulédous Lionel

    2006-12-01

    Full Text Available Abstract Background Opiate addiction reflects plastic changes that endurably alter synaptic transmission within relevant neuronal circuits. The biochemical mechanisms of these adaptations remain largely unknown and proteomics-based approaches could lead to a broad characterization of the molecular events underlying adaptations to chronic drug exposure. Results Thus, we have started proteomic analyses of the effects of chronic morphine exposure in a recombinant human neuroblastoma SH-SY5Y clone that stably overexpresses the μ-opioid receptor. Cells were treated with morphine for 6, 24 and 72 hours, the proteins were separated by 2-D gel electrophoresis and stained with Coomassie blue, and the protein map was compared with that obtained from untreated cells. Spots showing a statistically significant variation were selected for identification using mass spectrometric analyses. Conclusion A total of 45 proteins were identified, including proteins involved in cellular metabolism, cytoskeleton organization, vesicular trafficking, transcriptional and translational regulation, and cell signaling.

  7. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Mohadeseh Mehrabian

    Full Text Available A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP, best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  8. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Science.gov (United States)

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  9. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black

    Directory of Open Access Journals (Sweden)

    Ngoc Q. Vuong

    2016-09-01

    Full Text Available Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, “Proteomic changes in human lung epithelial cells (A549 in response to carbon black and titanium dioxide exposures” (Vuong et al., 2016 [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  10. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen;

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...

  11. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo...

  12. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Science.gov (United States)

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; de Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-08-24

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS(E), was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017. Published by Elsevier B.V.

  13. Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    G. A. Martens

    2015-01-01

    Full Text Available The core proteomes of human and rat pancreatic beta cells were compared by label-free LC-MS/MS: this resulted in quantification of relative molar abundances of 707 proteins belonging to functional pathways of intermediary metabolism, protein synthesis, and cytoskeleton. Relative molar abundances were conserved both within and between pathways enabling the selection of a housekeeping network for geometric normalization and the analysis of potentially relevant differential expressions. Human beta cells differed from rat beta cells in their lower level of enzymes involved in glucose sensing (MDH1, PC, and ACLY and upregulation of lysosomal enzymes. Human cells also expressed more heat shock proteins and radical scavenging systems: apart from SOD2, they expressed high levels of H2O2-scavenger peroxiredoxin 3 (PRDX3, confirmed by microarray, Western blotting, and microscopy. Besides conferring lower susceptibility to oxidative stress to human cells PRDX3 might also play a role in physiological redox regulation as, in rat, its expression was restricted to a beta cell subset with higher metabolic glucose responsiveness. In conclusion, although their core proteomic architecture is conserved, human and rat beta cells differ in their molar expression of key enzymes involved in glucose sensing and redox control.

  14. Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Tsai Sheng-Ta

    2012-11-01

    Full Text Available Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.

  15. The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells.

    Science.gov (United States)

    Henrich, Silke; Cordwell, Stuart J; Crossett, Ben; Baker, Mark S; Christopherson, Richard I

    2007-04-01

    Purification of organelles and analysis of their proteins is an important initial step for biological proteomics, simplifying the proteome prior to analysis by established techniques such as two-dimensional liquid chromatography (2-DLC) or two-dimensional gel electrophoresis (2-DE). Nuclear proteins play a central role in regulating gene expression, but are often under-represented in proteomic studies due to their lower abundance in comparison to cellular 'housekeeping' metabolic enzymes and structural proteins. A reliable procedure for separation and proteomic analysis of nuclear proteins would be useful for investigations of cell proliferation and differentiation during disease processes (e.g., human cancer). In this study, we have purified nuclei from the human Burkitt's lymphoma B-cell line, Raji, using sucrose density gradient centrifugation. The integrity and purity of the nuclei were assessed by light microscopy and proteins from the nuclear fractions were separated by 2-DE and identified using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). A total of 124 unique proteins were identified, of which 91% (n=110) were predicted to be nuclear using PSORT. Proteins from the nuclear fraction were subjected to affinity chromatography on DNA-agarose to isolate DNA-binding proteins. From this purified fraction, 131 unique proteins were identified, of which 69% (n=90) were known or predicted DNA-binding proteins. Purification of nuclei and subsequent enrichment of DNA-binding proteins allowed identification of a total of 209 unique proteins, many involved in transcription and/or correlated with lymphoma, leukemia or cancer in general. The data obtained should be valuable for identification of biomarkers and targets for cancer therapy, and for furthering our understanding of the molecular mechanisms underlying lymphoma development and progression.

  16. Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo.

    Science.gov (United States)

    Lombard-Banek, Camille; Moody, Sally A; Nemes, Peter

    2016-02-12

    We advance mass spectrometry from a cell population-averaging tool to one capable of quantifying the expression of diverse proteins in single embryonic cells. Our instrument combines capillary electrophoresis (CE), electrospray ionization, and a tribrid ultrahigh-resolution mass spectrometer (HRMS) to enable untargeted (discovery) proteomics with ca. 25 amol lower limit of detection. CE-μESI-HRMS enabled the identification of 500-800 nonredundant protein groups by measuring 20 ng, or frog (Xenopus laevis) embryo, amounting to a total of 1709 protein groups identified between n=3 biological replicates. By quantifying ≈150 nonredundant protein groups between all blastomeres and replicate measurements, we found significant translational cell heterogeneity along multiple axes of the embryo at this very early stage of development when the transcriptional program of the embryo has yet to begin.

  17. Proteomic analysis of bovine blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille Linnert; Grøndahl, Marie Louise; Beck, Hans Christian

    2014-01-01

    by micromanipulation. From two independent replicates, 23 proteins were identified in the blastocoel fluid while 803 proteins were identified in the remaining cell material. The proteins were grouped into categories according to their gene ontology (GO) terms by which proteins involved in cell differentiation, cell......Abstract The understanding of the early mammalian development is a prerequisite for the advancement of in vitro fertilization and improvement of derivation and culturing of embryonic stem cells. While, whole genome transcriptomic analysis on bovine blastocysts has identified genes active in early...

  18. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Paul, Sinu; Schommer, Nina

    2016-01-01

    or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably...... as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially...

  19. Biochemistry, proteomics and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    Directory of Open Access Journals (Sweden)

    Jesper Foged Havelund

    2013-03-01

    Full Text Available Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents (NAD(PH and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified.

  20. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations.

    Science.gov (United States)

    Nie, Song; McDermott, Sean P; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S; Lubman, David M

    2015-11-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics.

  1. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  2. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco|info:eu-repo/dai/nl/328200859; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  3. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.; Slijper, M.

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. T

  4. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.; Slijper, M.

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. T

  5. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    DEFF Research Database (Denmark)

    Havelund, Jesper; Thelen, Jay J.; Møller, Ian Max

    2013-01-01

    Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents (NAD(P)H) and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized...... functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification...... of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures...

  6. Proteomic and phosphoproteomic comparison of human ES and iPS cells.

    Science.gov (United States)

    Phanstiel, Douglas H; Brumbaugh, Justin; Wenger, Craig D; Tian, Shulan; Probasco, Mitchell D; Bailey, Derek J; Swaney, Danielle L; Tervo, Mark A; Bolin, Jennifer M; Ruotti, Victor; Stewart, Ron; Thomson, James A; Coon, Joshua J

    2011-01-01

    Combining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells. Merging these results with RNA-seq analysis data, we found functionally related differences across each tier of regulation. We also introduce the Stem Cell-Omics Repository (SCOR), a resource to collate and display quantitative information across multiple planes of measurement, including mRNA, protein and post-translational modifications.

  7. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease*

    Science.gov (United States)

    Bigaud, Emilie; Corrales, Fernando J.

    2016-01-01

    Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg242 and Arg256 in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27kip1. The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957). PMID:26819315

  8. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes.

    Science.gov (United States)

    Shi, Haibin; Zhang, Chong-Jing; Chen, Grace Y J; Yao, Shao Q

    2012-02-15

    Protein kinases (PKs) play an important role in the development and progression of cancer by regulating cell growth, survival, invasion, metastasis, and angiogenesis. Dasatinib (BMS-354825), a dual Src/Abl inhibitor, is a promising therapeutic agent with oral bioavailability. It has been used for the treatment of imatinib-resistant chronic myelogenous leukemia (CML). Most kinase inhibitors, including Dasatinib, inhibit multiple cellular targets and do not possess exquisite cellular specificity. Recent efforts in kinase research thus focus on the development of large-scale, proteome-wide chemical profiling methods capable of rapid identification of potential cellular (on- and off-) targets of kinase inhibitors. Most existing approaches, however, are still problematic and in many cases not compatible with live-cell studies. In this work, we have successfully developed a cell-permeable kinase probe (DA-2) capable of proteome-wide profiling of potential cellular targets of Dasatinib. In this way, highly regulated, compartmentalized kinase-drug interactions were maintained. By comparing results obtained from different proteomic setups (live cells, cell lysates, and immobilized affinity matrix), we found DA-2 was able to identify significantly more putative kinase targets. In addition to Abl and Src family tyrosine kinases, a number of previously unknown Dasatinib targets have been identified, including several serine/threonine kinases (PCTK3, STK25, eIF-2A, PIM-3, PKA C-α, and PKN2). They were further validated by pull-down/immunoblotting experiments as well as kinase inhibition assays. Further studies are needed to better understand the exact relevance of Dasatinib and its pharmacological effects in relation to these newly identified cellular targets. The approach developed herein should be amenable to the study of many of the existing reversible drugs/drug candidates.

  9. Proteomic changes resulting from gene copy number variations in cancer cells.

    Directory of Open Access Journals (Sweden)

    Tamar Geiger

    2010-09-01

    Full Text Available Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression--the level of proteins--is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts.

  10. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects.

    Science.gov (United States)

    Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-04-18

    Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption.

  11. Inference Method for Developing Mathematical Models of Cell Signaling Pathways Using Proteomic Datasets.

    Science.gov (United States)

    Tian, Tianhai; Song, Jiangning

    2017-01-01

    The progress in proteomics technologies has led to a rapid accumulation of large-scale proteomic datasets in recent years, which provides an unprecedented opportunity and valuable resources to understand how living organisms perform necessary functions at systems levels. This work presents a computational method for designing mathematical models based on proteomic datasets. Using the mitogen-activated protein (MAP) kinase pathway as the test system, we first develop a mathematical model including the cytosolic and nuclear subsystems. A key step of modeling is to apply a genetic algorithm to infer unknown model parameters. Then the robustness property of mathematical models is used as a criterion to select appropriate rate constants from the estimated candidates. Moreover, quantitative information such as the absolute protein concentrations is used to further refine the mathematical model. The successful application of this inference method to the MAP kinase pathway suggests that it is a useful and powerful approach for developing accurate mathematical models to gain important insights into the regulatory mechanisms of cell signaling pathways.

  12. Evening and morning alterations in Obstructive Sleep Apnea red blood cell proteome

    Directory of Open Access Journals (Sweden)

    Amélia Feliciano

    2017-04-01

    Full Text Available This article presents proteomics data referenced in [1] Using proteomics-based evaluation of red blood cells (RBCs, we have identified differentially abundant proteins associated with Obstructive Sleep Apnea Syndrome (OSA. RBCs were collected from peripheral blood of patients with moderate/severe OSA or snoring at pre- (evening and post-night (morning polysomnography, so that proteome variations between these time points could be assessed. RBC cytoplasmic fraction depleted of hemoglobin, using Hemovoid™ system, were analyzed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE, the 2D image software-based analyzed and relevant differentially abundant proteins identified by mass spectrometry (MS. MS identified 31 protein spots differentially abundant corresponding to 21 unique proteins possibly due to the existence of post-translational modification regulations. Functional analysis by bioinformatics tools indicated that most proteins are associated with catalytic, oxidoreductase, peroxidase, hydrolase, ATPase and anti-oxidant activity. At morning a larger numbers of differential proteins including response to chemical stimulus, oxidation reduction, regulation of catalytic activity and response to stress were observed in OSA. The data might support further research in OSA biomarker discovery and validation.

  13. A novel method for sample preparation of fresh lung cancer tissue for proteomics analysis by tumor cell enrichment and removal of blood contaminants

    OpenAIRE

    Orre Lotta; Bergman Per; Elmberger Göran; Pernemalm Maria; De Petris Luigi; Lewensohn Rolf; Lehtiö Janne

    2010-01-01

    Abstract Background In-depth proteomics analyses of tumors are frequently biased by the presence of blood components and stromal contamination, which leads to large experimental variation and decreases the proteome coverage. We have established a reproducible method to prepare freshly collected lung tumors for proteomics analysis, aiming at tumor cell enrichment and reduction of plasma protein contamination. We obtained enriched tumor-cell suspensions (ETS) from six lung cancer cases (two ade...

  14. Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells.

    Science.gov (United States)

    de Roos, Baukje; Duthie, Susan J; Polley, Abigael C J; Mulholland, Francis; Bouwman, Freek G; Heim, Carolin; Rucklidge, Garry J; Johnson, Ian T; Mariman, Edwin C; Daniel, Hannelore; Elliott, Ruan M

    2008-06-01

    This study was designed to develop, optimize and validate protocols for blood processing prior to proteomic analysis of plasma, platelets and peripheral blood mononuclear cells (PBMC) and to determine analytical variation of a single sample of depleted plasma, platelet and PBMC proteins within and between four laboratories each using their own standard operating protocols for 2D gel electrophoresis. Plasma depleted either using the Beckman Coulter IgY-12 proteome partitioning kit or the Amersham albumin and IgG depletion columns gave good quality gels, but reproducibility appeared better with the single-use immuno-affinity column. The use of the Millipore Filter Device for protein concentration gave a 16% ( p appears as a single abundant spot. The average within-laboratory coefficient of variation (CV) for each of the matched spots after automatic matching using either PDQuest or ProteomWeaver software ranged between 18 and 69% for depleted plasma proteins, between 21 and 55% for platelet proteins, and between 22 and 38% for PBMC proteins. Subsequent manual matching improved the CV with on average between 1 and 16%. The average between laboratory CV for each of the matched spots after automatic matching ranged between 4 and 54% for depleted plasma proteins, between 5 and 60% for platelet proteins, and between 18 and 70% for PBMC proteins. This variation must be considered when designing sufficiently powered studies that use proteomics tools for biomarker discovery. The use of tricine in the running buffer for the second dimension appears to enhance the resolution of proteins especially in the high molecular weight range.

  15. Differential Proteomics in Malignant and Normal Liver Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-jun; WANG Bin; YAN Zhi-yong; QIAN Dong-meng; SONG Xu-xia; Ding Shou-yi; BAI Zhi-qiang

    2007-01-01

    Objective: To detect differential protein expression in malignant and normal liver cell lines in vitro using the SELDI ProteinChip platform, for investigating the pathogenesis of liver cancer. Methods: Two cell lines, human normal liver cell line L02 and hepatoma cell line SMMC-7721 were cultured routinely, harvested in good condition and lysed. After quantification, the supernatant of the lysate was tested by IMAC3 (Immobilized Mental Affinity Capture) and WCX2 (Weak Cation Exchange) chips on the SELDI-TOF-MS ProteinChip reader. Results: Protein expression differed between the malignant and normal liver cell lines. A total of 20 differentially expressed proteins were found, among which, 7 were captured by the IMAC3 chip and 14 by the WCX2 chip. Peaks at 5,419, 7,979 and 11,265 Da were higher and at 8,103, 8,492, 10,160 and 11,304 Da lower in SMMC-7721 cells by the IMAC3 chip; peaks at 7,517, 7,945 and 7,979 Da were higher and at 5,061, 5,551, 5,818, 7,439, 9,401,10,100, 10,312, 11,621, 11,662, 11,830 and 12,772 Da lower in SMMC-7721 cells by the WCX2 chip. Interestingly, both chips captured the 7,979 Da peak. In addition, the 11,081 Da peak corresponded precisely with the molecular mass of the calcium binding protein S100A10, which may participate in the formation of liver cancer in association with p36. Conclusion: Detecting differential protein expression in malignant and normal liver cell lines using the SELDI ProteinChip platform was simple, sensitive and repeatable. The results we obtained can serve as a basis for investigating the pathogenesis of liver cancer and aid the discovery of new therapeutic targets.

  16. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix

    Directory of Open Access Journals (Sweden)

    Cotter Finbarr E

    2009-08-01

    Full Text Available Abstract Background Down syndrome (DS, caused by trisomy of human chromosome 21 (HSA21, is the most common genetic birth defect. Congenital heart defects (CHD are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. Results Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21. We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. Conclusion This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.

  17. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kristin Surmann

    2016-06-01

    Full Text Available To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP encoding a continuously expressed green fluorescent protein (GFP. Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed. Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC–MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]. They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  18. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells.

    Science.gov (United States)

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Dhople, Vishnu M; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2016-06-01

    To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  19. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  20. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    Science.gov (United States)

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  1. Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells.

    Science.gov (United States)

    Wurpel, Daniël J; Totsika, Makrina; Allsopp, Luke P; Webb, Richard I; Moriel, Danilo G; Schembri, Mark A

    2016-01-10

    Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI.

  2. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Science.gov (United States)

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  3. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mariola J Edelmann

    Full Text Available Copper (II oxide (CuO nanoparticles (NP are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  4. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    OpenAIRE

    Wang, Hualin; ZHANG Jing; Sit, Wai-Hung; Lee, Chung-Yung Jetty; Wan, Jennifer Man-Fan

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The...

  5. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    Science.gov (United States)

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  6. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells.

    Science.gov (United States)

    Liu, Zhenke; Dai, Shujia; Bones, Jonathan; Ray, Somak; Cha, Sangwon; Karger, Barry L; Li, Jingyi Jessica; Wilson, Lee; Hinckle, Greg; Rossomando, Anthony

    2015-01-01

    A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.

  7. Proteomic analysis of cervical cancer cells treated with suberonylanilide hydroxamic acid

    Indian Academy of Sciences (India)

    Jianxiong He; Canhua Huang; Aiping Tong; Bin Chen; Zhi Zeng; Peng Zhang; Chunting Wang; Yuquan Wei

    2008-12-01

    Suberonylanilide hydroxamic acid (SAHA) is an orally administered histone deacetylase inhibitor (HDACI) that has shown significant antitumour activity in a variety of tumour cells. To identify proteins involved in its antitumour activity, we utilized a proteomic approach to reveal protein expression changes in the human cervical cancer cell line HeLa following SAHA treatment. Protein expression profiles were analysed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. As a result, a total of nine differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue (CBB) staining. Further, all the changed proteins were positively identified via mass spectrometry (MS)/MS analysis. Of these, PGAM1 was significantly downregulated in HeLa cells after treatment with SAHA. Moreover, PGAM1 has been proven to be downregulated in another cervical cancer cell line (CaSki) by western blot analysis. Together, using proteomic tools, we identified several differentially expressed proteins that underwent SAHA-induced apoptosis. These changed proteins may provide some clues to a better understanding of the molecular mechanisms underlying SAHA-induced apoptosis in cervical cancer.

  8. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    Science.gov (United States)

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  9. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Nuno Carinhas

    Full Text Available Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.

  10. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2016-08-01

    Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  11. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    Science.gov (United States)

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  12. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Chen Zhaojun; Li Huanrong; Zhang Guanglin [The First Affiliated Hospital, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058 (China); Li Feng [The First Renmin Hospital, Houma, Shanxi 043000 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [The First Affiliated Hospital, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang 310036 (China)

    2012-03-01

    Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10 {mu}M benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10 {mu}M) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1 {mu}M and 10 {mu}M BaP-treated groups, 2 in the 0.1 {mu}M and 10 {mu}M BaP-treated groups, 4 in the 0.1 {mu}M and 1 {mu}M BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.

  13. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Petersen, Jørgen; Völlner, Florian

    2009-01-01

    proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins...... is associated with actin-bundling and defence against oxidative cellular stress, whereas down-regulated proteins were associated with collagen biosynthesis. Bioinformatic analyses of the entire data set confirmed these findings that represent significant steps towards the understanding of DFPC differentiation....... The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic...

  14. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    Science.gov (United States)

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  15. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    Directory of Open Access Journals (Sweden)

    Kuster Niels

    2010-10-01

    Full Text Available Abstract Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Results Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE. There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed. These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Conclusions Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the

  16. 309 proteomic analysis of the blastocoel fluid and remaining cells of bovine blastocysts

    DEFF Research Database (Denmark)

    Jensen, P L; Groendahl, M L; Beck, Helle

    2012-01-01

    Human embryonic stem cells (hESC) are derived from the human blastocyst and possess the potential to differentiate into any cell type present in the adult human body. Human ESC are considered to have great potential in regenerative medicine for the future treatment of severe diseases and conditions...... the proteome of the blastocoel fluid and the remaining cells of bovine blastocysts. Bovine blastocysts were produced by in vitro fertilization of oocytes retrieved from slaughterhouse ovaries. The blastocoel from 195 blastocysts (1-8nL per blastocyst) were isolated by micromanipulation and analysed by nano......-HPLC tandem mass spectrometry along with the remaining cells of the blastocyst. Searching the mass spectrometry data against a combined bovine database (SwissProt/TrEMBL), we identified 263 proteins in the blastocoel fluid and 1606 proteins in the cellular compartment of the blastocyst. A Venn diagram showed...

  17. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...

  18. Cell Type-Specific Effects of Mutant DISC1: A Proteomics Study.

    Science.gov (United States)

    Xia, Meng; Broek, Jantine A C; Jouroukhin, Yan; Schoenfelder, Jeannine; Abazyan, Sofya; Jaaro-Peled, Hanna; Sawa, Akira; Bahn, Sabine; Pletnikov, Mikhail

    2016-05-01

    Despite the recent progress in psychiatric genetics, very few studies have focused on genetic risk factors in glial cells that, compared to neurons, can manifest different molecular pathologies underlying psychiatric disorders. In order to address this issue, we studied the effects of mutant disrupted in schizophrenia 1 (DISC1), a genetic risk factor for schizophrenia, in cultured primary neurons and astrocytes using an unbiased mass spectrometry-based proteomic approach. We found that selective expression of mutant DISC1 in neurons affects a wide variety of proteins predominantly involved in neuronal development (e.g., SOX1) and vesicular transport (Rab proteins), whereas selective expression of mutant DISC1 in astrocytes produces changes in the levels of mitochondrial (GDPM), nuclear (TMM43) and cell adhesion (ECM2) proteins. The present study demonstrates that DISC1 variants can perturb distinct molecular pathways in a cell type-specific fashion to contribute to psychiatric disorders through heterogenic effects in diverse brain cells.

  19. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2

    NARCIS (Netherlands)

    Stierum, R.; Gaspari, M.; Dommels, Y.; Ouatas, T.; Pluk, H.; Jespersen, S.; Vogels, J.; Verhoeckx, K.; Groten, J.; Ommen, B. van

    2003-01-01

    Here, we describe a proteomics approach to study protein expression changes in differentiating Caco-2 cells. Caco-2 is a colorectal carcinoma cell line, which upon differentiation loses its tumorigenic phenotype and displays characteristics of mature enterocytes, including brush borders with microvi

  20. Proteomic analysis of mouse thymoma EL4 cells treated with bis (tri-n-butyltin)oxide (TBTO)

    NARCIS (Netherlands)

    Osman, A.M.; Kol, S.; Peijnenburg, A.A.C.M.; Blokland, M.H.; Pennings, J.L.A.; Kleinjans, J.C.S.; Loveren, van H.

    2009-01-01

    Here, we report the results of proteomic analysis of the mouse thymoma EL4 cell line exposed to bis(tri-n-butylin)oxide (TBTO), an immunotoxic organotin compound. The objective of the work was to examine whether TBTO affects the expression of proteins in this cell line and to compare the differentia

  1. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation.

    Science.gov (United States)

    Graessel, Anke; Hauck, Stefanie M; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B; Suttner, Kathrin

    2015-08-01

    Naive CD4(+) T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4(+) T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4(+) T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4(+) T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4(+) T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation*

    Science.gov (United States)

    Graessel, Anke; Hauck, Stefanie M.; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B.; Suttner, Kathrin

    2015-01-01

    Naive CD4+ T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. PMID:25991687

  3. SILAC Proteomics of Planarians Identifies Ncoa5 as a Conserved Component of Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexander Böser

    2013-11-01

    Full Text Available Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA, which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  4. Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands.

    Directory of Open Access Journals (Sweden)

    Raluca Stiubea-Cohen

    Full Text Available Salivary glands (SGs are irreversibly damaged by irradiation (IR treatment in head and neck cancer patients. Here, we used an animal irradiation model to investigate and define the molecular mechanisms affecting SGs following IR, focusing on saliva proteome and global transcription profile of submandibular salivary gland (SSG tissue.We show that saliva secretion was gradually reduced to 50% of its initial level 12 weeks post-IR. Saliva protein composition was further examined by proteomic analysis following mass spectrometry (MS analysis that revealed proteins with reduced expression originating from SSGs and proteins with increased expression derived from the serum, both indicating salivary tissue damage. To examine alterations in mRNA expression levels microarray analysis was performed. We found significant alterations in 95 genes, including cell-cycle arrest genes, SG functional genes and a DNA repair gene.Tissue damage was seen by confocal immunofluorescence of α-amylase and c-Kit that showed an increase and decrease, respectively, in protein expression. This was coherent with real-time PCR results.This data indicates that IR damages the SSG cells' ability to produce and secrete saliva and proteins, and maintain the physiological barrier between serum and saliva. The damage does not heal due to cell-cycle arrest, which prevents tissue regeneration. Taken together, our results reveal a new insight into IR pathobiology.

  5. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    Science.gov (United States)

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  7. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride.

    Science.gov (United States)

    Zhou, Gang; Shi, Qing-shan; Huang, Xiao-mo; Xie, Xiao-bao

    2016-02-05

    Calcium ions are well-known as intracellular second messengers that also have an important extracellular structural role for bacteria. Recently, we found that denser biofilms were formed by Citrobacter werkmanii BF-6 in the presence of 400 mM Ca(2+) than that of 12.5mM Ca(2+). Therefore, we employed two-dimensional (2-D) electrophoresis methods to investigate the proteome profiles of planktonic cells and biofilms in BF-6 under different concentrations of Ca(2+). Meanwhile, BF-6 biofilm architecture was also visualized with confocal laser scanning microscopy (CLSM). The results demonstrated that BF-6 biofilms formed at the bottom of microtiter plates when grown in the presence of 400 mM Ca(2+). A total of 151 proteins from planktonic cells and biofilms after exposure of BF-6 cells to 12.5 and 400 mM Ca(2+) were successfully identified. Different gene ontology (GO) and KEGG pathways were categorized and enriched for the above proteins. Growth in the presence of 400 mM Ca(2+) induced more complex signal pathways in BF-6 than 12.5mM Ca(2+). In addition, the biofilm architectures were also affected by Ca(2+). Our results show two different modes of biofilm enhancement for C. werkmanii in the presence of excess Ca(2+) and provide a preliminary expression of these differences based on proteomic assays.

  8. Proteomics profile changes in cisplatin-treated human ovarian cancer cell strain

    Institute of Scientific and Technical Information of China (English)

    LI Zhengyu; ZHAO Xia; YANG Jinliang; WEI Yuquan

    2005-01-01

    To compare the alterations in proteomes between cisplatin-treated and -untreated human ovarian cancer SKOV3 cells, and to explore the feasibility of proteomics in research about antitumor mechanisms of agents, SKOV3 cells were exposed to cisplatin (6 μg/mL) for 6 h. Then, the cells were collected and solubilized and global proteins were extracted by lysis buffer; two-dimensional electrophoresis was conducted with the IPG readystrips as carriers; the gels were stained with Coomassie blue and alterations between gels were compared by PDQuest. Eventually, 11 spots with significant differences were selected and excised and the proteins were identified by PMF and MS/MS analysis. The results revealed that exposure to cisplatin could notably increase expressions of some proteins, such as tropomyosin family, actin family, triosephosphate isomerase family, and HSP60, etc.; while expressions of some other proteins decreased, such as enolase family, etc. Those proteins were involved in cellular energy metabolism, transformation, apoptosis and morphologic maintenance, which suggested that alterations of those physiological processes might be involved in anti-tumor mechanism of cisplatin.

  9. Proteomic analysis of liver plasma membrane from hepatitis B surface antigen transgenic mice

    Institute of Scientific and Technical Information of China (English)

    贾小芳

    2012-01-01

    Objective To explore the differential liver plasma membrane( PM) proteins that may be related to the occurrence,development and reversal process of hepatitis and to understand the pathogenesis of hepatitis and the new drug targets by performing a comparative proteomics research of liver PM between

  10. Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-zheng; PANG Bo; YANG Bo; ZHOU Jian-guang; SUN Ying-hao

    2011-01-01

    Background Although the introduction of serum prostate-specific antigen (PSA) measurements into clinical practice has revolutionized the care of patients with prostate cancer,there are well-recognized limitations of PSA,and there is a critical need to identify additional prostate cancer biomarkers to assist in early detection and prognosis.In this regard,high resolution proteomic technology has the unexceptionable superiority to find those high abundance biomarkers.The purpose of this study was to search new tumor markers by proteomic technology.Methods The proteins in conditioned medium (CM) of BPH-1 and LNCaP cells were profiled by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS).The corresponding mRNA levels of some identified proteins were analyzed by RT-PCR.Results Totally 11 differentially expressed proteins (6 up-regulated including creatine kinase,brain (CKB),triosephosphate isomerase 1 (TPI1),isocitrate dehydrogenase 2 (IDH2) and 5 down-regulated including glutathione S-transferase pi (GST-pi)) in the CM were identified using MALDI-TOF-MS and database search.The expression pattern between mRNA and CM protein levels of CKB,IDH2,TPI1 and GST-pi in BPH-1 and LNCaP was similar.Conclusion We proved a feasible and effective way to search new tumor markers by a proteomics-based strategy and identified 11 potentially useful proteins in CM of BPH-1 and LNCaP cells to distinguish prostate cancer from benign prostatic hypertrophy.

  11. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    Directory of Open Access Journals (Sweden)

    C. Chhuon

    2016-12-01

    We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article “Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells” (Chhuon et al., in press [1].

  12. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  13. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  14. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  15. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    Science.gov (United States)

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS

  16. H Ferritin Gene Silencing in a Human Metastatic Melanoma Cell Line: A Proteomic Analysis

    DEFF Research Database (Denmark)

    Di Sanzo, Maddalena; Gaspari, Marco; Misaggi, Roberta

    2011-01-01

    and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled...... by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement...... of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma....

  17. Comparison of Normal and Breast Cancer Cell lines using Proteome, Genome and Interactome data

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, Anil J.; Strittmatter, Eric F.; Camp, David G.; Smith, Richard D.; Pallavicini, Maria

    2005-12-01

    Normal and cancer cell line proteomes were profiled using high throughput mass spectrometry techniques. Application of both protein-level and peptide-level sample fractionation combined with LC-MS/MS analysis enabled the confident identification of 2,235 unmodified proteins representing a broad range of functional and compartmental classes. An iterative multi-step search strategy was used to identify post-translational modifications and detected several proteins that are preferentially modified in cancer cells. Information regarding both unmodified and modified protein forms was combined with publicly available gene expression and protein-protein interaction data. The resulting integrated dataset revealed several functionally related proteins that are differentially regulated between normal and cancer cell lines.

  18. Proteomic analysis of proteins associated with tt-DDE induced toxicity in BEAS-2B cells.

    Science.gov (United States)

    Lin, Pin-Pin; Yang, Ming-Hui; Liao, Pao-Chi; Wu, Hsin-Yi; Chang, Louis W; Tsai, Hui-Ti; Tyan, Yu-Chang

    2008-11-21

    Trans, trans-2,4-decadienal (tt-DDE), a specific type of dienaldehyde, is abundant in heated oils or cooking oil fumes. Ingestion of heated oils and exposure to cooking oil fumes has been suggested to have a great health impact in a variety of organs, including the lungs. Previous studies have demonstrated that acute exposures to high doses of tt-DDE have induced oxidative stress, genotoxicity, and cytotoxicity in human lung cells. The objective in utilizing proteomic techniques of this study was to identify protein biomarkers associated with tt-DDE-induced oxidative stress and cytotoxicity in human bronchial epithelial cells BEAS-2B. Experimental results suggested that DJ-1 and cofilin proteins were protein biomarkers for tt-DDE-induced cytotoxicity and oxidative stress in lung cells. DJ-1 was especially an early biomarker for tt-DDE exposure.

  19. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    Science.gov (United States)

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  20. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Sharon J Pitteri

    Full Text Available The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery.We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease.Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers.

  1. Platelet proteomics.

    Science.gov (United States)

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  2. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    Science.gov (United States)

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-06

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells.

  3. A comparative proteome analysis of Escherichia coli DeltarelA mutant cells

    Directory of Open Access Journals (Sweden)

    Sónia Carneiro

    2016-10-01

    Full Text Available The bacterial RelA-dependent stringent response exerts a strong influence over a wide variety of processes. In this work, the impact of the relA gene mutation in E. coli cells was evaluated by a quantitative proteomics analysis, employing stable-isotope labelling and high resolution mass spectrometry. Chemostat cultures of E. coli W3110 and ∆relA mutant strains were performed at two dilution rates (0.1 and 0.2 h-1 to assess the influence of the relA gene mutation in steady-state protein levels. A total of 121 proteins showed significant alterations in their abundance when comparing the proteome of mutant to wild-type cells. The relA gene mutation induced changes on key cellular processes, including the amino acids and nucleotide biosynthesis, the lipid metabolism, transport activities, transcription and translation processes and responses to stress. Furthermore, some of those changes were more pronounced under specific growth conditions, as the most significant differences in protein ratios were observed at one of the dilution rates. An effect of the relA gene mutation in the acetate overflow was also observed, which confers interesting characteristics to this mutant strain that could be useful in the production of recombinant proteins. Overall, these results provide a valuable insight into the E. coli stringent response under defined steady-state conditions, suggesting that this stress response might influence multiple metabolic processes like the acetate overflow or the catabolite repression.

  4. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.

    Science.gov (United States)

    Dadakova, K; Havelkova, M; Kurkova, B; Tlolkova, I; Kasparovsky, T; Zdrahal, Z; Lochman, J

    2015-04-24

    Gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine resulting in significant reductions in yield and fruit quality. In order to examine the molecular mechanisms that characterize the interaction between B. cinerea and the host plant, the grapevine cytoplasmic proteome was analyzed by two-dimensional polyacrylamide gel electrophoresis. The interaction between Vitis vinifera cv. Gamay cells and B. cinerea was characterized by the increase in spot abundance of 30 proteins, of which 21 were successfully identified. The majority of these proteins were related to defence and stress responses and to cell wall modifications. Some of the modulated proteins have been previously found to be affected by other pathogens when they infect V. vinifera but interestingly, the proteins related to cell wall modification that were influenced by B. cinerea have not been shown to be modulated by any other pathogen studied to date. Transcript analysis using the quantitative real time polymerase chain reaction additionally revealed the up-regulation of several acidic, probably extracellular, chitinases. The results indicate that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are likely to be important mechanisms in the defence of grapevine against B. cinerea. Although gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine, little information is available about proteomic changes in this pathosystem. These results suggest that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are important molecular mechanisms in the defence of grapevine against B. cinerea. Surprisingly, the proteins related to cell wall modification that were modulated by B. cinerea have not been shown to be affected by any other pathogen studied to date. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

    Science.gov (United States)

    Pickering, Christina M; Grady, Cameron; Medvar, Barbara; Emamian, Milad; Sandoval, Pablo C; Zhao, Yue; Yang, Chin-Rang; Jung, Hyun Jun; Chou, Chung-Lin; Knepper, Mark A

    2016-02-01

    The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

  6. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  7. Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast.

    Science.gov (United States)

    Okada, Mitsuhiro; Kusunoki, Shunta; Ishibashi, Yuko; Kito, Keiji

    2017-06-01

    In budding yeast, a mother cell can produce a finite number of daughter cells over its life. The accumulation of a variety of types of damaged components has an impact on the aging process. Asymmetrical inheritance during cell division causes these aberrant intracellular constituents to be retained in mother cells and prevents them from segregating to daughter cells. However, the understanding of asymmetrical inheritance of individual proteins that are damaged or old age, and their relevance to the aging process, has been limited. The aim of this study is to propose a proteomics strategy for asymmetrical inheritance of preexisting proteins between mother and daughter cells. During synchronous culture for one generation, newly synthesized proteins were labeled with stable isotope amino acids to discriminate preexisting proteins originally expressed in mother cells, followed by separation of mother and daughter cells using a conventional method based on biotin labeling. Isotope incorporation ratios for individual proteins were quantified using mass spectrometry. We successfully identified 21 proteins whose preexisting versions were asymmetrically inherited in mother cells, including plasma membrane transporter involved in the aging process and organelle-anchoring proteins related to the stress response to misfolded proteins. Thus, our approach would be useful for making catalog of asymmetrically inherited proteins. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. A comparative proteomics study on matrix vesicles of osteoblast-like Saos-2 and U2-OS cells.

    Science.gov (United States)

    Jiang, Liang; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Zhou, Xiaoying; Han, Jinxiang

    2013-05-01

    Matrix vesicles (MVs) play an important role in the initial stage of the process of bone mineralization, and are involved in multiple rare skeletal diseases with pathological mineralization or calcification. The aim of the study was to compare the proteomic profiling of osteoblast-like cells with and without mineralization ability (Saos-2 and U2-OS), and to identify novel mineralization-associated MV proteins. MVs were extracted using ExoQuick solution from mineralization-induced Saos-2 and U2-OS cells, and then were validated by transmission electron microscopy. A label-free quantitative proteomic method was used to compare the protein profiling of MVs from Saos-2 and U2-OS cells. Western-blots were used to confirm the expression of MVs proteins identified in proteomic studies. In our proteomic studies, we identified that 89 mineralization-related proteins were significantly up-regulated in Saos-2 MVs compared with U2-OS MVs. We further validated that two MVs proteins, protein kinase C α and ras-related protein Ral-A, were up-regulated in MVs of Saos-2 cells compared to those of U2-OS cells under mineralization-induction. Our findings suggest that protein kinase C α and ras-related protein Ral-A might be involved in bone mineralization as MVs components.

  9. Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications

    Science.gov (United States)

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R.

    2014-06-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  10. Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution!

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2006-11-01

    Full Text Available Abstract Metabolic transformations of malignant cells are essential to the development and progression of all cancers. The understanding of the pathogenesis and progression of cancer requires the establishment of the altered genetic/metabolic factors that are essential to the development, growth, and proliferation of the malignant cells. Recognition of this important relationship has resulted in a resurgence of interest in the intermediary metabolism of tumor cells. The role of molecular genetics and proteomics and the application of molecular technology in assessing altered cellular metabolism has become a major area of biomedical research. The contemporary generation of biomedical scientists is exceptionally well trained in all areas of molecular biology and molecular technology, which are now important tools to be applied to the regulation of cellular intermediary metabolism. Simultaneously, the didactic and methodological training associated with the principles and operation of metabolic pathways, enzymology, cellular enzyme activity, and associated biochemical implications has been diminished and often eliminated from the pre- and post-doctoral programs. Interpretations and conclusions of alterations in cellular enzyme activity and associated metabolic pathways based on genetic/proteomic changes can and will result in misrepresentation of important metabolic implications in malignancy and other diseases. It is essential that the genetic/proteomic studies be coupled to biochemical/metabolic cellular events to satisfy the axiom: "genetic transformations and proteomic alterations will have little relevancy to disease processes if the genetic/proteomic alterations are not manifested in altered and impaired cellular and metabolic function". The appropriate marriage of molecular genetics/proteomics with the regulation of cellular intermediary metabolism will provide new revelations and understanding of malignancy that could not be achieved in

  11. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie

    2014-01-01

    contain regulated functions on their own. Collectively, we present a site-specific MMA dataset in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase......., transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers......The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein...

  12. Evaluation of preparation methods for MS-based analysis of intestinal epithelial cell proteomes

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius Cosmin; Bendixen, Emøke

    2015-01-01

    The gut epithelium formed between an organism and the environment plays an essential role in host–microbe interactions, yet remains one of the least characterized mammalian tissues. Especially the membrane proteins, which are critical to bacterial adhesion, are understudied, because these proteins...... are low in abundance, and large amounts of sample is needed for their preparation and for undertaking MS-based analysis. The aim of this study was to evaluate three different methods for isolation and preparation of pig intestinal epithelial cells for MS-based analysis of the proteome. Samples were...... of ease and speed of sample preparation, as well as protein recovery. In comparison, more gentle methods where intestinal epithelial cells are harvested by shaking are more time consuming, result in lower protein yield, and are prone to increased technical variation due to multiple steps involved....

  13. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T.G.; Prokhorova, Tatyana; Akimov, Vyacheslav

    2011-01-01

    To elucidate cellular events underlying the pluripotency of human embryonic stem cells (hESCs), we performed parallel quantitative proteomic and phosphoproteomic analyses of hESCs during differentiation initiated by a diacylglycerol analog or transfer to media that had not been conditioned...... by feeder cells. We profiled 6521 proteins and 23,522 phosphorylation sites, of which almost 50% displayed dynamic changes in phosphorylation status during 24 hours of differentiation. These data are a resource for studies of the events associated with the maintenance of hESC pluripotency and those...... accompanying their differentiation. From these data, we identified a core hESC phosphoproteome of sites with similar robust changes in response to the two distinct treatments. These sites exhibited distinct dynamic phosphorylation patterns, which were linked to known or predicted kinases on the basis...

  14. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    Science.gov (United States)

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  15. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs, which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  16. Surface-enhanced raman scattering surface selection rules for the proteomic liquid biopsy in real samples: Efficient detection of the oncoprotein c-MYC

    OpenAIRE

    2016-01-01

    NOTICE: This is the peer reviewed version of the following article: Elena Pazos, Manuel García-Algar, Cristina Penas, Moritz Nazarenus, Arnau Torruella, Nicolas Pazos-Perez, Luca Guerrini, M. Eugenio Vázquez, Eduardo Garcia-Rio*, José L. Macareñas* and Ramon A. Alvarez-Puebla* (2016), SERS Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC. J. Am. Chem. Soc., 138, 14206-14209 [DOI:10.1021/jacs.6b08957]. This article may be use...

  17. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    Science.gov (United States)

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. Results The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. Conclusion The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest. PMID:24872842

  18. Differential proteome analysis of human embryonic kidney cell line (HEK-293 following mycophenolic acid treatment

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-09-01

    Full Text Available Abstract Background Mycophenolic acid (MPA is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293 after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. Results The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1 showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%, chromatin structure/dynamics (17% and energy production/conversion (17%. Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. Conclusion The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to

  19. Dynamic changes in the proteome of human peripheral blood mononuclear cells with low dose ionizing radiation.

    Science.gov (United States)

    Nishad, S; Ghosh, Anu

    2016-02-01

    Humans are continually exposed to ionizing radiation from natural as well as anthropogenic sources. Though biological effects of high dose radiation exposures have been well accepted, studies on low-to-moderate dose exposures (in the range of 50-500 mGy) have been strongly debated even as researchers continue to search for elusive 'radiation signatures' in humans. Proteins are considered as dynamic functional players that drive cellular responses. However, there is little proteomic information available in context of human exposure to ionizing radiation. In this study, we determined differential expressed proteins in G0 peripheral blood mononuclear cells (PBMCs) from healthy individuals 1h and 4h after 'ex vivo' exposure with two radiation doses (300 mGy and 1 Gy). Twenty-three proteins were found to be significantly altered in irradiated cells when compared to sham irradiated cells with fold change ± 1.5-fold (p ≤ 0.05), with only three proteins showing ≥ 2.5-fold change, either with dose or with time. Mass spectrometry analyses identified redox sensor protein, chloride intracellular channel protein 1 (CLIC-1), the antioxidant protein, peroxiredoxin-6 and the pro-survival molecular chaperone 78 KDa glucose regulated protein (GRP78) among the 23 modulated proteins. The mean coefficient of variation (CV) for the twenty-three radiation responsive protein spots was found to be 33.7% for 300 mGy and 48.3% for 1 Gy. We thus, conclude that the radiation proteomic response of G0 human PBMCs, which are in the resting stage of the cell cycle, involves moderate upregulation of protective mechanisms, with low inter-individual variability. This study will help further our understanding of cellular effects of low dose acute radiation in humans and contribute toward differential biomarker discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC Detection: An Update

    Directory of Open Access Journals (Sweden)

    Rabia Sannam Khan

    2016-12-01

    Full Text Available Oral cancer refers to malignancies that have higher morbidity and mortality rates due to the late stage diagnosis and no early detection of a reliable diagnostic marker, while oral squamous cell carcinoma (OSCC is amongst the world’s top ten most common cancers. Diagnosis of cancer requires highly sensitive and specific diagnostic tools which can support untraceable hidden sites of OSCC, yet to be unleashed, for which plenty of biomarkers are identified; the most recommended biomarker detection medium for OSCC includes biological fluids, such as blood and saliva. Saliva holds a promising future in the search for new clinical biomarkers that are easily accessible, less complex, accurate, and cost effective as well as being a non-invasive technique to follow, by analysing the malignant cells’ molecular pathology obtained from saliva through proteomic, genomic and transcriptomic approaches. However, protein biomarkers provide an immense potential for developing novel marker-based assays for oral cancer, hence this current review offers an overall focus on the discovery of a panel of candidates as salivary protein biomarkers, as well as the proteomic tools used for their identification and their significance in early oral cancer detection.

  1. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC) Detection: An Update

    Science.gov (United States)

    Sannam Khan, Rabia; Khurshid, Zohaib; Akhbar, Shazia; Faraz Moin, Syed

    2016-01-01

    Oral cancer refers to malignancies that have higher morbidity and mortality rates due to the late stage diagnosis and no early detection of a reliable diagnostic marker, while oral squamous cell carcinoma (OSCC) is amongst the world’s top ten most common cancers. Diagnosis of cancer requires highly sensitive and specific diagnostic tools which can support untraceable hidden sites of OSCC, yet to be unleashed, for which plenty of biomarkers are identified; the most recommended biomarker detection medium for OSCC includes biological fluids, such as blood and saliva. Saliva holds a promising future in the search for new clinical biomarkers that are easily accessible, less complex, accurate, and cost effective as well as being a non-invasive technique to follow, by analysing the malignant cells’ molecular pathology obtained from saliva through proteomic, genomic and transcriptomic approaches. However, protein biomarkers provide an immense potential for developing novel marker-based assays for oral cancer, hence this current review offers an overall focus on the discovery of a panel of candidates as salivary protein biomarkers, as well as the proteomic tools used for their identification and their significance in early oral cancer detection. PMID:28248250

  2. Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes

    Science.gov (United States)

    Park, Yun-Jong; Koh, Jin; Kwon, Jin Teak; Park, Yong-Seok; Yang, Lijun; Cha, Seunghee

    2017-01-01

    Severe xerostomia (dry mouth) compromises the quality of life in patients with Sjögren’s syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α), muscle, intestine and stomach expression-1 (MIST-1), and achaete-scute complex homolog 3 (ASCL3) in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation. PMID:28158262

  3. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  4. Two-dimensional gel electrophoresis analysis of the proteomes expressed in the human hepatoma cell line BEL-7404 and normal liver cell line L-02

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Proteome analysis technology has been used extensively in conducting discovery research of biology and has become one of the most essential technologies in functional genomics. The proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 have been separated by high resolution two-dimensional gel electrophoresis (2-DE) with immobilized pH gradient isoelectric focusing (IPG-IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension (IPG-DALT). The resulting images have been analyzed using 2-D analysis software. Quantitative analysis reveals that 7 protein spots are detected only in hepatoma BEL-7404 cells, 14 only in L-02 cells, and 78 protein spots show significant fluctuation in quantity in both cell lines (P<0.01).These protein spots have been displayed on a proteome differential expression map. Analysis for the reproducibility of 2-DE indicates that the positional variability in the IEF dimension is 0.73 mm, while the variability in the SDS-PAGE dimension is 0.44 mm, and the quantitative variability is 17.6%-19.2%. These results suggest that the reproducibility of 2-DE has been suitable for the study of differential expression of proteomes. Proteome differential expression maps can be useful tools for disease diagnosis, drug-target validation analysis and biological process elucidation.

  5. Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells

    Science.gov (United States)

    Ben-Lulu, Shani; Ziv, Tamar; Weisman-Shomer, Pnina; Benhar, Moran

    2017-01-01

    Nitrosylation of cysteines residues (S-nitrosylation) mediates many of the cellular effects of nitric oxide in normal and diseased cells. Recent research indicates that S-nitrosylation of certain proteins could play a role in tumor progression and responsiveness to therapy. However, the protein targets of S-nitrosylation in cancer cells remain largely unidentified. In this study, we used our recently developed nitrosothiol trapping approach to explore the nitrosoproteome of human A549 lung carcinoma cells treated with S-nitrosocysteine or pro-inflammatory cytokines. Using this approach, we identified about 300 putative nitrosylation targets in S-nitrosocysteine-treated A549 cells and approximately 400 targets in cytokine-stimulated cells. Among the more than 500 proteins identified in the two screens, the majority represent novel targets of S-nitrosylation, as revealed by comparison with publicly available nitrosoproteomic data. By coupling the trapping procedure with differential thiol labeling, we identified nearly 300 potential nitrosylation sites in about 150 proteins. The proteomic results were validated for several proteins by an independent approach. Bioinformatic analysis highlighted important cellular pathways that are targeted by S-nitrosylation, notably, cell cycle and inflammatory signaling. Taken together, our results identify new molecular targets of nitric oxide in lung cancer cells and suggest that S-nitrosylation may regulate signaling pathways that are critically involved in lung cancer progression. PMID:28081246

  6. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation.

    Science.gov (United States)

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J; Zhang, Jianyi; Ge, Ying

    2015-08-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function.

  7. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  8. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis.

    Directory of Open Access Journals (Sweden)

    Yong Qi

    Full Text Available BACKGROUND: Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF, is an obligate intracellular bacterium. The surface-exposed proteins (SEPs of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. METHODS: R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA. RESULTS: Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. CONCLUSIONS: Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.

  9. Single‐Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16‐Cell Frog (Xenopus) Embryo

    OpenAIRE

    Lombard‐Banek, Camille; Moody, Sally A.; Nemes, Peter

    2016-01-01

    Abstract We advance mass spectrometry from a cell population‐averaging tool to one capable of quantifying the expression of diverse proteins in single embryonic cells. Our instrument combines capillary electrophoresis (CE), electrospray ionization, and a tribrid ultrahigh‐resolution mass spectrometer (HRMS) to enable untargeted (discovery) proteomics with ca. 25 amol lower limit of detection. CE‐μESI‐HRMS enabled the identification of 500–800 nonredundant protein groups by measuring 20 ng, or...

  10. Proteomics Technologies and Challenges

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proteomics is the study of proteins and their interactions in a cell. With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. The advent of proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein pathways and signaling cascades. Mass spectrometry plays a vital role in proteomics and has become an indispensable tool for molecular and cellular biology. While the potential is great, many challenges and issues remain to be solved, such as mining low abundant proteins and integration of proteomics with genomics and metabolomics data. Nevertheless, proteomics is the foundation for constructing and extracting useful knowledge to biomedical research. In this review, a snapshot of contemporary issues in proteomics technologies is discussed.

  11. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements

    Science.gov (United States)

    Procaccini, Claudio; Carbone, Fortunata; Di Silvestre, Dario; Brambilla, Francesca; De Rosa, Veronica; Galgani, Mario; Faicchia, Deriggio; Marone, Gianni; Tramontano, Donatella; Corona, Marco; Alviggi, Carlo; Porcellini, Antonio; La Cava, Antonio; Mauri, Pierluigi; Matarese, Giuseppe

    2016-01-01

    Summary Human CD4+CD25hiFoxp3+CD127− Treg and CD4+CD25−Foxp3− Tconv cell functions are governed by their metabolic requirements. Here we report a comprehensive comparative analysis between ex vivo human Treg and Tconv cells that comprises analyses of the proteomic networks in subcellular compartments. We identified a dominant proteomic signature at the metabolic level that primarily impacted the highly-tuned balance between glucose and fatty-acid oxidation in the two cell types. Ex vivo Treg cells were highly glycolytic while Tconv cells used predominantly fatty-acid oxidation (FAO). When cultured in vitro, Treg cells engaged both glycolysis and FAO to proliferate, while Tconv cell proliferation mainly relied on glucose metabolism. Our unbiased proteomic analysis provides a molecular picture of the impact of metabolism on ex vivo human Treg versus Tconv cell functions that might be relevant for therapeutic manipulations of these cells. PMID:26885861

  12. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia.

    Science.gov (United States)

    Díez, Paula; Lorenzo, Seila; Dégano, Rosa M; Ibarrola, Nieves; González-González, María; Nieto, Wendy; Almeida, Julia; González, Marcos; Orfao, Alberto; Fuentes, Manuel

    2016-04-01

    Chronic lymphocytic leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowly progressive indolent behaviour of CLL. Additionally, the antibody microarray results were validated by a LC-MS/MS quantification strategy and compared to a transcriptomic CLL database. In summary, this research displays the usefulness of proteomic strategies to globally evaluate the protein alterations in CLL cells and select the possible biomarkers to be further studied with larger sample sizes.

  13. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    Science.gov (United States)

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  14. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  15. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  16. Proteomic Analysis of Anti-Tumor Effects of 11-Dehydrosinulariolide on CAL-27 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wu

    2011-07-01

    Full Text Available The anti-tumor effects of 11-dehydrosinulariolide, an active ingredient isolated from soft coral Sinularia leptoclados, on CAL-27 cells were investigated in this study. In the MTT assay for cell proliferation, increasing concentrations of 11-dehydrosinulariolide decreased CAL-27 cell viability. When a concentration of 1.5 µg/mL of 11-dehydrosinulariolide was applied, the CAL-27 cells viability was reduced to a level of 70% of the control sample. The wound healing function decreased as the concentration of 11-dehydrosinulariolide increased. The results in this study indicated that treatment with 11-dehydrosinulariolide for 6 h significantly induced both early and late apoptosis of CAL-27 cells, observed by flow cytometric measurement and microscopic fluorescent observation. A comparative proteomic analysis was conducted to investigate the effects of 11-dehydrosinulariolide on CAL-27 cells at the molecular level by comparison between the protein profiling (revealed on a 2-DE map of CAL-27 cells treated with 11-dehydrosinulariolide and that of CAL-27 cells without the treatment. A total of 28 differential proteins (12 up-regulated and 16 down-regulated in CAL-27 cells treated with 11-dehydrosinulariolide have been identified by LC-MS/MS analysis. Some of the differential proteins are associated with cell proliferation, apoptosis, protein synthesis, protein folding, and energy metabolism. The results of this study provided clues for the investigation of biochemical mechanisms of the anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells and could be valuable information for drug development and progression monitoring of oral squamous cell carcinoma (OSCC.

  17. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  18. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    Science.gov (United States)

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  19. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.

    Science.gov (United States)

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2014-04-01

    Kinases are among the most intensively pursued enzyme superfamilies as targets for anti-cancer drugs. Large data sets on inhibitor potency and selectivity for more than 400 human kinases became available recently, offering the opportunity to design rationally novel kinase-based anti-cancer therapies. However, the expression levels and activities of kinases are highly heterogeneous among different types of cancer and even among different stages of the same cancer. The lack of effective strategy for profiling the global kinome hampers the development of kinase-targeted cancer chemotherapy. Here, we introduced a novel global kinome profiling method, based on our recently developed isotope-coded ATP-affinity probe and a targeted proteomic method using multiple-reaction monitoring (MRM), for assessing simultaneously the expression of more than 300 kinases in human cells and tissues. This MRM-based assay displayed much better sensitivity, reproducibility, and accuracy than the discovery-based shotgun proteomic method. Approximately 250 kinases could be routinely detected in the lysate of a single cell line. Additionally, the incorporation of iRT into MRM kinome library rendered our MRM kinome assay easily transferrable across different instrument platforms and laboratories. We further employed this approach for profiling kinase expression in two melanoma cell lines, which revealed substantial kinome reprogramming during cancer progression and demonstrated an excellent correlation between the anti-proliferative effects of kinase inhibitors and the expression levels of their target kinases. Therefore, this facile and accurate kinome profiling assay, together with the kinome-inhibitor interaction map, could provide invaluable knowledge to predict the effectiveness of kinase inhibitor drugs and offer the opportunity for individualized cancer chemotherapy.

  20. Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine.

    Science.gov (United States)

    Bauer, Johann; Kopp, Sascha; Schlagberger, Elisabeth Maria; Grosse, Jirka; Sahana, Jayashree; Riwaldt, Stefan; Wehland, Markus; Luetzenberg, Ronald; Infanger, Manfred; Grimm, Daniela

    2017-03-03

    Several years ago, we detected the formation of multicellular spheroids in experiments with human thyroid cancer cells cultured on the Random Positioning Machine (RPM), a ground-based model to simulate microgravity by continuously changing the orientation of samples. Since then, we have studied cellular mechanisms triggering the cells to leave a monolayer and aggregate to spheroids. Our work focused on spheroid-related changes in gene expression patterns, in protein concentrations, and in factors secreted to the culture supernatant during the period when growth is altered. We detected that factors inducing angiogenesis, the composition of integrins, the density of the cell monolayer exposed to microgravity, the enhanced production of caveolin-1, and the nuclear factor kappa B p65 could play a role during spheroid formation in thyroid cancer cells. In this study, we performed a deep proteome analysis on FTC-133 thyroid cancer cells cultured under conditions designed to encourage or discourage spheroid formation. The experiments revealed more than 5900 proteins. Their evaluation confirmed and explained the observations mentioned above. In addition, we learned that FTC-133 cells growing in monolayers or in spheroids after RPM-exposure incorporate vinculin, paxillin, focal adhesion kinase 1, and adenine diphosphate (ADP)-ribosylation factor 6 in different ways into the focal adhesion complex.

  1. Proteome characterization of sea star coelomocytes--the innate immune effector cells of echinoderms.

    Science.gov (United States)

    Franco, Catarina F; Santos, Romana; Coelho, Ana V

    2011-09-01

    Sea star coelomic fluid is in contact with all internal organs, carrying signaling molecules and a large population of circulating cells, the coelomocytes. These cells, also known as echinoderm blood cells, are responsible for the innate immune responses and are also known to have an important role in the first stage of regeneration, i.e. wound closure, necessary to prevent disruption of the body fluid balance and to limit the invasion of pathogens. This study focuses on the proteome characterization of these multifunctional cells. The identification of 358 proteins was achieved using a combination of two techniques for protein separation (1-D SDS-PAGE followed by nanoLC and 2-D SDS-PAGE) and MALDI-TOF/TOF MS for protein identification. To our knowledge, the present report represents the first comprehensive list of sea star coelomocyte proteins, constituting an important database to validate many echinoderm-predicted proteins. Evidence for new pathways in these particular echinoderm cells are also described, and thus representing a valuable resource to stimulate future studies aiming to unravel the homology with vertebrate immune cells and particularly the origins of the immune system itself.

  2. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells.

    Science.gov (United States)

    van Diepen, Angela; Brand, H Kim; Sama, Iziah; Lambooy, Lambert H J; van den Heuvel, Lambert P; van der Well, Leontine; Huynen, Martijn; Osterhaus, Albert D M E; Andeweg, Arno C; Hermans, Peter W M

    2010-08-05

    Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.

  3. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells.

    Science.gov (United States)

    Liu, Yisong; Teng, Xiaohua; Yang, Xiaoxu; Song, Qing; Lu, Rong; Xiong, Jixian; Liu, Bo; Zeng, Nianju; Zeng, Yu; Long, Jia; Cao, Rui; Lin, Yong; He, Quanze; Chen, Ping; Lu, Ming; Liang, Songping

    2010-01-01

    Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein-protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.

  4. Proteomic exploration of the impacts of pomegranate fruit juice on the global gene expression of prostate cancer cell.

    Science.gov (United States)

    Lee, Song-Tay; Wu, Yi-Ling; Chien, Lan-Hsiang; Chen, Szu-Ting; Tzeng, Yu-Kai; Wu, Ting-Feng

    2012-11-01

    Prostate cancer has been known to be the second highest cause of death in cancer among men. Pomegranate is rich in polyphenols with the potent antioxidant activity and inhibits cell proliferation, invasion, and promotes apoptosis in various cancer cells. This study demonstrated that pomegranate fruit juice could effectively hinder the proliferation of human prostate cancer DU145 cell. The results of apoptotic analyses implicated that fruit juice might trigger the apoptosis in DU145 cells via death receptor signaling and mitochondrial damage pathway. In this study, we exploited 2DE-based proteomics to compare nine pairs of the proteome maps collected from untreated and treated DU145 cells to identify the differentially expressed proteins. Comparative proteomics indicated that 11 proteins were deregulated in affected DU145 cells with three upregulated and eight downregulated proteins. These dys-regulated proteins participated in cytoskeletal functions, antiapoptosis, proteasome activity, NF-κB signaling, cancer cell proliferation, invasion, and angiogenesis. Western immunoblotting were implemented to confirm the deregulated proteins and the downstream signaling proteins. The analytical results of this study help to provide insight into the molecular mechanism of inducing prostate cancer cell apoptosis by pomegranate fruit juice and to develop a novel mechanism-based chemopreventive strategy for prostate cancer.

  5. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... source for treatment of neurological diseases such as Parkinson´s disease. Membrane proteins are very important in cellular signaling and they are regulated by post-translational modifications such as phosphorylation and glycosylation. In order to obtain more information about important membrane proteins...... and modification sites involved in the differentiation of hESCs to hNSCs and also investigate potential new markers for two stages, we have performed a comprehensive mass-spectrometry-based quantitative proteomics and PTMomics study. Methods: The hESC and hNSC were subject to Na2CO3 and ultracentrifugation...

  6. Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses

    Directory of Open Access Journals (Sweden)

    Thomas Frédéric

    2011-07-01

    Full Text Available Abstract Background Proteomic analysis was performed to identify proteins regulated during infection by Dengue serotypes 1 and 3 in an Aedes albopictus cell line. The potential of these viruses to cause severe disease at primary infection is of interest although few studies have been performed with these two Dengue serotypes. Results The most relevant observation of our study is the significant overexpression of proteins involved in the cellular stress response and the glycolysis pathway after 48 hours of infection. Viral infection activates the translation of some host genes, which may result in stress due to responses involving unfolded proteins. Conclusions Therefore, the oxidation reduction and glycolytic mechanisms could participate in the antiviral response against Dengue virus. The results of our study should help to improve our knowledge of the virus-mosquito interaction at a cellular level with the aim of designing efficient strategies for the control of Dengue virus.

  7. Proteome Changes of Human Bone Marrow Mesenchymal Stem Cells Induced by 1,4-Benzoquinone

    Science.gov (United States)

    2016-01-01

    Benzene is metabolized to hydroquinone in liver and subsequently transported to bone marrow for further oxidization to 1,4-benzoquinone (1,4-BQ), which may be related to the leukemia and other blood disorders. In the present study, we investigated the proteome profiles of human primary bone marrow mesenchymal stem cells (hBM-MSCs) treated by 1,4-BQ. We identified 32 proteins that were differentially expressed. Two of them, HSP27 and Vimentin, were verified at both mRNA and protein levels and their cellular localization was examined by immunofluorescence. We also found increased mRNA level of RAP1GDS1, a critical factor of metabolism that has been identified as a fusion partner in various hematopoietic malignancies. Therefore, these differentially expressed proteins can play important roles in benzene-mediated hematoxicity. PMID:28119923

  8. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.

    Directory of Open Access Journals (Sweden)

    Lei Mao

    Full Text Available Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.

  9. Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells.

    Directory of Open Access Journals (Sweden)

    Peter G Stanton

    Full Text Available The production of mature sperm is reliant on androgen action within the testis, and it is well established that androgens act on receptors within the somatic Sertoli cells to stimulate male germ cell development. Mice lacking Sertoli cell androgen receptors (AR show late meiotic germ cell arrest, suggesting Sertoli cells transduce the androgenic stimulus co-ordinating this essential step in spermatogenesis. This study aimed to identify germ cell proteins responsive to changes in testicular androgen levels and thereby elucidate mechanisms by which androgens regulate meiosis. Testicular androgen levels were suppressed for 9 weeks using testosterone and estradiol-filled silastic implants, followed by a short period of either further androgen suppression (via an AR antagonist or the restoration of intratesticular testosterone levels. Comparative proteomics were performed on protein extracts from enriched meiotic cell preparations from adult rats undergoing androgen deprivation and replacement in vivo. Loss of androgenic stimulus caused changes in proteins with known roles in meiosis (including Nasp and Hsp70-2, apoptosis (including Diablo, cell signalling (including 14-3-3 isoforms, oxidative stress, DNA repair, and RNA processing. Immunostaining for oxidised DNA adducts confirmed spermatocytes undergo oxidative stress-induced DNA damage during androgen suppression. An increase in PCNA and an associated ubiquitin-conjugating enzyme (Ubc13 suggested a role for PCNA-mediated regulation of DNA repair pathways in spermatocytes. Changes in cytoplasmic SUMO1 localisation in spermatocytes were paralleled by changes in the levels of free SUMO1 and of a subunit of its activating complex, suggesting sumoylation in spermatocytes is modified by androgen action on Sertoli cells. We conclude that Sertoli cells, in response to androgens, modulate protein translation and post-translational events in spermatocytes that impact on their metabolism, survival, and

  10. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells.

    Science.gov (United States)

    Pinto, Gabriella; Alhaiek, Abdulrab Ahmed M; Godovac-Zimmermann, Jasminka

    2015-02-01

    At the molecular level, living cells are enormously complicated complex adaptive systems in which intertwined genomic, transcriptomic, proteomic and metabolic networks all play a crucial role. At the same time, cells are spatially heterogeneous systems in which subcellular compartmentalization of different functions is ubiquitous and requires efficient cross-compartmental communication. Dynamic redistribution of multitudinous proteins to different subcellular locations in response to cellular functional state is increasingly recognized as a crucial characteristic of cellular function that seems to be at least as important as overall changes in protein abundance. Characterization of the subcellular spatial dynamics of protein distribution is a major challenge for proteomics and recent results with MCF7 breast cancer cells suggest that this may be of particular importance for cancer cells.

  11. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS

    Directory of Open Access Journals (Sweden)

    Friedrich Karlheinz

    2010-01-01

    Full Text Available Abstract In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS. Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma.

  12. The Proteome of the Red Blood Cell: An Auspicious Source of New Insights into Membrane-Centered Regulation of Homeostasis.

    Science.gov (United States)

    Bosman, Giel J C G M

    2016-11-25

    During the past decade, the hand-in-hand development of biotechnology and bioinformatics has enabled a view of the function of the red blood cell that surpasses the supply of oxygen and removal of carbon dioxide. Comparative proteomic inventories have yielded new clues to the processes that regulate membrane-cytoskeleton interactions in health and disease, and to the ways by which red blood cells communicate with their environment. In addition, proteomic data have revealed the possibility that many, hitherto unsuspected, metabolic processes are active in the red blood cell cytoplasm. Recent metabolomic studies have confirmed and expanded this notion. Taken together, the presently available data point towards the red blood cell membrane as the hub at which all regulatory processes come together. Thus, alterations in the association of regulatory proteins with the cell membrane may be a sine qua non for the functional relevance of any postulated molecular mechanism. From this perspective, comparative proteomics centered on the red blood cell membrane constitute a powerful tool for the identification and elucidation of the physiologically and pathologically relevant pathways that regulate red blood cell homeostasis. Additionally, this perspective provides a focus for the interpretation of metabolomic studies, especially in the development of biomarkers in the blood.

  13. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF.

    Science.gov (United States)

    Luo, Junling; Ning, Tingting; Sun, Yunfang; Zhu, Jinghua; Zhu, Yingguo; Lin, Qishan; Yang, Daichang

    2009-02-01

    The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.

  14. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    Science.gov (United States)

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  15. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells.

    Science.gov (United States)

    Gil, Jeovanis; Ramírez-Torres, Alberto; Chiappe, Diego; Luna-Peñaloza, Juan; Fernandez-Reyes, Francis C; Arcos-Encarnación, Bolivar; Contreras, Sandra; Encarnación-Guevara, Sergio

    2017-09-11

    Lysine acetylation is a widespread posttranslational modification (PTM) affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the Pol 1 and SL1 complexes and the RNA polymerase I specific transcription initiation factor RRN3 were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment, with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways including glycolysis and pyruvate metabolism. Together, these results provide the largest dataset thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central PTM. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells.

    Science.gov (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea

    2015-06-01

    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  18. Proteomic analysis of the effect of iptakalim on human pulmonary arterial smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Mingxia YANG; Zhengxia LIU; Shu ZHANG; Yu JING; Shijiang ZHANG; Weiping XIE; Lei MA; Changliang ZHU; Hong WANG

    2009-01-01

    Aim:To investigate the anti-proliferative effect of iptakalim (Ipt),a newly selective KATP channel opener,in endothelin-1 (ET-1)-induced human pulmonary arterial smooth muscle cells (PASMCs) using proteomic analysis.Methods: Human PASMCs were incubated with ET-1 (10-8 mol/L) and ETA (10-8 mol/L) plus iptaklim (10-5 mol/L) for 24 h.Analysis via 2-DE gel electrophoresis and MALDI-TOF-MS was employed to display the different protein profiles of whole-cell protein from cultures of control,ET-1 treatment alone,and treatment with ET-1 and iptaklim combined.Real time RT-PCR and Western blot analysis were used to confirm the proteomic analysis.Results: When iptakalim inhibited the proliferative effect of ET-1 in human PASMCs by opening the KATP channels,the expression of different groups of cellular proteins was changed,including cytoskeleton-associated proteins,plasma mem-brane proteins and receptors,chaperone proteins,ion transport-associated proteins,and glycolytic and metabolism-associ-ated proteins.We found that iptakalim could inhibit the proliferation of human PASMCs partly by affecting the expression of Hsp60,vimentin,nucleoporin P54 (NUP54) and Bcl-XL by opening the KATP channel.Conclusion: The data suggest that a wide range of signaling pathways may be involved in abolishing ET-1-induced prolif-eration of human PASMCs following iptakalim treatment.

  19. Combination of hydrogel nanoparticles and proteomics to reveal secreted proteins associated with decidualization of human uterine stromal cells

    Directory of Open Access Journals (Sweden)

    Stephens Andrew N

    2011-09-01

    Full Text Available Abstract Background Identification of secreted proteins of low abundance is often limited by abundant and high molecular weight (MW proteins. We have optimised a procedure to overcome this limitation. Results Low MW proteins in the conditioned media of cultured cells were first captured using dual-size exclusion/affinity hydrogel nanoparticles and their identities were then revealed by proteomics. Conclusions This technique enables the analysis of secreted proteins of cultured cells low MW and low abundance.

  20. Proteomics analysis of human umbilical vein endothelial cells (HUVEC) after treatment with low molecular weight heparin

    Institute of Scientific and Technical Information of China (English)

    YanPAN; Jun-huaWANG; He-mingYU; Xue-junLI

    2004-01-01

    AIM: The endothelium is involved in the generation and the regulation of multiple physiological and pathological processes of blood vessels. Previously we confirmed low molecular weight heparin (LMWH) could inhibit tumor metastasis by protecting human umbilical vein endothelial cells (HUVEC). To understand the effects of LMWH on the protein expression of HUVEC, we performed a comprehensive proteomics to survey global changes in proteins after LMWH treatment in HUVEC cells. METHODS:

  1. Qualitative and quantitative proteomic profiling of cripto(-/-) embryonic stem cells by means of accurate mass LC-MS analysis.

    Science.gov (United States)

    Chambery, Angela; Vissers, Johannes P C; Langridge, James I; Lonardo, Enza; Minchiotti, Gabriella; Ruvo, Menotti; Parente, Augusto

    2009-02-01

    Cripto is one of the key regulators of embryonic stem cells (ESCs) differentiation into cardiomyocites vs neuronal fate. Cripto(-/-) murine ESCs have been utilized to investigate the molecular mechanisms underlying early events of mammalian lineage differentiation. 2D/LC-MS/MS and a label-free LC-MS approaches were used to qualitatively and quantitatively profile the cripto(-/-) ESC proteome, providing an integral view of the alterations induced in stem cell functions by deleting the cripto gene.

  2. Data for proteomic analysis of murine cardiomyocytic HL-1 cells treated with siRNA against tissue factor

    Directory of Open Access Journals (Sweden)

    Maura Brioschi

    2015-06-01

    Tissue Factor (TF is a key player in the coagulation cascade, but it has additional functions ranging from angiogenesis, tumour invasion and, in the heart, the maintenance of the integrity of cardiac cells. This article reports the nano-LC–MSE analysis of the cardiomyocytic HL-1 cell line proteome and describes the results obtained from a Gene Ontology analysis of those proteins affected by TF-gene silencing.

  3. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.

    Science.gov (United States)

    Peng, Wenjing; Zhang, Yu; Zhu, Rui; Mechref, Yehia

    2017-09-01

    Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is currently considered an issue of concern among breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis, involving cell adhesion and penetration of blood-brain barrier. To understand the mechanism of breast cancer brain metastasis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in conjunction with enrichment of membrane proteins to analyze the proteomes from five different breast cancer and a brain cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which is a brain seeking breast cancer cell line, thus representing brain metastasis characteristics. Label-free proteomics of the six cell lines facilitates the identification of 1238 proteins and the quantification of 899 proteins of which more than 70% were membrane proteins. Unsupervised principal component analysis (PCA) of the label-free proteomics data resulted in a distinct clustering of cell lines, suggesting quantitative differences in the expression of several proteins among the different cell lines. Unique protein expressions in 231BR were observed for 28 proteins. The up-regulation of STAU1, AT1B3, NPM1, hnRNP Q, and hnRNP K and the down-regulation of TUBB4B and TUBB5 were noted in 231BR relative to 231 (precursor cell lines from which 231BR is derived). These proteins might contribute to the breast cancer brain metastasis. Ingenuity pathway analysis (IPA) supported the great brain metastatic propensity of 231BR and suggested the importance of the up-regulation of integrin proteins and down-regulation of EPHA2 in brain metastasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi.

    Directory of Open Access Journals (Sweden)

    Stéphanie Val

    Full Text Available Chronic Otitis Media with effusion (COME develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi, the most common acute Otitis Media (OM pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line.NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC cultured at air-liquid interface over 48 hours- 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling.Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05. The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface.NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.

  5. Proteomic alteration of Marc-145 cells and PAMs after infection by porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Ding, Zhuang; Li, Zhi-jie; Zhang, Xiao-dong; Li, Ya-gang; Liu, Chang-jun; Zhang, Yan-Ping; Li, Yang

    2012-01-15

    Viral infections usually result in alterations in the host cell proteome, which determine the fate of infected cells and the progress of pathogenesis. To uncover cellular protein responses in porcine reproductive and respiratory syndrome virus (PRRSV), infected pulmonary alveolar macrophages (PAMs) and Marc-145 cells were subjected to proteomic analysis involving two-dimensional electrophoresis (2-DE) followed by MALDI-TOF-MS/MS identification. Altered expression of 44 protein spots in infected cells was identified in 2D gels, of which the 29 characterised by MALDI-TOF-MS/MS included 17 up-regulated and 12 down-regulated proteins. Some of these proteins were further confirmed at the mRNA level using real-time RT-PCR. Moreover, Western blot analysis confirmed the up-regulation of HSP27, vimentin and the down-regulation of galectin-1. Our study is the first attempt to analyze the cellular protein profile of PRRSV-infected Marc-145 cells using proteomics to provide valuable information about the effects of PRRSV-induced alterations on Marc-145 cell function. Further study of the affected proteins may facilitate our understanding of the mechanisms of PRRSV infection and pathogenesis.

  6. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling.

    Science.gov (United States)

    Anderson, Johnathon D; Johansson, Henrik J; Graham, Calvin S; Vesterlund, Mattias; Pham, Missy T; Bramlett, Charles S; Montgomery, Elizabeth N; Mellema, Matt S; Bardini, Renee L; Contreras, Zelenia; Hoon, Madeline; Bauer, Gerhard; Fink, Kyle D; Fury, Brian; Hendrix, Kyle J; Chedin, Frederic; El-Andaloussi, Samir; Hwang, Billie; Mulligan, Michael S; Lehtiö, Janne; Nolta, Jan A

    2016-03-01

    Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusive. To address this we used high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry, an unbiased high throughput proteomics approach to comprehensively characterize the proteinaceous contents of MSCs and MSC derived exosomes. We probed the proteome of MSCs and MSC derived exosomes from cells cultured under expansion conditions and under ischemic tissue simulated conditions to elucidate key angiogenic paracrine effectors present and potentially differentially expressed in these conditions. In total, 6,342 proteins were identified in MSCs and 1,927 proteins in MSC derived exosomes, representing to our knowledge the first time these proteomes have been probed comprehensively. Multilayered analyses identified several putative paracrine effectors of angiogenesis present in MSC exosomes and increased in expression in MSCs exposed to ischemic tissue-simulated conditions; these include platelet derived growth factor, epidermal growth factor, fibroblast growth factor, and most notably nuclear factor-kappaB (NFkB) signaling pathway proteins. NFkB signaling was identified as a key mediator of MSC exosome induced angiogenesis in endothelial cells by functional in vitro validation using a specific inhibitor. Collectively, the results of our proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue-related diseases.

  7. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    Science.gov (United States)

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  8. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    Directory of Open Access Journals (Sweden)

    Borja Sánchez

    2015-01-01

    Full Text Available The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium.

  9. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    Science.gov (United States)

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  10. A large-scale proteomic analysis of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Sherrer Eric

    2007-12-01

    Full Text Available Abstract Background Much of our current knowledge of the molecular expression profile of human embryonic stem cells (hESCs is based on transcriptional approaches. These analyses are only partly predictive of protein expression however, and do not shed light on post-translational regulation, leaving a large gap in our knowledge of the biology of pluripotent stem cells. Results Here we describe the use of two large-scale western blot assays to identify over 600 proteins expressed in undifferentiated hESCs, and highlight over 40 examples of multiple gel mobility variants, which are suspected protein isoforms and/or post-translational modifications. Twenty-two phosphorylation events in cell signaling molecules, as well as potential new markers of undifferentiated hESCs were also identified. We confirmed the expression of a subset of the identified proteins by immunofluorescence and correlated the expression of transcript and protein for key molecules in active signaling pathways in hESCs. These analyses also indicated that hESCs exhibit several features of polarized epithelia, including expression of tight junction proteins. Conclusion Our approach complements proteomic and transcriptional analysis to provide unique information on human pluripotent stem cells, and is a framework for the continued analyses of self-renewal.

  11. Comparative proteomics analysis of lanthanum citrate complex-induced apoptosis in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In a previous study,the lanthanum citrate complex([LaCit2]3-) has been found to induce apoptosis in the human HeLa cervical cancer cell line.To clarify the mechanism,we carried out comparative proteomics analysis between treated and control cells.Differentially expressed proteins were separated electrophoretically and identified by MALDI-TOF/TOF tandem mass spectrometry.There were profound changes in 14 proteins related to mitochondrial function and oxidative stress,suggesting that mitochondrial dysfunction plays a key role in [LaCit2]3--induced apoptosis.This was confirmed by a decrease in the mitochondrial transmembrane potential,and increases in cytochrome c release and reactive oxygen species generation in [LaCit2]3--treated cells.Western blotting analyses show that [LaCit2]3--induced apoptosis was accompanied by the activation of caspase-9 and the specific proteolytic cleavage of PARP,leading to an increase in the proapoptotic protein Bax and a decrease in the antiapoptotic protein Bcl-2.These results suggest that [LaCit2]3-induced the apoptosis of HeLa cells through oxidative stress mediated pathway involving MT participation.

  12. Proteomic Analysis of Microvesicles Released by the Human Prostate Cancer Cell Line PC-3

    Science.gov (United States)

    Sandvig, Kirsten; Llorente, Alicia

    2012-01-01

    Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14–3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids. PMID:22457534

  13. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  14. Proteomic analysis of nuclear matrix proteins during arsenic trioxide induced apoptosis in leukemia K562 cells

    Institute of Scientific and Technical Information of China (English)

    WANG Zi-hui; YU Ding; CHEN Yan; HAO Jian-zhong

    2005-01-01

    Background Arsenic trioxide (As2O3) has been identified as a very potent anti-acute leukemic agent. However its role in apoptosis needs to be elucidated. As2O3 interferes with the proliferation and survival of tumor cells via a variety of mechanisms. Drug-target interactions at the level of nuclear matrix (NM) may be critical events in the induction of cell death by As2O3. This study dealt with As2O3-target interactions at the level of NM in chronic myelogenous leukemia cell line K562 by proteomics. Methods K562 cells were cultured in MEM and treated with different concentrations of As2O3. The nuclear matrix proteins were analyzed by high-resolution two-dimensional gel electrophoresis and computer-assisted image analysis. Results As2O3 significantly inhibited the growth of chronic myelogenous leukemia cell line K562 at low concentrations. While more than 200 protein spots were shared among the nuclear matrices, about 18 distinct spots in the nuclear matrices were found characteristic for As2O3 treated cells. Conclusions: As2O3 induces apoptosis in K562 cells in a dose and time-dependent manner. Our results demonstrated that for the detection of the onset of apoptosis, the alteration in the composition of nuclear matrix proteins was a more sensitive indicator than nucleosomal DNA fragmentation test. These results indicated that As2O3 might be clinically useful in the treatment of chronic myelogenous leukemia. The changes of nuclear matrix proteins in the treated cells can be used as a useful indicator for this treatment.

  15. Combination of metallomics and proteomics to study the effects of the metallodrug RAPTA-T on human cancer cells.

    Science.gov (United States)

    Wolters, Dirk A; Stefanopoulou, Maria; Dyson, Paul J; Groessl, Michael

    2012-11-01

    An approach to characterize the interactions of RAPTA-T, a novel ruthenium-based anticancer drug candidate with intriguing antimetastatic properties, with human ovarian cancer cells in vitro is described. The distribution profile of the metallodrug within the cancer cells was determined by (size exclusion chromatography)-inductively coupled mass spectrometry combined with subcellular fractionation procedures (metallomics). Multidimensional protein identification technology (MudPIT) was then used to obtain insight into the alteration of the cellular proteome upon RAPTA-T treatment. The metallomics approach reveals striking differences in the intracellular behavior of the drug between cisplatin-sensitive and resistant cell lines and provides clues on possible mechanisms of action as well as detoxification, quantitative proteomics based on spectral counting sheds light on cellular response mechanisms to metallodrug treatment.

  16. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  17. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells.

    Science.gov (United States)

    Schenk, Laura K; Bolger, Steven J; Luginbuhl, Kelli; Gonzales, Patricia A; Rinschen, Markus M; Yu, Ming-Jiun; Hoffert, Jason D; Pisitkun, Trairak; Knepper, Mark A

    2012-06-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct.

  18. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip.

    Science.gov (United States)

    Snouber, Leila Choucha; Letourneur, Franck; Chafey, Philippe; Broussard, Cedric; Monge, Matthieu; Legallais, Cécile; Leclerc, Eric

    2012-01-01

    We have evaluated the influence of the microfluidic environment on renal cell functionality. For that purpose, we performed a time lapse transcriptomic and proteomic analysis in which we compared gene and protein expressions of Madin-Darby canine kidney cells after 24 h and 96 h of culture in both microfluidic biochips and plates. The transcriptomic and proteomic integration revealed that the ion transporters involved in calcium, phosphate, and sodium homoeostasis and several genes involved in H(+) transporters and pH regulation were up-regulated in microfluidic biochips. Concerning drug metabolism, we found Phase I (CYP P450), Phase II enzymes (GST), various multidrug resistance genes (MRP), and Phase III transporters (SLC) were also up-regulated in the biochips. Furthermore, the study shows that those inductions were correlated with the induction of the Ahr and Nrf-2 dependent pathways, which results in a global cytoprotective response induced by the microenvironment. However, there was no apoptosis situation or cell death in the biochips. Microfluidic biochips may thus provide an important insight into exploring xenobiotic injury and transport modifications in this type of bioartificial microfluidic kidney. Finally, the investigation demonstrated that combining the transcriptomic and proteomic analyses obtained from a cell "on chip" culture would provide a pertinent new tool in the mechanistic interpretation of cellular mechanisms for predicting kidney cell toxicity and renal clearance in vitro. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  19. Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures.

    Science.gov (United States)

    Johnston, Harvey E; Carter, Matthew J; Cox, Kerry L; Dunscombe, Melanie; Manousopoulou, Antigoni; Townsend, Paul A; Garbis, Spiros D; Cragg, Mark S

    2017-03-01

    Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eμ-myc and Eμ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (qIL5) receptor. IL5 treatment promoted Eμ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eμ-myc plasma, whereas Eμ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.

  20. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture.

    Science.gov (United States)

    Ibarrola, Nieves; Kalume, Dario E; Gronborg, Mads; Iwahori, Akiko; Pandey, Akhilesh

    2003-11-15

    Posttranslational modifications are major mechanisms of regulating protein activity and function in vertebrate cells. It is essential to obtain qualitative information about posttranslational modification patterns of proteins to understand signal transduction mechanisms in greater detail. However, it is equally important to measure the dynamics of posttranslational modifications such as phosphorylation to approach signaling networks from a systems biology perspective. Despite a number of advances, methods to quantitate posttranslational modifications remain difficult to implement due to a number of factors including lack of a generic method, elaborate chemical steps, and requirement for large amounts of sample. We have previously shown that stable isotope-containing amino acids in cell culture (SILAC) can be used to differentially label growing cell populations for quantitation of protein levels. In this report, we extend the use of SILAC as a novel proteomic approach for the relative quantitation of posttranslational modifications such as phosphorylation. We have used SILAC to quantitate the extent of known phosphorylation sites as well as to identify and quantitate novel phosphorylation sites.

  1. Proteomic analysis using 2-D liquid separations of intact proteins from whole-cell lysates.

    Science.gov (United States)

    Zhu, Kan; Yan, Fang; O'Neil, Kimberly A; Hamler, Rick; Lubman, David M; Lin, Linda; Barder, Timothy J

    2004-02-01

    This unit describes procedures for 2-D liquid separations of proteins from whole-cell lysates. Protocols for protein isoelectric point (pI) fractionation in the first dimension include the use of liquid isoelectric focusing (IEF) and chromatofocusing. The liquid IEF provides a pI-based fractionation using a batch-phase electrophoretic method, while chromatofocusing uses a column-based chromatographic method to generate the pH gradient. Using either method, a second-dimension fractionation is provided in the liquid phase using nonporous silica-based reversed-phase HPLC (NPS-RP-HPLC) to generate a 2-D liquid map of the protein content of the cell. The eluate of the 2-D liquid fractionation is directly coupled to a mass spectrometer for on-line detection of the intact molecular weights of proteins. As a result, a multidimensional map of protein expression is obtained that characterizes cellular proteins by pI, hydrophobicity, and intact molecular weight. Such expression maps are useful for differential proteomic comparison between different cell samples.

  2. Milk Fat Globule Membrane Proteomics: A 'Snapshot' of Mammary Epithelial Cell Biology

    Directory of Open Access Journals (Sweden)

    Christelle Cebo

    2012-01-01

    Full Text Available Lipids are released in milk as fat globules, which are droplets of apolar lipids surrounded by a complex membrane deriving from the mammary epithelial cell (MEC and called the milk fat globule membrane (MFGM. The structure of the MFGM is highly complex and closely related to the mechanisms of milk fat globule secretion in the mammary epithelial cell. Indeed, MFGM is composed of two biological membranes, a phospholipid monolayer, deriving from the endoplasmic reticulum, and a phospholipid bilayer, which originates from the apical plasma membrane of the MEC, with variable amounts of cytoplasm trapped between. Biochemical techniques (i.e. sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by different staining procedures have been employed historically to characterize major MFGM proteins, namely MUC-1, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin, and adipophilin. However, recent advances in the field of proteomics (mostly development of one-dimensional gel electrophoresis approach coupled with tandem mass spectrometry have led to the identification of hundreds of proteins associated with the MFGM. Surprisingly, newly identified MFGM proteins were not only involved in lipid metabolic or exocytosis-related biological processes, but also in cell signalling, translation, or host defense-related mechanisms. Therefore, the milk fat globule should no longer be viewed as an inert structure only devoted to the delivery of lipids to the newborn, but rather as a dynamic and informative compartment which can contribute to the improvement of our comprehension of the mammary gland biology.

  3. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell.

    Science.gov (United States)

    Sun, Hyun Jin; Bahk, Young Yil; Choi, Yon Rak; Shim, Jung Hye; Han, Seung Hwan; Lee, Jin Woo

    2006-11-01

    Although previous studies have reported the effects of extensive subculturing on proliferation rates and osteogenic potential of human mesenchymal stem cells (hMSCs), the results remain controversial. The aim of our study was to characterize the proliferation and osteogenic potential of hMSCs during serial subculture, and also to identify proteins that are differentially regulated in hMSCs during serial subculture and osteogenic differentiation using proteome analysis. Here we show that the proliferation and osteogenic capacity of hMSCs decrease during serial subculturing. Several proteins were shown to be differentially regulated during serial subculture; among these the expression of T-complex protein 1 alpha subunit (TCP-1alpha), a protein known to be associated with cell proliferation, cell cycle, morphological changes, and apoptosis, gradually decreased during serial subculture. Among proteins that were differentially regulated during osteogenic differentiation, chloride intracellular channel 1 (CLIC1) was downregulated only during the early passages eukaryotic translation elongation factor, and acidic ribosomal phosphoprotein P0 was downregulated during the middle passages, while annexin V, LIM, and SH3 domain protein 1 (LASP-1), and 14-3-3 protein gamma (YWHAG) were upregulated during the later passage. These studies suggest that differentially regulated passage-specific proteins may play a role in the decrease of osteogenic differentiation potential under serial subculturing.

  4. Proteomics and aging : studying the influence of aging on endothelial cells and human plasma

    NARCIS (Netherlands)

    Eman, M.R.

    2007-01-01

    In general, human aging is considered one of the most complex and less-well understood process in biology. In this thesis the possibilities of proteomics technology in the field of aging were explored. The complexity of the aging process was supposed to accompanied by relatively subtle proteome vari

  5. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo

    DEFF Research Database (Denmark)

    Horn, Signe; Kirkegaard, Jeannette S.; Hoelper, Soraya

    2016-01-01

    Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the ...... as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.[on SciFinder (R)]...

  6. Proteomic Identification of LASP-1 Down-regulation After RNAi Urokinase Silencing in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Salvi

    2009-02-01

    Full Text Available In human hepatocellular carcinoma (HCC, the high expression of urokinase-type plasminogen activator (uPA is an unfavorable prognostic factor and a therapeutic target. To identify the downstream effects of uPA silencing by RNA interference, we studied proteome modifications of uPA-inhibited SKHep1C3 cells, an HCC-derived cell line. The study with two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry showed Lim and SH3 protein 1 (LASP-1, cytokeratin 1 (CK-1, cytokeratin 10 (CK-10, and heterogeneous nuclear ribonucleoprotein H1 down-modulation after uPA inhibition. LASP-1, CK-1, and CK-10 are involved in cytoskeleton dynamics as heterogeneous nuclear ribonucleoprotein H1 takes part in the mRNA processing and stability. We first confirmed the proteomic data by Western blot and immunoflorescence and then explored the link between uPA and LASP-1. The ectopic expression of uPA and LASP-1 supported the proteomic results and showed that uPA up-regulation increased LASP-1 expression and that both were implicated in SKHep1C3 motility. siRNA LASP-1 inhibition showed that LASP-1 was involved in actin microfilaments organization of SKHep1C3 cells. The disruption of the actin microfilaments after LASP-1 depletion increased uPA secretion and SKHep1C3 motility. Our results would suggest the hypothesis that uPA and LASP-1 expression may be coordinated in HCC-derived cells. In summary, the proteomic identification of a set of uPA downstream proteins provides new insight into the function of uPA in HCC cells.

  7. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    Science.gov (United States)

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  8. System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs to in vitro cultivation

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-11-01

    Full Text Available Human bone marrow stromal cells (hBMSCs, also loosely called bone marrow-derived mesenchymal stem cells are the subject of increasing numbers of clinical trials and laboratory research. Our group recently reported on the optimization of a workflow for a sensitive proteomic study of hBMSCs. Here, we couple this workflow with a label-free protein quantitation method to investigate the molecular responses of hBMSCs to long-term in vitro passaging. We explored the proteomic responses of hBMSCs by assessing the expression levels of proteins at early passage (passage 3, P3 and late passage (P7. We used multiple biological as well as technical replicates to ensure that the detected proteomic changes are repeatable between cultures and thus likely to be biologically relevant. Over 1700 proteins were quantified at three passages and a list of differentially expressed proteins was compiled. Bioinformatics-based network analysis and term enrichment revealed that metabolic pathways are largely altered, where many proteins in the glycolytic, pentose phosphate, and TCA pathways were shown to be largely upregulated in late passages. We also observed significant proteomic alterations in functional categories including apoptosis, and ER-based protein processing and sorting following in vitro cell aging. We posit that the comprehensive map outlined in this report of affected phenotypes as well as the underpinning molecular factors tremendously benefit the effort to uncovering targets that are not just used only to monitor cell fitness but can be employed to slowdown the in vitro aging process in hBMSCs and hence ensure manufacturing of cells with known quality, efficacy and stability.

  9. Comparative proteomic analysis of drug sodium iron chlorophyllin addition to Hep 3B cell line.

    Science.gov (United States)

    Zhang, Jun; Wang, Wenhai; Yang, Fengying; Zhou, Xinwen; Jin, Hong; Yang, Peng-yuan

    2012-09-21

    The human hepatoma 3B cell line was chosen as an experimental model for in vitro test of drug screening. The drugs included chlorophyllin and its derivatives such as fluo-chlorophyllin, sodium copper chlorophyllin, and sodium iron chlorophyllin. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method was used in this study to obtain the primary screening results. The results showed that sodium iron chlorophyllin had the best LC(50) value. Proteomic analysis was then performed for further investigation of the effect of sodium iron chlorophyllin addition to the Hep 3B cell line. The proteins identified from a total protein extract of Hep 3B before and after the drug addition were compared by two-dimensional-gel-electrophoresis. Then 32 three-fold differentially expressed proteins were successfully identified by MALDI-TOF-TOF-MS. There are 29 unique proteins among those identified proteins. These proteins include proliferating cell nuclear antigen (PCNA), T-complex protein, heterogeneous nuclear protein, nucleophosmin, heat shock protein A5 (HspA5) and peroxiredoxin. HspA5 is one of the proteins which are involved in protecting cancer cells against stress-induced apoptosis in cultured cells, protecting them against apoptosis through various mechanisms. Peroxiredoxin has anti-oxidant function and is related to cell proliferation, and signal transduction. It can protect the oxidation of other proteins. Peroxiredoxin has a close relationship with cancer and can eventually become a disease biomarker. This might help to develop a novel treatment method for carcinoma cancer.

  10. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Elena Alegre-Aguarón

    Full Text Available To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs. However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.

  11. Proteomic data analysis of glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    Science.gov (United States)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Wengert, Georg; Houben, Ivo; Lobbes, Marc; Stadlbauer, Andreas; Meyer-Bäse, Anke

    2016-05-01

    Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the application of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the protein-level fold changes and putative upstream regulators for the GSCs. However the extracted molecular information is insufficient in classifying GSCs and paving the pathway to an improved therapeutics of the heterogeneous glioma.

  12. Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation

    Directory of Open Access Journals (Sweden)

    A. Peláez-García

    2015-09-01

    Full Text Available The transcription factor (TF Snail1 is a major inducer of the epithelial–mesenchymal transition (EMT during embryonic development and cancer progression. Ectopic expression of Snail in murine mesenchymal stem cells (mMSC abrogated their differentiation to osteoblasts or adipocytes. We used either stable isotopic metabolic labeling (SILAC for 3T3-L1 cells or isobaric labeling with tandem mass tags (TMT for mMSC stably transfected cells with Snail1 or control. We carried out a proteomic analysis on the nuclear fraction since Snail is a nuclear TF that mediates its effects mainly through the regulation of other TFs. Proteomics data have been deposited in ProteomeXchange via the PRIDE partner repository with the dataset identifiers PXD001529 and PXD002157 (Vizcaino et al., 2014 [1]. Data are associated with a research article published in Molecular and Cellular Proteomics (Pelaez-Garcia et al., 2015 [2].

  13. Single Cell Functional Proteomics for Monitoring Immune Response in Cancer Therapy: Technology, Methods and Applications

    Directory of Open Access Journals (Sweden)

    Chao eMa

    2013-05-01

    Full Text Available In the past decade, significant progresses have taken place in the field of cancer immunotherapeutics, which are being developed for most human cancers. New immunotherapeutics, such as Ipilimumab (anti-CTLA-4, have been approved for clinical treatment; cell-based immunotherapies such as adoptive cell transfer (ACT have either passed the final stage of human studies (i.e., sipuleucel-T for the treatment of selected neoplastic malignancies or reached the stage of phase II/III clinical trials. Immunotherapetics has become a sophisticated field. Multimodal therapeutic regimens comprising several functional modules (up to 5 in the case of ACT have been developed to provide focused therapeutic responses with improved efficacy and reduced side-effects. However, a major challenge remains: the lack of effective and clinically-applicable immune assessment methods. Due to the complexity of antitumor immune responses within patients, it is difficult to provide comprehensive assessment of therapeutic efficacy and mechanism. To address this challenge, new technologies have been developed to directly profile the cellular immune functions and the functional heterogeneity. With the goal to measure the functional proteomics of single immune cells, these technologies are informative, sensitive, high-throughput and highly-multiplex. They have been used to uncover new knowledge of cellular immune functions and have be utilized for rapid, informative, and longitudinal monitoring of immune response in clinical anti-cancer treatment. In addition, new computational tools are required to integrate high dimensional data sets generated from the comprehensive, single-cell level measurements of patient’s immune responses to guide accurate and definitive diagnostic decision. These single-cell immune function assessment tools will likely contribute to new understanding of therapy mechanism, pre-treatment stratification of patients and ongoing therapeutic monitoring and

  14. Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Li; Bryant, Donald A.; Schepmoes, Athena A.; Vogl, Kajetan; Smith, Richard D.; Lipton, Mary S.; Callister, Stephen J.

    2012-01-17

    Chloroflexus aurantiacus J-10-fl is a thermophilic green bacterium, a filamentous anoxygenic phototroph, and the model organism of the phylum Chloroflexi. We applied high-throughput, liquid chromatography-mass spectrometry in a global quantitative proteomics investigation of C. aurantiacus cells grown under oxic (chemoorganoheterotrophically) and anoxic (photoorganoheterotrophically) redox states. Our global analysis identified 13,524 high-confidence peptides that matched to 1,286 annotated proteins, 242 of which were either uniquely identified or significantly increased in abundance under anoxic culture conditions. Fifty-three of the 242 proteins are previously characterized photosynthesis-related proteins, including chlorosome proteins, proteins involved in the bacteriochlorophyll biosynthesis, 3-hydroxypropionate (3-OHP) CO2 fixation pathway, and components of electron transport chains. The remaining 190 proteins have not previously been reported. Of these, five proteins were found to be encoded by genes from a novel operon and observed only in photoheterotrophically grown cells. These proteins candidates may prove useful in further deciphering the phototrophic physiology of C. aurantiacus and other filamentous anoxygenic phototrophs.

  15. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk

    KAUST Repository

    Janjanam, Jagadeesh

    2013-10-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus.

    Science.gov (United States)

    Deng, Xiaoyu; Cong, Yanlong; Yin, Renfu; Yang, Guilian; Ding, Chan; Yu, Shengqing; Liu, Xiufan; Wang, Chunfeng; Ding, Zhuang

    2014-12-01

    Characteristic clinical manifestations of Newcastle disease include leukopenia and immunosuppression. Peripheral blood mononuclear cells (PBMCs) are the main targets of Newcastle disease virus (NDV) infection. To survey changes in proteomic expression in chicken PBMCs following NDV infection, PBMC proteins from 30 chickens were separated using two- dimensional electrophoresis (2-DE) and subjected to mass spectrometry analysis. Quantitative intensity analysis showed that the expression of 78 proteins increased more than two-fold. Thirty-five proteins exhibited consistent changes in expression and 13 were identified as unique proteins by matrix assisted laser desorption ionization-time of flight mass spectrometer/mass spectrometer including three that were down-regulated and 10 that were up-regulated. These proteins were sorted into five groups based on function: macromolecular biosynthesis, cytoskeleton organization, metabolism, stress responses, and signal transduction. Furthermore, Western blot analysis confirmed the down-regulation of integrin-linked kinase expression and up-regulation of lamin A production. These data provide insight into the in vivo response of target cells to NDV infection at the molecular level. Additionally, results from this study have helped elucidate the molecular pathogenesis of NDV and may facilitate the development of new antiviral therapies as well as innovative diagnostic methods.

  17. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.; Wosten, H.A.B.

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the ce

  18. Proteomic approaches in understanding a detected relationship between chemotherapy-induced nephrotoxicity and cell respiration in HK-2 cells.

    Science.gov (United States)

    Perez, Juliana Dinéia; Colucci, Juliana Almada; Sakata, Maísa Mayumi; Cunha, Tatiana Sousa; Arita, Danielle Yuri; Casarini, Dulce Elena

    2011-01-01

    Nephrotoxicity is a prominent component of the profile of chemotherapeutic agents and to date proteomics has represented the main technique to identify protein profiles in response to xenobiotic exposure. We made use of two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight analysis to evaluate chemotoxicity effects of cisplatin (CPT) and carboplatin (CB) on proteins from human renal proximal tubule epithelial cells (HK-2). Tandem mass spectrometry analysis showed that ATP synthase subunit α and serine hydroxymethyltransferase were only expressed in HK-2 cells exposed to CPT. Since CPT causes damage in cellular respiration, we suggest that this might be a protective adaptation to CPT-induced nephrotoxicity. Thioredoxin-dependent peroxide reductase disappeared in the CPT group and was upregulated in the CB group, suggesting that CB exposure stimulates preventive apoptotic mechanisms. We suggest a relationship between chemotherapeutic agent-induced nephrotoxicity and cell respiration. The identification of proteins differentially expressed in HK-2 cells, when exposed to CPT and CB, not only supplies important information to understand the molecular action mechanisms, which are triggered by metal-based drugs in cell nephrotoxicity, but also can lead to the design of more effective anticancer drugs. These results provide important insights into the investigation of possible biomarker(s) of toxicity that could eventually reduce the side effects of chemotherapeutic agents. Copyright © 2011 S. Karger AG, Basel.

  19. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation.

    Science.gov (United States)

    Chhuon, C; Pranke, I; Borot, F; Tondelier, D; Lipecka, J; Fritsch, J; Chanson, M; Edelman, A; Ollero, M; Guerrera, I C

    2016-12-01

    Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article "Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells" (Chhuon et al., in press [1]).

  20. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome.

    Science.gov (United States)

    Arrell, D Kent; Niederländer, Nicolas J; Faustino, Randolph S; Behfar, Atta; Terzic, Andre

    2008-02-01

    In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.

  1. Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    Full Text Available Prostate cancer remains the most common malignancy among men in United States, and there is no remedy currently available for the advanced stage hormone-refractory cancer. This is partly due to the incomplete understanding of androgen-regulated proteins and their encoded functions. Whole-cell proteomes of androgen-starved and androgen-treated LNCaP cells were analyzed by semi-quantitative MudPIT ESI- ion trap MS/MS and quantitative iTRAQ MALDI- TOF MS/MS platforms, with identification of more than 1300 high-confidence proteins. An enrichment-based pathway mapping of the androgen-regulated proteomic data sets revealed a significant dysregulation of aminoacyl tRNA synthetases, indicating an increase in protein biosynthesis- a hallmark during prostate cancer progression. This observation is supported by immunoblot and transcript data from LNCaP cells, and prostate cancer tissue. Thus, data derived from multiple proteomics platforms and transcript data coupled with informatics analysis provides a deeper insight into the functional consequences of androgen action in prostate cancer.

  2. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  3. Cell-surface hydrophobicity of Staphylococcus saprophyticus.

    Science.gov (United States)

    Schneider, P. F.; Riley, T. V.

    1991-01-01

    The cell-surface hydrophobicity of 100 urinary isolates of Staphylococcus saprophyticus, cultured from symptomatic females in the general population, was assessed using a two-phase aqueous:hydrocarbon system. Relatively strong cell-surface hydrophobicity was exhibited by 79 isolates using the criteria employed, while only 2 of the remaining 21 isolates failed to demonstrate any detectable hydrophobicity. Cell-surface hydrophobicity may be a virulence factor of S. saprophyticus, important in adherence of the organism to uroepithelia. Additionally, the data support the concept that cell-surface hydrophobicity may be a useful predictor of clinical significance of coagulase-negative staphylococci isolated from clinical sources. PMID:1993454

  4. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization.

    Science.gov (United States)

    Cunha, Bárbara; Aguiar, Tiago; Carvalho, Sofia B; Silva, Marta M; Gomes, Ricardo A; Carrondo, Manuel J T; Gomes-Alves, Patrícia; Peixoto, Cristina; Serra, Margarida; Alves, Paula M

    2017-04-20

    To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells' characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50×10(6)cellL(-1)day(-1)), expansion factors (14-16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30-50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells

    DEFF Research Database (Denmark)

    Galli, Giorgio Giacomo; Carrara, Matteo; Francavilla, Chiara

    2013-01-01

    find that Prdm5 is highly expressed in mouse embryonic stem cells (mES) and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next generation sequencing technologies we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that......, despite Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, Cohesin and TFIIIC and co...

  6. Towards system-level understanding of baculovirus host cell interactions: from molecular fundamental studies to large-scale proteomics approaches

    Directory of Open Access Journals (Sweden)

    Francisca eMonteiro

    2012-11-01

    Full Text Available Baculoviruses are insect viruses extensively exploited as eukaryotic protein expression vectors. Molecular biology studies have provided exciting discoveries on virus-host interactions, but the application of omic high throughput techniques on the baculovirus-insect cell system has been hampered by the lack of host genome sequencing. While a broader, systems level analysis of biological responses to infection is urgently needed, recent advances on proteomic studies have yielded new insights on the impact of infection on the host cell. These works are reviewed and critically assessed in the light of current biological knowledge of the molecular biology of baculoviruses and insect cells.

  7. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    Science.gov (United States)

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  8. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Carmen Vogt

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPIONs have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  9. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7.

    Directory of Open Access Journals (Sweden)

    Juliette Adjo Aka

    Full Text Available T47D and MCF7 are two human hormone-dependent breast cancer cell lines which are widely used as experimental models for in vitro and in vivo (tumor xenografts breast cancer studies. Several proteins involved in cancer development were identified in these cell lines by proteomic analyses. Although these studies reported the proteomic profiles of each cell line, until now, their differential protein expression profiles have not been established. Here, we used two-dimensional gel and mass spectrometry analyses to compare the proteomic profiles of the two cell lines, T47D and MCF7. Our data revealed that more than 164 proteins are differentially expressed between them. According to their biological functions, the results showed that proteins involved in cell growth stimulation, anti-apoptosis mechanisms and cancerogenesis are more strongly expressed in T47D than in MCF7. These proteins include G1/S-specific cyclin-D3 and prohibitin. Proteins implicated in transcription repression and apoptosis regulation, including transcriptional repressor NF-X1, nitrilase homolog 2 and interleukin-10, are, on the contrary, more strongly expressed in MCF7 as compared to T47D. Five proteins that were previously described as breast cancer biomarkers, namely cathepsin D, cathepsin B, protein S100-A14, heat shock protein beta-1 (HSP27 and proliferating cell nuclear antigen (PCNA, are found to be differentially expressed in the two cell lines. A list of differentially expressed proteins between T47D and MCF7 was generated, providing useful information for further studies of breast cancer mechanisms with these cell lines as models.

  10. Cell attachment on ion implanted titanium surface

    Directory of Open Access Journals (Sweden)

    P.S. Sreejith

    2008-12-01

    Full Text Available Purpose: Of outmost importance for the successful use of an implant is a good adhesion of the surrounding tissue to the biomaterial. In addition to the surface composition of the implant, the surface topography also influences the properties of the adherent cells. In the present investigation, ion implanted and untreated surfaces were compared for cell adhesion and spreading.Design/methodology/approach: The surface topography of the surfaces were analyzed using AFM and the cell studies with SEM.Findings: The results of our present investigation is indicative of the fact that ion implanted titanium surface offer better cell binding affinity compared to untreated/polished surface.Practical implications: Success of non-biodegradable implants will first and foremost depend on biocompatibility, followed by the capacity of the surface topography of the implants to evince desired cell matrix, surface cell matrix interactions. In the present study, the cell growth on ion implanted Ti material is analyzed and discussed.Originality/value: In this paper, we have utilized ion implantation technique, which will produce nano-texturing of the surface without producing any detrimental effects to both the dimensions and properties of the implants.

  11. A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders.

    Science.gov (United States)

    Pesciotta, Esther N; Sriswasdi, Sira; Tang, Hsin-Yao; Mason, Philip J; Bessler, Monica; Speicher, David W

    2012-12-05

    Red blood cells have been extensively studied but many questions regarding membrane properties and pathophysiology remain unanswered. Proteome analysis of red cell membranes is complicated by a very wide dynamic range of protein concentrations as well as the presence of proteins that are very large, very hydrophobic, or heterogeneously glycosylated. This study investigated the removal of other blood cell types, red cell membrane extraction, differing degrees of fractionation using 1-D SDS gels, and label-free quantitative methods to determine optimized conditions for proteomic comparisons of clinical blood samples. The results showed that fractionation of red cell membranes on 1-D SDS gels was more efficient than low-ionic-strength extractions followed by 1-D gel fractionation. When gel lanes were sliced into 30 uniform slices, a good depth of analysis that included the identification of most well-characterized, low-abundance red cell membrane proteins including those present at 500 to 10,000 copies per cell was obtained. Furthermore, the size separation enabled detection of changes due to proteolysis or in vivo protein crosslinking. A combination of Rosetta Elucidator quantitation and subsequent statistical analysis enabled the robust detection of protein differences that could be used to address unresolved questions in red cell disorders. This article is part of a Special Issue entitled: Integrated omics.

  12. Proteomic analysis of prolactinoma cells by immuno-laser capture microdissection combined with online two-dimensional nano-scale liquid chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Chen Luping

    2010-01-01

    Full Text Available Abstract Background Pituitary adenomas, the third most common intracranial tumor, comprise nearly 16.7% of intracranial neoplasm and 25%-44% of pituitary adenomas are prolactinomas. Prolactinoma represents a complex heterogeneous mixture of cells including prolactin (PRL, endothelial cells, fibroblasts, and other stromal cells, making it difficult to dissect the molecular and cellular mechanisms of prolactin cells in pituitary tumorigenesis through high-throughout-omics analysis. Our newly developed immuno-laser capture microdissection (LCM method would permit rapid and reliable procurement of prolactin cells from this heterogeneous tissue. Thus, prolactin cell specific molecular events involved in pituitary tumorigenesis and cell signaling can be approached by proteomic analysis. Results Proteins from immuno-LCM captured prolactin cells were digested; resulting peptides were separated by two dimensional-nanoscale liquid chromatography (2D-nanoLC/MS and characterized by tandem mass spectrometry. All MS/MS spectrums were analyzed by SEQUEST against the human International Protein Index database and a specific prolactinoma proteome consisting of 2243 proteins was identified. This collection of identified proteins by far represents the largest and the most comprehensive database of proteome for prolactinoma. Category analysis of the proteome revealed a widely unbiased access to various proteins with diverse functional characteristics. Conclusions This manuscript described a more comprehensive proteomic profile of prolactinomas compared to other previous published reports. Thanks to the application of immuno-LCM combined with online two-dimensional nano-scale liquid chromatography here permitted identification of more proteins and, to our best knowledge, generated the largest prolactinoma proteome. This enlarged proteome would contribute significantly to further understanding of prolactinoma tumorigenesis which is crucial to the management of

  13. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production.

    Science.gov (United States)

    Zhang, Liang; Yu, Cuijuan; Vasquez, Francisco E; Galeva, Nadya; Onyango, Isaac; Swerdlow, Russell H; Dobrowsky, Rick T

    2010-01-01

    Hyperglycemia-induced mitochondrial dysfunction contributes to sensory neuron pathology in diabetic neuropathy. Although Schwann cells (SCs) also undergo substantial degeneration in diabetic neuropathy, the effect of hyperglycemia on the SC mitochondrial proteome and mitochondrial function has not been examined. Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantify the temporal effect of hyperglycemia on the mitochondrial proteome of primary SCs isolated from neonatal rats. Of 317 mitochondrial proteins identified, about 78% were quantified and detected at multiple time points. Pathway analysis indicated that proteins associated with mitochondrial dysfunction, oxidative phosphorylation, the TCA cycle, and detoxification were significantly increased in expression and over-represented. Assessing mitochondrial respiration in intact SCs indicated that hyperglycemia increased the overall rate of oxygen consumption but decreased the efficiency of coupled respiration. Although a glucose-dependent increase in superoxide production occurs in embryonic sensory neurons, hyperglycemia did not induce a substantial change in superoxide levels in SCs. This correlated with a 1.9-fold increase in Mn superoxide dismutase expression, which was confirmed by immunoblot and enzymatic activity assays. These data support that hyperglycemia alters mitochondrial respiration and can cause remodeling of the SC mitochondrial proteome independent of significant contributions from glucose-induced superoxide production.

  14. Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State.

    Science.gov (United States)

    Sacco, Francesca; Silvestri, Alessandra; Posca, Daniela; Pirrò, Stefano; Gherardini, Pier Federico; Castagnoli, Luisa; Mann, Matthias; Cesareni, Gianni

    2016-03-23

    Metformin is the most frequently prescribed drug for type 2 diabetes. In addition to its hypoglycemic effects, metformin also lowers cancer incidence. This anti-cancer activity is incompletely understood. Here, we profiled the metformin-dependent changes in the proteome and phosphoproteome of breast cancer cells using high-resolution mass spectrometry. In total, we quantified changes of 7,875 proteins and 15,813 phosphosites after metformin changes. To interpret these datasets, we developed a generally applicable strategy that overlays metformin-dependent changes in the proteome and phosphoproteome onto a literature-derived network. This approach suggested that metformin treatment makes cancer cells more sensitive to apoptotic stimuli and less sensitive to pro-growth stimuli. These hypotheses were tested in vivo; as a proof-of-principle, we demonstrated that metformin inhibits the p70S6K-rpS6 axis in a PP2A-phosphatase dependent manner. In conclusion, analysis of deep proteomics reveals both detailed and global mechanisms that contribute to the anti-cancer activity of metformin.

  15. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    Science.gov (United States)

    Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It’s crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer. PMID:27684953

  16. Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells.

    Science.gov (United States)

    Li, Yuzhe; Zhang, Boyang; Huang, Kunlun; He, Xiaoyun; Luo, YunBo; Liang, Rui; Luo, Haoshu; Shen, Xiao Li; Xu, Wentao

    2014-10-03

    Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma

    Indian Academy of Sciences (India)

    Mee Lee Looi; Saiful Anuar Karsani; Mariati Abdul Rahman; Ahmad Zailani Hatta Mohd Dali; Siti Aishah Md Ali; Wan Zurinah Wan Ngah; Yasmin Anum Mohd Yusof

    2009-12-01

    Although cervical cancer is preventable with early detection, it remains the second most common malignancy among women. An understanding of how proteins change in their expression during a particular diseased state such as cervical cancer will contribute to an understanding of how the disease develops and progresses. Potentially, it may also lead to the ability to predict the occurrence of the disease. With this in mind, we aimed to identify differentially expressed proteins in the plasma of cervical cancer patients. Plasma from control, cervical intraepithelial neoplasia (CIN) grade 3 and squamous cell carcinoma (SCC) stage IV subjects was resolved by two-dimensional gel electrophoresis and the resulting proteome profiles compared. Differentially expressed protein spots were then identified by mass spectrometry. Eighteen proteins were found to be differentially expressed in the plasma of CIN 3 and SCC stage IV samples when compared with that of controls. Competitive ELISA further validated the expression of cytokeratin 19 and tetranectin. Functional analyses of these differentially expressed proteins will provide further insight into their potential role(s) in cervical cancer-specific monitoring and therapeutics.

  18. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  19. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  20. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease

    Science.gov (United States)

    Soman, Kizhake V.; Zago, Maria P.; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N.; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R.

    2016-01-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30–40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy. PMID:26919708

  1. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Nisha Jain Garg

    2016-02-01

    Full Text Available Trypanosoma cruzi (Tc infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs of normal healthy controls (N/H, n = 30 and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25 or clinically symptomatic (C/S, n = 28 with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol and resolved by two-dimensional gel electrophoresis (2D-GE. After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy.

  2. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  3. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    Science.gov (United States)

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future.

  4. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  5. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  6. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology.

    Science.gov (United States)

    Jami, Mohammad-Saeid; García-Estrada, Carlos; Barreiro, Carlos; Cuadrado, Abel-Alberto; Salehi-Najafabadi, Zahra; Martín, Juan-Francisco

    2010-12-01

    The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.

  7. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  8. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    Directory of Open Access Journals (Sweden)

    Kirsch Roy

    2012-11-01

    Full Text Available Abstract Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs. The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH families: GH11 (xylanases, GH28 (polygalacturonases or pectinases, and GH45 (β-1,4-glucanases or cellulases. Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs families as well as polygalacturonase-inhibiting proteins (PGIPs were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome

  9. Proteomics Research in Schizophrenia

    OpenAIRE

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitat...

  10. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    Science.gov (United States)

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  11. Proteome analysis of proliferative response of bystander cells adjacent to cells exposed to ionizing radiation.

    Science.gov (United States)

    Gerashchenko, Bogdan I; Yamagata, Akira; Oofusa, Ken; Yoshizato, Katsutoshi; de Toledo, Sonia M; Howell, Roger W

    2007-06-01

    Recently (Cytometry 2003, 56A, 71-80), we reported that direct cell-to-cell contact is required for stimulating proliferation of bystander rat liver cells (WB-F344) cocultured with irradiated cells, and neither functional gap junction intercellular communication nor long-range extracellular factors appear to be involved in this proliferative bystander response (PBR). The molecular basis for this response is unknown. Confluent monolayers of WB-F344 cells were exposed to 5-Gray (Gy) of gamma-rays. Irradiated cells were mixed with unirradiated cells and co-cultured for 24 h. Cells were harvested and protein expression was examined using 2-DE. Protein expression was also determined in cultures of unirradiated and 5-Gy irradiated cells. Proteins were identified by MS. Nucleophosmin (NPM)-1, a multifunctional nucleolar protein, was more highly expressed in bystander cells than in either unirradiated or 5-Gy irradiated cells. Enolase-alpha, a glycolytic enzyme, was present in acidic and basic variants in unirradiated cells. In bystander and 5-Gy irradiated cells, the basic variant was weakly expressed, whereas the acidic variant was overwhelmingly present. These data indicate that the presence of irradiated cells can affect NPM-1 and enolase-alpha in adjacent bystander cells. These proteins appear to participate in molecular events related to the PBR and suggest that this response may involve cellular defense, proliferation, and metabolism.

  12. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  13. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  14. Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis

    Science.gov (United States)

    Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.

    2013-08-01

    Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.

  15. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  16. Enzymatic Shaving of the Tegument Surface of Live Schistosomes for Proteomic Analysis: A Rational Approach to Select Vaccine Candidates

    Science.gov (United States)

    Castro-Borges, William; Dowle, Adam; Curwen, Rachel S.; Thomas-Oates, Jane; Wilson, R. Alan

    2011-01-01

    Background The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite's principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained. Methodology/Principal Findings An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system. Conclusions/Significance Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated

  17. Assessing CMT cell line stability by two dimensional polyacrylamide gel electrophoresis and mass spectrometry based proteome analysis

    DEFF Research Database (Denmark)

    Zhang, Kelan; Wrzesinski, Krzysztof; Fey, Stephen J;

    2008-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) followed by mass spectrometric identification of the proteins in the protein spots has become a central tool in proteomics. CMT167(H), CMT64(M) and CMT170(L) cell lines, selected from a spontaneous mouse lung adenocarcinoma, with high......-, middle- or low-metastatic potential have been characterized in vivo. In this study, the comprehensive protein expression profiles of the CMT cell lines were analyzed at passages 5, 15 and 35 in order to assess the cell line stability. During the passages 5 to 15, the expression profiles of CMT cells...... to be a useful tool for assessing differences in cell line stability. This approach provided a tool to select the best cell line and optimal subculture period for studies of cancer related phenomena and for testing the effect of potential anticancer drugs....

  18. An orthogonal comparison of the proteome of human embryonic stem cells with that of human induced pluripotent stem cells of different genetic background.

    Science.gov (United States)

    Faradonbeh, Mojtaba Zamani; Gharechahi, Javad; Mollamohammadi, Sepideh; Pakzad, Mohammad; Taei, Adeleh; Rassouli, Hassan; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2012-06-01

    Induced pluripotent stem cells (iPSCs) provide an invaluable resource for drug or toxicology screening, medical research and patient-specific cell therapy. However, the potential applications of iPSCs are largely dependent on the degree of similarity between iPSCs and embryonic stem cells (ESCs). In the present study, we analyzed the proteome of human ESCs and hiPSCs with different genetic background. We carried out an orthogonal contrast analysis of the proteome pattern of two human ESC lines (Royan H5 and Royan H6) and two hiPSC lines from a normal individual, three hiPSC lines from a normal individual with Bombay blood group phenotype, and two hiPSC lines from a patient with tyrosinemia. Forty-nine protein spots showed statistically significant differences between two human ESC lines and seven human iPSCs. Mass spectrometry analysis resulted in the identification of 48 proteins belonging to different biological processes, including cytoskeleton organization, energy and metabolic processes, protein synthesis and processing, signal transduction, cell growth and proliferation, cellular trafficking, transcription, calcium binding and immune response. Our results showed that hESCs and hiPSCs had subtle differences at the proteome level thus warranting more detailed and systematic examinations of these cells.

  19. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  20. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

    Science.gov (United States)

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Martinez, Harryl D; Jasavala, Rohini J; Hinkson, Izumi V; Fermin, Damian; Eng, Jimmy K; Nesvizhskii, Alexey I; Wright, Michael E

    2015-08-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

  1. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  2. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.

    Science.gov (United States)

    Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver

    2015-05-01

    During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information.

  3. Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood.

    Directory of Open Access Journals (Sweden)

    Jumi Kim

    Full Text Available Mesenchymal stem cells (MSCs are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM, umbilical cord blood (CB and peripheral blood (PB. We identified approximately 30 differentially regulated (or expressed proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.

  4. Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: Role of myeloperoxidase and arylamine free radicals.

    Science.gov (United States)

    Khan, Saifur R; Baghdasarian, Argishti; Nagar, Prarthna H; Fahlman, Richard; Jurasz, Paul; Michail, Karim; Aljuhani, Naif; Siraki, Arno G

    2015-09-01

    In this study, the cellular effects resulting from the metabolism of aminoglutethimide by myeloperoxidase were investigated. Human promyelocytic leukemia (HL-60) cells were treated with aminoglutethimide (AG), an arylamine drug that has a risk of adverse drug reactions, including drug-induced agranulocytosis. HL-60 cells contain abundant amounts of myeloperoxidase (MPO), a hemoprotein, which catalyzes one-electron oxidation of arylamines using H2O2 as a cofactor. Previous studies have shown that arylamine metabolism by MPO results in protein radical formation. The purpose of this study was to determine if pathways associated with a toxic response could be determined from conditions that produced protein radicals. Conditions for AG-induced protein radical formation (with minimal cytotoxicity) were optimized, and these conditions were used to carry out proteomic studies. We identified 43 proteins that were changed significantly upon AG treatment among which 18 were up-regulated and 25 were down-regulated. The quantitative proteomic data showed that AG peroxidative metabolism led to the down-regulation of critical anti-apoptotic proteins responsible for inhibiting the release of pro-apoptotic factors from the mitochondria as well as cytoskeletal proteins such as nuclear lamina. This overall pro-apoptotic response was confirmed with flow cytometry which demonstrated apoptosis to be the main mode of cell death, and this was attenuated by MPO inhibition. This response correlated with the intensity of AG-induced protein radical formation in HL-60 cells, which may play a role in cell death signaling mechanisms.

  5. The minotaur proteome

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; García, Guadalupe Espadas; Paz, Marcia Ivonne Peña;

    2010-01-01

    Cell culture is a fundamental tool in proteomics where mammalian cells are cultured in vitro using a growth medium often supplemented with 5-15% FBS. Contamination by bovine proteins is difficult to avoid because of adherence to the plastic vessel and the cultured cells. We have generated peptide...

  6. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  7. Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension.

    Science.gov (United States)

    Kluge, Sabine; Benndorf, Dirk; Genzel, Yvonne; Scharfenberg, Klaus; Rapp, Erdmann; Reichl, Udo

    2015-08-20

    Adaptation of continuous cell lines to growth in suspension in a chemically defined medium has significant advantages for design and optimization in manufacturing of biologicals. In this work, changes in the protein expression level during a step-wise adaptation of an adherent Madin Darby canine kidney (MDCK) cell line to suspension growth were analyzed. Therefore, three cell line adaptations were performed independently. Two adaptations were monitored closely to characterize short term changes in protein expression levels after serum deprivation. In addition, initial stages of suspension growth were analyzed for both adaptations. The third adaptation involved MDCK suspension cells (MDCKSUS2) grown over an extended time period to achieve robust growth characteristics. Here, cells of the final stage of adaptation were compared with their parental cell line (MDCKADH). A combination of two dimensional differential gel electrophoresis for relative protein quantification and tandem mass spectrometry for protein identification enabled insights into cellular physiology. The two closely monitored cell line adaptations followed different routes regarding specific changes in protein expression but resulted in similar proteome profiles at the initial stages of suspension growth analyzed. Compared to the MDCKADH cells more than 90% of all changes in the protein expression level were identified after serum deprivation and were related to cytoskeletal structure, genetic information processing and cellular metabolism. Myosin proteins, involved in cellular detachment by actin-myosin contractile mechanisms were also differentially expressed. Interestingly, for both of the two adaptations, proteins linked for tumorigenicity, like lactoylglutathione lyase and sulfotransferase 1A1 were differentially expressed. In contrast, none of these proteins were differentially expressed for the MDCKSUS2 cell line. Overall, proteomic monitoring allowed identification of key proteins involved in

  8. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue;

    2014-01-01

    Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important......ESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well...... in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development...

  9. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology.

    Science.gov (United States)

    Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A

    2015-03-01

    The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.

  10. Proteomic investigation of embryonic rat heart-derived H9c2 cell line sheds new light on the molecular phenotype of the popular cell model.

    Science.gov (United States)

    Lenčo, Juraj; Lenčová-Popelová, Olga; Link, Marek; Jirkovská, Anna; Tambor, Vojtěch; Potůčková, Eliška; Stulík, Jiří; Šimůnek, Tomáš; Štěrba, Martin

    2015-12-10

    Due to their cardiac origin, H9c2 cells rank among the most popular cell lines in current cardiovascular research, yet molecular phenotype remains elusive. Hence, in this study we used proteomic approach to describe molecular phenotype of H9c2 cells in their undifferentiated (i.e., most frequently used) state, and its functional response to cardiotoxic drug doxorubicin. Of 1671 proteins identified by iTRAQ IEF/LC-MSMS analysis, only 12 proteins were characteristic for striated muscle cells and none was cardiac phenotype-specific. Targeted LC-SRM and western blot analyses confirmed that undifferentiated H9c2 cells are phenotypically considerably different to both primary neonatal cardiomyocytes and adult myocardium. These cells lack proteins essential for formation of striated muscle myofibrils or they express only minor amounts thereof. They also fail to express many proteins important for metabolism of muscle cells. The challenge with clinically relevant concentrations of doxorubicin did not induce a proteomic signature that has been previously noted in primary cardiomyocytes or adult hearts. Instead, several alterations previously described in other cells of mesodermal origin, such as fibroblasts, were observed (e.g., severe down-regulation of collagen synthesis pathway). In conclusion, the molecular phenotype of H9c2 cells resembles very immature myogenic cells with skeletal muscle commitment upon differentiation and thus, translatability of findings obtained in these cells deserves caution.

  11. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses.

    Directory of Open Access Journals (Sweden)

    Venkata R Duvvuri

    Full Text Available In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2. The CD4+ T-cell epitopes that are commonly conserved (∼ 556 were further screened against the Immune Epitope Database (IEDB to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556 epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥ 90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62% when compared with other ethnicities (57.77% to 94.84%. In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.

  12. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses.

    Science.gov (United States)

    Duvvuri, Venkata R; Duvvuri, Bhargavi; Alice, Christilda; Wu, Gillian E; Gubbay, Jonathan B; Wu, Jianhong

    2014-01-01

    In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼ 556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥ 90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.

  13. Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat.

    Science.gov (United States)

    Huang, Hui-Qiong; Tang, Jing; Zhou, Sheng-Tao; Yi, Tao; Peng, Hong-Ling; Shen, Guo-Bo; Xie, Na; Huang, Kai; Yang, Tao; Wu, Jin-Hua; Huang, Can-Hua; Wei, Yu-Quan; Zhao, Xia

    2012-08-01

    Orlistat is an orally administered anti-obesity drug that has shown significant antitumor activity in a variety of tumor cells. To identify the proteins involved in its antitumor activity, we employed a proteomic approach to reveal protein expression changes in the human ovarian cancer cell line SKOV3, following Orlistat treatment. Protein expression profiles were analyzed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. More than 110 differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue staining. Furthermore, 71 proteins differentially expressed proteins were positively identified via mass spectrometry (MS)/MS analysis. In particular, PKM1/2, a key enzyme involved in tumorigenesis, was found to be significantly downregulated in SKOV3 cells following treatment with Orlistat. Moreover, PKM1/2 was proved to be downregulated in SKOV3 cells by western blot analysis after treatment with Orlistat. Taken together, using proteomic tools, we identified several differentially expressed proteins that underwent Orlistat-induced apoptosis, particularly PKM2. These changes confirmed our hypothesis that Orlistat is a potential inhibitor of ovarian cancer and can be used as a novel adjuvant antitumor agent.

  14. Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia

    Science.gov (United States)

    Trost, Matthias; Sauvageau, Martin; Hérault, Olivier; Deleris, Paul; Pomiès, Christelle; Chagraoui, Jalila; Mayotte, Nadine; Meloche, Sylvain; Sauvageau, Guy; Thibault, Pierre

    2017-01-01

    We recently generated 2 phenotypically similar Hoxa9+Meis1 overexpressing acute myeloid leukemias that differ by their in vivo biologic behavior. The first leukemia, named FLA2, shows a high frequency of leukemia stem cells (LSCs; 1 in 1.4 cells), whereas the second, FLB1, is more typical with a frequency of LSCs in the range of 1 per several hundred cells. To gain insights into possible mechanisms that determine LSC self-renewal, we profiled and compared the abundance of nuclear and cytoplasmic proteins and phosphoproteins from these leukemias using quantitative proteomics. These analyses revealed differences in proteins associated with stem cell fate, including a hyperactive p38 MAP kinase in FLB1 and a differentially localized Polycomb group protein Ezh2, which is mostly nuclear in FLA2 and predominantly cytoplasmic in FLB1. Together, these newly documented proteomes and phosphoproteomes represent a unique resource with more than 440 differentially expressed proteins and 11 543 unique phosphopeptides, of which 80% are novel and 7% preferentially phosphorylated in the stem cell–enriched leukemia. PMID:22802335

  15. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  16. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  17. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples

    Directory of Open Access Journals (Sweden)

    Alessandro Tanca

    2016-06-01

    Full Text Available Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs. Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375.

  18. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples.

    Science.gov (United States)

    Tanca, Alessandro; Addis, Maria Filippa; Pisanu, Salvatore; Abbondio, Marcello; Pagnozzi, Daniela; Eccher, Albino; Rindi, Guido; Cossu-Rocca, Paolo; Uzzau, Sergio; Fanciulli, Giuseppe

    2016-06-01

    Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs). Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375.

  19. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples

    Science.gov (United States)

    Tanca, Alessandro; Addis, Maria Filippa; Pisanu, Salvatore; Abbondio, Marcello; Pagnozzi, Daniela; Eccher, Albino; Rindi, Guido; Cossu-Rocca, Paolo; Uzzau, Sergio; Fanciulli, Giuseppe

    2016-01-01

    Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs). Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375. PMID:27054153

  20. Comprehensive proteome quantification reveals NgBR as a new regulator for Epithelial-Mesenchymal Transition of breast tumor cells

    OpenAIRE

    Zhao, Baofeng; Xu, Bo; Hu, Wenquan; Song, Chunxia; Wang, Fangjun; Liu, Zhong; Ye, Mingliang; Zou, Hanfa; Miao, Qing R.

    2014-01-01

    Nogo-B receptor (NgBR) is a type I receptor and specifically binds to ligand Nogo-B. Our previous work has shown that NgBR is highly expressed in human breast invasive ductal carcinoma. Here, comprehensive proteome quantification was performed to examine the alteration of protein expression profile in MDA-MB-231 breast tumor cells after knocking down NgBR using lentivirus-mediated shRNA approach. Among a total of 1771 proteins feasibly quantified, 994 proteins were quantified in two biologica...

  1. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype.

    Science.gov (United States)

    Weiss, Tamara; Taschner-Mandl, Sabine; Bileck, Andrea; Slany, Astrid; Kromp, Florian; Rifatbegovic, Fikret; Frech, Christian; Windhager, Reinhard; Kitzinger, Hugo; Tzou, Chieh-Han; Ambros, Peter F; Gerner, Christopher; Ambros, Inge M

    2016-12-01

    The remarkable feature of Schwann cells (SCs) to transform into a repair phenotype turned the spotlight on this powerful cell type. SCs provide the regenerative environment for axonal re-growth after peripheral nerve injury (PNI) and play a vital role in differentiation of neuroblastic tumors into a benign subtype of neuroblastoma, a tumor originating from neural crest-derived neuroblasts. Hence, understanding their mode-of-action is of utmost interest for new approaches in regenerative medicine, but also for neuroblastoma therapy. However, literature on human SCs is scarce and it is unknown to which extent human SC cultures reflect the SC repair phenotype developing after PNI in patients. We performed high-resolution proteome profiling and RNA-sequencing on highly enriched human SC and fibroblast cultures, control and ex vivo degenerated nerve explants to identify novel molecules and functional processes active in repair SCs. In fact, we found cultured SCs and degenerated nerves to share a similar repair SC-associated expression signature, including the upregulation of JUN, as well as two prominent functions, i.e., myelin debris clearance and antigen presentation via MHCII. In addition to myelin degradation, cultured SCs were capable of actively taking up cell-extrinsic components in functional phagocytosis and co-cultivation assays. Moreover, in cultured SCs and degenerated nerve tissue MHCII was upregulated at the cellular level along with high expression of chemoattractants and co-inhibitory rather than -stimulatory molecules. These results demonstrate human SC cultures to execute an inherent program of nerve repair and support two novel repair SC functions, debris clearance via phagocytosis-related mechanisms and type II immune-regulation. GLIA 2016;64:2133-2153. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  2. Proteomics indicates modulation of tubulin polymerization by L-menthol inhibiting human epithelial colorectal adenocarcinoma cell proliferation.

    Science.gov (United States)

    Faridi, Uzma; Sisodia, Brijesh S; Shukla, Ashutosh K; Shukla, Rakesh K; Darokar, Mahendra P; Dwivedi, Upendra N; Shasany, Ajit K

    2011-05-01

    Menthol is a naturally occurring cyclic monoterpene used in oral hygiene products, confectionary, pharmaceuticals, cosmetics, pesticides, and as a flavoring agent. In the present study, we analyzed the differentially expressing proteome in L-menthol-treated Caco-2 cell line as it was found to inhibit cell proliferation. Interestingly, free tubulin proteins were observed to be limited after menthol treatment. Semiquantitative RT-PCR with α-tubulin primers showed no change in the level of RNA expression in menthol-treated cell line. However, tubulin polymerization assay with menthol indicated a trend similar to taxol in promoting microtubule assembly. Further, physical counting of apoptotic nuclei and active caspase-3 assays confirmed onset of apoptosis though the rate was slower as compared with that of taxol treatment. This study is the first report of a monoterpene L-menthol modulating tubulin polymerization and apoptosis to inhibit cancer cell proliferation.

  3. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen;

    2005-01-01

    One of the major limitations for understanding the biology of human mesenchymal stem cells (hMSCs) is the absence of prospective markers needed for distinguishing them from other cells and for monitoring lineage-specific differentiation. Mass spectrometry (MS)-based proteomics has proven extremely...... in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...... or membrane-anchored proteins and 159 membrane-associated proteins. Twenty-nine integrins and cell adhesion molecules, 20 receptors, and 18 Ras-related small GTPases were also identified. Upon OB differentiation, the expression levels of 83 proteins increased by at least twofold whereas the levels of another...

  4. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  5. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  6. Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC)

    Science.gov (United States)

    Park, Sung-Soo; Wu, Wells W.; Zhou, Yu; Shen, Rong-Fong; Martin, Bronwen; Maudsley, Stuart

    2012-01-01

    Accurate and reliable quantitative proteomics in cell culture has been considerably facilitated by the introduction of the stable isotope labeling by amino acids in cell culture (SILAC), combined with high resolution mass spectrometry. There are however several major sources of quantification errors that commonly occur with SILAC techniques, i.e. incomplete incorporation of isotopic amino acids, arginine-to-proline conversion, and experimental errors in final sample mixing. Dataset normalization is a widely adopted solution to such errors, however this may not completely prevent introducing incorrect expression ratios. Here we demonstrate that a label-swap replication of SILAC experiments was able to effectively correct experimental errors by averaging ratios measured in individual replicates using quantitative proteomics and phosphoproteomics of ligand treatment of neural cell cultures. Furthermore, this strategy was successfully applied to a SILAC triplet experiment, which presents a much more complicated experimental matrix, affected by both incomplete labeling and arginine-to-proline conversion. Based on our results, we suggest that SILAC experiments should be designed to incorporate label-swap replications for enhanced reliability in expression ratios. PMID:22575385

  7. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis.

    Science.gov (United States)

    Degroote, Roxane L; Hauck, Stefanie M; Amann, Barbara; Hirmer, Sieglinde; Ueffing, Marius; Deeg, Cornelia A

    2014-01-01

    Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.

  8. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis.

    Directory of Open Access Journals (Sweden)

    Roxane L Degroote

    Full Text Available Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.

  9. Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database

    NARCIS (Netherlands)

    Cohen, D.P.A.; Renes, J.; Bouwman, F.G.; Zoetendal, E.G.; Mariman, E.; Vos, de W.M.; Vaughan, E.E.

    2006-01-01

    Lactobacillus plantarum is part of the natural microbiota of many food fermentations as well as the human gastro-intestinal tract. The cytosolic fraction of the proteome of L. plantarum WCFS1, whose genome has been sequenced, was studied. 2-DE was used to investigate the proteins from the cytosolic

  10. Structure and functions of fungal cell surfaces

    Science.gov (United States)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  11. A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells.

    Science.gov (United States)

    Li, Zhi-Ling; Zhou, Shu-Feng

    2016-01-29

    Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.

  12. Differential effects of Helenalin, an anti-inflammatory sesquiterpene lactone, on the proteome, metabolome and the oxidative stress response in several immune cell types.

    Science.gov (United States)

    Zwicker, Paula; Schultze, Nadin; Niehs, Sarah; Albrecht, Dirk; Methling, Karen; Wurster, Martina; Wachlin, Gerhild; Lalk, Michael; Lindequist, Ulrike; Haertel, Beate

    2016-12-18

    Extracts of Arnica spp. are traditionally used due to their anti-inflammatory effects for the topical treatment of e.g. haematoma or muscle distortions. One of the main active compounds is Helenalin, a sesquiterpene lactone that can be found in various Asteraceae. However, immunotoxic effects of the compound are only poorly analysed. In this study, a 2D gel electrophoresis based proteomic approach together with a membrane based proteomic assay, metabolomics and the detection of intracellular reactive oxygen species (iROS) were used to investigate potential immunotoxic properties of Helenalin on the human immune cell lines Jurkat and THP-1 and on human peripheral blood mononuclear cells (PBMC). The study revealed a dose-dependent cytotoxicity towards both tested cell lines and the PBMC. However, the cell lines were less sensitive to the Helenalin treatment than the PBMC. The proteomic assays showed strong effects on the carbohydrate metabolism and the protein folding in THP-1 cells but only weak impact on Jurkat cells. Metabolomic studies as well as iROS detection in THP-1 cells verified the results of the proteomic analysis. In summary, the approaches used in this study were able to identify target pathways of Helenalin especially in THP-1 monocytes and thus enable a risk assessment of the substance.

  13. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    Science.gov (United States)

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  15. Proteomic analysis of the vitamin C effect on the doxorubicin cytotoxicity in the MCF-7 breast cancer cell line.

    Science.gov (United States)

    Bober, Peter; Alexovic, Michal; Talian, Ivan; Tomkova, Zuzana; Viscorova, Zuzana; Benckova, Maria; Andrasina, Igor; Ciccocioppo, Rachele; Petrovic, Daniel; Adamek, Mariusz; Kruzliak, Peter; Sabo, Jan

    2017-01-01

    Doxorubicin is an anthracycline drug which inhibits the growth of breast cancer cell lines. However, a major factor limiting its use is a cumulative, dose-dependent cardiotoxicity, resulting in a permanent loss of cardiomyocytes. Vitamin C was found to potentiate the cytotoxic effects of a variety of chemotherapeutic drugs including doxorubicin. The aim of the study was to describe the changes in protein expression and proliferation of the MCF-7 cells induced by the vitamin C applied with doxorubicin. Label-free quantitative proteomics and real-time cell analysis methods were used to search for proteome and cell proliferation changes. These changes were induced by the pure DOX and by DOX combined with vitamin C applied on the MCF-7 cell line. From the real-time cell analysis experiments, it is clear that the highest anti-proliferative effect occurs with the addition of 200 µM of vitamin C to 1 µM of doxorubicin. By applying both the label-free protein quantification method and total ion current assay, we found statistically significant changes (p ≤ 0.05) of 26 proteins induced by the addition of vitamin C to doxorubicin on the MCF-7 cell line. These differentially expressed proteins are involved in processes such as structural molecule activity, transcription and translation, immune system process and antioxidant, cellular signalling and transport. The detected proteins may be capable of predicting response to DOX therapy. This is a key tool in the treatment of breast cancer, and the combination with vit C seems to be of particular interest due to the fact that it can potentiate anti-proliferative effect of DOX.

  16. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.

    2017-07-13

    Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins with at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.

  17. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Directory of Open Access Journals (Sweden)

    Fan Lin

    2017-07-01

    Full Text Available Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.

  18. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  19. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  20. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell

    DEFF Research Database (Denmark)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris

    2008-01-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much...

  1. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    Science.gov (United States)

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  2. Overexpression of Cell Surface Cytokeratin 8 in Multidrug-Resistant MCF-7/MX Cells Enhances Cell Adhesion to the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2008-11-01

    Full Text Available Accumulating evidence suggests that multiple complex mechanisms may be involved, simultaneously or complementarily, in the emergence and development of multidrug resistance (MDR in various cancers. Cell adhesion-mediated MDR is one such mechanism. In the present study, we initially observed increased cell adhesion to extracellular matrix proteins by the MDR human breast tumor cell line MCF-7/MX compared to its parental cells. We then used a strategy that combined antibody-based screening technique and mass spectrometry-based proteomics to identify membrane proteins that contribute to the enhanced adhesion of MCF-7/MX cells. Using MCF-7/MX cells as immunogen, we isolated a mouse monoclonal antibody, 9C6, that preferentially reacts with MCF-7/MX cells over the parental MCF-7 cells. The molecular target of 9C6 was identified as cytokeratin 8 (CK8, which was found to be overexpressed on the cell surface of MCF-7/MX cells. We further observed that down-regulation of cell surface levels of CK8 through siRNA transfection significantly inhibited MCF-7/MX cell adhesion to fibronectin and vitronectin. In addition, anti-CK8 siRNA partially reversed the MDR phenotype of MCF-7/MX cells. Taken together, our results suggest that alterations in the expression level and cellular localization of CK8 may play a significant role in enhancing the cellular adhesion of MDR MCF-7/MX cells.

  3. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase.

    Science.gov (United States)

    Bateman, Nicholas W; Sun, Mai; Hood, Brian L; Flint, Melanie S; Conrads, Thomas P

    2010-10-01

    Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.

  4. Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics.

    Science.gov (United States)

    Guo, Jisheng; Wang, Xiaoyue; Lü, Xin; Jing, Ruirui; Li, Junqiang; Li, CuiLing; Wang, Daoguang; Bi, Baibin; Chen, Xinjun; Wang, Fengqin; Sun, Shengnan; Gong, Jing; Azadzoi, Kazem M; Yang, Jing-Hua

    2016-06-17

    ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.

  5. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  6. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells.

    Science.gov (United States)

    Lardenois, Aurélie; Jagot, Sabrina; Lagarrigue, Mélanie; Guével, Blandine; Ledevin, Mireille; Larcher, Thibaut; Dubreil, Laurence; Pineau, Charles; Rouger, Karl; Guével, Laëtitia

    2016-07-01

    Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).

  7. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  8. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  9. Plant Cell Wall Proteomics: Mass Spectrometry Data, a Trove for Research on Protein Structure/Function Relationships

    Institute of Scientific and Technical Information of China (English)

    Cécile Albenne; Hervé Canut; Georges Boudart; Yu Zhang; Héléne San Clemente; Rafael Pont-Lezica; Elisabeth Jamet

    2009-01-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organ-elles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identi-fication, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRR Matu-ration events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  10. Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Boudart, Georges; Zhang, Yu; San Clemente, Hélène; Pont-Lezica, Rafael; Jamet, Elisabeth

    2009-09-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  11. Proteome analysis of vaccinia virus IHD-W-infected HEK 293 cells with 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS of on solid phase support N-terminally sulfonated peptides

    Directory of Open Access Journals (Sweden)

    Bartel Sebastian

    2011-08-01

    Full Text Available Abstract Background Despite the successful eradication of smallpox by the WHO-led vaccination programme, pox virus infections remain a considerable health threat. The possible use of smallpox as a bioterrorism agent as well as the continuous occurrence of zoonotic pox virus infections document the relevance to deepen the understanding for virus host interactions. Since the permissiveness of pox infections is independent of hosts surface receptors, but correlates with the ability of the virus to infiltrate the antiviral host response, it directly depends on the hosts proteome set. In this report the proteome of HEK293 cells infected with Vaccinia Virus strain IHD-W was analyzed by 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS in a bottom-up approach. Results The cellular and viral proteomes of VACV IHD-W infected HEK293 cells, UV-inactivated VACV IHD-W-treated as well as non-infected cells were compared. Derivatization of peptides with 4-sulfophenyl isothiocyanate (SPITC carried out on ZipTipμ-C18 columns enabled protein identification via the peptides' primary sequence, providing improved s/n ratios as well as signal intensities of the PSD spectra. The expression of more than 24 human proteins was modulated by the viral infection. Effects of UV-inactivated and infectious viruses on the hosts' proteome concerning energy metabolism and proteins associated with gene expression and protein-biosynthesis were quite similar. These effects might therefore be attributed to virus entry and virion proteins. However, the modulation of proteins involved in apoptosis was clearly correlated to infectious viruses. Conclusions The proteome analysis of infected cells provides insight into apoptosis modulation, regulation of cellular gene expression and the regulation of energy metabolism. The confidence of protein identifications was clearly improved by the peptides' derivatization with SPITC on a solid phase support. Some of the identified proteins

  12. Surface cell immobilization within perfluoroalkoxy microchannels

    Science.gov (United States)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  13. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.

    2003-01-01

    of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation......, and nucleotide metabolism were down-regulated at the transcriptional level, whereas genes responsive to different stresses as well as genes from energy reserve metabolism and monosaccharide metabolism were up-regulated. Compared with the proteomic data, 26% of the down-regulated and 48% of the up......-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas...

  14. Proteomic peptide scan of porphyromonas gingivalis fima type ii for searching potential b-cell epitopes

    Science.gov (United States)

    LUCCHESE, A.; GUIDA, A.; CAPONE, G.; DONNARUMMA, G.; LAINO, L.; PETRUZZI, M.; SERPICO, R.; SILVESTRE, F.; GARGARI, M.

    2016-01-01

    SUMMARY Purpose To identify potential antigenic targets for Porphyromonas gingivalis vaccine development. Materials and methods In the present study, we analyzed the Porphyromonas gingivalis, fimA type II primary amino acid sequence and characterized the similarity to the human proteome at the pentapeptide level. Results We found that exact peptide-peptide profiling of the fimbrial antigen versus the human proteome shows that only 19 out of 344 fimA type II pentapeptides are uniquely owned by the bacterial protein. Conclusions The concept that protein immunogenicity is allocated in rare peptide sequences and the search the Porphyromonas gingivalis fimA type II sequence for peptides unique to the bacterial protein and absent in the human host, might be used in new therapeutical approaches as a significant adjunct to current periodontal therapies. PMID:28042435

  15. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  16. "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    Full Text Available BACKGROUND: The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of "topological significance". This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a "second phase" response, not directly dependent on the initial androgen stimulus. CONCLUSIONS/SIGNIFICANCE: We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an

  17. Combining Amine Metabolomics and Quantitative Proteomics of Cancer Cells Using Derivatization with Isobaric Tags

    OpenAIRE

    Murphy,J. Patrick; Everley, Robert A.; Coloff, Jonathan L.; Steven P. Gygi

    2014-01-01

    Quantitative metabolomics and proteomics technologies are powerful approaches to explore cellular metabolic regulation. Unfortunately, combining the two technologies typically requires different LC-MS setups for sensitive measurement of metabolites and peptides. One approach to enhance the analysis of certain classes of metabolites is by derivatization with various types of tags to increase ionization and chromatographic efficiency. We demonstrate here that derivatization of amine metabolites...

  18. Proteomics Investigations of Drug-Induced Hepatotoxicity in HepG2 Cells

    OpenAIRE

    Van Summeren, Anke; Renes, Johan; Bouwman, Freek G.; Noben, Jean-Paul; van Delft, Joost H. M.; Kleinjans, Jos C.S.; Mariman, Edwin C. M.

    2011-01-01

    Unexpected hepatotoxicity is one of the major reasons of drugs failing in clinical trials. This emphasizes the need for new screening methods that address toxicological hazards early in the drug discovery process. Here, proteomics techniques were used to gain further insight into the mechanistic processes of the hepatotoxic compounds. Drug-induced hepatotoxicity is mainly divided in hepatic steatosis, cholestasis, or necrosis. For each class, a compound was selected, respectively amiodarone, ...

  19. Quantitative Proteomic Analysis of Bromotetrandrine and Tetrandrine in K562 Cell Line Using 18O-labeling Method

    Institute of Scientific and Technical Information of China (English)

    TAN Ying; GE Zhi-qiang; LIU Chang-xiao

    2012-01-01

    Objective To compare quantitative proteomic analysis of bromotetrandrine (W198) which was a Class Ⅰ new antitumor drug in China and tetrandrine (Tet) in K562 cell line using 18O-labeling method.Methods To illustrate its mechanism,a shotgun quantitative proteomic strategy employing 2D LC-MS-MS and trypsin catalyzed 18O-labeling quantification was carried out in this study.Compared to normal chronic leukemia cell line K562 and K562 induced by Tet,the proteomic changes of K562 induced by W198 were investigated.In order to validate the quantitation by the 18O-labeling,the analysis was done on an equivalent sample composed of the same amount of labeled and unlabeled proteins from normally cultured cells to act as a reference to the comparative sample.Results A threshold of ± 2-fold change for deciding whether a protein concentration was changed was settled for the following experiments.Comparing the 105 identified soluble proteins' expression levels of the apoptosis starting up K562 cells after W198 induction with the normally cultured cells,16 proteins were found with significantly altered expression levels after W198 treatment.Eight proteins were up-expressed including HMGB2,peroxiredoxin-2,and eIF4A-I,etc.Eight proteins were down-expressed including TCP-1,GRP94,GST-π,and SFGHs,etc.Compared to K562 induced by Tet,eight proteins of K562 were found with significantly altered expression levels after W198 treatment.Five proteins were up-expressed including HSP 90-β and 40S ribosomal protein S15a,etc.Three proteins were down-expressed including phosphoglycerate kinase 1,isoform 5 of interleukin enhancer-binding factor 3,etc.Conclusion The 18O-labeling MS-MS-based method is ideal as a discovery tool,but it is not suitable for validation using a large number of samples.Other more effective methods,such as Western blotting should be used for further validation of candidate cancer proteins discovered from 18O-labeling samples.In total,105 soluble proteins were discovered

  20. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants.

    Directory of Open Access Journals (Sweden)

    Reshu Saxena

    Full Text Available Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1 through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01 in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1, VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61 and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein

  1. A novel method for sample preparation of fresh lung cancer tissue for proteomics analysis by tumor cell enrichment and removal of blood contaminants

    Directory of Open Access Journals (Sweden)

    Orre Lotta

    2010-02-01

    Full Text Available Abstract Background In-depth proteomics analyses of tumors are frequently biased by the presence of blood components and stromal contamination, which leads to large experimental variation and decreases the proteome coverage. We have established a reproducible method to prepare freshly collected lung tumors for proteomics analysis, aiming at tumor cell enrichment and reduction of plasma protein contamination. We obtained enriched tumor-cell suspensions (ETS from six lung cancer cases (two adenocarcinomas, two squamous-cell carcinomas, two large-cell carcinomas and from two normal lung samples. The cell content of resulting ETS was evaluated with immunocytological stainings and compared with the histologic pattern of the original specimens. By means of a quantitative mass spectrometry-based method we evaluated the reproducibility of the sample preparation protocol and we assessed the proteome coverage by comparing lysates from ETS samples with the direct lysate of corresponding fresh-frozen samples. Results Cytological analyses on cytospin specimens showed that the percentage of tumoral cells in the ETS samples ranged from 20% to 70%. In the normal lung samples the percentage of epithelial cells was less then 10%. The reproducibility of the sample preparation protocol was very good, with coefficient of variation at the peptide level and at the protein level of 13% and 7%, respectively. Proteomics analysis led to the identification of a significantly higher number of proteins in the ETS samples than in the FF samples (244 vs 109, respectively. Albumin and hemoglobin were among the top 5 most abundant proteins identified in the FF samples, showing a high contamination with blood and plasma proteins, whereas ubiquitin and the mitochondrial ATP synthase 5A1 where among the top 5 most abundant proteins in the ETS samples. Conclusion The method is feasible and reproducible. We could obtain a fair enrichment of cells but the major benefit of the method

  2. Environmental proteomics and metallomics.

    Science.gov (United States)

    López-Barea, Juan; Gómez-Ariza, José Luis

    2006-04-01

    Monitoring environmental pollution using biomarkers requires detailed knowledge about the markers, and many only allow a partial assessment of pollution. New proteomic methods (environmental proteomics) can identify proteins that, after validation, might be useful as alternative biomarkers, although this approach also has its limitations, derived mainly from their application to non-model organisms. Initial studies using environmental proteomics were carried out in animals exposed to model pollutants, and led to the concept of protein expression signatures. Experiments have been carried out in model organisms (yeast, Arabidopsis, rat cells, or mice) exposed to model contaminants. Over the last few years, proteomics has been applied to organisms from ecosystems with different pollution levels, forming the basis of an environmental branch in proteomics. Another focus is connected with the presence of metals bound to biomolecules, which adds an additional dimension to metal-biomolecule and metalloprotein characterization - the field of metallomics. The metallomic approach considers the metallome: a whole individual metal or metalloid species within a cell or tissue. A metallomic analytical approach (MAA) is proposed as a new tool to study and identify metalloproteins.

  3. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    Science.gov (United States)

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  4. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M;

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related...... subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic...... repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability...

  5. Cell surface engineering with edible protein nanoshells.

    Science.gov (United States)

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  6. The Clostridium difficile Protease Cwp84 Modulates both Biofilm Formation and Cell-Surface Properties.

    Science.gov (United States)

    Pantaléon, Véronique; Soavelomandroso, Anna Philibertine; Bouttier, Sylvie; Briandet, Romain; Roxas, Bryan; Chu, Michele; Collignon, Anne; Janoir, Claire; Vedantam, Gayatri; Candela, Thomas

    2015-01-01

    Clostridium difficile is responsible for 15-20% of antibiotic-associated diarrheas, and nearly all cases of pseudomembranous colitis. Among the cell wall proteins involved in the colonization process, Cwp84 is a protease that cleaves the S-layer protein SlpA into two subunits. A cwp84 mutant was previously shown to be affected for in vitro growth but not in its virulence in a hamster model. In this study, the cwp84 mutant elaborated biofilms with increased biomass compared with the parental strain, allowing the mutant to grow more robustly in the biofilm state. Proteomic analyses of the 630Δerm bacteria growing within the biofilm revealed the distribution of abundant proteins either in cell surface, matrix or supernatant fractions. Of note, the toxin TcdA was found in the biofilm matrix. Although the overall proteome differences between the cwp84 mutant and the parental strains were modest, there was still a significant impact on bacterial surface properties such as altered hydrophobicity. In vitro and in vivo competition assays revealed that the mutant was significantly impaired for growth only in the planktonic state, but not in biofilms or in vivo. Taken together, our results suggest that the phenotypes in the cwp84 mutant come from either the accumulation of uncleaved SlpA, or the ability of Cwp84 to cleave as yet undetermined proteins.

  7. The Clostridium difficile Protease Cwp84 Modulates both Biofilm Formation and Cell-Surface Properties.

    Directory of Open Access Journals (Sweden)

    Véronique Pantaléon

    Full Text Available Clostridium difficile is responsible for 15-20% of antibiotic-associated diarrheas, and nearly all cases of pseudomembranous colitis. Among the cell wall proteins involved in the colonization process, Cwp84 is a protease that cleaves the S-layer protein SlpA into two subunits. A cwp84 mutant was previously shown to be affected for in vitro growth but not in its virulence in a hamster model. In this study, the cwp84 mutant elaborated biofilms with increased biomass compared with the parental strain, allowing the mutant to grow more robustly in the biofilm state. Proteomic analyses of the 630Δerm bacteria growing within the biofilm revealed the distribution of abundant proteins either in cell surface, matrix or supernatant fractions. Of note, the toxin TcdA was found in the biofilm matrix. Although the overall proteome differences between the cwp84 mutant and the parental strains were modest, there was still a significant impact on bacterial surface properties such as altered hydrophobicity. In vitro and in vivo competition assays revealed that the mutant was significantly impaired for growth only in the planktonic state, but not in biofilms or in vivo. Taken together, our results suggest that the phenotypes in the cwp84 mutant come from either the accumulation of uncleaved SlpA, or the ability of Cwp84 to cleave as yet undetermined proteins.

  8. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  9. Association of Acinetobacter baumannii EF-Tu with Cell Surface, Outer Membrane Vesicles, and Fibronectin

    Directory of Open Access Journals (Sweden)

    Shatha F. Dallo

    2012-01-01

    Full Text Available A conundrum has long lingered over association of cytosol elongation factor Tu (EF-Tu with bacterial surface. Here we investigated it with Acinetobacter baumannii, an emerging opportunistic pathogen associated with a wide spectrum of infectious diseases. The gene for A. baumannii EF-Tu was sequenced, and recombinant EF-Tu was purified for antibody development. EF-Tu on the bacterial surface and the outer membrane vesicles (OMVs was revealed by immune electron microscopy, and its presence in the outer membrane (OM and the OMV subproteomes was verified by Western blotting with the EF-Tu antibodies and confirmed by proteomic analyses. EF-Tu in the OM and the OMV subproteomes bound to fibronectin as detected by Western blot and confirmed by a label-free real-time optical sensor. The sensor that originates from photonic crystal structure in a total-Internal-reflection (PC-TIR configuration was functionalized with fibronectin for characterizing EF-Tu binding. Altogether, with a novel combination of immunological, proteomical, and biophysical assays, these results suggest association of A. baumannii EF-Tu with the bacterial cell surface, OMVs, and fibronectin.

  10. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields.

    Science.gov (United States)

    Kuzniar, Arnold; Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A Peter M; Demmers, Jeroen; Lebbink, Joyce H G; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.

  11. Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin Mycolactone: Targeting Host Cells Cytoskeleton and Collagen

    Science.gov (United States)

    Gama, José B.; Ohlmeier, Steffen; Martins, Teresa G.; Fraga, Alexandra G.; Sampaio-Marques, Belém; Carvalho, Maria A.; Proença, Fernanda; Silva, Manuel T.; Pedrosa, Jorge; Ludovico, Paula

    2014-01-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis. PMID:25101965

  12. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Directory of Open Access Journals (Sweden)

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell bi